JP4247616B2 - Fuel injection control device for diesel engine - Google Patents

Fuel injection control device for diesel engine Download PDF

Info

Publication number
JP4247616B2
JP4247616B2 JP2003390791A JP2003390791A JP4247616B2 JP 4247616 B2 JP4247616 B2 JP 4247616B2 JP 2003390791 A JP2003390791 A JP 2003390791A JP 2003390791 A JP2003390791 A JP 2003390791A JP 4247616 B2 JP4247616 B2 JP 4247616B2
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
limit
excess air
air ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003390791A
Other languages
Japanese (ja)
Other versions
JP2005155331A (en
Inventor
祐治 柳川
純 竹村
恵 信ヶ原
道博 畠
和郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003390791A priority Critical patent/JP4247616B2/en
Publication of JP2005155331A publication Critical patent/JP2005155331A/en
Application granted granted Critical
Publication of JP4247616B2 publication Critical patent/JP4247616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、ディーゼルエンジンの燃料噴射制御装置に係り、詳しくは、スモークの排出を抑制する技術に関する。   The present invention relates to a fuel injection control device for a diesel engine, and more particularly to a technique for suppressing smoke emission.

ディーゼルエンジンでは、低回転高負荷領域においてスモークを発生し易い傾向にあり、斯かるスモークの発生を抑制するべく、運転状態の過渡期において新気量や過給圧等に応じて燃料噴射量を抑制する技術が開発されている。
また、低回転低負荷領域にとどまる時間が長いとスモークを発生し易いことから、エンジン回転速度の上昇速度が遅く低回転低負荷領域にとどまる時間が長いときにはエンジン回転速度の上昇速度が速いときよりも燃料噴射量に制限を加える技術も開発されている(特許文献1参照)。
特開2002−256945号公報(請求項1等)
Diesel engines tend to generate smoke in low-rotation and high-load regions, and in order to suppress the generation of such smoke, the fuel injection amount is adjusted according to the amount of fresh air, supercharging pressure, etc. during the transitional period of operation. Technology to suppress has been developed.
Also, if the time staying in the low rotation / low load region is long, smoke is likely to be generated. Therefore, when the engine speed increases slowly and the time remaining in the low rotation / low load region is long, the engine rotation speed increases faster. Also, a technique for limiting the fuel injection amount has been developed (see Patent Document 1).
JP 2002-256945 A (Claim 1 etc.)

ところで、ディーゼルエンジンでは、吸入空気量が多くNOxが発生し易いことから、主としてNOxの低減を目的としてEGR(排気再循環)を行い、排ガスの一部をEGRガスとして吸気系に還流させるようにしており、この際、EGRガス量は燃料噴射量に応じて設定されるのが一般的である。
従って、上記のように新気量や過給圧等に応じて、或いはエンジン回転速度の上昇速度に応じて燃料噴射量の抑制を行うと、EGRガス流量が当該抑制した燃料噴射量に応じて設定されることになり、例えば抑制により燃料噴射量が減少する一方でEGRガス流量が増加するという現象が起こり得る。
By the way, in a diesel engine, since the intake air amount is large and NOx is likely to be generated, EGR (exhaust gas recirculation) is mainly performed for the purpose of reducing NOx, and a part of the exhaust gas is recirculated to the intake system as EGR gas. In this case, the EGR gas amount is generally set according to the fuel injection amount.
Therefore, if the fuel injection amount is suppressed according to the fresh air amount, the supercharging pressure, or the like as described above, or according to the rising speed of the engine rotation speed, the EGR gas flow rate is determined according to the suppressed fuel injection amount. For example, a phenomenon may occur in which the fuel injection amount decreases while the EGR gas flow rate increases due to suppression.

このようにEGRガス流量が増加すると、吸入空気中の新気量が減少することになり、燃料噴射量を抑制したにも拘わらず同時に新気量も減少してしまい、スモークを十分に抑制できないという問題がある。
また、燃料噴射量の抑制を終了して燃料噴射量が通常の状態に戻ったときにおいても、EGRガス流量が燃料噴射量に即座に応答できず、即ちEGRガスが応答性よく減少せず、故に新気量が応答性よく増大せず、やはりスモークを十分に抑制できないという問題がある。
If the EGR gas flow rate increases in this way, the amount of fresh air in the intake air will decrease, and the amount of fresh air will also decrease at the same time even though the fuel injection amount is suppressed, and smoke cannot be sufficiently suppressed. There is a problem.
Further, even when the suppression of the fuel injection amount is finished and the fuel injection amount returns to the normal state, the EGR gas flow rate cannot immediately respond to the fuel injection amount, that is, the EGR gas does not decrease with good responsiveness, Therefore, there is a problem that the amount of fresh air does not increase with good responsiveness and smoke cannot be sufficiently suppressed.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、簡単な構成にしてスモークの排出を十分に抑制可能なディーゼルエンジンの燃料噴射制御装置を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a fuel injection control device for a diesel engine that has a simple configuration and can sufficiently suppress smoke emission. It is in.

上記した目的を達成するために、請求項1のディーゼルエンジンの燃料噴射制御装置では、エンジン回転速度とアクセル操作量とに基づき通常燃料噴射量を設定し、該通常燃料噴射量と前記エンジン回転速度とに基づき目標空気過剰率を設定する目標空気過剰率設定手段と、排ガスの一部をEGRガスとして吸気系に還流させるEGR通路と、該EGR通路を流れるEGRガス流量を前記目標空気過剰率に基づき制御するEGR制御手段と、前記通常燃料噴射量と前記エンジン回転速度とに応じてスモークを発生させない限界空気過剰率を設定する限界空気過剰率設定手段と、該限界空気過剰率に基づき制限燃料噴射量を求める制限燃料噴射量算出手段と、前記通常燃料噴射量の変化度合いを検出する噴射量変化度合検出手段と、該通常燃料噴射量の変化度合いが所定値以上になったとき、前記通常燃料噴射量に代えて前記制限燃料噴射量に基づいて燃料噴射を行う燃料噴射手段とを備え、前記EGR制御手段は、前記限界空気過剰率設定手段によって限界空気過剰率が設定されたときであっても前記目標空気過剰率に基づきEGRガス流量を制御することを特徴としている。 In order to achieve the above object, in the fuel injection control device for a diesel engine according to claim 1, the normal fuel injection amount is set based on the engine rotation speed and the accelerator operation amount, and the normal fuel injection amount and the engine rotation speed are set. The target excess air ratio setting means for setting the target excess air ratio based on the above, the EGR passage for returning a part of the exhaust gas to the intake system as EGR gas, and the EGR gas flow rate flowing through the EGR passage to the target excess air ratio EGR control means for controlling based on the limit, excess air ratio setting means for setting a limit excess air ratio that does not generate smoke according to the normal fuel injection amount and the engine speed, and a limit fuel based on the limit air excess ratio Limiting fuel injection amount calculating means for obtaining an injection amount; injection amount change degree detecting means for detecting a change degree of the normal fuel injection amount; and the normal fuel When the degree of change in injection amount exceeds a predetermined value, said a fuel injection means for performing fuel injection based on the normal fuel injection amount the limit fuel injection amount in place of, the EGR control means, the limit air Even when the limit excess air ratio is set by the excess ratio setting means, the EGR gas flow rate is controlled based on the target excess air ratio .

また、請求項2のディーゼルエンジンの燃料噴射制御装置では、筒内の空気過剰率を推定する筒内空気過剰率推定手段をさらに備え、前記制限燃料噴射量算出手段は、前記推定した筒内の空気過剰率を前記限界空気過剰率で除して空気過剰率の制限比を求め、該制限比と前記通常燃料噴射量との積から制限燃料噴射量を求めることを特徴としている。
また、請求項3のディーゼルエンジンの燃料噴射制御装置では、前記燃料噴射手段は、前記EGR制御手段により前記EGRガス流量の制御が可能であり且つ前記通常燃料噴射量の変化度合いが所定値以上になったとき、前記通常燃料噴射量に代えて前記制限燃料噴射量に基づいて燃料噴射を行うことを特徴としている。
The fuel injection control device for a diesel engine according to claim 2 further includes in-cylinder excess air ratio estimating means for estimating an excess air ratio in the cylinder, wherein the limited fuel injection amount calculating means is provided in the estimated in-cylinder A limiting ratio of the excess air ratio is obtained by dividing the excess air ratio by the limit excess air ratio, and the restricted fuel injection amount is obtained from the product of the restriction ratio and the normal fuel injection amount.
In the fuel injection control device for a diesel engine according to claim 3, the fuel injection means can control the EGR gas flow rate by the EGR control means, and the degree of change in the normal fuel injection amount is a predetermined value or more. In this case, fuel injection is performed based on the limited fuel injection amount instead of the normal fuel injection amount.

また、請求項4のディーゼルエンジンの燃料噴射制御装置では、前記燃料噴射手段は、前記制限燃料噴射量が前記通常燃料噴射量以上となったときまたは前記制限燃料噴射量に基づく燃料噴射を開始してから所定時間が経過したとき、該制限燃料噴射量に基づく燃料噴射を終了して前記通常燃料噴射量による燃料噴射を実施することを特徴としている。   Further, in the fuel injection control device for a diesel engine according to claim 4, the fuel injection means starts fuel injection when the limited fuel injection amount becomes equal to or more than the normal fuel injection amount or based on the limited fuel injection amount. When a predetermined time elapses, fuel injection based on the limited fuel injection amount is terminated and fuel injection is performed using the normal fuel injection amount.

請求項1のディーゼルエンジンの燃料噴射制御装置によれば、通常燃料噴射量の変化度合いが所定値以上になったときには通常燃料噴射量に代えて限界空気過剰率に基づく制限燃料噴射量により燃料噴射を行う一方、EGRガス流量については目標空気過剰率に基づいて制御するので、制限燃料噴射量に呼応してEGRガス流量が増大し吸気中の新気量が減少することが防止され、スモークの排出を確実に抑制することができる。   According to the fuel injection control device for a diesel engine according to claim 1, when the degree of change in the normal fuel injection amount becomes a predetermined value or more, the fuel injection is performed by the limited fuel injection amount based on the limit excess air ratio instead of the normal fuel injection amount. On the other hand, since the EGR gas flow rate is controlled based on the target excess air ratio, it is prevented that the EGR gas flow rate increases in response to the limited fuel injection amount and the fresh air amount in the intake air decreases. Emission can be reliably suppressed.

また、制限燃料噴射量による燃料噴射から通常燃料噴射量による燃料噴射に戻したときであっても、EGRガス流量が即座に減少せずに新気量が燃料噴射量の増加に追従できないといったことが防止され、やはりスモークの排出を確実に抑制することができる。
また、請求項2のディーゼルエンジンの燃料噴射制御装置によれば、推定した筒内の空気過剰率を限界空気過剰率で除して空気過剰率の制限比を求め、該制限比と通常燃料噴射量との積から制限燃料噴射量を求めるようにするので、簡単な構成にしてスモークの排出を確実に抑制することができる。
Further, even when the fuel injection by the limited fuel injection amount is returned to the fuel injection by the normal fuel injection amount, the EGR gas flow rate does not immediately decrease and the fresh air amount cannot follow the increase in the fuel injection amount. Is prevented, and smoke emission can be reliably suppressed.
According to the fuel injection control device for a diesel engine according to claim 2, the estimated excess air ratio in the cylinder is divided by the limit excess air ratio to obtain a limit ratio of the excess air ratio. Since the limited fuel injection amount is obtained from the product of the amount, it is possible to reliably suppress smoke discharge with a simple configuration.

また、請求項3のディーゼルエンジンの燃料噴射制御装置によれば、EGR制御手段によりEGRガス流量の制御が可能であり且つ通常燃料噴射量の変化度合いが所定値以上になったときに通常燃料噴射量に代えて制限燃料噴射量に基づいて燃料噴射を行うようにするので、例えばディーゼルエンジンがエンストモード或いは始動モードにあってEGRガス流量の制御が不安定であるときや、例えばブーストセンサが故障した場合のようにEGRガス流量が多く新気量が少ないようなときに不用意に燃料噴射量が抑制されることが防止され、燃焼悪化や始動不能、エンジンストール(エンスト)等を防止することができる。   According to the fuel injection control device for a diesel engine according to claim 3, when the EGR gas flow rate can be controlled by the EGR control means and the change degree of the normal fuel injection amount becomes a predetermined value or more, the normal fuel injection is performed. Since fuel injection is performed based on the limited fuel injection amount instead of the amount, for example, when the diesel engine is in the engine stall mode or the start mode and the control of the EGR gas flow rate is unstable, for example, the boost sensor fails When the EGR gas flow rate is large and the fresh air amount is small as in the case where the fuel is injected, the fuel injection amount is prevented from being inadvertently suppressed, preventing combustion deterioration, inability to start, engine stall (engine stall), etc. Can do.

また、請求項4のディーゼルエンジンの燃料噴射制御装置によれば、制限燃料噴射量が通常燃料噴射量以上となったときまたは制限燃料噴射量に基づく燃料噴射を開始してから所定時間が経過したときに制限燃料噴射量に基づく燃料噴射を終了して通常燃料噴射量による燃料噴射を実施するので、制限燃料噴射量での燃料噴射を必要最小限に抑えてディーゼルエンジンの出力性能を損なわないようにできる。   Further, according to the fuel injection control device for a diesel engine according to claim 4, a predetermined time has elapsed since the limit fuel injection amount becomes equal to or greater than the normal fuel injection amount or the fuel injection based on the limit fuel injection amount is started. Sometimes the fuel injection based on the limited fuel injection amount is terminated and the fuel injection based on the normal fuel injection amount is performed, so that the fuel injection at the limited fuel injection amount is minimized and the output performance of the diesel engine is not impaired. Can be.

以下、図面を参照して、本発明に係るディーゼルエンジンの燃料噴射制御装置の実施例を説明する。
図1を参照すると、車両に搭載された本発明に係るディーゼルエンジンの燃料噴射制御装置の概略構成図が示されており、以下同図に基づき説明する。
エンジン1としては、ここでは直列4気筒ディーゼルエンジン(以下、単にエンジンと記す)が採用される。
Embodiments of a fuel injection control device for a diesel engine according to the present invention will be described below with reference to the drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of a fuel injection control device for a diesel engine according to the present invention mounted on a vehicle, which will be described below with reference to FIG.
Here, an in-line four-cylinder diesel engine (hereinafter simply referred to as an engine) is employed as the engine 1.

エンジン1の燃料供給系は例えばコモンレールシステムからなり、このシステムでは、各気筒毎にインジェクタ2が設けられており、これらのインジェクタ2はコモンレール(図示せず)に接続されている。そして、各インジェクタ2は、電子コントロールユニット(ECU)40に接続されており、ECU40からの燃料噴射指令に基づいて開閉弁し、コモンレール内の燃料を所望のタイミングで各燃焼室に高圧で噴射可能である。なお、当該コモンレールシステムは公知であり、該コモンレールシステムの構成の詳細についてはここでは説明を省略する。   The fuel supply system of the engine 1 is composed of, for example, a common rail system. In this system, an injector 2 is provided for each cylinder, and these injectors 2 are connected to a common rail (not shown). Each injector 2 is connected to an electronic control unit (ECU) 40, and opens and closes based on a fuel injection command from the ECU 40. The fuel in the common rail can be injected into each combustion chamber at high pressure at a desired timing. It is. The common rail system is publicly known, and detailed description of the configuration of the common rail system is omitted here.

エンジン1の吸気ポートには、吸気マニホールド6を介して吸気管8が接続されており、吸気管8にはインタークーラ9が設けられている。また、吸気管8には吸入空気量、即ち新気量を検出するエアフローセンサ7が設けられている。
一方、排気ポートには、排気マニホールド10を介して排気管12が接続されている。
排気マニホールド10からはEGR通路14が延びており、該EGR通路14の終端は吸気マニホールド6に接続され、EGR通路14には、電磁式のEGR弁16が介装されている。
An intake pipe 8 is connected to an intake port of the engine 1 via an intake manifold 6, and an intercooler 9 is provided in the intake pipe 8. The intake pipe 8 is provided with an air flow sensor 7 for detecting the amount of intake air, that is, the amount of fresh air.
On the other hand, an exhaust pipe 12 is connected to the exhaust port via an exhaust manifold 10.
An EGR passage 14 extends from the exhaust manifold 10, and an end of the EGR passage 14 is connected to the intake manifold 6, and an electromagnetic EGR valve 16 is interposed in the EGR passage 14.

そして、排気管12には後処理装置20が介装されている。後処理装置20は、排ガスに含まれる有害成分(HC、CO、NOx等)やPM(パティキュレートマター)を浄化処理するための触媒コンバータやディーゼル・パティキュレートフィルタ(DPF)からなる排気浄化装置であり、ここでは、DPF24の上流に触媒コンバータ26を備えて構成されている。   A post-treatment device 20 is interposed in the exhaust pipe 12. The aftertreatment device 20 is an exhaust gas purification device comprising a catalytic converter or a diesel particulate filter (DPF) for purifying harmful components (HC, CO, NOx, etc.) and PM (particulate matter) contained in exhaust gas. In this example, a catalytic converter 26 is provided upstream of the DPF 24.

また、排気管12の触媒コンバータ26の上流部分には、排気中の酸素濃度を検出することで排気中の空気過剰率λを検出する酸素センサ22が設けられている。
ECU40は、エンジン1を含めた本発明に係るディーゼルエンジンの燃料噴射制御装置の総合的な制御を行うための制御装置である。
ECU40の入力側には、上記エアフローセンサ7、酸素センサ22の他、エンジン回転速度Neを検出するNeセンサ42、アクセルペダル46の操作量、即ちアクセル開度θaccを検出するアクセルポジションセンサ(APS)44等の各種センサ類が接続されている。
Further, an oxygen sensor 22 for detecting the excess air ratio λ in the exhaust gas by detecting the oxygen concentration in the exhaust gas is provided in the upstream portion of the exhaust pipe 12 from the catalytic converter 26.
The ECU 40 is a control device for performing comprehensive control of the fuel injection control device for the diesel engine according to the present invention including the engine 1.
On the input side of the ECU 40, in addition to the air flow sensor 7 and the oxygen sensor 22, an Ne sensor 42 that detects the engine rotational speed Ne, an operation amount of the accelerator pedal 46, that is, an accelerator position sensor (APS) that detects the accelerator opening θacc. Various sensors such as 44 are connected.

一方、ECU40の出力側には、上記インジェクタ2、EGR弁16等の各種デバイスが接続されており、各種入力情報に基づき、空燃比、燃料噴射量、吸入空気量、点火時期等が設定され指令値として出力される。
図2を参照すると、ECU40において実行される本発明に係る燃料噴射制御のブロック図が示されており、以下同ブロック図に基づき本発明に係る燃料噴射制御の制御手順について説明する。
On the other hand, various devices such as the injector 2 and the EGR valve 16 are connected to the output side of the ECU 40. Based on various input information, the air-fuel ratio, fuel injection amount, intake air amount, ignition timing, etc. are set and commanded. Output as a value.
Referring to FIG. 2, there is shown a block diagram of the fuel injection control according to the present invention executed in the ECU 40. Hereinafter, the control procedure of the fuel injection control according to the present invention will be described based on the block diagram.

先ず、ブロックB10では、基本噴射量、最大噴射量、オーバブースト噴射量、オーバヒート噴射量及びオーバラン噴射量のうちの最小値(Minimum値)を通常噴射量(通常燃料噴射量)Qcとして選択する。
ここに、基本噴射量はエンジン回転速度Neとアクセル開度θaccとに基づき予め設定されたマップより読み出される燃料噴射量の基準値であり、最大噴射量はそのクリップ値であり、オーバブースト噴射量、オーバヒート噴射量、オーバラン噴射量はそれぞれブースト圧(過給圧)、冷却水温、エンジン回転速度Neに応じてフェールセーフを目的として設定される燃料噴射量である。
First, in block B10, the minimum value (Minimum value) among the basic injection amount, the maximum injection amount, the overboost injection amount, the overheat injection amount, and the overrun injection amount is selected as the normal injection amount (normal fuel injection amount) Qc.
Here, the basic injection amount is a reference value of the fuel injection amount read from a preset map based on the engine speed Ne and the accelerator opening θacc, the maximum injection amount is the clip value, and the over boost injection amount The overheat injection amount and the overrun injection amount are fuel injection amounts set for the purpose of fail-safe according to the boost pressure (supercharging pressure), the coolant temperature, and the engine rotational speed Ne, respectively.

実際には、基本噴射量に基づいて通常噴射量Qcが設定された後、当該基本噴射量がさらに最大噴射量、オーバブースト噴射量、オーバヒート噴射量、オーバラン噴射量によって制限される。
このように通常噴射量Qcが設定されると、ブロックB12において当該通常噴射量Qcに基づき空気過剰率λ(λ=単位吸入空気重量/14.3・単位燃料重量)の目標値、即ち目標λ(目標空気過剰率)を設定し(目標空気過剰率設定手段)、ブロックB14において当該目標λに基づきEGRガス流量を設定する。これにより、EGRガス流量を得るべくEGR弁16が制御される(EGR制御手段)。
Actually, after the normal injection amount Qc is set based on the basic injection amount, the basic injection amount is further limited by the maximum injection amount, the over boost injection amount, the overheat injection amount, and the overrun injection amount.
When the normal injection amount Qc is set in this way, the target value of the excess air ratio λ (λ = unit intake air weight / 14.3 · unit fuel weight) based on the normal injection amount Qc in block B12, that is, the target λ. (Target excess air ratio) is set (target excess air ratio setting means), and the EGR gas flow rate is set based on the target λ in block B14. Thereby, the EGR valve 16 is controlled to obtain the EGR gas flow rate (EGR control means).

また、ブロックB20では、通常噴射量Qcとエンジン回転速度Neとに基づいて、スモークが発生し始める空気過剰率λ、即ち限界λ(限界空気過剰率)を設定する(限界空気過剰率設定手段)。なお、実際には、限界λは、燃料噴射量とエンジン回転速度Neとに応じて実験等により予め限界λマップとして設定されており、当該限界λマップより読み出される。   In block B20, an excess air ratio λ at which smoke starts to be generated, that is, a limit λ (limit excess air ratio) is set based on the normal injection amount Qc and the engine speed Ne (limit excess air ratio setting means). . In practice, the limit λ is set in advance as a limit λ map by experiments or the like according to the fuel injection amount and the engine rotational speed Ne, and is read from the limit λ map.

限界λが求められたら、ブロックB22において、当該限界λ、上記通常噴射量Qc及び推定筒内λとに基づきλ制限噴射量(制限燃料噴射量)Qrを算出する(制限燃料噴射量算出手段)。
ここに、推定筒内λは、目標λに対し各筒内で実現していると推定される空気過剰率λであり、エアフローセンサ7により検出される吸入空気量、ブースト圧及び燃料噴射量等から求められる(筒内空気過剰率推定手段)。
When the limit λ is obtained, in block B22, a λ limit injection amount (limit fuel injection amount) Qr is calculated based on the limit λ, the normal injection amount Qc and the estimated in-cylinder λ (limit fuel injection amount calculation means). .
Here, the estimated in-cylinder λ is an excess air ratio λ estimated to be realized in each cylinder with respect to the target λ, and the intake air amount, boost pressure, fuel injection amount, etc. detected by the airflow sensor 7 (In-cylinder excess air ratio estimating means).

具体的には、λ制限噴射量Qrは次式(1)から算出される。
λ制限噴射量Qr=通常噴射量Qc×推定筒内λ/限界λ …(1)
つまり、λ制限噴射量Qrは通常噴射量Qcに制限比(推定筒内λ/限界λ)を乗算することにより求められる。
λ制限噴射量Qrが算出されたら、λ制限噴射量QrはSW2の値1側に入力される。一方、SW2の値0側には通常噴射量Qcが入力される。つまり、SW2では、値1側に位置している場合にはλ制限噴射量Qrが出力され、値0側に位置している場合には通常噴射量Qcが出力される。
Specifically, the λ limited injection amount Qr is calculated from the following equation (1).
λ limit injection amount Qr = normal injection amount Qc × estimated in-cylinder λ / limit λ (1)
That is, the λ limit injection amount Qr is obtained by multiplying the normal injection amount Qc by the limit ratio (estimated in-cylinder λ / limit λ).
When the λ limited injection amount Qr is calculated, the λ limited injection amount Qr is input to the value 1 side of SW2. On the other hand, the normal injection amount Qc is input to the value 0 side of SW2. That is, in SW2, the λ-limited injection amount Qr is output when it is positioned on the value 1 side, and the normal injection amount Qc is output when it is positioned on the value 0 side.

詳しくは、SW2の値0側と値1側の切り換えは、推定筒内λと限界λの大小比較によって行われる。具体的には、SW2は、限界λが推定筒内λ以上(限界λ≧推定筒内λ)の場合には値1側に切り換えられ、限界λが推定筒内λより小(限界λ<推定筒内λ)の場合には値0側に切り換えられる。
つまり、限界λが推定筒内λ以上である場合には、制限比(推定筒内λ/限界λ)は1.0以下となり、上記式(1)からλ制限噴射量Qrは通常噴射量Qc以下となる一方、限界λが推定筒内λより小である場合には、制限比(推定筒内λ/限界λ)は1.0を越え、上記式(1)からλ制限噴射量Qrは通常噴射量Qcより大となってしまうため、当該SW2においてλ制限噴射量Qrに通常噴射量Qcでクリップを掛けるようにする。これにより、λ制限噴射量Qrは通常噴射量Qcよりも大きくならないよう制限される。
Specifically, switching between the value 0 side and the value 1 side of SW2 is performed by comparing the size of the estimated in-cylinder λ and the limit λ. Specifically, SW2 is switched to the value 1 side when the limit λ is greater than or equal to the estimated in-cylinder λ (limit λ ≧ estimated in-cylinder λ), and the limit λ is smaller than the estimated in-cylinder λ (limit λ <estimated In the case of in-cylinder λ), it is switched to the value 0 side.
That is, when the limit λ is greater than or equal to the estimated in-cylinder λ, the limiting ratio (estimated in-cylinder λ / limit λ) is 1.0 or less, and the λ-limited injection amount Qr is the normal injection amount Qc from the above equation (1). On the other hand, when the limit λ is smaller than the estimated in-cylinder λ, the limiting ratio (estimated in-cylinder λ / limit λ) exceeds 1.0, and from the above equation (1), the λ-limited injection amount Qr is Since it becomes larger than the normal injection amount Qc, the λ limited injection amount Qr is clipped with the normal injection amount Qc in the SW2. As a result, the λ-limited injection amount Qr is limited so as not to be larger than the normal injection amount Qc.

ブロックB30では、通常噴射量Qcとλ制限噴射量Qrのいずれか小さい値(Minimum値)を選択して出力する。つまり、ここでは、通常噴射量Qcよりも限界λによって制限されたλ制限噴射量Qrの方が小さい場合には、λ制限噴射量Qrを選択する。なお、先のSW2の切り換えによりλ制限噴射量Qrは通常噴射量Qcにクリップされるので、λ制限噴射量Qrが通常噴射量Qcよりも大きくなることはなく、最大でも通常噴射量Qcが選択される。即ち、当該ブロックB30は確認的に実行されるものである。   In block B30, a smaller value (Minimum value) of either the normal injection amount Qc or the λ limited injection amount Qr is selected and output. That is, here, when the λ limited injection amount Qr limited by the limit λ is smaller than the normal injection amount Qc, the λ limited injection amount Qr is selected. Note that the λ-limited injection amount Qr is clipped to the normal injection amount Qc by the previous switching of SW2, so the λ-limited injection amount Qr does not become larger than the normal injection amount Qc, and the normal injection amount Qc is selected at the maximum. Is done. That is, the block B30 is executed for confirmation.

ブロックB30において選択されたλ制限噴射量Qr(通常噴射量Qcの場合もあるが、以下、便宜上λ制限噴射量Qrとする)は、SW1の値1側に入力される。一方、SW1の値0側には通常噴射量Qcが入力される。つまり、SW1では、値1側に位置している場合にはλ制限噴射量Qrが出力され、値0側に位置している場合には通常噴射量Qcが出力される。   The λ limited injection amount Qr selected in block B30 (which may be the normal injection amount Qc, but hereinafter referred to as λ limited injection amount Qr for convenience) is input to the value 1 side of SW1. On the other hand, the normal injection amount Qc is input to the value 0 side of SW1. That is, in SW1, the λ-limited injection amount Qr is output when it is positioned on the value 1 side, and the normal injection amount Qc is output when it is positioned on the value 0 side.

詳しくは、APS44からのアクセル開度情報θaccに基づきアクセル開度変化率θacc’、即ち通常噴射量Qcの変化度合いである通常噴射量変化率Qc’が検出され(噴射量変化度合検出手段)、SW1の値0側と値1側の切り換えは、EGRガス流量を制御可能な状態にあるか否か、及び、通常噴射量変化率Qc’が所定値以上であるか否かの判別によって行われる。   Specifically, based on the accelerator opening information θacc from the APS 44, an accelerator opening change rate θacc ′, that is, a normal injection amount change rate Qc ′ that is a change degree of the normal injection amount Qc is detected (injection amount change degree detection means). Switching between the value 0 side and the value 1 side of SW1 is performed by determining whether or not the EGR gas flow rate is controllable and whether or not the normal injection amount change rate Qc ′ is equal to or greater than a predetermined value. .

ここに、EGRガス流量を制御可能な状態とは、以下の1)〜5)の全てのEGR制御許可条件が所定時間成立してEGR弁16を制御可能な状態であることを意味し、EGRガス流量を制御可能な状態か否かの判別は、下記EGR制御許可条件が全て所定時間成立したか否かの判別によって行う。
1)冷却水温≧所定値
2)エンストモードでない
3)エンジン始動モードでない
4)ブースト圧センサ(図示せず)が正常
5)EGR弁16の駆動が正常
具体的には、SW1は、EGRガス流量を制御可能な状態にあり且つ通常噴射量変化率Qc’が所定値以上(Qc’≧所定値)になった場合には値1側に切り換えられる一方、EGRガス流量を制御可能な状態になく、或いは通常噴射量変化率Qc’が所定値より小(Qc’<所定値)である場合には値0側に切り換えられる。
Here, the state where the EGR gas flow rate can be controlled means that all of the following EGR control permission conditions 1) to 5) are satisfied for a predetermined time and the EGR valve 16 can be controlled. Whether or not the gas flow rate can be controlled is determined by determining whether or not all of the following EGR control permission conditions are satisfied for a predetermined time.
1) Coolant temperature ≧ predetermined value 2) Not in engine mode 3) Not in engine start mode 4) Boost pressure sensor (not shown) is normal 5) Drive of EGR valve 16 is normal Specifically, SW1 is an EGR gas flow rate When the normal injection amount change rate Qc ′ is equal to or greater than a predetermined value (Qc ′ ≧ predetermined value), it is switched to the value 1 side, but the EGR gas flow rate is not in a controllable state. Alternatively, when the normal injection amount change rate Qc ′ is smaller than the predetermined value (Qc ′ <predetermined value), the value is switched to the value 0 side.

つまり、SW1からは、EGRガス流量を制御可能な状況であってエンジン1が所定の加速状態にある場合には、λ制限噴射量Qrが最終噴射量Qfとして出力され、EGRガス流量を制御可能な状況にない場合或いはエンジン1が所定の加速状態にない場合には、通常噴射量Qcが最終噴射量Qfとして出力される(燃料噴射手段)。
このように、本発明に係る燃料噴射制御では、EGRガス流量を制御可能な状況であってエンジン1が所定の加速状態にある場合には、スモークが発生し始める空気過剰率λ、即ち限界λから求めたλ制限噴射量Qrを最終噴射量Qfとして燃料噴射を行うようにしており、その一方で、EGRガス流量については限界λではなく目標λに基づき設定するようにしている。
In other words, from the SW1, when the EGR gas flow rate can be controlled and the engine 1 is in a predetermined acceleration state, the λ-limited injection amount Qr is output as the final injection amount Qf, and the EGR gas flow rate can be controlled. When the engine 1 is not in a proper situation or when the engine 1 is not in a predetermined acceleration state, the normal injection amount Qc is output as the final injection amount Qf (fuel injection means).
Thus, in the fuel injection control according to the present invention, when the EGR gas flow rate can be controlled and the engine 1 is in a predetermined acceleration state, the excess air ratio λ at which smoke starts to be generated, that is, the limit λ The fuel injection is performed with the λ-limited injection amount Qr obtained from the final injection amount Qf, while the EGR gas flow rate is set based on the target λ instead of the limit λ.

従って、例えば低回転低負荷領域で加速運転(例えば、フリーアクセル状態)するような場合において、λ制限噴射量Qrにより燃料噴射量をスモークの発生しない程度に制限できるとともに、λ制限噴射量Qrに呼応してEGRガス流量が増大し吸気中の新気量が減少してしまうことを良好に防止でき、簡単な構成でありながらスモークの排出を確実に抑制することができる。また、λ制限噴射量Qrによる燃料噴射から通常噴射量Qcによる燃料噴射に戻したときにおいて、EGRガス流量が即座に減少せずに新気量が燃料噴射量の増加に追従できないといったことをも良好に防止でき、やはりスモークの排出を確実に抑制することができる。   Accordingly, for example, in the case of acceleration operation (for example, in a free accelerator state) in a low rotation and low load region, the fuel injection amount can be limited to the extent that no smoke is generated by the λ limited injection amount Qr, and the λ limited injection amount Qr is reduced. Correspondingly, it is possible to satisfactorily prevent the EGR gas flow rate from increasing and the amount of fresh air in the intake air from decreasing, and smoke discharge can be reliably suppressed with a simple configuration. In addition, when the fuel injection with the λ-limited injection amount Qr is returned to the fuel injection with the normal injection amount Qc, the EGR gas flow rate does not immediately decrease and the fresh air amount cannot follow the increase in the fuel injection amount. This can be prevented well, and smoke emission can be reliably suppressed.

さらに、ここでは、通常噴射量変化率Qc’が所定値以上であり且つEGRガス流量を制御可能な状況であることを条件にλ制限噴射量Qrでの燃料噴射を実施するようにしているので、例えばディーゼルエンジンがエンストモード或いは始動モードにあってEGRガス流量の制御が不安定であるときや、例えばブーストセンサが故障した場合のようにEGRガス流量が多く新気量が少ないようなときに不用意に燃料噴射量を抑制しないようにでき、燃焼悪化や始動不能、エンジンストール(エンスト)等を防止することができる。   Further, here, fuel injection is performed at the λ-limited injection amount Qr on condition that the normal injection amount change rate Qc ′ is equal to or greater than a predetermined value and the EGR gas flow rate can be controlled. For example, when the diesel engine is in the engine stall mode or the start mode and the control of the EGR gas flow rate is unstable, or when the EGR gas flow rate is large and the fresh air amount is small, for example, when the boost sensor fails It is possible to prevent the fuel injection amount from being suppressed carelessly, and to prevent deterioration of combustion, inability to start, engine stall (engine stall), and the like.

また、SW1が値1側である場合の値0側への切り換えは、例えばエンジン回転速度Neが上昇する等してλ制限噴射量Qrが通常噴射量Qc以上になったこと、或いは、λ制限噴射量Qrでの燃料噴射を開始した後、所定時間が経過したことをもって行われる。
これにより、以降、通常噴射量Qcで燃料噴射が実施されることになり、λ制限噴射量Qrでの燃料噴射が必要最小限に抑えられ、スモークの排出を確実に抑制しながら、エンジン1の出力性能を損なわないようにできる。
Further, when the SW1 is the value 1 side, the switching to the value 0 side is, for example, that the λ-limited injection amount Qr becomes equal to or greater than the normal injection amount Qc due to an increase in the engine speed Ne, or the λ-limited This is performed after a predetermined time has elapsed after the start of fuel injection at the injection amount Qr.
As a result, the fuel injection is performed at the normal injection amount Qc thereafter, the fuel injection at the λ-restricted injection amount Qr is suppressed to the minimum necessary, and the exhaust of the engine 1 is reliably suppressed while suppressing the smoke discharge. The output performance can be prevented from being impaired.

以上で、本発明に係るディーゼルエンジンの燃料噴射制御装置の実施形態についての説明を終えるが、実施形態は上記実施形態に限られるものではない。
例えば、上記実施形態では、主として低回転低負荷領域での加速運転を対象としているが、本発明はアイドル運転時における空ふかし運転時にも適用可能である。
This is the end of the description of the embodiment of the fuel injection control device for a diesel engine according to the present invention, but the embodiment is not limited to the above embodiment.
For example, in the above-described embodiment, the acceleration operation is mainly performed in the low rotation and low load region, but the present invention can also be applied to the idling operation during the idling operation.

車両に搭載された本発明に係るディーゼルエンジンの燃料噴射制御装置の概略構成図である。It is a schematic block diagram of the fuel-injection control apparatus of the diesel engine which concerns on this invention mounted in the vehicle. 本発明に係る燃料噴射制御のブロック図である。It is a block diagram of fuel injection control concerning the present invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 インジェクタ
14 EGR通路
16 EGR弁
40 ECU(電子コントロールユニット)
42 Neセンサ
44 APS
1 diesel engine 2 injector 14 EGR passage 16 EGR valve 40 ECU (electronic control unit)
42 Ne sensor 44 APS

Claims (4)

エンジン回転速度とアクセル操作量とに基づき通常燃料噴射量を設定し、該通常燃料噴射量と前記エンジン回転速度とに基づき目標空気過剰率を設定する目標空気過剰率設定手段と、
排ガスの一部をEGRガスとして吸気系に還流させるEGR通路と、
該EGR通路を流れるEGRガス流量を前記目標空気過剰率に基づき制御するEGR制御手段と、
前記通常燃料噴射量と前記エンジン回転速度とに応じてスモークを発生させない限界空気過剰率を設定する限界空気過剰率設定手段と、
該限界空気過剰率に基づき制限燃料噴射量を求める制限燃料噴射量算出手段と、
前記通常燃料噴射量の変化度合いを検出する噴射量変化度合検出手段と、
該通常燃料噴射量の変化度合いが所定値以上になったとき、前記通常燃料噴射量に代えて前記制限燃料噴射量に基づいて燃料噴射を行う燃料噴射手段とを備え
前記EGR制御手段は、前記限界空気過剰率設定手段によって限界空気過剰率が設定されたときであっても前記目標空気過剰率に基づきEGRガス流量を制御することを特徴とするディーゼルエンジンの燃料噴射制御装置。
A target air excess ratio setting means for setting a normal fuel injection amount based on the engine rotation speed and the accelerator operation amount, and setting a target excess air ratio based on the normal fuel injection amount and the engine rotation speed;
An EGR passage that recirculates a part of the exhaust gas as EGR gas to the intake system;
EGR control means for controlling the flow rate of EGR gas flowing through the EGR passage based on the target excess air ratio;
Limit excess air ratio setting means for setting a limit excess air ratio that does not generate smoke according to the normal fuel injection amount and the engine rotation speed;
Limiting fuel injection amount calculating means for obtaining a limiting fuel injection amount based on the limit excess air ratio;
An injection amount change degree detecting means for detecting a change degree of the normal fuel injection amount;
Fuel injection means for injecting fuel based on the limited fuel injection amount instead of the normal fuel injection amount when the change degree of the normal fuel injection amount becomes a predetermined value or more ;
The fuel injection for a diesel engine, wherein the EGR control means controls an EGR gas flow rate based on the target excess air ratio even when the limit excess air ratio is set by the limit excess air ratio setting means. Control device.
筒内の空気過剰率を推定する筒内空気過剰率推定手段をさらに備え、
前記制限燃料噴射量算出手段は、前記推定した筒内の空気過剰率を前記限界空気過剰率で除して空気過剰率の制限比を求め、該制限比と前記通常燃料噴射量との積から制限燃料噴射量を求めることを特徴とする、請求項1記載のディーゼルエンジンの燃料噴射制御装置。
In-cylinder excess air ratio estimating means for estimating the excess air ratio in the cylinder is further provided,
The limit fuel injection amount calculating means obtains a limit ratio of the excess air ratio by dividing the estimated excess air ratio in the cylinder by the limit excess air ratio, and calculates the product of the limit ratio and the normal fuel injection amount. 2. The fuel injection control device for a diesel engine according to claim 1, wherein a limit fuel injection amount is obtained.
前記燃料噴射手段は、前記EGR制御手段により前記EGRガス流量の制御が可能であり且つ前記通常燃料噴射量の変化度合いが所定値以上になったとき、前記通常燃料噴射量に代えて前記制限燃料噴射量に基づいて燃料噴射を行うことを特徴とする、請求項1または2記載のディーゼルエンジンの燃料噴射制御装置。   The fuel injection means can control the EGR gas flow rate by the EGR control means, and when the degree of change of the normal fuel injection amount is equal to or greater than a predetermined value, the limited fuel is replaced with the normal fuel injection amount. The fuel injection control device for a diesel engine according to claim 1 or 2, wherein fuel injection is performed based on an injection amount. 前記燃料噴射手段は、前記制限燃料噴射量が前記通常燃料噴射量以上となったときまたは前記制限燃料噴射量に基づく燃料噴射を開始してから所定時間が経過したとき、該制限燃料噴射量に基づく燃料噴射を終了して前記通常燃料噴射量による燃料噴射を実施することを特徴とする、請求項1乃至3のいずれか記載のディーゼルエンジンの燃料噴射制御装置。   The fuel injection means sets the limit fuel injection amount when the limit fuel injection amount becomes equal to or greater than the normal fuel injection amount or when a predetermined time has elapsed after starting fuel injection based on the limit fuel injection amount. The fuel injection control device for a diesel engine according to any one of claims 1 to 3, wherein the fuel injection based on the normal fuel injection amount is performed after finishing the fuel injection based on the fuel injection.
JP2003390791A 2003-11-20 2003-11-20 Fuel injection control device for diesel engine Expired - Fee Related JP4247616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390791A JP4247616B2 (en) 2003-11-20 2003-11-20 Fuel injection control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390791A JP4247616B2 (en) 2003-11-20 2003-11-20 Fuel injection control device for diesel engine

Publications (2)

Publication Number Publication Date
JP2005155331A JP2005155331A (en) 2005-06-16
JP4247616B2 true JP4247616B2 (en) 2009-04-02

Family

ID=34718052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390791A Expired - Fee Related JP4247616B2 (en) 2003-11-20 2003-11-20 Fuel injection control device for diesel engine

Country Status (1)

Country Link
JP (1) JP4247616B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063076B1 (en) * 2005-05-16 2006-06-20 Detroit Diesel Corporation Method of smoke limiting engine
JP5789094B2 (en) 2010-11-08 2015-10-07 日本サーモスタット株式会社 Cooling device for internal combustion engine
JP5936369B2 (en) 2012-01-24 2016-06-22 三菱重工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2005155331A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4497191B2 (en) Control device for internal combustion engine
US20100132334A1 (en) Method and device for monitoring the regeneration of a pollution-removal system
JP3123474B2 (en) Exhaust gas purification device for internal combustion engine
JP2005048716A (en) Exhaust circulation control device for internal combustion engine
US6877479B2 (en) Apparatus and a method for controlling an internal combustion engine
JP2010096049A (en) Control device of internal combustion engine
US8215099B2 (en) Exhaust gas purification device of internal combustion engine
JP2010053716A (en) Control device of internal combustion engine
JP4247616B2 (en) Fuel injection control device for diesel engine
JP6005543B2 (en) Control device for supercharged engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2001280123A (en) Internal combustion engine
JP2019044593A (en) Controller of internal combustion engine
JP6005534B2 (en) Control device for supercharged engine
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP4154596B2 (en) Exhaust gas purification device for internal combustion engine
JP2005330886A (en) Engine idle stop control unit
JP4218465B2 (en) Fuel injection amount control device for internal combustion engine
JP4404841B2 (en) Control device for internal combustion engine
JP3161291B2 (en) Excess air ratio control device for turbocharged engine
JP3533891B2 (en) Diesel engine intake control device
JP4154589B2 (en) Combustion control device for internal combustion engine
KR20180067898A (en) Method for reducing exhaust gas of engine in case of controlling scavenging
JP7023129B2 (en) Internal combustion engine control device
JP2009209748A (en) Exhaust gas recirculation device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081230

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4247616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees