JP4246822B2 - Tetrazole derivative - Google Patents

Tetrazole derivative Download PDF

Info

Publication number
JP4246822B2
JP4246822B2 JP26949898A JP26949898A JP4246822B2 JP 4246822 B2 JP4246822 B2 JP 4246822B2 JP 26949898 A JP26949898 A JP 26949898A JP 26949898 A JP26949898 A JP 26949898A JP 4246822 B2 JP4246822 B2 JP 4246822B2
Authority
JP
Japan
Prior art keywords
group
compound
benzyl
quinolylmethoxy
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26949898A
Other languages
Japanese (ja)
Other versions
JPH11158175A (en
Inventor
チーマーマン ヘンク
ザング ミンジャン
和弘 小野木
武夫 出牛
正宏 田村
勉 當間
靖史 和田
次郎 松本
徹 菅家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP26949898A priority Critical patent/JP4246822B2/en
Publication of JPH11158175A publication Critical patent/JPH11158175A/en
Application granted granted Critical
Publication of JP4246822B2 publication Critical patent/JP4246822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、優れた抗ロイコトリエン作用と抗ヒスタミン作用を有し、広範なアレルギー性疾患に対する医薬として有用なテトラゾール誘導体又はその塩に関する。
【0002】
【従来の技術】
ロイコトリエン(LT)は、喘息、乾せん、リウマチ、炎症性大腸炎などほとんどの炎症性疾患の病因に関与しており、細胞障害による炎症反応において重要な役割を果しているものである。
【0003】
このように、ロイコトリエンがアレルギーや炎症の主要なメディエイターであることから、これらの疾患の治療を目的にロイコトリエンの作用や合成を抑制する多くの物質が発見されつつある(S. T. Holgate el al.:J. Allergy Clin. Immunol. 98, 1-13(1996))。
【0004】
ロイコトリエンは5−リポキシゲナーゼ(5−LO)により合成されるアラキドン酸代謝物であり、2種類のグループで構成される。そのひとつのグループはLTB4 であり、白血球に対する強い走化性を有している。他のグループはシステインロイコトリエン(CysLT)の総称で、LTC4、LTD4 及びLTE4 が含まれ、これらは生物学的活性物質として、長い間「slow-reacting substance of anaphylaxis(SRS-A)」と呼ばれていた。ヒトの組織においてCysLTは受容体と結合することによりその作用を発揮する。選択的LTD4 受容体阻害剤がヒト肺組織においてLTC4 及びLTD4 の収縮作用をともに抑制することが見出され、LTC4 はLTD4 受容体の共通部位で結合することが示唆されている(Buckner CK et al.:Ann. NY Acad. Sci. 1988, 524;181-6、Aharony D et al.:New Trends in Lipid Mediators Research, Basel:Karger 1989;67-71)。LTE4 もLTD4 と同じ受容体を介して作用すると考えられているが、活性が低く、部分活性物質と言われている。
【0005】
一方、ヒスタミンは細胞膜のH1受容体と結合することにより気管支平滑筋収縮作用や毛細血管透過性亢進作用を示し、アレルギー疾患における重要なメディエイターである。すなわち、ヒスタミンは、気管支収縮作用により喘息症状の悪化を引き起こしたり、毛細血管透過性亢進により細胞間隙への血液成分の漏出を増大させ、アレルギー性鼻炎や結膜炎等の浮腫形成などに関与するものと考えられている。従って、これらアレルギー性疾患の治療に抗ヒスタミン剤が用いられているが、従来の抗ヒスタミン剤は脳内のH1 受容体と結合することにより、特に眠気などの中枢神経系に対する副作用が危惧されている。また、近年、気管支喘息は好酸球性の気道の慢性炎症として捉えられており、気管支粘膜への炎症細胞の浸潤や粘膜の過剰分泌などにより喘息特有の気道狭窄の症状を示す遅発相が問題になっている。
【0006】
すなわち、喘息などのアレルギー疾患においては、主にヒスタミンなどのメディエイターが関与する気管支収縮、浮腫形成などの即時相と、ロイコトリエンなどが関与する細胞浸潤、粘液分泌、粘膜肥厚などによる気道狭窄の遅発相が病態形成に重要とされている。また同様にアレルギー性鼻炎においても、くしゃみ、鼻汁分泌こう進などの即時相におけるヒスタミンと、鼻粘膜浮腫による鼻閉症状などの遅発相におけるロイコトリエンが深く関与する二相反応として病態が理解されつつある。
従って、ヒスタミンH1 受容体及びLTD4 受容体の両者に対して拮抗作用を有し、脳内移行性が少ない化合物は、広範なアレルギー性疾患、特に喘息や鼻炎の即時相から遅発相までの一連の症状を治療又は予防し、しかも副作用の少ない薬剤になりうるものと考えられる。
しかしながら、遅発相に関与するLTD4 受容体及び即時相に関与するヒスタミンH1 受容体の双方に対して充分な拮抗作用を有する化合物は見出されていないのが現状である。また、すでに開発中の多くのLTD4 拮抗薬は少なくとも一つの酸性基を有するため、極性が高く親水性化合物であることから、吸入投与又は経口投与した際の吸収性が充分でないことが避けられず、このことがこれら薬剤の投与量増大、ひいては副作用の発現につながっていると考えられる。
【0007】
【発明が解決しようとする課題】
従って本発明の目的は、抗ロイコトリエン作用と抗ヒスタミン作用の両方を有し、かつ脳内への移行が少なく、酸性基を有しない新たな化合物を提供することにある。
【0008】
【課題を解決するための手段】
斯かる実情に鑑み、本発明者は、抗ロイコトリエン作用と抗ヒスタミン作用を合わせ持ち、かつ上記の如き問題点のない化合物を見出すべく鋭意研究を行った結果、下記一般式(1)で表わされる化合物が、このような条件を満足するものであることを見出し、本発明を完成した。
【0009】
すなわち本発明は、次の一般式(1)
【0010】
【化2】

Figure 0004246822
【0011】
〔式中、R1 及びR2 は、それぞれ独立に、水素原子、水酸基、低級アルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアルカノイルオキシ基を示し、R3 は水素原子又は置換基を有していてもよい低級アルキル基を示し、Aはメチレンオキシ基又はビニレン基を示し、Bは置換基を有していてもよいキノリル、キナゾリル又はベンズイミダゾリル基を示し、点線は二重結合を有していてもよいことを示す〕
で表わされるテトラゾール誘導体又はその塩を提供するものである。
【0012】
また、本発明は、前記一般式(1)で表わされるテトラゾール誘導体又はその塩を有効成分とする医薬を提供するものである。
【0013】
更に本発明は、前記一般式(1)で表わされるテトラゾール誘導体又はその塩、及び薬学的に許容される担体を含有する医薬組成物を提供するものである。
【0014】
【発明の実施の形態】
一般式(1)で表わされるテトラゾール誘導体において、式中、R1 及びR2 で示される低級アルキル基としては、炭素数1〜6の直鎖又は分岐鎖のものが挙げられ、具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ヘキシル基が例示されるが、特にメチル基、t−ブチル基が好ましい。また、アルコキシ基としては、炭素数1〜6の直鎖又は分岐鎖のものが挙げられ、具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基が好ましいものとして挙げられるが、このうちメトキシ基、エトキシ基、n−プロポキシ基が特に好ましい。これらのアルコキシ基は置換基を有していてもよく、このような置換基としては、アルコキシ基、ハロゲン原子、キノリルメトキシ基等の置換基を有していてもよいフェニル基、メチル基、キノリルメチル基等の置換基を有していてもよいピペラジニル基、並びにジメチルアミノ基、ジエチルアミノ基等のジC1-4アルキルアミノ基等が例示される。アルカノイルオキシ基としては、炭素数2〜5のものが好ましく、例えば、アセチルオキシ基、プロピオニルオキシ基、n−ブチリルオキシ基、i−ブチリルオキシ基等が挙げられる。アルカノイルオキシ基は、更にアミノ基等の置換基を有していてもよい。
【0015】
式中、R3 で示される低級アルキル基としては、炭素数1〜6の直鎖又は分岐鎖のものが挙げられ、具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ヘキシル基が例示されるが、特にメチル基が好ましい。この低級アルキル基は、置換基を有していてもよく、このような置換基としては、ハロゲン原子、アミノ基やフェニル基又はピペラジニル基等の複素環基が挙げられ、これらの置換基は更にメチル基、エチル基等の炭素数1〜4のアルキル基、キノリルメトキシ基等のキノリルC1-4アルコキシ基、ベンズイミダゾリルメトキシ基等のベンズイミダゾリルC1-4アルコキシ基、キノリルメチル基等のキノリルC1-4アルキル基等の置換基を有していてもよい。R3 としては、水素原子、メチル基、ジメチルアミノメチル基、3−〔4−(2−キノリルメチル)ピペラジニル〕プロピル基が好ましい。
【0016】
また、Bで示される基としては、キノリル基、キナゾリル基又はベンズイミダゾリル基が挙げられ、これらは置換基を有していてもよい。これらの置換基としては、メチル基、エチル基等の炭素数1〜4のアルキル基、エトキシエチル基、メトキシメチル基等のC1-4アルコキシC1-4アルキル基が挙げられる。
【0017】
本発明化合物(1)の塩としては、薬理学上許容される塩であれば特に制限されないが、例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、リン酸塩のような鉱酸の酸付加塩、又は安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、p−トルエンスルホン酸塩、シュウ酸塩、マレイン酸塩、フマル酸塩、酒石酸塩、クエン酸塩のような有機酸の酸付加塩を挙げることができる。
また、本発明化合物(1)は、水和物に代表される溶媒和物の形態でも存在し得るが、当該溶媒和物も本発明に包含される。
また、本発明化合物(1)は、ケト−エノールの互変異性体の形態でも存在し得るが、当該異性体も本発明に包含される。
【0018】
本発明化合物(1)は、例えば次に示す方法によって製造される。
【0019】
【化3】
Figure 0004246822
【0020】
〔式中、Xはハロゲン原子を示し、R1 、R2 、A及びBは前記と同じ。〕
すなわちR1 及びR2 が水素原子、水酸基、低級アルキル基、低級アルコキシル基である本発明化合物(1a)は方法Aに示すようにテトラゾリルキノリノン体(2)と1当量のハロゲン体(3)とを過剰量の炭酸ナトリウム、炭酸カリウム等の塩基の存在下、DMF、DMSO、HMPA等の非プロトン性極性溶媒中で0℃から還流温度の間の温度(好ましくは室温から80℃)において1日から7日間反応させることにより得ることができる。このとき化合物(2)のR1 及びR2 のいずれもが水酸基でない場合は、R3 がB−A−ベンジル基である本発明化合物(1a′)が副生することがあり、R1 又は/及びR2 が水酸基である場合は、この水酸基の水素が、B−A−ベンジル基で置換された本発明化合物(1a″)が副生することがある。このためR1 及び/又はR2 が水酸基である本発明化合物(1)を得るためには、化合物(2)の水酸基をあらかじめ適当な保護基で保護し、後に脱保護すればよい(方法B)。
【0021】
【化4】
Figure 0004246822
【0022】
〔式中、R1 、R2 、A、B及びXは前記と同じものを示し、R4 は置換基を有していてもよい低級アルキル基を示し、R5 は置換基を有していてもよい低級アルキル基を示し、mは1〜4の数を示す〕
【0023】
化合物(1a)は、アルキル化することにより、R3 が置換基を有していてもよい低級アルキル基(R4)である本発明化合物(1c)とすることができ(方法C)、一方、ハロアルキル化し(1d)、ピペラジニル化することにより本発明化合物(1d′)とすることができる(方法D)。
【0024】
【化5】
Figure 0004246822
【0025】
〔式中、R1 、R3 、A、B、X及びmは前記と同じものを示し、R6 は、ジアルキルアミノアルキル基を示し、R7 は低級アルキル基を示し、R8 はアルキル基を示す〕
【0026】
2 が、ジアルキルアミノアルコキシ基である本発明化合物(1e)は、R2 が水酸基である化合物(1b)をジアミノアルキル化することにより得られる(方法E)。また、R2 がピペラジニルアルコキシ基である本発明化合物(1f′)は、(1b)をハロアルカリ化し(1f)、ピペラジニル化(方法F)することにより得られる。R2 がアルキルカルボニルオキシ基である本発明の化合物(1g)は、化合物(1b)の水酸基をエステル化(方法G)することにより得られる。
【0027】
一方、本発明化合物(1)の原料である前記化合物(2)は、例えば公知の方法、例えばBhaduri, Amiya Prasad et al.;J. Heterocyclic Chem., 23, 409-411, 1985等に記載の方法に従って製造したシアノキノリノン体(4)とアジ化ナトリウム等のアジ化化合物とを塩化アンモニウム等の存在下、DMF、DMSO、HMPA等の非プロトン性極性溶媒中で0℃から200℃の間の温度(好ましくは室温から120℃)において数時間から1日間反応させることにより得ることができる。
【0028】
【化6】
Figure 0004246822
【0029】
〔式中、R1 及びR2 は前記と同じものを示す〕
【0030】
また、もう一方の原料である化合物(3)のうち、下記(3a)〜(3c)のハロゲン体は、例えば、次の方法により得ることができる。
【0031】
ハロゲン体(3a)は市販の化合物を用いるか、公知の方法、例えばMusser, John H. et al.;J. Med. Chem. 33(1), 240-245, 1990、Iemura, Ryuichi et al.;J. Heterocyclic. Chem. 24(1), 31-37, 1987 等に記載の方法に従って製造することができる。
ハロゲン体(3b)、(3c)は例えば以下に示すような方法で製造できる。
【0032】
【化7】
Figure 0004246822
【0033】
〔式中、R9 はアルキル基、C1-4アルコキシC1-4アルキル基を示し、Xはハロゲン原子を示す〕
【0034】
ハロゲン体(3a)と当量のヒドロキシベンジルアルコールとを過剰量の炭酸ナトリウム、炭酸カリウム等の塩基の存在下、DMF、DMSO、HMPA等の非プロトン性極性溶媒中で0℃から還流温度の間の温度(好ましくは室温から60℃)において1日から7日間反応させることでベンジルアルコール体(5a)が得られる。
また、ハロゲン体(3a)をベンゼン、トルエン、キシレン等の不活性溶媒中で当モルのPPh3(Phはフェニル基)と12〜48時間還流させることにより相当するホスホニウム塩を合成した後、このものを窒素あるいはアルゴン気流下、無水THF中で当モルのt−BuOK(カリウムtert−ブトキサイド)と反応させることによって調整したウィティッヒ試薬に当モルのフタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒドを加え1〜12時間還流させることにより得られるアルデヒド体(6)をメタノール、エタノール等のプロトン性極性溶媒中、水素化ホウ素ナトリウムと0℃から還流温度の間の温度(好ましくは室温)において1時間から24時間反応させることによりベンジルアルコール体(5b)が得られる。
このようにして得られたベンジルアルコール体(5a)又は(5b)をTHF、クロロホルム、塩化メチレン等の不活性溶媒中で0℃から還流温度の間の温度(好ましくは室温)において過剰量の塩化チオニルと1時間から24時間反応させることによりハロゲン体(3b)又は(3c)が得られる。
【0035】
目的とする本発明化合物(1)は、常法に従って反応混合物を処理することによって得られ、更に必要に応じて再結晶法、カラムクロマトグラフィーなどの通常の精製手段を用いて精製することができる。また必要に応じて、常法によって前記した所望の塩にすることもできる。
【0036】
かくして得られる本発明化合物(1)又はその塩は、後記実施例に示すように優れた抗ロイコトリエン作用及び抗ヒスタミン作用を有し、喘息、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎、じんましん、乾せん、リウマチ、炎症性大腸炎、脳虚血、脳卒中等の予防治療剤などの医薬として有用である。
【0037】
本発明の医薬は、前記化合物(1)、その塩又は溶媒和物を有効成分とするものであり、この投与形態としては、例えば錠剤、カプセル剤、顆粒剤、散剤、シロップ剤などによる経口投与又は静脈内注射剤、筋肉内注射剤、坐剤、吸入剤、経皮吸収剤、点眼剤、点鼻剤などによる非経口投与が挙げられる。また、このような種々の剤型の医薬製剤を調製するにあたっては、この有効成分を単独で、又は他の薬学的に許容される担体、例えば賦形剤、結合剤、増量剤、崩壊剤、界面活性剤、滑沢剤、分散剤、緩衝剤、保存剤、矯味剤、香料、被膜剤、担体、希釈剤等を適宜組み合わせて用いることができる。
【0038】
本発明の医薬の投与量は年齢、体重、症状、投与形態及び投与回数などによって異なるが、通常は成人に対して1日約1〜1000mgを1回又は数回に分けて経口投与又は非経口投与するのが好ましい。
【0039】
【実施例】
次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
【0040】
製造例1
6−メトキシ−3−テトラゾリル−1,2−ジヒドロキノリン−2−オン・ナトリウム塩の合成:
3−シアノ−6−メトキシ−1,2−ジヒドロキノリン−2−オン(78.6g,393mM)をDMF1lに溶かし、塩化アンモニウム(83.8g,1.57M)、アジ化ナトリウム(102.2g,1.57M)を加えて浴温120℃で12時間攪拌した。反応液を減圧にて濃縮した後2N−水酸化ナトリウム水溶液800mlを加えて加熱後不溶物をろ去し、ろ液を放冷すると結晶が析出した。これを濾取すると標記化合物を淡黄色針状晶として90.0g(339mM,86.3%)得られた。
【0041】
mp:>260℃
1H-NMR(DMSO-d6)δ(ppm):11.9(1H,br), 8.45(1H,s), 7.34(1H,d,J=1.5Hz),
7.30(1H,d,J=8.8Hz), 7.15(1H,dd,J=8.8,1.5Hz), 3.80(3H,s).
IR(KBr)cm-1:3445, 1665, 1624, 1510, 1461, 1368, 1234, 1171, 1034,
638.
【0042】
製造例2
6−tert−ブチル−3−テトラゾリル−1,2−ジヒドロキノリン−2−オンの合成:
6−tert−ブチル−3−シアノ−1,2−ジヒドロキノリン−2−オン(1.74g,7.7mM)をDMFの20mlに溶かし、塩化アンモニウム(1.65g,30.8M)、アジ化ナトリウム(2.00g,30.8M)を加えて浴温120℃で16時間攪拌した。反応液に水を加えて析出物をろ取した後、再結晶(DMF−メタノール混液)すると標記化合物が黄色粉末として1.08g(4.0mM,52%)得られた。
【0043】
mp:280-286℃(d.)
1H-NMR(CDCl3)δ(ppm):8.96(1H,s), 7.95(1H,d,J=2.2Hz),
7.75(1H,dd,J=8.5,2.2Hz), 7.39(1H,d,J=8.5Hz), 1.34(9H,s).
IR(KBr)cm-1:2964, 1667, 1625, 1535, 1473, 1365, 1261, 1156, 1036,
626
【0044】
製造例3〜7
製造例1、2と同様の方法で標記の化合物を得た。
【0045】
【表1】
Figure 0004246822
【0046】
製造例8
3−(2−キノリルメトキシ)ベンジルクロリドの合成:
3−(2−キノリルメトキシ)ベンジルアルコール(3.58g,13.5mmol)のCHCl3(100ml)溶液にSOCl2 2mlを加えて室温で24時間攪拌した。反応液に少量のメタノールを加え減圧にて溶媒留去し、標記化合物を白色粉末として得た。
【0047】
製造例9
2−(2−キナゾリルメトキシ)ベンジルアルコールの合成:
2−クロロメチルキナゾリン(5.00g,28mmol)のDMF(50ml)溶液に、炭酸カリウム(4.26g,31mmol)、テトラ−n−ブチルアンモニウムブロマイド(903mg,2.8mmol)を加えた。これに3−ヒドロキシベンジルアルコール(3.48g,28mmol)を加え、室温で5日間攪拌した。反応液を減圧にて濃縮し、クロロホルム、水を加え有機層を抽出した。無水硫酸ナトリウムで乾燥後、減圧濃縮しクロロホルム−n−ヘキサン混液より再結晶し、標記化合物を淡黄色粉末として6.94g(収率93.1%)を得た。
【0048】
mp:92-96℃
1H-NMR(CDCl3)δ(ppm):9.43(1H,s,-C8H5N2-),
8.07(1H,d,J=9.0Hz,-C8H5N2-), 7.95(1H,d,J=7.5Hz,-C8H5N2-),
7.93(1H,d,J=9.0Hz,-C8H5N2-), 7.67(1H,dd,J=7.5,7.5Hz,-C8H5N2-),
7.25(1H,dd,J=7.8,7.8Hz,-C6H4-), 7.11(1H,s,-C6H4-),
6.99(1H,d,J=7.8Hz,-C6H4-), 6.96(1H,d,J=7.8Hz,-C6H4-),
5.46(2H,s,C8H5N2-CH2-), 4.65(2H,s,-C6H4-CH2-OH).
IR(KBr)cm-1:3328, 1621, 1613, 1582, 1441, 1378, 1292, 1077, 752.
【0049】
製造例10
3−(N−メチルベンズイミダゾル−2−イルメトキシ)ベンジルアルコールの合成:
製造例9と同様の方法で、2−クロロメチル−N−メチルベンズイミダゾールより標記化合物を淡黄色針状晶として得た(収率58.4%)。
【0050】
mp:183-185℃
1H-NMR(CDCl3)δ(ppm):7.69(1H,m,C8H7N2-), 7.16-7.32(4H,m,Ar-H),
7.02(1H,s,-C6H4-), 6.88-6.94(2H,m,-C6H4-),
5.29(2H,s,C8H7N2-CH2-), 4.61(2H,s,-C6H4-CH2-OH),
3.81(3H,s,N-CH3).
IR(KBr)cm-1:2850, 1594, 1482, 1441, 1366, 1259, 1227, 1048, 1029,
750.
【0051】
製造例11
4−(2−N−メチルベンズイミダゾル−2−イルメトキシ)ベンジルアルコールの合成:
製造例9と同様の方法で、2−クロロメチル−N−メチルベンズイミダゾールと4−ヒドロキシベンジルアルコールより標記化合物を淡黄色プリズム晶として得た(収率46.7%)。
【0052】
mp:176-180℃
1H-NMR(CDCl3)δ(ppm):7.78(1H,m,C8H7N2-),
7.23-7.38(3H,m,C8H7N2-), 7.30(2H,d,J=8.6Hz,-C6H4-),
7.04(2H,d,J=8.6Hz,-C6H4-), 5.34(2H,s,C8H7N2-CH2-),
4.62(2H,s,-C6H4-CH2-OH), 3.88(3H,s,N-CH3).
IR(KBr)cm-1:3174, 2846, 1607, 1585, 1507, 1484, 1240, 1047, 1030,
734.
【0053】
製造例12
3−[N−(2−エトキシエチル)ベンズイミダゾル−2−イルメトキシ]ベンジルアルコールの合成:
製造例9と同様の方法で、2−クロロメチル−N−(2−エトキシエチル)ベンズイミダゾールより標記化合物を無色針状晶として得た(収率90.3%)。
【0054】
mp:105-107℃
1H-NMR(CDCl3)δ(ppm):7.71(1H,m,Ar-H), 7.41(1H,m,Ar-H),
7.23-7.34(3H,m,Ar-H), 7.11(1H,s,-C6H4-), 6.96-7.62(2H,m,-C6H4-),
5.43(2H,s,C11H13N2O-CH2O-), 4.68(2H,d,J=5.6Hz,-C6H4-CH2OH),
4.48(2H,t,J=5.4Hz,-CH 2-CH2OCH2CH3),
3.74(2H,t,J=5.4Hz,-CH2CH 2OCH2CH3),
3.39(2H,q,J=6.8Hz,CH2CH2OCH 2CH3), 2.24(1H,br,-C6H4-CH2OH),
1.10(3H,t,J=6.8Hz,CH2CH2OCH2CH 3).
IR(KBr)cm-1:2875, 1594, 1471, 1445, 1426, 1369, 1258, 1154,
1050, 1035, 761.
【0055】
製造例13
4−[N−(2−エトキシエチル)ベンズイミダゾル−2−イルメトキシ]ベンジルアルコールの合成:
製造例9と同様の方法で、2−クロロメチル−N−(2−エトキシエチル)ベンズイミダゾールと4−ヒドロキシベンジルアルコールより標記化合物を淡黄色プリズム晶として得た(収率83.4%)。
【0056】
mp:90-92℃
1H-NMR(CDCl3)δ(ppm):7.78(1H,m,Ar-H), 7.41(1H,m,Ar-H),
7.25-7.34(4H,m,Ar-H), 7.08(2H,d,J=8.8Hz,-C6H4-),
5.44(2H,s,C11H13N2O-CH2O-), 4.62(2H,d,J=5.7Hz,-C6H4-CH 2-OH),
4.49(2H,t,J=5.6Hz,-CH 2-CH2OCH2CH3),
3.75(2H,t,J=5.6Hz,-CH2CH 2OCH2CH3),
3.39(2H,q,J=7.1Hz,CH2CH2OCH 2CH3),
1.66(1H,t,J=5.7Hz,-C6H4-CH2OH),
1.10(3H,t,J=7.1Hz,CH2CH2OCH2CH 3).
IR(KBr)cm-1:3180, 2858, 1609, 1587, 1509, 1472, 1417, 1237, 1117,
1036, 747.
【0057】
製造例14
3−〔2−(2−キノリル)エテニル〕ベンジルアルコールの合成:
3−〔2−(2−キノリル)エテニル〕ベンジルアルデヒド(25.92g,0.1M)をメタノール300mlに溶かし、水素化ホウ素ナトリウム(7.57g,0.2M)を加え、室温にて1時間攪拌した。反応液を減圧にて溶媒留去し、残留物に水を加えて酢酸エチルで有機層を抽出した。有機層を無水硫酸マグネシウムで乾燥後酢酸エチルで再結晶することで標記化合物21.42g(82.0mM,82.0%)を淡黄色粉末として得た。
【0058】
製造例15〜22
製造例8と同様な方法で以下の化合物を得た。
【0059】
【表2】
Figure 0004246822
【0060】
実施例1、2
6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン及び6−メトキシ−3−{1−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
【0061】
6−メトキシ−3−テトラゾリル−1,2−ジヒドロキノリン−2−オン・ナトリウム塩(36.7g,138mM)、炭酸ナトリウム(14.7g,138mM)、テトラ−n−ブチルアンモニウムブロミド(22.3g,69.1mM)にDMF21を加えた。ここに(2−キノリルメトキシ)ベンジルクロリド58.7gを加え浴温80℃で15時間攪拌した。反応液を減圧にて溶媒留去し、2N−水酸化ナトリウム水溶液1lを加え、クロロホルム−メタノール5:1の混液で有機層を抽出した。有機層を無水硫酸ナトリウムで乾燥後、シリカゲルカラムクロマトグラフィー(クロロホルム−メタノール5:1)に付し減圧濃縮し、残渣をクロロホルム−メタノール−エーテルの混液より再結晶すると一番晶として粗6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンが、二番晶として粗6−メトキシ−3−{1−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンが得られた。
一番晶を更に再結晶(DMF−エーテル)により精製し、6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンを黄色粉末として24.0g(収率35.4%)得た。
【0062】
mp:213-214℃(d.)
1H-NMR(DMSO-d6)δ(ppm):12.01(1H,br), 8.56(1H,s), 8.39(1H,d,J=8.3Hz),
8.00(1H,d,J=7.8Hz), 8.03-7.94(2H,m), 7.76(1H,ddd,J=8.3,6.8,1.5Hz),
7.67(1H,d,J=8.3Hz), 7.59(1H,m), 7.41(1H,d,J=2.5Hz),
7.35(1H,dd,J=7.8,7.8Hz), 7.31(1H,d,J=8.8Hz),
7.25(1H,dd,J=8.8,2.5Hz), 7.15-7.06(2H,m), 6.98(1H,d,J=7.8Hz),
5.99(2H,s), 5.37(2H,s), 3.80(3H,s).
IR(KBr)cm-1:3432, 1676, 1629, 1587, 1497, 1378, 1285, 1239, 1165,
1030, 829, 598.
【0063】
また、二番晶を更に再結晶(DMF−エーテル)により精製し、6−メトキシ−3−{1−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンを淡黄色粉末として12.1g(収率19.0%)得た。
【0064】
mp:215-217℃(d.)
1H-NMR(DMSO-d6)δ(ppm):12.39(1H,br), 8.35(1H,d,J=8.8Hz),
8.31(1H,s), 8.00(1H,d,J=7.8Hz), 7.98(1H,d,J=7.3Hz),
7.78(1H,ddd,J=8.3,6.8,1.5Hz), 7.62(1H,dd,J=7.8,7.3Hz),
7.55(1H,d,J=8.3Hz), 7.38(1H,d,J=8.8Hz), 7.34-7.27(2H,m),
7.20(1H,m), 6.97-6.90(2H,m), 6.77(1H,d,J=7.8Hz), 5.73(2H,s),
5.23(2H,s), 3.78(3H,s).
IR(KBr)cm-1:3434, 1665, 1625, 1498, 1453, 1380, 1264, 1244, 1171,
1034, 827.
【0065】
実施例3〜34
実施例1、2と同様に表3〜4記載の化合物を得た。
【0066】
【表3】
Figure 0004246822
【0067】
【表4】
Figure 0004246822
【0068】
実施例35、36
6−メトキシメトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン、6−メトキシメトキシ−3−{1−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
【0069】
実施例1、2と同様の方法で標記化合物を合成した。
6−メトキシメトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンのデータ
【0070】
mp:197-200℃(d.)
1H-NMR(CDCl3)δ(ppm):11.24(1H,br), 8.63(1H,s), 8.18(1H,d,J=8.3Hz),
8.09(1H,d,J=8.5Hz), 7.72(1H,ddd,J=8.5,7.1,1.5Hz),
7.64(1H,d,J=8.5Hz), 7.52(1H,ddd,J=8.1,6.8,1.2Hz), 7.35-7.24(4H,m),
7.13(1H,m), 7.10-6.99(2H,m), 5.87(2H,s), 5.39(2H,s), 5.20(2H,s),
3.50(3H,s).
IR(KBr)cm-1:1667, 1623, 1588, 1510, 1493, 1443, 1428, 1289, 1230,
1155, 1074, 996, 825, 529.
【0071】
6−メトキシメトキシ−3−{1−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンのデータ
【0072】
mp:202-206℃(d.)
1H-NMR(CDCl3)δ(ppm):11.60(1H,br), 8.13(1H,s), 8.12(1H,d,J=8.8Hz),
8.05(1H,d,J=8.4Hz), 7.82(1H,d,J=7.0Hz), 7.73(1H,dd,J=8.1,7.0Hz),
7.59-7.49(2H,m), 7.34-7.19(3H,m), 7.16(1H,dd,J=8.7,8.7Hz),
5.86(2H,s), 5.37(2H,s), 5.21(2H,s), 3.47(3H,s).
IR(KBr)cm-1:1664, 1623, 1600, 1497, 1291, 1266, 1158, 1001, 983,
825, 781, 750.
【0073】
実施例37(実施例28の化合物の別途合成法)
6−ヒドロキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
6−メトキシメトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(444mg,0.85mM)をクロロホルム−メタノール(10:1)の混液100mlに溶かし、4N−塩酸の酢酸エチル溶液5mlを加えて室温で17時間攪拌した。反応液に水400mlを加えた後、飽和炭酸水素ナトリウム水溶液を滴下し水層を中性にしクロロホルム−メタノール(10:1)で抽出した。有機層を乾燥(無水硫酸マグネシウム)、減圧にて溶媒留去後、クロロホルム−メタノール−ジエチルエーテルより結晶化。標題化合物を黄色葉状晶として353mg(0.74mmol,87.2%)得た。
【0074】
mp:260-267℃(d.)
1H-NMR(CDCl3-CD3OD)δ(ppm):8.53(1H,s), 8.35(1H,d,J=8.6Hz),
8.06(1H,d,J=8.3Hz), 7.89(1H,d,J=8.3Hz),
7.78(1H,ddd,J=8.6,7.1,1.5Hz), 7.72(1H,d,J=8.6Hz), 7.60(1H,m),
7.33(1H,dd,J=8.8,8.1Hz), 7.27(1H,d,J=8.8Hz),
7.18(1H,dd,J=8.8,2.8Hz), 7.15-7.02(4H,m), 5.88(2H,s), 5.39(2H,s).
IR(KBr)cm-1:1661, 1614, 1508, 1429, 1287, 1229, 1160, 1029, 826,
781.
【0075】
実施例38
6−メトキシ−1−メチル−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(1.61g,3.30mM)、炭酸カリウム(684mg,4.95mM)の混合物にDMF30mlを加えた。ここにヨウ化メチル(562mg,3.96mM)を滴下し、滴下終了後浴温80℃で4時間攪拌した。反応液を減圧にて溶媒留去し、水を加えてクロロホルム−メタノール(10:1)の混液で有機層を抽出した。有機層を無水硫酸ナトリウムで乾燥後、シリカゲルカラムクロマトグラフィー(クロロホルム−メタノール50:1)に付し減圧濃縮し、残渣をクロロホルム−n−ヘキサン−エーテルの混液より再結晶すると標記化合物を淡黄色粉末として1.35g(2.68mM,81.1%)得た。
【0076】
mp:125-127°
1H-NMR(CDCl3)δ(ppm):8.57(1H,s), 8.19(1H,d,J=8.6Hz),
8.07(1H,d,J=8.5Hz), 7.81(1H,d,J=8.3Hz),
7.72(1H,ddd,J=8.3,6.8,1.5Hz), 7.64(1H,d,J=8.6Hz),
7.53(1H,dd,J=8.3,7.8Hz), 7.36(1H,d,J=9.0Hz), 7.32-7.24(2H,m),
7.13-7.09(2H,m), 7.04(1H,d,J=7.6Hz), 6.99(1H,dd,J=7.6,2.2Hz),
5.85(2H,s), 5.36(2H,s), 3.89(3H,s), 3.81(3H,s).
IR(KBr)cm-1:3442, 1664, 1589, 1577, 1442, 1237, 1160, 1066, 1031,
928, 786, 768.
【0077】
実施例39〜43
実施例38と同様の方法で表5記載の化合物を得た。
【0078】
【表5】
Figure 0004246822
【0079】
実施例44
1−(3−クロロプロピル)−6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(1.00g,2.04mM)、炭酸カリウム(564mg,4.08mM)、1−ブロモ−3−クロロプロパン(962mg,6.12mM)、DMF(100ml)の混合物を浴温60℃で4時間攪拌した。反応液を減圧にて溶媒留去し、得られた残留物に水を加え、クロロホルム−メタノール(10:1)で抽出した。有機層を乾燥(無水硫酸マグネシウム)、減圧にて溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(展開液:クロロホルム−メタノール(100:1))に付し精製後、クロロホルム−ジエチルエーテルより結晶化し、標題化合物を淡黄色粉末として546mg(0.963mM,47.2%)得た。
【0080】
mp:150-152℃
1H-NMR(CDCl3)δ(ppm):8.60(1H,s), 8.18(1H,d,J=8.5Hz),
8.07(1H,d,J=8.3Hz), 7.81(1H,d,J=9.0Hz),
7.72(1H,ddd,J=8.3,7.8,1.5Hz), 7.64(1H,d,J=8.3Hz),
7.53(1H,dd,J=8.1,6.8Hz), 7.46(1H,d,J=9.3Hz), 7.33-7.24(2H,m),
7.15-7.08(2H,m), 7.06-6.96(2H,m), 5.85(2H,s), 5.36(2H,s),
4.53(2H,t,J=7.8Hz), 3.89(3H,s), 3.73(2H,t,J=6.3Hz), 2.29(2H,m).
IR(KBr)cm-1:1660, 1590, 1573, 1508, 1445, 1428, 1267, 1159, 829,
767.
【0081】
また、副生成物をクロロホルム−ジエチルエーテルより結晶化し2−クロロプロポキシ−6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリンを白色粉末として173mg(0.305mM,15.0%)得た。
【0082】
実施例45
1−{3−[4−(2−キノリルメチル)−1−ピペラジニル]プロピル}−6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン・二塩酸塩の合成:
1−(3−クロロプロピル)−6−メトキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(179mg,0.316mM)、N−(2−キノリルメチル)ピペラジン(287mg,1.26mM)を合わせ、アルゴン気流下120℃で2.5時間攪拌した。混合物を放冷後、シリカゲルカラムクロマトグラフィー(展開液:クロロホルム−メタノール(40:1))に付し精製。目的物を含むフラクションを集め減圧濃縮し標題化合物の遊離塩基を黄色油状物として219mg(0.289mM)得た。これをメタノール(50ml)に溶かし、4N−塩酸の酢酸エチル溶液144μl(0.576mM)を加えた後、メタノール−ジエチルエーテルより結晶化し標題化合物を黄色粉末として184mg(0.22mM,70.1%)得た。
【0083】
mp:182-186°
1H-NMR(CDCl3-CD3OD)δ(ppm):8.73(1H,d,J=8.6Hz),
8.66(1H,d,J=8.1Hz), 8.60(1H,s), 8.53(1H,d,J=8.1Hz),
8.05-7.79(6H,m), 7.70(1H,dd,J=7.8,7.3Hz),
7.59(1H,d,J=9.3Hz), 7.40-7.30(2H,m), 7.22-7.15(2H,m),
7.10-7.04(2H,m), 5.88(2H,s), 5.55(2H,s), 4.53(2H,t,J=6.3Hz),
4.34(2H,s), 3.91(3H,s), 3.54(4H,br), 3.37(2H,m), 3.22(4H,br),
2.37(2H,m).
IR(KBr)cm-1:1652, 1625, 1576, 1509, 1455, 1240, 1028, 772, 475.
【0084】
実施例46〜49
実施例45と同様の方法で表6記載の化合物を得た。
【0085】
【表6】
Figure 0004246822
【0086】
実施例50
6−ジメチルアミノエトキシ−1−ジメチルアミノエチル−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン・二シュウ酸塩の合成:
6−ジメチルアミノエチル−3−1−ヒドロキシ−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(700mg,1.28mM)、炭酸カリウム(706mg,5.11mM)にDMF40mlを加え攪拌した。ここにジメチルアミノエチルクロリド(369mg,2.56mM)を加え、浴温80℃で3日間攪拌した。
反応液を減圧濃縮後、水を加えクロロホルム−メタノール(10:1)の混液で抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧にて溶媒留去し、シリカゲルカラムクロマトグラフィー(クロロホルム−アンモニア飽和メタノール(10:1))に付し、目的物を含むフラクションを減圧にて溶媒留去すると標記化合物の遊離塩基254mg(0.411mM,32.1%)が褐色油状物として得られた。
【0087】
1H-NMR(CDCl3)δ(ppm):8.57(1H,s), 8.18(1H,d,J=8.5Hz),
8.06(1H,d,J=8.3Hz), 7.81(1H,d,J=8.1Hz),
7.73(1H,ddd,J=8.5,6.8,1.5Hz), 7.64(1H,d,J=8.3Hz),
7.52(1H,dd,J=8.2,6.8Hz), 7.40(1H,d,J=9.3Hz), 7.34-7.23(2H,m),
7.14(1H,d,J=2.7Hz), 7.10(1H,s), 7.05-6.95(2H,m), 5.86(2H,s),
5.36(2H,s), 4.50(2H,t,J=8.1Hz), 4.13(2H,t,J=5.6Hz),
2.77(2H,t,J=5.6Hz), 2.67(2H,t,J=8.1Hz), 2.40(6H,s), 2.36(6H,s).
【0088】
これをメタノールに溶かしシュウ酸(148mg,0.422mM)を加えた後、アセトン−エーテル混液より再結晶すると標記化合物の二シュウ酸塩211mg(0.270mM,21.1%)が褐色粉末として得られた。
【0089】
mp:172-176℃(d.)
1H-NMR(CDCl3)δ(ppm):8.52(1H,s), 8.24(1H,d,J=8.1Hz),
8.05(1H,d,J=8.6Hz), 7.84(1H,d,J=7.6Hz), 7.78-7.67(2H,m),
7.66(1H,d,J=8.5Hz), 7.56(1H,ddd,J=9.3,8.1,1.2Hz), 7.47-7.38(1H,m),
7.31(1H,dd,J=7.8,8.1Hz), 7.17(1H,m), 7.12(1H,m), 7.07-7.68(2H,m),
5.85(2H,s), 5.35(2H,s), 4.70(2H,m), 4.40(2H,m), 3.49(2H,m),
3.30(2H,m), 2.95(6H,s), 2.94(6H,s).
IR(KBr)cm-1:3419, 1652, 1599, 1509, 1448, 1312, 1281, 1239, 1161,
1055, 831.
【0090】
実施例51
6−(3−クロロプロピル)オキシ−1−メチル−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
6−ヒドロキシ−1−メチル−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(600mg,1.22g)、炭酸カリウム(337mg,2.44mM)にDMF100mlを加えて攪拌した。ここに1−ブロモ−3−クロロプロパン(578mg,3.64mM)を加え浴温60℃で4時間攪拌した。反応液を減圧にて濃縮し、水を加えてクロロホルム−メタノール(10:1)の混液で抽出後、無水硫酸ナトリウムで乾燥、減圧にて溶媒留去すると粗の標記化合物638mgが黄色油状物で得られた。このものはさらなる精製を加えず次の反応に使用した。
【0091】
1H-NMR(CDCl3)δ(ppm):8.52(1H,s), 8.17(1H,d,J=8.6Hz),
8.06(1H,d,J=8.5Hz), 7.80(1H,d,J=8.1Hz),
7.71(1H,ddd,J=8.3,7.1,1.5Hz), 7.63(1H,d,J=8.5Hz),
7.51(1H,dd,J=8.1,6.8Hz), 7.35-7.21(3H,m), 7.14-7.09(2H,m),
7.04(1H,d,J=7.6Hz), 6.98(1H,dd,J=8.3,2.4Hz), 5.85(2H,s),
5.35(2H,s), 4.17(2H,t,J=5.9Hz), 3.84-3.73(5H,m),
2.27(2H,t,J=6.1Hz).
【0092】
実施例52
1−メチル−6−[3−(4−メチルピペラジニル)プロピル]オキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン・三塩酸塩の合成:
粗6−[3−クロロプロピル]オキシ−1−メチル−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(180mg,0.317mM)、N−メチルピペラジン(127mg,1.27mM)を混ぜ、アルゴン気流下、浴温120℃で90分間攪拌した。反応液を減圧にて濃縮後シリカゲルカラムクロマトグラフィー(展開液:クロロホルム−メタノール(20:1))にて精製し、目的物を含むフラクションを集め減圧濃縮し標題化合物の遊離塩基を黄色油状物として180mg(0.285mM)得た。これをメタノール(2ml)に溶かし、4N−塩酸の酢酸エチル溶液285μl(1.14mM)を加えた後、メタノール−ジエチルエーテルより結晶化し標題化合物の三塩酸塩を黄色針状晶として143mg(0.203mM,64.1%)得た。
【0093】
mp:188-192℃(d.)
1H-NMR(CDCl3-CD3OD)δ(ppm):8.77(1H,d,J=8.6Hz), 8.54(1H,s),
8.46(1H,d,J=8.8Hz), 8.11(1H,d,J=8.6Hz), 8.08-7.98(2H,m),
7.82(1H,dd,J=7.6,7.3Hz), 7.46-7.32(2H,m), 7.30-7.05(5H,m),
5.90(2H,s), 5.69(2H,s), 4.21(2H,overlapped with solvent),
3.90-3.65(11H,m), 3.51(2H,m), 2.98(3H,m), 2.41(2H,br).
IR(KBr)cm-1:1647, 1623, 1578, 1510, 1456, 1384, 1241, 1162, 1060,
963.
【0094】
実施例53
6−{3−[4−(2−キノリルメチル)ピペラジニル]プロピル}オキシ−1−メチル−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
実施例52と同様の方法で標記化合物を得た。
【0095】
mp:174-178℃(d.)
1H-NMR(DMSO-d3)δ(ppm):8.62(1H,d,J=8.3Hz), 8.53(1H,s),
8.48(1H,d,J=8.8Hz), 8.21-7.97(4H,m), 7.93-7.71(5H,m),
7.66-7.50(3H,m), 7.41-7.33(2H,m), 7.16-7.07(2H,m),
7.01(1H,d,J=7.8Hz), 6.00(2H,s), 5.42(2H,s), 4.60(2H,br),
4.17(2H,t,J=6.1Hz), 3.80-3.30(8H,overlapped with solvent),
3.69(3H,s), 2.25(2H,br).
IR(KBr)cm-1:1647, 1600, 1578, 1509, 1449, 1430, 1239, 1159.
【0096】
実施例54
6−ブチリルオキシ−3−{2−[3−(2−キノリルメトキシ)ベンジル]テトラゾリル}キノリン−2−オンの合成:
6−ヒドロキシ−3−{2−[3−(キノリン−2−イルメトキシ)ベンジル]テトラゾリル}キノリン−2−オン(250mg,0.522mM)をピリジン30mlに溶かし、無水酪酸(172μl,1.05mM)を加えて室温で20時間攪拌した。反応液に小量のメタノールを加えた後に溶媒を留去し、得られる残渣をクロロホルム−メタノール(10:1)の混液に溶かし、2N−塩酸、水、飽和炭酸水素ナトリウム水溶液、水の順に洗浄した。有機層を乾燥(無水硫酸マグネシウム)、減圧にて溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(展開液:クロロホルム−メタノール(10:1))に付し精製後、クロロホルム−メタノール−ジエチルエーテルより結晶化。標題化合物を白色粉末として265mg(0.485mmol,92.8%)得た。
【0097】
mp:200-202℃(d.)
1H-NMR(CDCl3)δ(ppm):11.1(1H,br), 8.64(1H,s),
8.16(1H,d,J=8.8Hz), 8.05(1H,d,J=8.1Hz), 7.79(1H,d,J=8.1Hz),
7.70(1H,ddd,J=8.4,7.0,1.5Hz), 7.62(1H,d,J=8.4Hz), 7.51(1H,m),
7.42(1H,d,J=2.2Hz), 7.36-7.27(3H,m), 7.14-6.98(3H,m),
5.87(2H,s), 5.37(2H,s), 2.67(2H,t,J=7.3Hz), 1.80(2H,tq,J=7.3,7.3Hz),
1.06(3H,t,J=7.3Hz).
IR(KBr)cm-1:1755, 1675, 1586, 1497, 1453, 1226, 1156, 1030, 828,
757.
【0098】
実施例55〜64
実施例54と同様の方法で標記の化合物を得た。
【0099】
【表7】
Figure 0004246822
【0100】
試験例1
抗ヒスタミン作用及び抗LTD4 作用(インビトロ試験)
モルモットの摘出回腸を約2cmに切り取り、タイロード緩衝液を満たした20mlの容器内に懸垂し、ヒスタミン又はロイコトリエンD4 による等張性の収縮反応を記録計に記した。タイロード緩衝液は29℃に保温し、混合ガス(95%O2−5%CO2)を通気した。抗ヒスタミン作用の試験は、ヒスタミン10-8〜10-4Mを器官浴槽に添加し用量反応を測定した。緩衝液で数回洗浄後、一定濃度の試験化合物を添加し30分インキュベートした後、再びヒスタミンの用量反応を測定した。抗ロイコトリエン作用の試験は、LTD410-8Mの収縮反応に対する試験化合物10-5M添加による影響を調べた。表8において抗ヒスタミン作用に関してはpA2 又はpD′2 で、抗ロイコトリエン作用に関しては、IC50で示した。
【0101】
【表8】
Figure 0004246822
【0102】
試験例2
1受容体結合阻害試験
0.5nM[3H]メピラミン(活性22Ci/mmol)、モルモット脳膜タンパク質及び試験化合物を含む50mM燐酸緩衝液(pH7.5)1mlを37℃で30分間インキュベートした。氷冷した燐酸緩衝液を添加し反応を停止し、ただちにワットマンCF/Cフィルターにてろ過した。フィルターを氷冷した緩衝液20mlで2回洗浄し、残渣の放射活性を液体シンチレーションカウンターで測定した。試験化合物を加えないときの測定値と各種濃度の試験化合物を加えたときの測定値より、試験化合物の抑制作用の用量反応を測定し、50%抑制濃度(IC50)を求めてからチェン−ブルゾフ(Cheng-Prusoff)式を用いて解離定数(KD)を計算し表9に示した。飽和実験では10-4MのR(−)−ジメチンデンを非特異的結合量の測定に用いた。飽和実験から、受容体は一種類で、飽和結合量(Bmax)が278±24fmol/mg Proteinであることが判明した。また、[3H]メピラミン解離定数(KD)は3.30±0.26×10-9Mであり、ヒルプロットで解析したときのその傾きは1.005であった。なお、表9における数値は解離定数KD(M)あるいは高濃度(a:100μM,b:10μM)での抑制率(%)を示す。
【0103】
試験例3
LTD4 受容体結合阻害試験
0.2nM[3H]ロイコトリエンD4、モルモット肺タンパク質及び試験化合物を含む10mMピペラジンN,N′−ビス(2−エタンスルホン酸)緩衝液(pH7.5)0.3mlを22℃で30分間インキュベートした。氷冷したトリス塩酸/塩化ナトリウム緩衝液(10mM/100mM、pH7.5)を添加し反応を停止し、ただちにワットマンCF/Cフィルターにてろ過した。フィルターを氷冷した緩衝液20mlで2回洗浄し、残渣の放射活性を液体シンチレーションカウンターで測定した。H1 受容体と同様の方法で試験化合物のIC50を求め、解離定数(KD)を算出し表9に示した。飽和実験では2μMのロイコトリエンD4 を非特異的結合量の測定に用いた。飽和実験から、受容体は一種類で、飽和結合量(Bmax)が988fmol/mg proteinであることが判明した。また、[3H]ロイコトリエンD4 の解離定数(KD)は2.16×10-10Mであり、ヒルプロットで解析したときのその傾きは0.99であった。なお表9における数値は解離定数KD(M)を示す。
【0104】
【表9】
Figure 0004246822
【0105】
【発明の効果】
本発明のテトラゾール誘導体又はその塩は、優れた抗ロイコトリエン作用と抗ヒスタミン作用を有し、喘息予防治療剤等の医薬として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tetrazole derivative or a salt thereof having excellent anti-leukotriene action and antihistamine action and useful as a medicament for a wide range of allergic diseases.
[0002]
[Prior art]
Leukotriene (LT) is involved in the pathogenesis of most inflammatory diseases such as asthma, psoriasis, rheumatism, and inflammatory bowel disease, and plays an important role in the inflammatory reaction caused by cell damage.
[0003]
Thus, since leukotriene is a major mediator of allergies and inflammation, many substances that suppress the action and synthesis of leukotriene are being discovered for the treatment of these diseases (ST Holgate el al .: J Allergy Clin. Immunol. 98, 1-13 (1996)).
[0004]
Leukotriene is an arachidonic acid metabolite synthesized by 5-lipoxygenase (5-LO) and is composed of two groups. One group is LTBFourAnd has a strong chemotaxis to leukocytes. The other group is a general term for cysteine leukotrienes (CysLT).Four, LTDFourAnd LTEFourThese have long been called “slow-reacting substance of anaphylaxis (SRS-A)” as biologically active substances. CysLT exerts its action by binding to receptors in human tissues. Selective LTDFourReceptor inhibitor is LTC in human lung tissueFourAnd LTDFourWas found to suppress both the contractile action ofFourIs LTDFourIt has been suggested to bind at the common site of the receptor (Buckner CK et al .: Ann. NY Acad. Sci. 1988, 524; 181-6, Aharony D et al .: New Trends in Lipid Mediators Research, Basel : Karger 1989; 67-71). LTEFourAlso LTDFourIt is thought to act via the same receptor as, but has low activity and is said to be a partially active substance.
[0005]
On the other hand, histamine is H in the cell membrane.1By binding to the receptor, it exhibits bronchial smooth muscle contraction and capillary permeability enhancement, and is an important mediator in allergic diseases. In other words, histamine is associated with bronchoconstriction and worsening asthma symptoms, and increased leakage of blood components to the cell gap due to increased capillary permeability, and is involved in edema formation such as allergic rhinitis and conjunctivitis. It is considered. Therefore, antihistamines have been used for the treatment of these allergic diseases.1There are concerns about side effects on the central nervous system, particularly sleepiness, by binding to receptors. In recent years, bronchial asthma has been perceived as chronic inflammation of the eosinophilic airway, and there is a delayed phase that shows symptoms of airway stenosis peculiar to asthma due to infiltration of inflammatory cells into the bronchial mucosa and excessive secretion of the mucosa. It is a problem.
[0006]
In other words, in allergic diseases such as asthma, there is an immediate phase of bronchoconstriction and edema formation mainly involving mediators such as histamine, and delayed onset of airway stenosis due to cell infiltration, mucus secretion, mucosal thickening, etc. involving leukotrienes. Phases are considered important for pathogenesis. Similarly, in allergic rhinitis, the pathophysiology is being understood as a two-phase reaction involving histamine in the immediate phase such as sneezing and increased nasal secretion and leukotriene in the late phase such as nasal congestion due to nasal mucosal edema. is there.
Therefore, histamine H1Receptor and LTDFourCompounds that antagonize both receptors and have little ability to enter the brain treat or prevent a range of allergic diseases, particularly the immediate to late phase of asthma and rhinitis, Moreover, it can be considered as a drug with few side effects.
However, LTD involved in late phaseFourHistamine H involved in receptor and immediate phase1The present condition is that the compound which has sufficient antagonistic action with respect to both receptors is not found. Also, many LTDs that are already under developmentFourSince antagonists have at least one acidic group and are highly polar and hydrophilic compounds, it is inevitable that they are not sufficiently absorbed when administered by inhalation or oral administration. It is thought that this has led to an increase in the side effects.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a new compound that has both an anti-leukotriene action and an antihistamine action, has little transfer into the brain, and does not have an acidic group.
[0008]
[Means for Solving the Problems]
In view of such circumstances, the present inventor has conducted extensive research to find a compound having both an anti-leukotriene action and an antihistamine action and having no such problems, and is represented by the following general formula (1). The present inventors have found that the compound satisfies such conditions and completed the present invention.
[0009]
That is, the present invention provides the following general formula (1)
[0010]
[Chemical formula 2]
Figure 0004246822
[0011]
[In the formula, R1And R2Each independently represents a hydrogen atom, a hydroxyl group, a lower alkyl group, an optionally substituted alkoxy group or an optionally substituted alkanoyloxy group, and RThreeRepresents a hydrogen atom or a lower alkyl group which may have a substituent, A represents a methyleneoxy group or a vinylene group, B represents a quinolyl, quinazolyl or benzimidazolyl group which may have a substituent. The dotted line indicates that it may have a double bond.)
The tetrazole derivative | guide_body represented by these, or its salt is provided.
[0012]
Moreover, this invention provides the pharmaceutical which uses the tetrazole derivative or its salt represented by the said General formula (1) as an active ingredient.
[0013]
Furthermore, this invention provides the pharmaceutical composition containing the tetrazole derivative represented by the said General formula (1) or its salt, and a pharmaceutically acceptable carrier.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the tetrazole derivative represented by the general formula (1),1And R2As the lower alkyl group represented by formula (1), a straight chain or branched chain group having 1 to 6 carbon atoms may be mentioned, and specifically, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, or n-butyl Group, i-butyl group, sec-butyl group, t-butyl group, pentyl group and hexyl group are exemplified, and methyl group and t-butyl group are particularly preferable. Moreover, as an alkoxy group, a C1-C6 linear or branched thing is mentioned, Specifically, a methoxy group, an ethoxy group, n-propoxy group, i-propoxy group, butoxy group, pentyloxy Group and hexyloxy group are preferable, among which methoxy group, ethoxy group and n-propoxy group are particularly preferable. These alkoxy groups may have a substituent. Examples of such a substituent include an alkoxy group, a halogen atom, a phenyl group which may have a substituent such as a quinolylmethoxy group, a methyl group, Piperazinyl group optionally having a substituent such as quinolylmethyl group, and di-C such as dimethylamino group and diethylamino group1-4Examples include alkylamino groups. As the alkanoyloxy group, those having 2 to 5 carbon atoms are preferable, and examples thereof include an acetyloxy group, a propionyloxy group, an n-butyryloxy group, and an i-butyryloxy group. The alkanoyloxy group may further have a substituent such as an amino group.
[0015]
Where RThreeAs the lower alkyl group represented by formula (1), a straight chain or branched chain group having 1 to 6 carbon atoms may be mentioned, and specifically, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, or n-butyl Group, i-butyl group, sec-butyl group, t-butyl group, pentyl group and hexyl group are exemplified, and methyl group is particularly preferable. The lower alkyl group may have a substituent, and examples of such a substituent include a halogen atom, an amino group, a heterocyclic group such as a phenyl group or a piperazinyl group, C1-C4 alkyl group such as methyl group and ethyl group, and quinolyl C such as quinolylmethoxy group1-4Benzimidazolyl C such as alkoxy group and benzimidazolylmethoxy group1-4Quinolyl C such as alkoxy group and quinolylmethyl group1-4It may have a substituent such as an alkyl group. RThreeAs a hydrogen atom, a methyl group, a dimethylaminomethyl group, and a 3- [4- (2-quinolylmethyl) piperazinyl] propyl group are preferable.
[0016]
Moreover, as group shown by B, a quinolyl group, a quinazolyl group, or a benzimidazolyl group is mentioned, These may have a substituent. Examples of these substituents include alkyl groups having 1 to 4 carbon atoms such as a methyl group and an ethyl group, C groups such as an ethoxyethyl group and a methoxymethyl group.1-4Alkoxy C1-4An alkyl group is mentioned.
[0017]
The salt of the compound (1) of the present invention is not particularly limited as long as it is a pharmacologically acceptable salt, and examples thereof include hydrochloride, hydrobromide, hydroiodide, sulfate, and phosphate. Acid addition salts of various mineral acids, or benzoate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, oxalate, maleate, fumarate, tartrate, Mention may be made of acid addition salts of organic acids such as citrates.
Moreover, although this invention compound (1) may exist also in the form of the solvate represented by the hydrate, the said solvate is also included by this invention.
The compound (1) of the present invention may exist in the form of a tautomer of keto-enol, but the isomer is also encompassed in the present invention.
[0018]
The compound (1) of the present invention is produced, for example, by the following method.
[0019]
[Chemical 3]
Figure 0004246822
[0020]
[Wherein X represents a halogen atom, R1, R2, A and B are the same as above. ]
Ie R1And R2The compound (1a) of the present invention in which is a hydrogen atom, a hydroxyl group, a lower alkyl group, or a lower alkoxyl group comprises, as shown in Method A, an excess amount of tetrazolylquinolinone (2) and 1 equivalent of halogen (3). Reaction in the presence of a base such as sodium carbonate or potassium carbonate in an aprotic polar solvent such as DMF, DMSO, or HMPA at a temperature between 0 ° C. and reflux temperature (preferably room temperature to 80 ° C.) for 1 to 7 days Can be obtained. At this time, R of compound (2)1And R2When neither of these is a hydroxyl group, RThreeThe present compound (1a ′) in which is a B-A-benzyl group may be by-produced, and R1Or / and R2When is a hydroxyl group, the compound of the present invention (1a ″) in which hydrogen of the hydroxyl group is substituted with a B-A-benzyl group may be by-produced.1And / or R2In order to obtain the compound (1) of the present invention in which is a hydroxyl group, the hydroxyl group of the compound (2) may be protected in advance with an appropriate protecting group and then deprotected (Method B).
[0021]
[Formula 4]
Figure 0004246822
[0022]
[In the formula, R1, R2, A, B and X are the same as above, RFourRepresents a lower alkyl group which may have a substituent, RFiveRepresents an optionally substituted lower alkyl group, and m represents a number from 1 to 4.
[0023]
Compound (1a) can be converted to R by alkylation.ThreeMay have a substituent, a lower alkyl group (RFourThe present compound (1c) can be obtained (Method C), while the present compound (1d ′) can be obtained by haloalkylation (1d) and piperazinylation (Method D).
[0024]
[Chemical formula 5]
Figure 0004246822
[0025]
[In the formula, R1, RThree, A, B, X and m are the same as above, R6Represents a dialkylaminoalkyl group, R7Represents a lower alkyl group, R8Represents an alkyl group)
[0026]
R2The present compound (1e) in which is a dialkylaminoalkoxy group is R2It is obtained by diaminoalkylating the compound (1b) in which is a hydroxyl group (Method E). R2The compound (1f ′) of the present invention in which is a piperazinylalkoxy group can be obtained by haloalkalizing (1f) of (1b) and piperazinylation (Method F). R2The compound (1g) of the present invention in which is an alkylcarbonyloxy group can be obtained by esterifying the hydroxyl group of the compound (1b) (Method G).
[0027]
On the other hand, the compound (2), which is a raw material of the compound (1) of the present invention, can be obtained, for example, by a known method such as Bhaduri, Amiya Prasad et al .; J. Heterocyclic Chem., 23, 409-411, 1985, etc. The cyanoquinolinone (4) produced according to the method and an azide compound such as sodium azide in the presence of ammonium chloride or the like in an aprotic polar solvent such as DMF, DMSO, or HMPA at a temperature between 0 ° C. and 200 ° C. It can be obtained by reacting for several hours to one day (preferably from room temperature to 120 ° C.).
[0028]
[Chemical 6]
Figure 0004246822
[0029]
[In the formula, R1And R2Is the same as above)
[0030]
Moreover, among the compound (3) which is the other raw material, the following (3a) to (3c) halogen compounds can be obtained, for example, by the following method.
[0031]
As the halogen compound (3a), a commercially available compound is used, or a known method such as Musser, John H. et al .; J. Med. Chem. 33 (1), 240-245, 1990, Iemura, Ryuichi et al. J. Heterocyclic. Chem. 24 (1), 31-37, 1987 and the like.
Halogens (3b) and (3c) can be produced, for example, by the following method.
[0032]
[Chemical 7]
Figure 0004246822
[0033]
[In the formula, R9Is an alkyl group, C1-4Alkoxy C1-4Represents an alkyl group, and X represents a halogen atom.]
[0034]
A halogen compound (3a) and an equivalent amount of hydroxybenzyl alcohol are added between 0 ° C. and reflux temperature in an aprotic polar solvent such as DMF, DMSO, and HMPA in the presence of an excess amount of a base such as sodium carbonate and potassium carbonate. The benzyl alcohol form (5a) is obtained by reacting at a temperature (preferably room temperature to 60 ° C.) for 1 to 7 days.
In addition, the halogen compound (3a) is dissolved in an equimolar amount of PPh in an inert solvent such as benzene, toluene or xylene.Three(Ph is a phenyl group) and the corresponding phosphonium salt was synthesized by refluxing for 12 to 48 hours, and then this was converted to an equimolar amount of t-BuOK (potassium tert-butoxide) in anhydrous THF under a nitrogen or argon stream. An aldehyde (6) obtained by adding an equimolar amount of phthalaldehyde, isophthalaldehyde, terephthalaldehyde to a Wittig reagent prepared by reacting and refluxing for 1 to 12 hours is obtained in hydrogen in a protic polar solvent such as methanol or ethanol. A benzyl alcohol form (5b) is obtained by reacting with sodium borohydride at a temperature between 0 ° C. and reflux temperature (preferably room temperature) for 1 to 24 hours.
The benzyl alcohol (5a) or (5b) thus obtained is subjected to an excessive amount of chloride in an inert solvent such as THF, chloroform, methylene chloride at a temperature between 0 ° C. and reflux temperature (preferably room temperature). The halogen compound (3b) or (3c) is obtained by reacting with thionyl for 1 to 24 hours.
[0035]
The target compound (1) of the present invention can be obtained by treating the reaction mixture according to a conventional method, and can be further purified by a conventional purification means such as a recrystallization method or column chromatography, if necessary. . If necessary, the desired salt can be obtained by a conventional method.
[0036]
The compound (1) of the present invention thus obtained or a salt thereof has excellent anti-leukotriene action and anti-histamine action as shown in Examples below, and is asthma, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, urticaria It is useful as a medicine for prophylactic and therapeutic agents for psoriasis, rheumatism, inflammatory bowel disease, cerebral ischemia, stroke and the like.
[0037]
The medicament of the present invention comprises the compound (1), a salt or a solvate thereof as an active ingredient, and examples of the dosage form include oral administration such as tablets, capsules, granules, powders, and syrups. Alternatively, parenteral administration by intravenous injection, intramuscular injection, suppository, inhalant, transdermal absorption agent, eye drop, nasal drop and the like can be mentioned. In preparing pharmaceutical preparations of such various dosage forms, this active ingredient alone or other pharmaceutically acceptable carrier such as an excipient, a binder, a bulking agent, a disintegrant, Surfactants, lubricants, dispersants, buffers, preservatives, flavoring agents, fragrances, coating agents, carriers, diluents, and the like can be used in appropriate combinations.
[0038]
The dosage of the pharmaceutical agent of the present invention varies depending on age, weight, symptoms, dosage form, number of administrations, etc., but usually about 1 to 1000 mg per day is orally or parenterally divided into several times a day. Administration is preferred.
[0039]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated still in detail, this invention is not limited to these Examples at all.
[0040]
Production Example 1
Synthesis of 6-methoxy-3-tetrazolyl-1,2-dihydroquinolin-2-one sodium salt:
3-Cyano-6-methoxy-1,2-dihydroquinolin-2-one (78.6 g, 393 mM) was dissolved in DMF 1 l, ammonium chloride (83.8 g, 1.57 M), sodium azide (102.2 g, 1.57M) was added and the mixture was stirred at a bath temperature of 120 ° C. for 12 hours. After concentrating the reaction solution under reduced pressure, 800 ml of 2N sodium hydroxide aqueous solution was added and heated, the insoluble matter was removed by filtration, and the filtrate was allowed to cool to precipitate crystals. This was collected by filtration to obtain 90.0 g (339 mM, 86.3%) of the title compound as pale yellow needles.
[0041]
mp:> 260 ° C
1H-NMR (DMSO-d6) δ (ppm): 11.9 (1H, br), 8.45 (1H, s), 7.34 (1H, d, J = 1.5Hz),
7.30 (1H, d, J = 8.8Hz), 7.15 (1H, dd, J = 8.8,1.5Hz), 3.80 (3H, s).
IR (KBr) cm-1: 3445, 1665, 1624, 1510, 1461, 1368, 1234, 1171, 1034,
638.
[0042]
Production Example 2
Synthesis of 6-tert-butyl-3-tetrazolyl-1,2-dihydroquinolin-2-one:
6-tert-butyl-3-cyano-1,2-dihydroquinolin-2-one (1.74 g, 7.7 mM) is dissolved in 20 ml of DMF, ammonium chloride (1.65 g, 30.8 M), azide Sodium (2.00 g, 30.8 M) was added and the mixture was stirred at a bath temperature of 120 ° C. for 16 hours. Water was added to the reaction solution, and the precipitate was collected by filtration and then recrystallized (DMF-methanol mixture) to obtain 1.08 g (4.0 mM, 52%) of the title compound as a yellow powder.
[0043]
mp: 280-286 ° C (d.)
1H-NMR (CDClThree) δ (ppm): 8.96 (1H, s), 7.95 (1H, d, J = 2.2Hz),
7.75 (1H, dd, J = 8.5,2.2Hz), 7.39 (1H, d, J = 8.5Hz), 1.34 (9H, s).
IR (KBr) cm-1: 2964, 1667, 1625, 1535, 1473, 1365, 1261, 1156, 1036,
626
[0044]
Production Examples 3-7
The title compound was obtained in the same manner as in Production Examples 1 and 2.
[0045]
[Table 1]
Figure 0004246822
[0046]
Production Example 8
Synthesis of 3- (2-quinolylmethoxy) benzyl chloride:
3- (2-quinolylmethoxy) benzyl alcohol (3.58 g, 13.5 mmol) in CHClThree(100 ml) solution with SOCl22 ml was added and stirred at room temperature for 24 hours. A small amount of methanol was added to the reaction solution, and the solvent was distilled off under reduced pressure to obtain the title compound as a white powder.
[0047]
Production Example 9
Synthesis of 2- (2-quinazolylmethoxy) benzyl alcohol:
To a solution of 2-chloromethylquinazoline (5.00 g, 28 mmol) in DMF (50 ml) was added potassium carbonate (4.26 g, 31 mmol) and tetra-n-butylammonium bromide (903 mg, 2.8 mmol). To this was added 3-hydroxybenzyl alcohol (3.48 g, 28 mmol), and the mixture was stirred at room temperature for 5 days. The reaction solution was concentrated under reduced pressure, and chloroform and water were added to extract the organic layer. The extract was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and recrystallized from a chloroform-n-hexane mixture to obtain 6.94 g (yield 93.1%) of the title compound as a pale yellow powder.
[0048]
mp: 92-96 ° C
1H-NMR (CDClThree) δ (ppm): 9.43 (1H, s, -C8HFiveN2-),
8.07 (1H, d, J = 9.0Hz, -C8HFiveN2-), 7.95 (1H, d, J = 7.5Hz, -C8HFiveN2-),
7.93 (1H, d, J = 9.0Hz, -C8HFiveN2-), 7.67 (1H, dd, J = 7.5,7.5Hz, -C8HFiveN2-),
7.25 (1H, dd, J = 7.8,7.8Hz, -C6HFour-), 7.11 (1H, s, -C6HFour-),
6.99 (1H, d, J = 7.8Hz, -C6HFour-), 6.96 (1H, d, J = 7.8Hz, -C6HFour-),
5.46 (2H, s, C8HFiveN2-CH2-), 4.65 (2H, s, -C6HFour-CH2-OH).
IR (KBr) cm-1: 3328, 1621, 1613, 1582, 1441, 1378, 1292, 1077, 752.
[0049]
Production Example 10
Synthesis of 3- (N-methylbenzimidazol-2-ylmethoxy) benzyl alcohol:
In the same manner as in Production Example 9, the title compound was obtained as pale yellow needles from 2-chloromethyl-N-methylbenzimidazole (yield 58.4%).
[0050]
mp: 183-185 ° C
1H-NMR (CDClThree) δ (ppm): 7.69 (1H, m, C8H7N2-), 7.16-7.32 (4H, m, Ar-H),
7.02 (1H, s, -C6HFour-), 6.88-6.94 (2H, m, -C6HFour-),
5.29 (2H, s, C8H7N2-CH2-), 4.61 (2H, s, -C6HFour-CH2-OH),
3.81 (3H, s, N-CHThree).
IR (KBr) cm-1: 2850, 1594, 1482, 1441, 1366, 1259, 1227, 1048, 1029,
750.
[0051]
Production Example 11
Synthesis of 4- (2-N-methylbenzimidazol-2-ylmethoxy) benzyl alcohol:
In the same manner as in Production Example 9, the title compound was obtained as pale yellow prism crystals from 2-chloromethyl-N-methylbenzimidazole and 4-hydroxybenzyl alcohol (yield 46.7%).
[0052]
mp: 176-180 ° C
1H-NMR (CDClThree) δ (ppm): 7.78 (1H, m, C8H7N2-),
7.23-7.38 (3H, m, C8H7N2-), 7.30 (2H, d, J = 8.6Hz, -C6HFour-),
7.04 (2H, d, J = 8.6Hz, -C6HFour-), 5.34 (2H, s, C8H7N2-CH2-),
4.62 (2H, s, -C6HFour-CH2-OH), 3.88 (3H, s, N-CHThree).
IR (KBr) cm-1: 3174, 2846, 1607, 1585, 1507, 1484, 1240, 1047, 1030,
734.
[0053]
Production Example 12
Synthesis of 3- [N- (2-ethoxyethyl) benzimidazol-2-ylmethoxy] benzyl alcohol:
In the same manner as in Production Example 9, the title compound was obtained as colorless needle crystals from 2-chloromethyl-N- (2-ethoxyethyl) benzimidazole (yield 90.3%).
[0054]
mp: 105-107 ° C
1H-NMR (CDClThree) δ (ppm): 7.71 (1H, m, Ar-H), 7.41 (1H, m, Ar-H),
7.23-7.34 (3H, m, Ar-H), 7.11 (1H, s, -C6HFour-), 6.96-7.62 (2H, m, -C6HFour-),
5.43 (2H, s, C11H13N2O-CH2O-), 4.68 (2H, d, J = 5.6Hz, -C6HFour-CH2OH),
4.48 (2H, t, J = 5.4Hz, -CH 2-CH2OCH2CHThree),
3.74 (2H, t, J = 5.4Hz, -CH2CH 2OCH2CHThree),
3.39 (2H, q, J = 6.8Hz, CH2CH2OCH 2CHThree), 2.24 (1H, br, -C6HFour-CH2OH),
1.10 (3H, t, J = 6.8Hz, CH2CH2OCH2CH Three).
IR (KBr) cm-1: 2875, 1594, 1471, 1445, 1426, 1369, 1258, 1154,
1050, 1035, 761.
[0055]
Production Example 13
Synthesis of 4- [N- (2-ethoxyethyl) benzimidazol-2-ylmethoxy] benzyl alcohol:
In the same manner as in Production Example 9, the title compound was obtained as pale yellow prisms from 2-chloromethyl-N- (2-ethoxyethyl) benzimidazole and 4-hydroxybenzyl alcohol (yield 83.4%).
[0056]
mp: 90-92 ° C
1H-NMR (CDClThree) δ (ppm): 7.78 (1H, m, Ar-H), 7.41 (1H, m, Ar-H),
7.25-7.34 (4H, m, Ar-H), 7.08 (2H, d, J = 8.8Hz, -C6HFour-),
5.44 (2H, s, C11H13N2O-CH2O-), 4.62 (2H, d, J = 5.7Hz, -C6HFour-CH 2-OH),
4.49 (2H, t, J = 5.6Hz, -CH 2-CH2OCH2CHThree),
3.75 (2H, t, J = 5.6Hz, -CH2CH 2OCH2CHThree),
3.39 (2H, q, J = 7.1Hz, CH2CH2OCH 2CHThree),
1.66 (1H, t, J = 5.7Hz, -C6HFour-CH2OH),
1.10 (3H, t, J = 7.1Hz, CH2CH2OCH2CH Three).
IR (KBr) cm-1: 3180, 2858, 1609, 1587, 1509, 1472, 1417, 1237, 1117,
1036, 747.
[0057]
Production Example 14
Synthesis of 3- [2- (2-quinolyl) ethenyl] benzyl alcohol:
3- [2- (2-quinolyl) ethenyl] benzylaldehyde (25.92 g, 0.1 M) is dissolved in 300 ml of methanol, sodium borohydride (7.57 g, 0.2 M) is added, and the mixture is stirred at room temperature for 1 hour. Stir. The reaction mixture was evaporated under reduced pressure, water was added to the residue, and the organic layer was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and recrystallized from ethyl acetate to obtain 21.42 g (82.0 mM, 82.0%) of the title compound as a pale yellow powder.
[0058]
Production Examples 15-22
The following compounds were obtained in the same manner as in Production Example 8.
[0059]
[Table 2]
Figure 0004246822
[0060]
Examples 1 and 2
6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one and 6-methoxy-3- {1- [3- (2-quinolylmethoxy) benzyl] Synthesis of tetrazolyl} quinolin-2-one:
[0061]
6-methoxy-3-tetrazolyl-1,2-dihydroquinolin-2-one sodium salt (36.7 g, 138 mM), sodium carbonate (14.7 g, 138 mM), tetra-n-butylammonium bromide (22.3 g) , 69.1 mM) was added DMF21. To this was added 58.7 g of (2-quinolylmethoxy) benzyl chloride, and the mixture was stirred at a bath temperature of 80 ° C. for 15 hours. The solvent was distilled off under reduced pressure, 1 l of 2N sodium hydroxide aqueous solution was added, and the organic layer was extracted with a mixed solution of chloroform-methanol 5: 1. The organic layer was dried over anhydrous sodium sulfate, then subjected to silica gel column chromatography (chloroform-methanol 5: 1) and concentrated under reduced pressure. -3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one is a crude 6-methoxy-3- {1- [3- (2-quinolylmethoxy) as the second crystal. )] Benzyl] tetrazolyl} quinolin-2-one.
The first crystal was further purified by recrystallization (DMF-ether), and 6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one was obtained as a yellow powder. 0 g (yield 35.4%) was obtained.
[0062]
mp: 213-214 ° C (d.)
1H-NMR (DMSO-d6) δ (ppm): 12.01 (1H, br), 8.56 (1H, s), 8.39 (1H, d, J = 8.3Hz),
8.00 (1H, d, J = 7.8Hz), 8.03-7.94 (2H, m), 7.76 (1H, ddd, J = 8.3,6.8,1.5Hz),
7.67 (1H, d, J = 8.3Hz), 7.59 (1H, m), 7.41 (1H, d, J = 2.5Hz),
7.35 (1H, dd, J = 7.8,7.8Hz), 7.31 (1H, d, J = 8.8Hz),
7.25 (1H, dd, J = 8.8,2.5Hz), 7.15-7.06 (2H, m), 6.98 (1H, d, J = 7.8Hz),
    5.99 (2H, s), 5.37 (2H, s), 3.80 (3H, s).
IR (KBr) cm-1: 3432, 1676, 1629, 1587, 1497, 1378, 1285, 1239, 1165,
1030, 829, 598.
[0063]
The second crystal was further purified by recrystallization (DMF-ether), and 6-methoxy-3- {1- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one was obtained as a pale yellow powder. As a result, 12.1 g (yield 19.0%) was obtained.
[0064]
mp: 215-217 ° C (d.)
1H-NMR (DMSO-d6) δ (ppm): 12.39 (1H, br), 8.35 (1H, d, J = 8.8Hz),
8.31 (1H, s), 8.00 (1H, d, J = 7.8Hz), 7.98 (1H, d, J = 7.3Hz),
7.78 (1H, ddd, J = 8.3,6.8,1.5Hz), 7.62 (1H, dd, J = 7.8,7.3Hz),
7.55 (1H, d, J = 8.3Hz), 7.38 (1H, d, J = 8.8Hz), 7.34-7.27 (2H, m),
7.20 (1H, m), 6.97-6.90 (2H, m), 6.77 (1H, d, J = 7.8Hz), 5.73 (2H, s),
5.23 (2H, s), 3.78 (3H, s).
IR (KBr) cm-1: 3434, 1665, 1625, 1498, 1453, 1380, 1264, 1244, 1171,
1034, 827.
[0065]
Examples 3-34
The compounds listed in Tables 3 to 4 were obtained in the same manner as in Examples 1 and 2.
[0066]
[Table 3]
Figure 0004246822
[0067]
[Table 4]
Figure 0004246822
[0068]
Examples 35 and 36
6-methoxymethoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one, 6-methoxymethoxy-3- {1- [3- (2-quinolylmethoxy) Synthesis of [Benzyl] tetrazolyl} quinolin-2-one:
[0069]
The title compound was synthesized in the same manner as in Examples 1 and 2.
Data for 6-methoxymethoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one
[0070]
mp: 197-200 ° C (d.)
1H-NMR (CDClThree) δ (ppm): 11.24 (1H, br), 8.63 (1H, s), 8.18 (1H, d, J = 8.3Hz),
8.09 (1H, d, J = 8.5Hz), 7.72 (1H, ddd, J = 8.5,7.1,1.5Hz),
7.64 (1H, d, J = 8.5Hz), 7.52 (1H, ddd, J = 8.1,6.8,1.2Hz), 7.35-7.24 (4H, m),
7.13 (1H, m), 7.10-6.99 (2H, m), 5.87 (2H, s), 5.39 (2H, s), 5.20 (2H, s),
3.50 (3H, s).
IR (KBr) cm-1: 1667, 1623, 1588, 1510, 1493, 1443, 1428, 1289, 1230,
1155, 1074, 996, 825, 529.
[0071]
Data for 6-methoxymethoxy-3- {1- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one
[0072]
mp: 202-206 ° C (d.)
1H-NMR (CDClThree) δ (ppm): 11.60 (1H, br), 8.13 (1H, s), 8.12 (1H, d, J = 8.8Hz),
8.05 (1H, d, J = 8.4Hz), 7.82 (1H, d, J = 7.0Hz), 7.73 (1H, dd, J = 8.1,7.0Hz),
7.59-7.49 (2H, m), 7.34-7.19 (3H, m), 7.16 (1H, dd, J = 8.7,8.7Hz),
5.86 (2H, s), 5.37 (2H, s), 5.21 (2H, s), 3.47 (3H, s).
IR (KBr) cm-1: 1664, 1623, 1600, 1497, 1291, 1266, 1158, 1001, 983,
825, 781, 750.
[0073]
Example 37 (another method for synthesizing the compound of Example 28)
Synthesis of 6-hydroxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one:
6-methoxymethoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one (444 mg, 0.85 mM) was dissolved in 100 ml of a chloroform-methanol (10: 1) mixture. 5 ml of 4N-hydrochloric acid in ethyl acetate was added and stirred at room temperature for 17 hours. After adding 400 ml of water to the reaction solution, a saturated aqueous sodium hydrogen carbonate solution was added dropwise to neutralize the aqueous layer, and the mixture was extracted with chloroform-methanol (10: 1). The organic layer was dried (anhydrous magnesium sulfate), evaporated under reduced pressure, and crystallized from chloroform-methanol-diethyl ether. This gave 353 mg (0.74 mmol, 87.2%) of the title compound as yellow leaf-like crystals.
[0074]
mp: 260-267 ° C (d.)
1H-NMR (CDClThree-CDThreeOD) δ (ppm): 8.53 (1H, s), 8.35 (1H, d, J = 8.6Hz),
8.06 (1H, d, J = 8.3Hz), 7.89 (1H, d, J = 8.3Hz),
7.78 (1H, ddd, J = 8.6,7.1,1.5Hz), 7.72 (1H, d, J = 8.6Hz), 7.60 (1H, m),
7.33 (1H, dd, J = 8.8,8.1Hz), 7.27 (1H, d, J = 8.8Hz),
7.18 (1H, dd, J = 8.8,2.8Hz), 7.15-7.02 (4H, m), 5.88 (2H, s), 5.39 (2H, s).
IR (KBr) cm-1: 1661, 1614, 1508, 1429, 1287, 1229, 1160, 1029, 826,
781.
[0075]
Example 38
Synthesis of 6-methoxy-1-methyl-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one:
To a mixture of 6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one (1.61 g, 3.30 mM), potassium carbonate (684 mg, 4.95 mM) 30 ml of DMF was added. Methyl iodide (562 mg, 3.96 mM) was added dropwise thereto, and after completion of the dropwise addition, the mixture was stirred at a bath temperature of 80 ° C. for 4 hours. The reaction solution was evaporated under reduced pressure, water was added, and the organic layer was extracted with a mixed solution of chloroform-methanol (10: 1). The organic layer is dried over anhydrous sodium sulfate, subjected to silica gel column chromatography (chloroform-methanol 50: 1) and concentrated under reduced pressure. The residue is recrystallized from a mixed solution of chloroform-n-hexane-ether to give the title compound as a pale yellow powder. As a result, 1.35 g (2.68 mM, 81.1%) was obtained.
[0076]
mp: 125-127 °
1H-NMR (CDClThree) δ (ppm): 8.57 (1H, s), 8.19 (1H, d, J = 8.6Hz),
8.07 (1H, d, J = 8.5Hz), 7.81 (1H, d, J = 8.3Hz),
7.72 (1H, ddd, J = 8.3,6.8,1.5Hz), 7.64 (1H, d, J = 8.6Hz),
7.53 (1H, dd, J = 8.3,7.8Hz), 7.36 (1H, d, J = 9.0Hz), 7.32-7.24 (2H, m),
7.13-7.09 (2H, m), 7.04 (1H, d, J = 7.6Hz), 6.99 (1H, dd, J = 7.6,2.2Hz),
5.85 (2H, s), 5.36 (2H, s), 3.89 (3H, s), 3.81 (3H, s).
IR (KBr) cm-1: 3442, 1664, 1589, 1577, 1442, 1237, 1160, 1066, 1031,
928, 786, 768.
[0077]
Examples 39-43
The compounds listed in Table 5 were obtained in the same manner as in Example 38.
[0078]
[Table 5]
Figure 0004246822
[0079]
Example 44
Synthesis of 1- (3-chloropropyl) -6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one:
6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one (1.00 g, 2.04 mM), potassium carbonate (564 mg, 4.08 mM), 1- A mixture of bromo-3-chloropropane (962 mg, 6.12 mM) and DMF (100 ml) was stirred at a bath temperature of 60 ° C. for 4 hours. The reaction solution was evaporated under reduced pressure, water was added to the obtained residue, and the mixture was extracted with chloroform-methanol (10: 1). The organic layer is dried (anhydrous magnesium sulfate), and the solvent is distilled off under reduced pressure. The residue is purified by silica gel column chromatography (developing solution: chloroform-methanol (100: 1)), and then crystallized from chloroform-diethyl ether. To give 546 mg (0.963 mM, 47.2%) of the title compound as a pale yellow powder.
[0080]
mp: 150-152 ° C
1H-NMR (CDClThree) δ (ppm): 8.60 (1H, s), 8.18 (1H, d, J = 8.5Hz),
8.07 (1H, d, J = 8.3Hz), 7.81 (1H, d, J = 9.0Hz),
7.72 (1H, ddd, J = 8.3,7.8,1.5Hz), 7.64 (1H, d, J = 8.3Hz),
7.53 (1H, dd, J = 8.1,6.8Hz), 7.46 (1H, d, J = 9.3Hz), 7.33-7.24 (2H, m),
7.15-7.08 (2H, m), 7.06-6.96 (2H, m), 5.85 (2H, s), 5.36 (2H, s),
4.53 (2H, t, J = 7.8Hz), 3.89 (3H, s), 3.73 (2H, t, J = 6.3Hz), 2.29 (2H, m).
IR (KBr) cm-1: 1660, 1590, 1573, 1508, 1445, 1428, 1267, 1159, 829,
767.
[0081]
Further, the by-product was crystallized from chloroform-diethyl ether and 173 mg (0. 0) of 2-chloropropoxy-6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinoline as a white powder. 305 mM, 15.0%).
[0082]
Example 45
1- {3- [4- (2-quinolylmethyl) -1-piperazinyl] propyl} -6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one Synthesis of dihydrochloride:
1- (3-Chloropropyl) -6-methoxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one (179 mg, 0.316 mM), N- (2- Quinolylmethyl) piperazine (287 mg, 1.26 mM) was combined and stirred at 120 ° C. under an argon stream for 2.5 hours. The mixture was allowed to cool and then purified by silica gel column chromatography (developing solution: chloroform-methanol (40: 1)). Fractions containing the desired product were collected and concentrated under reduced pressure to give 219 mg (0.289 mM) of the free base of the title compound as a yellow oil. This was dissolved in methanol (50 ml), 144 μl (0.576 mM) of 4N-hydrochloric acid in ethyl acetate was added and crystallized from methanol-diethyl ether to give 184 mg (0.22 mM, 70.1%) of the title compound as a yellow powder. )Obtained.
[0083]
mp: 182-186 °
1H-NMR (CDClThree-CDThreeOD) δ (ppm): 8.73 (1H, d, J = 8.6Hz),
8.66 (1H, d, J = 8.1Hz), 8.60 (1H, s), 8.53 (1H, d, J = 8.1Hz),
8.05-7.79 (6H, m), 7.70 (1H, dd, J = 7.8,7.3Hz),
7.59 (1H, d, J = 9.3Hz), 7.40-7.30 (2H, m), 7.22-7.15 (2H, m),
7.10-7.04 (2H, m), 5.88 (2H, s), 5.55 (2H, s), 4.53 (2H, t, J = 6.3Hz),
4.34 (2H, s), 3.91 (3H, s), 3.54 (4H, br), 3.37 (2H, m), 3.22 (4H, br),
2.37 (2H, m).
IR (KBr) cm-1: 1652, 1625, 1576, 1509, 1455, 1240, 1028, 772, 475.
[0084]
Examples 46-49
The compounds listed in Table 6 were obtained in the same manner as in Example 45.
[0085]
[Table 6]
Figure 0004246822
[0086]
Example 50
Synthesis of 6-dimethylaminoethoxy-1-dimethylaminoethyl-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one dioxalate:
6-dimethylaminoethyl-3-l-hydroxy- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one (700 mg, 1.28 mM), potassium carbonate (706 mg, 5.11 mM) ) 40 ml of DMF was added and stirred. Dimethylaminoethyl chloride (369 mg, 2.56 mM) was added thereto, and the mixture was stirred at a bath temperature of 80 ° C. for 3 days.
The reaction mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with a mixed solution of chloroform-methanol (10: 1). The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography (chloroform-ammonia saturated methanol (10: 1)), and the fraction containing the desired product was distilled off under reduced pressure. This gave 254 mg (0.411 mM, 32.1%) of the free base of the title compound as a brown oil.
[0087]
1H-NMR (CDClThree) δ (ppm): 8.57 (1H, s), 8.18 (1H, d, J = 8.5Hz),
8.06 (1H, d, J = 8.3Hz), 7.81 (1H, d, J = 8.1Hz),
7.73 (1H, ddd, J = 8.5,6.8,1.5Hz), 7.64 (1H, d, J = 8.3Hz),
7.52 (1H, dd, J = 8.2,6.8Hz), 7.40 (1H, d, J = 9.3Hz), 7.34-7.23 (2H, m),
7.14 (1H, d, J = 2.7Hz), 7.10 (1H, s), 7.05-6.95 (2H, m), 5.86 (2H, s),
5.36 (2H, s), 4.50 (2H, t, J = 8.1Hz), 4.13 (2H, t, J = 5.6Hz),
2.77 (2H, t, J = 5.6Hz), 2.67 (2H, t, J = 8.1Hz), 2.40 (6H, s), 2.36 (6H, s).
[0088]
This was dissolved in methanol, oxalic acid (148 mg, 0.422 mM) was added, and then recrystallized from an acetone-ether mixture to obtain 211 mg (0.270 mM, 21.1%) of the title compound dioxalate as a brown powder. It was.
[0089]
mp: 172-176 ° C (d.)
1H-NMR (CDClThree) δ (ppm): 8.52 (1H, s), 8.24 (1H, d, J = 8.1Hz),
8.05 (1H, d, J = 8.6Hz), 7.84 (1H, d, J = 7.6Hz), 7.78-7.67 (2H, m),
7.66 (1H, d, J = 8.5Hz), 7.56 (1H, ddd, J = 9.3,8.1,1.2Hz), 7.47-7.38 (1H, m),
7.31 (1H, dd, J = 7.8,8.1Hz), 7.17 (1H, m), 7.12 (1H, m), 7.07-7.68 (2H, m),
5.85 (2H, s), 5.35 (2H, s), 4.70 (2H, m), 4.40 (2H, m), 3.49 (2H, m),
3.30 (2H, m), 2.95 (6H, s), 2.94 (6H, s).
IR (KBr) cm-1: 3419, 1652, 1599, 1509, 1448, 1312, 1281, 1239, 1161,
1055, 831.
[0090]
Example 51
Synthesis of 6- (3-chloropropyl) oxy-1-methyl-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one:
To 6-hydroxy-1-methyl-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one (600 mg, 1.22 g), potassium carbonate (337 mg, 2.44 mM). 100 ml of DMF was added and stirred. 1-Bromo-3-chloropropane (578 mg, 3.64 mM) was added thereto, and the mixture was stirred at a bath temperature of 60 ° C. for 4 hours. The reaction mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with a chloroform-methanol (10: 1) mixture, dried over anhydrous sodium sulfate, and evaporated under reduced pressure to give 638 mg of the crude title compound as a yellow oil. Obtained. This was used in the next reaction without further purification.
[0091]
1H-NMR (CDClThree) δ (ppm): 8.52 (1H, s), 8.17 (1H, d, J = 8.6Hz),
8.06 (1H, d, J = 8.5Hz), 7.80 (1H, d, J = 8.1Hz),
7.71 (1H, ddd, J = 8.3,7.1,1.5Hz), 7.63 (1H, d, J = 8.5Hz),
7.51 (1H, dd, J = 8.1,6.8Hz), 7.35-7.21 (3H, m), 7.14-7.09 (2H, m),
7.04 (1H, d, J = 7.6Hz), 6.98 (1H, dd, J = 8.3,2.4Hz), 5.85 (2H, s),
5.35 (2H, s), 4.17 (2H, t, J = 5.9Hz), 3.84-3.73 (5H, m),
2.27 (2H, t, J = 6.1Hz).
[0092]
Example 52
Of 1-methyl-6- [3- (4-methylpiperazinyl) propyl] oxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one trihydrochloride Synthesis:
Crude 6- [3-Chloropropyl] oxy-1-methyl-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one (180 mg, 0.317 mM), N-methyl Piperazine (127 mg, 1.27 mM) was mixed, and the mixture was stirred at a bath temperature of 120 ° C. for 90 minutes under an argon stream. The reaction solution is concentrated under reduced pressure and then purified by silica gel column chromatography (developing solution: chloroform-methanol (20: 1)). 180 mg (0.285 mM) were obtained. This was dissolved in methanol (2 ml), 285 μl (1.14 mM) of 4N hydrochloric acid in ethyl acetate was added, and crystallized from methanol-diethyl ether to give 143 mg (0. 203 mM, 64.1%).
[0093]
mp: 188-192 ° C (d.)
1H-NMR (CDClThree-CDThreeOD) δ (ppm): 8.77 (1H, d, J = 8.6Hz), 8.54 (1H, s),
8.46 (1H, d, J = 8.8Hz), 8.11 (1H, d, J = 8.6Hz), 8.08-7.98 (2H, m),
7.82 (1H, dd, J = 7.6,7.3Hz), 7.46-7.32 (2H, m), 7.30-7.05 (5H, m),
5.90 (2H, s), 5.69 (2H, s), 4.21 (2H, overlapped with solvent),
3.90-3.65 (11H, m), 3.51 (2H, m), 2.98 (3H, m), 2.41 (2H, br).
IR (KBr) cm-1: 1647, 1623, 1578, 1510, 1456, 1384, 1241, 1162, 1060,
963.
[0094]
Example 53
Synthesis of 6- {3- [4- (2-quinolylmethyl) piperazinyl] propyl} oxy-1-methyl-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one:
The title compound was obtained in the same manner as in Example 52.
[0095]
mp: 174-178 ° C (d.)
1H-NMR (DMSO-dThree) δ (ppm): 8.62 (1H, d, J = 8.3Hz), 8.53 (1H, s),
8.48 (1H, d, J = 8.8Hz), 8.21-7.97 (4H, m), 7.93-7.71 (5H, m),
7.66-7.50 (3H, m), 7.41-7.33 (2H, m), 7.16-7.07 (2H, m),
    7.01 (1H, d, J = 7.8Hz), 6.00 (2H, s), 5.42 (2H, s), 4.60 (2H, br),
4.17 (2H, t, J = 6.1Hz), 3.80-3.30 (8H, overlapped with solvent),
3.69 (3H, s), 2.25 (2H, br).
IR (KBr) cm-1: 1647, 1600, 1578, 1509, 1449, 1430, 1239, 1159.
[0096]
Example 54
Synthesis of 6-butyryloxy-3- {2- [3- (2-quinolylmethoxy) benzyl] tetrazolyl} quinolin-2-one:
6-Hydroxy-3- {2- [3- (quinolin-2-ylmethoxy) benzyl] tetrazolyl} quinolin-2-one (250 mg, 0.522 mM) was dissolved in 30 ml of pyridine, butyric anhydride (172 μl, 1.05 mM). And stirred at room temperature for 20 hours. After adding a small amount of methanol to the reaction solution, the solvent was distilled off, and the resulting residue was dissolved in a mixed solution of chloroform-methanol (10: 1) and washed with 2N-hydrochloric acid, water, saturated aqueous sodium hydrogen carbonate solution and water in this order. did. The organic layer was dried (anhydrous magnesium sulfate), the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solution: chloroform-methanol (10: 1)), and then purified from chloroform-methanol-diethyl ether. Crystallization. Obtained 265 mg (0.485 mmol, 92.8%) of the title compound as a white powder.
[0097]
mp: 200-202 ° C (d.)
1H-NMR (CDClThree) δ (ppm): 11.1 (1H, br), 8.64 (1H, s),
8.16 (1H, d, J = 8.8Hz), 8.05 (1H, d, J = 8.1Hz), 7.79 (1H, d, J = 8.1Hz),
7.70 (1H, ddd, J = 8.4,7.0,1.5Hz), 7.62 (1H, d, J = 8.4Hz), 7.51 (1H, m),
7.42 (1H, d, J = 2.2Hz), 7.36-7.27 (3H, m), 7.14-6.98 (3H, m),
5.87 (2H, s), 5.37 (2H, s), 2.67 (2H, t, J = 7.3Hz), 1.80 (2H, tq, J = 7.3,7.3Hz),
1.06 (3H, t, J = 7.3Hz).
IR (KBr) cm-1: 1755, 1675, 1586, 1497, 1453, 1226, 1156, 1030, 828,
757.
[0098]
Examples 55-64
The title compound was obtained in the same manner as in Example 54.
[0099]
[Table 7]
Figure 0004246822
[0100]
Test example 1
Antihistamine and anti-LTDFourAction (in vitro test)
The guinea pig excised ileum is cut to about 2 cm, suspended in a 20 ml container filled with Tyrode's buffer, and histamine or leukotriene D.FourThe isotonic contraction response due to was recorded on a recorder. Tyrode buffer is kept at 29 ° C and mixed gas (95% O2-5% CO2Aerated). The test for antihistaminic activity is histamine 10-8-10-FourM was added to the organ bath and the dose response was measured. After washing several times with a buffer solution, a fixed concentration of the test compound was added and incubated for 30 minutes, and then the dose response of histamine was measured again. Testing for anti-leukotriene action is theFour10-8Test compound 10 for contractile response of M-FiveThe effect of M addition was investigated. In Table 8, the antihistaminic action is pA2Or pD '2With regard to anti-leukotriene action, IC50It showed in.
[0101]
[Table 8]
Figure 0004246822
[0102]
Test example 2
H1Receptor binding inhibition test
0.5nM [Three1 ml of 50 mM phosphate buffer (pH 7.5) containing H] mepyramine (activity 22 Ci / mmol), guinea pig brain membrane protein and test compound was incubated at 37 ° C. for 30 minutes. Ice-cold phosphate buffer was added to stop the reaction, and immediately filtered through Whatman CF / C filter. The filter was washed twice with 20 ml of ice-cold buffer, and the radioactivity of the residue was measured with a liquid scintillation counter. From the measured value when no test compound was added and the measured value when various concentrations of the test compound were added, the dose-response of the inhibitory action of the test compound was measured, and the 50% inhibitory concentration (IC50) And then the dissociation constant (K using the Cheng-Prusoff equation)D) Was calculated and shown in Table 9. 10 for saturation experiments-FourM R (−)-dimethindene was used to measure the amount of non-specific binding. Saturation experiments revealed that there was one type of receptor and the saturation binding amount (Bmax) was 278 ± 24 fmol / mg Protein. Also,[ThreeH] mepyramine dissociation constant (KD) Is 3.30 ± 0.26 × 10-9M and its slope when analyzed by Hill plot was 1.005. The numerical values in Table 9 are dissociation constants KD(M) Or the inhibition rate (%) at a high concentration (a: 100 μM, b: 10 μM) is shown.
[0103]
Test example 3
LTDFourReceptor binding inhibition test
0.2nM [ThreeH] Leukotriene DFourThen, 0.3 ml of 10 mM piperazine N, N′-bis (2-ethanesulfonic acid) buffer (pH 7.5) containing guinea pig lung protein and test compound was incubated at 22 ° C. for 30 minutes. Ice-cooled Tris-HCl / sodium chloride buffer (10 mM / 100 mM, pH 7.5) was added to stop the reaction, and the mixture was immediately filtered with a Whatman CF / C filter. The filter was washed twice with 20 ml of ice-cold buffer, and the radioactivity of the residue was measured with a liquid scintillation counter. H1IC of test compound in the same manner as the receptor50And the dissociation constant (KD) Was calculated and shown in Table 9. In saturation experiments, 2 μM leukotriene DFourWas used to measure the amount of non-specific binding. Saturation experiments show that there is one type of receptor and the amount of saturated binding (Bmax) Was found to be 988 fmol / mg protein. Also,[ThreeH] Leukotriene DFourDissociation constant (KD) Is 2.16 × 10-TenM, and its slope when analyzed by Hill plot was 0.99. The numerical values in Table 9 are dissociation constants KD(M) is shown.
[0104]
[Table 9]
Figure 0004246822
[0105]
【The invention's effect】
The tetrazole derivative or salt thereof of the present invention has an excellent anti-leukotriene action and anti-histamine action, and is useful as a medicament for preventing or treating asthma.

Claims (5)

次の一般式(1)
Figure 0004246822
〔式中、R1及びR2は、それぞれ独立に、水素原子、水酸基、低級アルキル基、置換基を有していてもよいアルコキシ基又は置換基を有していてもよいアルカノイルオキシ基を示し、R3は水素原子又は置換基を有していてもよい低級アルキル基を示し、Aはメチレンオキシ基又はビニレン基を示し、Bは置換基を有していてもよいキノリル、キナゾリル又はベンズイミダゾリル基を示し、点線は二重結合を有していてもよいことを示す〕で表わされるテトラゾール誘導体又はその塩。
The following general formula (1)
Figure 0004246822
[Wherein, R 1 and R 2 each independently represent a hydrogen atom, a hydroxyl group, a lower alkyl group, an optionally substituted alkoxy group or an optionally substituted alkanoyloxy group. , R 3 represents a hydrogen atom or an optionally substituted lower alkyl group, A represents a methyleneoxy group or vinylene group, and B represents an optionally substituted quinolyl, quinazolyl or benzimidazolyl. Represents a group, and the dotted line represents that it may have a double bond].
請求項1記載のテトラゾール誘導体又はその塩を有効成分とする医薬。  The pharmaceutical which uses the tetrazole derivative or its salt of Claim 1 as an active ingredient. アレルギー疾患の予防又は治療薬である請求項2記載の医薬。  The pharmaceutical according to claim 2, which is a preventive or therapeutic agent for allergic diseases. 喘息、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎、じんましん、乾せん、リウマチ及び炎症性大腸炎から選ばれる疾患の予防又は治療薬である請求項2記載の医薬。Asthma, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, urticaria, psoriasis, a pharmaceutical according to claim 2 wherein the prophylactic or therapeutic agent for arthritis and inflammatory bowel disease or al disease selected. 請求項1記載のテトラゾール誘導体又はその塩、及び薬学的に許容される担体を含有する医薬組成物。  A pharmaceutical composition comprising the tetrazole derivative or a salt thereof according to claim 1 and a pharmaceutically acceptable carrier.
JP26949898A 1997-09-26 1998-09-24 Tetrazole derivative Expired - Fee Related JP4246822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26949898A JP4246822B2 (en) 1997-09-26 1998-09-24 Tetrazole derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26235697 1997-09-26
JP9-262356 1997-09-26
JP26949898A JP4246822B2 (en) 1997-09-26 1998-09-24 Tetrazole derivative

Publications (2)

Publication Number Publication Date
JPH11158175A JPH11158175A (en) 1999-06-15
JP4246822B2 true JP4246822B2 (en) 2009-04-02

Family

ID=26545512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26949898A Expired - Fee Related JP4246822B2 (en) 1997-09-26 1998-09-24 Tetrazole derivative

Country Status (1)

Country Link
JP (1) JP4246822B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0011542A (en) 1999-05-24 2002-03-05 Mitsubishi Pharma Corp Phenoxypropylamine compounds

Also Published As

Publication number Publication date
JPH11158175A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US5217976A (en) 1,6-naphthyridone derivatives having angiotensin ii antagonist activity
US5093340A (en) Substituted phenylsulphonamides
EA005809B1 (en) Quinazoline derivatives as kinase inhibitors
US6011033A (en) Phenylene derivatives
JP2009511557A (en) Pyrimidine derivatives for the treatment of cancer
JP2008501762A (en) Chromone derivatives useful as vanilloid antagonists
JP2002508780A (en) New compounds
JPH1171351A (en) Substituted quinolone derivative and medicine containing the same
KR100547506B1 (en) Tetrazole derivatives
JP3588126B2 (en) Diamine derivatives and pharmaceuticals containing the same
JP4246822B2 (en) Tetrazole derivative
CN104487427A (en) Novel tetrazole derivatives and their use as potassium channel modulators
DE69732551T2 (en) Flavon Derivatives and their containing medicinal products
WO2006093253A1 (en) Novel cyclic compound having quinolylalkylthio group
JP4057671B2 (en) Phenylene derivatives
JP2002504125A (en) Dopamine D (2) 2-aminoalkylaminoquinoline as ligand
KR100535324B1 (en) Piperidine derivatives
JP3413109B2 (en) Piperidine derivative
AU2001285449B8 (en) Quinazoline derivatives as kinase inhibitors
KR20240051859A (en) Novel heterobicyclic compound for inhibiting YAP-TEAD interaction and pharmaceutical composition comprising same
JPH0249307B2 (en)
JPH0227989B2 (en)
AU2001285449A1 (en) Quinazoline derivatives as kinase inhibitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees