JP4246441B2 - Titanium boride-based sintered body, method for producing the same, and liner using the same - Google Patents

Titanium boride-based sintered body, method for producing the same, and liner using the same Download PDF

Info

Publication number
JP4246441B2
JP4246441B2 JP2002089094A JP2002089094A JP4246441B2 JP 4246441 B2 JP4246441 B2 JP 4246441B2 JP 2002089094 A JP2002089094 A JP 2002089094A JP 2002089094 A JP2002089094 A JP 2002089094A JP 4246441 B2 JP4246441 B2 JP 4246441B2
Authority
JP
Japan
Prior art keywords
sintered body
titanium boride
mass
liner
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002089094A
Other languages
Japanese (ja)
Other versions
JP2003286083A (en
Inventor
重治 松林
哲郎 野瀬
泰司 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002089094A priority Critical patent/JP4246441B2/en
Priority to AU2003220870A priority patent/AU2003220870A1/en
Priority to PCT/JP2003/003890 priority patent/WO2003080536A1/en
Publication of JP2003286083A publication Critical patent/JP2003286083A/en
Application granted granted Critical
Publication of JP4246441B2 publication Critical patent/JP4246441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホウ化チタン系焼結体及びその製造方法、並びにこれを用いたライナーに関するものである。
【0002】
【従来の技術】
通常、鉄鉱石、石灰、コークス等の高炉装入物を炉中心部に分配するために用いられる各種部材としては、旋回シュート、ムーバブルアーマー、鉱石受け金物などが使用される。しかし、これらの各種部材は装入物の落下による衝撃や接触後の摺動による摩耗から保護するためのライナーが該部材の表層部に埋め込まれた構造で構成されている。該高炉用部材に使用されるライナーは、高Cr鋼や高Cr鋼+超硬(WC)粒子の鋳ぐるみ材で製造されたものが使用されている(実開平7-33964号公報、特開平11-131114号公報)が、装入物の物性、落下速度、塊の大きさ等に依存する衝突により、その摩耗が激しく、特に装入物の接触・衝突により該部材の表層部ライナーが激しく摩耗するため、その寿命は最長でも1年と言われ、短い周期での該高炉用部材のライナー部の交換あるいは補修を行うことが必要で、そのために維持・整備費の高騰を招いている。また、該部材は高炉内部にあるため、常に200〜400℃近傍の温度に晒されていることからも、耐用寿命を縮めている大きな原因でもある。
【0003】
また、該高炉用部材のライナーの耐用寿命を向上させる方法として、高Cr鋼または超硬(WC)より硬質で耐摩耗性の良いサイアロンのようなファインセラミックス部材チップをライナー表面に貼り付ける方法も提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の方法は何れもライナー本体に接着剤を介して貼り付けるため、200〜400℃近傍の温度に晒される環境にあっては、これに耐えうる接着剤がなく短期間に剥れ、使用に耐えないという状況にあり、耐摩耗性および耐用寿命を向上する材料を組み込んだ高炉用部材の開発が望まれていた。本発明は、鉄鉱石、石灰、コークス等の高炉装入物を高炉内部に分配する際に用いられる該部材の表層部に配されるライナーの耐摩耗性および耐用寿命を向上する新規なホウ化チタン系焼結体及びその製造方法、並びにこれを用いたライナーを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、上記問題点を解決するために、種々のセラミックス焼結体の特性や接合するセラミックス焼結体と鋼材との組合せや接合方法を鋭意検討した結果、特定のセラミックスとこれを接合する鋼材を用いた場合に、高炉内部で用いられる該部材として優れた特性を有する焼結体ならびに接合する鋼材、接合方法が得られることを見出し、本発明を完成させるに至った。
【0006】
即ち、本発明は、
(1) 炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がホウ化チタン、及び不可避的不純物からなるホウ化チタン系焼結体、
(2) 前記ホウ化チタン系焼結体が、98%以上の理論密度比で、ビッカース硬度2.9×104 MPa以上及び破壊靭性値5MPa・m1/2 以上の高硬度・高靭性である請求項1記載のホウ化チタン系焼結体、
(3) 炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がTi-Zr-B固溶体及び/又はTi-Hf-B固溶体及び不可避的不純物からなるホウ化チタン系焼結体、
(4) 前記ホウ化チタン系焼結体が、98%以上の理論密度比で、ビッカース硬度3.2×104 MPa以上及び破壊靭性値6MPa・m1/2 以上の高硬度・高靭性である請求項3記載のホウ化チタン系焼結体、
(5) 炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がホウ化チタン及び不可避的不純物からなる混合粉末を、1.3×10-2 Pa以下の高真空下またはアルゴン雰囲気下で、1900〜2200℃の温度にて4時間以上焼結するホウ化チタン系焼結体の製造方法、
(6) さらに、アルゴン雰囲気下、100〜200MPaで、1850〜2150℃の温度にて2時間以上熱間静水圧加圧処理する請求項5記載のホウ化チタン系焼結体の製造方法、
(7) 炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がTi-Zr-B固溶体及び/又はTi-Hf-B固溶体及び不可避的不純物からなる混合粉末を、1.3×10-2 Pa以下の高真空下またはアルゴン雰囲気下で、1900〜2200℃の温度にて4時間以上焼結するホウ化チタン系焼結体の製造方法、
(8) さらに、アルゴン雰囲気下、100〜200MPaで、1850〜2150℃の温度にて2時間以上熱間静水圧加圧処理する請求項7記載のホウ化チタン系焼結体の製造方法、
(9) 前記炭化珪素焼結体の破砕粉が、混合容器若しくは混合メディア、又は混合容器と混合メディアの両方から混入させたものであることを特徴とする請求項5又は7記載のホウ化チタン系焼結体の製造方法、
(10) 室温から800℃の平均熱膨張係数が5×10-6〜8×10-6/Kである鋼材に、請求項1〜4のいずれかに記載のホウ化チタン系焼結体を接合してなるライナー、
(11) 前記接合が、活性金属ろう付けである請求項10記載のライナー、
(12) 前記接合が、焼き嵌め又は冷やし嵌めである請求項10記載のライナー、
(13) 前記接合が、ボルト締め又はクランプである請求項10記載のライナー、
(14) 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなる高炉用部材、
(15) 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなる旋回シュート、
(16) 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなるムーバブルアーマー、
(17) 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなる鉱石受け金物、
である。
【0007】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
【0008】
本発明者等は、鉄鉱石、石灰、コークス等の高炉装入物を高炉内部に分配する際に用いられる各種部材の表層部に配されるライナーなどについて、その損耗状況を鋭意解析した結果、装入物が塊状で落下衝突する場合、硬度に劣る材料では、接触する表面層が容易に摩耗および欠損し、消耗していくことを見出した。この摩耗と欠損は、該高炉用部材の表層部に配されるライナーの材質の硬度ならびに破壊靭性が低い場合に特に顕著に認められた。したがって、該高炉用部材の表層部に配されるライナーを長期間安定して使用するためには、耐摩耗性と耐欠損性を同時に向上させることが必要で、そのためには硬度が高く、高靭性な材質を用いることが必要不可欠である。
【0009】
そこで、これらの特性を同時に向上させるために、各種セラミックス焼結体を作製し、その特性を評価した。結果としても、硬度が高くかつ耐欠損性に優れたセラミックス焼結体が本発明の技術分野において優れた特性を有することを見出した。特に、炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がホウ化チタン及び不可避的不純物からなる混合粉末を焼結したホウ化チタン焼結体、または、炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がホウ化チタンとホウ化ハフニウムの固溶体および/または残部ホウ化チタンとホウ化ジルコニウムの固溶体及び不可避的不純物からなる混合粉末を焼結した焼結体は、従来の高Cr鋼やサイアロン製ライナーに比べて、耐摩耗性を高めつつ、かつチッピングや割れ等の耐欠損性を著しく改善できる。
【0010】
ところで、ホウ化チタン粉末は、粉砕に要する費用が高額で、かつ平均2μm以下の微粉末では表面酸化層の影響が大きく、焼結性や焼結体の物性を著しく低下させるため、成形ならびに焼結工程の直前に粉砕ならびに整粒工程が必要となる。その際に炭化珪素の混合容器と混合用メディアを用い、この際に混入する0.01〜0.2μmの微細な炭化珪素焼結体破砕粉を0.1〜5質量%と焼結性の向上を目的として添加する炭化ホウ素粉末を焼結前に均一分散させることが有効である。この炭化珪素の微細な破砕粉は、硬質かつ耐酸化性のある高融点化合物であり、焼結後にホウ化チタン焼結体中に分散粒子として残留し、焼結体全体の硬度や破壊靭性値を向上させる作用を有する。ホウ化チタンと炭化珪素との熱膨張差やヤング率の相違等により、非常に微細な状態で分散した炭化珪素の近傍に残留応力が発生し、焼結体の破壊に際して破壊エネルギーを分散させる作用を有し、靭性を著しく向上させ、かつ耐摩耗性も向上させる作用もある。靭性の向上は、耐欠損性に効果があり、セラミックスの標準的な靭性の比較評価が可能なSEPB法による破壊靭性値で5MPa・m1/2以上の高靭性を有することが好適である。また、耐摩耗性の指標であるビッカース硬度は、ダイヤモンド圧子を用い、押込み荷重98Nで2.9×104MPa以上で摩耗が抑制される。
【0011】
炭化珪素焼結体から混合時に混入する微細な破砕粉は0.01〜0.2μmが好ましく、その添加範囲は0.1〜4質量%が好ましく、より好ましくは2〜4質量%である。添加量の制御法としては混合メディアである炭化珪素ボール径、ミル回転数や混合時間によって、再現性よく行うことが可能である。その他、製造工程で不可避的に混入するFe、Al、Ni、Cr等の金属元素や酸素や炭素等の軽元素などの不純物は2質量%未満であることが望ましい。
【0012】
必要に応じ、ホウ化チタン(TiB2)にホウ化ジルコニウム(ZrB2)やホウ化ハフニウム(HfB2)を固溶させたTi-Zr-B固溶体やTi-Hf-B固溶体は、TiB2単体に比べ、硬度や破壊靭性値が上昇する。しかしながら、これらの固溶体をTi1-XZrXB2またはTi1-XHfXB2と表わした場合のxが0.02より小さい場合には、Zr、HfのTiB2への固溶効果が乏しくなり、十分な高硬度化が図れない恐れがあり、一方、xが0.25を越える場合には、分散している微細な炭化珪素破砕粉との熱膨張係数が掛け離れてしまうため、焼結時に緻密化し難くなり、相対密度の低い焼結体となり易く、また破壊靭性も低下する恐れが高くなる。靭性の向上は、耐欠損性に効果があり、セラミックスの標準的な靭性の比較評価が可能なSEPB法による破壊靭性値で6MPa・m1/2以上の高靭性を有することが好適である。また、耐摩耗性の指標であるビッカース硬度は、ダイヤモンド圧子を用い、押込み荷重98Nで3.2×104MPa以上で摩耗が抑制される。
【0013】
また、前記固溶体粒子の平均粒径は1〜10μmであることが望ましい。より好ましくは3〜5μmである。平均粒径が1μmより小さいと、靭性への寄与が得られ難く、一方、10μmより大きいと、硬さや破壊靭性値の低下を招く。前記Ti-Zr-B固溶体粒子及び/又はTi-Hf-B固溶体粒子の体積分率は20〜70%であることが望ましい。体積分率が20%より少ないと、硬さ、靭性の向上に対する寄与が得られ難く、一方、70%を越えると、粒子分散による残留応力が過大となり、破壊靭性の低下と共に耐欠損性が低下する。
【0014】
さらに、前記炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がホウ化チタン及び不可避的不純物からなる混合粉末を焼結したホウ化チタン焼結体、及び、前記炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がTi-Zr-B固溶体及び/又はTi-Hf-B固溶体及び不可避的不純物からなる焼結体の相対密度は、理論密度に対して98%以上であることが望ましい。相対密度が98%未満では、微細な炭化珪素破砕粉の分散による焼結体への残留応力の付与が不充分になり、破壊靭性の向上効果が見られない。
【0015】
本発明のホウ化チタン系焼結体の製造方法は、特に限定するものではなく、ホウ化チタン粉末又はTi-Zr-B固溶体粒子及び/又はTi-Hf-B固溶体粒子を粉砕する際に混合容器や混合メディアから混入する微細な炭化珪素粉と焼結助剤である炭化ホウ素を所定量添加、混合した後、焼結したものを成形加工することでも製造できる。
【0016】
ここで、Ti-Zr-B固溶体粒子及び/又はTi-Hf-B固溶体粒子は、複合ホウ化物粒子として添加する以外に、例えば、TiB2 にZrB2 、ZrC、HfB2 、HfCの所定量を混合し、焼結時の反応により複合ホウ化物を形成しても良い。また、ホウ化チタン又はTi-Zr-B固溶体粒子及び/又はTi-Hf-B固溶体粒子の緻密化を促進するために、焼結助剤である炭化ホウ素を添加することが望ましい。焼結助剤としては、炭化ホウ素、金属ホウ素とカーボンブラックの混合粉体や有機質炭素等の側鎖にホウ素を有する各種前駆体材料、等を用いることができる。焼結助剤である炭化ホウ素の添加量は、ホウ化チタン粉末又はTi-Zr-B固溶体粒子及び/又はTi-Hf-B固溶体粒子の純度や粒径によって変動させる必要があるが、炭化ホウ素0.1〜2.0質量が好ましい。
【0017】
焼結方法としては、特に限定するものではなく、例えば真空焼結法、無加圧焼結法、ガス圧焼結法、熱間静水圧プレス焼結法、ホットプレス焼結法、等の各種焼結法を用いることができ、さらにこれらの焼結法を複数組み合せても良い。中でも、1.3×10-2Pa以下の高真空下、1900〜2200℃の温度にて、4時間以上保持を行うと緻密な焼結体が得られ易い。十分な緻密化を図るために、アルゴン雰囲気下、100〜200MPaの圧力で、1850〜2150℃にて、2時間以上保持の熱間静水圧加圧(HIP)処理する二次焼結を行うことが好ましい。一次の焼結条件としては、1900℃未満では、緻密な焼結体が得られず、十分な硬さを付与することが困難となり、かつ高靭性の焼結体とすることができない。一方、2200℃を越える高温では、破砕粉として混入した炭化珪素が昇華、分解するため、焼結体が得られない。また、保持時間が4時間未満では、焼結反応による緻密化が十分には起こらないため、目的とする焼結体の特性が得られない。二次の焼結条件としては、1850℃未満では、緻密化の効果が十分に得られない。一方、2150℃を越える高温では、マトリックス粒子が異常成長するため、焼結体の特性が低下する恐れがある。また、保持時間が2時間未満では、緻密化が十分に進行しない。また、一次焼結時の最高温度と二次焼結の最高温度は50℃の差を設けて、二次焼結時を低くすることが好ましい。異常粒成長が起こらず、比較的短時間の処理により緻密化が促進されるので、焼結工程の歩留りが向上し、HIP装置への負担も軽減される。
【0018】
該セラミックス材と接合される鋼材は、活性金属ろう付けを行う場合も、200〜250℃の温度差を設定する焼き嵌め又は冷やし嵌めを行う場合も、ボルト締め又はクランプ固定を行う場合も、ライナーとして使用される温度範囲で、熱膨張係数の近似したものが好ましい。より詳しくは、室温から800℃までの平均熱膨張係数が5×10-6〜8×10-6/Kを有する鋼材として29Ni-17Co-Fe(Kovar)鋼等に、固相点800℃以下の金属ろうを用いてろう付け接合するか、鋼材に凹状の窪みを設け焼き嵌め接合する方法を用いることが可能である。ろう付け接合を行う場合に、セラミックス材の肉厚が薄いほど、接合に伴う圧縮応力又は引張応力による破損が起こり難い。しかし、耐摩耗部材としての耐用寿命を考えれば、肉厚は厚い方が好ましく、厚さの範囲としては5〜30mmが実用的であり、より好ましくは10〜20mmの範囲である。
【0019】
高炉用各種部材のライナーとして用いる場合の焼結体サイズは、縦100mm以下×横100mm以下×厚さ30mm以下の平板形状が好ましい。このサイズは、塊状挿入物が落下衝突する時に小面積に集中でき、セラミックス片の焼成歩留りや品質安定に好条件となり、接合時の大量処理に伴う製造コストの低減に対し、好適となる。また、該セラミックス製板材の間隔を極力狭めることにより、セラミックス端部への負荷を軽減し、さらに損耗時の交換や補修作業を簡便にできる作業性を鑑みて、該接合材を少なくとも2枚以上隣り合わせて、これらを楔やネジやクランプやスリット挿入等の機械止めにより、表層から数えて第三層目に位置する比較的安価な母材(SS400等)に固定したユニットを該高炉用部材の表層部に配置することが好適である。本発明の焼結体を用いれば、ホッパーやベルから供給落下される鉄鉱石やコークスを高炉内部に分配する旋回シュート、ベルロッドウエアリング、ムーバブルアーマーライナー、鉱石受け金物に加え、焼結ラインのクラッシングガイドに用いられるストーンボックス、コークス炉バケットライナー等の耐摩耗性を高めることが可能になる。長寿命化による資材費の圧縮に加え、直接摺動する部材の他にも背面に位置する部材の破損を防ぎ、安定操業や高炉自体の炉命延長にも効果を発現することが期待される。コスト面でもセラミックス材の肉厚を30mm以下に設定すれば単価が下がり、資材費の軽減も可能になる。加えて、該接合材をライナーに被覆する際には最も負荷が大きく摩耗が激しい部位にのみ使用しても構わない。
【0020】
【実施例】
次に、本発明の実施例を比較例と共に説明する。
【0021】
(実施例1〜5)
ホウ化チタン(TiB2)粉末(平均粒径4.2μm、純度98%)、ホウ化ジルコニウム(ZrB2)粉末(平均粒径5μm、純度98%)、炭化ジルコニウム(ZrC)粉末(平均粒径4μm、純度98%)、ホウ化ハフニウム(HfB2) 粉末(平均粒径6μm、純度98%)、炭化ハフニウム(HfC)粉末(平均粒径3.5μm、純度98%)、及び、炭化ホウ素(B4C)粉末(平均粒径0.8μm)を第1表に示す所定量(質量%)添加し、分散媒としてエタノールを用い、炭化珪素セラミックスを内貼りしたボールミルで48時間混練した。エタノールの添加量は、投入したセラミックス粉末100gに対し70gの割合とした。
【0022】
次いで、得られた混合粉末を成形後、焼結した。成形条件としては冷間静水圧による加圧150MPaとし、縦130mm×横130mm×厚さ25mmを成形した。これを素地加工し、縦120mm×横120mm×厚さ20mmの平板形状の成形体を得た。焼結条件としては、1.0×10-3Pa中にて、第1表中に示す温度で8時間保持の真空焼結後、二次焼結として同じく第1表中に示す温度、高圧Arガス雰囲気中にて3時間保持の熱間静水圧加圧(HIP)処理を行った。得られた焼結体から、縦100mm×横100mm×厚さ15mmの平板形状を研削加工し、製鉄用高炉設備のムーバブルアーマーの表層部にライナーとして組み込み、高炉装入物の落下・衝突が定常的に起こる実使用環境下での耐久試験に供した。セラミックス材の固定方法としてはAg-Cu-Ti系の活性金属ろう剤を用いた真空ろう付け(真空度2.7×10-3Pa、850℃×15分保持)を行った。
【0023】
また、得られた焼結体から所定形状の試験片を切り出し、機械的特性を評価した。硬さは、押込荷重98Nにてビッカース硬さとして測定した。破壊靭性については、JIS R 1607のSEPB法により室温にて破壊靭性値KICを測定した。焼結体密度は、アルキメデス法により相対密度として測定した。また、X線回折法を用いて、混合前の原料粉末段階でのTiB2、ZrC、ZrB2、HfC及びHfB2の各粉末のX線回折ピークをそれぞれ測定し、混合・成形し焼結後の焼結体のX線回折ピークと照合しTiB2中にZrもしくはHfが固溶していることを確認した。
【0024】
得られた各焼結体の諸特性を焼結体密度と共に第2表に示す。オンライン耐久試験としては、200〜400℃、通過トン数としては鉄鉱石が10万トン/月、コークスが2万トン/月の条件にて行った。6ヶ月間の実機搭載後、各供試ライナー材に発生した摩耗痕跡の深さhを投影型顕微鏡にて測定した。また、摩耗痕跡周囲の損傷有無、チッピング及びヒビ割れの深さを蛍光探傷法及び断面研磨面の光学顕微鏡観察により評価した。
【0025】
(比較例6〜10)
比較例67は、それぞれ高Cr鋼製ライナーの場合(比較例7)、高Cr鋼に超硬(WC)粒子を鋳ぐるんだライナーを用いた場合(比較例7)の各比較例である。比較例8は、通常のサイアロンセラミックスを用いた場合、比較例9は、通常の炭化珪素セラミックス単体、比較例10は、通常のホウ化チタン単体の焼結体である。これらを併せて第1表及び第2表の比較例の欄に示す。また、これら比較例も実施例1〜5と同様の条件で耐久試験を行った。比較例の89のセラミックスは、実施例の固定方法と同じくAg-Cu-Ti系の活性金属ろう剤を用いた真空ろう付け(真空度2.7×10-3 Pa、850℃×15分保持)を行った。
【0026】
【表1】

Figure 0004246441
【0027】
【表2】
Figure 0004246441
【0028】
第2表に示すように、本発明の実施例1〜5によるものは、摩耗痕跡の最大深さが0.3mm以下と比較例に比べ格段に少なく、かつ摩耗痕跡周囲にはヒビ割れやチッピング等の欠損が何れの場合も認められず、耐摩耗性、耐欠損性共に優れるが、比較例6〜10のライナー材は、試験期間中に何れも使用不能になり、その時点までの摩耗痕跡の最大深さが2.5〜15.5mmと1〜2桁以上大きく、その上、ヒビ等の欠損も比較例8〜10に示したセラミックス材では鋼材(比較例67)より大きなものが発生する傾向があり、耐摩耗性、耐欠損性が不充分であることが確認された。本発明の何れの材質も実使用環境下で好適な結果を得ることができた。
【0029】
ここでは、活性金属ろう付けライナーを例示したが、焼き嵌め、冷やし嵌め、ボルト締め、クランプ固定、抜けを防止するためのテーパ加工した鋼棒をセラミックスに通して溶接固定するなどの方法を用いても摩耗痕や長期実使用環境下での試験結果は変化が認められず、本開発材が良好な耐摩耗性を示した。さらに、試験環境を異にする、その他の高炉部材、焼結ライン部材、コークス炉などの実使用環境下での耐久試験を行ったが、本開発材が良好であることには変化が認められなかった。
【0030】
【発明の効果】
以上述べたように、本発明の炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%及び残部がホウ化チタン及び不可避的不純物からなる混合粉末を焼結したホウ化チタン系焼結体、又は、炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%及び残部がホウ化チタンとホウ化ハフニウムの固溶体及び/又はホウ化チタンとホウ化ジルコニウムの固溶体及び不可避的不純物からなる混合粉末を焼結したホウ化チタン系焼結体は、硬度や破壊靭性値に代表される機械的安定性に優れ、長期耐久性を有する。
【0031】
高炉内で塊状装入物の落下衝突による負荷の大きな表層部に本発明のセラミックス製ライナーを使用すれば、鉄鋼製造における鉄鉱石、石灰、コークス等の高炉装入物を高炉内部に分配する際に用いられる各種部材の長寿命化による資材費圧縮と安定操業による生産性向上に伴う製造コスト低減に寄与すること大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium boride-based sintered body, a method for producing the same, and a liner using the same.
[0002]
[Prior art]
Usually, as various members used for distributing blast furnace charges such as iron ore, lime and coke to the center of the furnace, a swivel chute, a movable armor, an ore receiving metal, and the like are used. However, these various members have a structure in which a liner for protecting against impact caused by dropping of a charged material and wear caused by sliding after contact is embedded in a surface layer portion of the member. The liner used for the blast furnace member is made of cast material of high Cr steel or high Cr steel + carbide (WC) particles (Japanese Utility Model Publication No. 7-33964, Japanese Patent Laid-Open No. No. 11-131114), but due to the collision depending on the physical properties of the charge, the falling speed, the size of the lump, etc., the wear is severe, especially the surface layer liner of the member is severe due to the contact and collision of the charge. Since it is worn out, its lifetime is said to be one year at the longest, and it is necessary to replace or repair the liner portion of the blast furnace member in a short cycle, which causes an increase in maintenance and maintenance costs. Further, since the member is inside the blast furnace, it is always exposed to a temperature in the vicinity of 200 to 400 ° C., which is a major cause of shortening the service life.
[0003]
In addition, as a method of improving the useful life of the liner of the blast furnace member, there is also a method of attaching a fine ceramic member chip such as sialon which is harder and more wear resistant than high Cr steel or carbide (WC) to the liner surface. Proposed.
[0004]
[Problems to be solved by the invention]
However, since all the above methods are attached to the liner body via an adhesive, in an environment exposed to a temperature near 200 to 400 ° C., there is no adhesive that can withstand this, and it peels off in a short period of time. There has been a demand for the development of a blast furnace member that incorporates a material that improves wear resistance and service life due to the fact that it cannot withstand use. The present invention provides a new boride which improves the wear resistance and the service life of a liner disposed on the surface layer of the member used when distributing blast furnace charges such as iron ore, lime and coke into the blast furnace. An object is to provide a titanium-based sintered body, a method for producing the same, and a liner using the same.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have intensively studied the characteristics of various ceramic sintered bodies, the combination of ceramic sintered bodies to be bonded and steel materials, and the bonding method. When steel materials to be joined are used, it has been found that a sintered body having excellent characteristics as the member used in the blast furnace, steel materials to be joined, and a joining method can be obtained, and the present invention has been completed.
[0006]
That is, the present invention
(1) 0.1 to 4 % by mass of pulverized powder of a silicon carbide sintered body, 0.1 to 2.0% by mass of a boron carbide compound, the remainder being titanium boride, and a titanium boride-based sintered body consisting of inevitable impurities,
(2) The titanium boride-based sintered body has high hardness and high toughness with a theoretical density ratio of 98% or more, a Vickers hardness of 2.9 × 10 4 MPa or more, and a fracture toughness value of 5 MPa · m 1/2 or more. The titanium boride-based sintered body according to Item 1,
(3) 0.1 to 4 % by mass of pulverized powder of silicon carbide sintered body, 0.1 to 2.0% by mass of boron carbide compound, the remainder from Ti-Zr-B solid solution and / or Ti-Hf-B solid solution and inevitable impurities A titanium boride-based sintered body,
(4) The titanium boride-based sintered body has high hardness and high toughness with a theoretical density ratio of 98% or more, a Vickers hardness of 3.2 × 10 4 MPa or more, and a fracture toughness value of 6 MPa · m 1/2 or more. Item 3. The boride-based sintered body according to item 3,
(5) 0.1 to 4 % by mass of pulverized powder of silicon carbide sintered body, 0.1 to 2.0% by mass of boron carbide compound, and a mixed powder consisting of titanium boride and inevitable impurities, 1.3 × 10 −2 Pa or less A method for producing a titanium boride-based sintered body that is sintered at a temperature of 1900 to 2200 ° C. for 4 hours or more in a high vacuum or argon atmosphere of
(6) The method for producing a titanium boride-based sintered body according to claim 5, further comprising a hot isostatic pressing treatment at a temperature of 1850 to 2150 ° C. for 2 hours or more at 100 to 200 MPa in an argon atmosphere,
(7) 0.1 to 4% by mass of crushed powder of the silicon carbide sintered body, a boron carbide compound 0.1-2.0 wt%, the balance is Ti-Zr-B solid solution and / or Ti-Hf-B solid solution and unavoidable impurities A method for producing a titanium boride-based sintered body, in which the mixed powder is sintered under a high vacuum of 1.3 × 10 −2 Pa or less or in an argon atmosphere at a temperature of 1900 to 2200 ° C. for 4 hours or more,
(8) The method for producing a titanium boride-based sintered body according to claim 7, which is further subjected to hot isostatic pressing at a temperature of 1850 to 2150 ° C. for 2 hours or more under an argon atmosphere at 100 to 200 MPa.
(9) The titanium boride according to claim 5 or 7, wherein the pulverized powder of the silicon carbide sintered body is mixed from a mixing container, a mixing medium, or both of the mixing container and the mixing medium. Manufacturing method of sintered body,
(10) The titanium boride-based sintered body according to any one of claims 1 to 4, to a steel material having an average thermal expansion coefficient of 5 × 10 −6 to 8 × 10 −6 / K from room temperature to 800 ° C. Bonded liner,
(11) The liner of claim 10 , wherein the joint is active metal brazing,
(12) The liner according to claim 10 , wherein the joining is shrink fitting or cold fitting,
(13) The liner according to claim 10 , wherein the joining is bolting or clamping,
(14) A blast furnace member formed by coating a part or all of the liner according to any one of claims 10 to 13 ,
(15) With the liner according to any one of claims 10 to 13 , a turning chute formed by covering a part or all of the liner,
(16) A movable armor formed by coating a part or all of the liner according to any one of claims 10 to 13 ,
(17) An ore receiving metal that is partially or wholly covered with the liner according to any one of claims 10 to 13 ,
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0008]
As a result of earnest analysis of the wear situation of the liners and the like disposed on the surface layer of various members used when distributing blast furnace charges such as iron ore, lime, and coke to the inside of the blast furnace, the present inventors, It has been found that when the charge collides in the form of a lump, the surface layer in contact with the material having inferior hardness easily wears and breaks down and wears out. This wear and chipping were particularly noticeable when the hardness and fracture toughness of the liner material disposed on the surface layer of the blast furnace member were low. Therefore, in order to use the liner disposed on the surface layer portion of the blast furnace member stably for a long period of time, it is necessary to simultaneously improve the wear resistance and fracture resistance. It is essential to use a tough material.
[0009]
Therefore, in order to improve these characteristics at the same time, various ceramic sintered bodies were produced and the characteristics were evaluated. As a result, it was found that a sintered ceramic body having high hardness and excellent fracture resistance has excellent characteristics in the technical field of the present invention. In particular, a titanium boride sintered body obtained by sintering a mixed powder composed of 0.1 to 4 % by mass of a pulverized powder of a silicon carbide sintered body, 0.1 to 2.0% by mass of a boron carbide compound, and the balance of titanium boride and inevitable impurities. Or 0.1 to 4 % by mass of pulverized powder of silicon carbide sintered body, 0.1 to 2.0% by mass of boron carbide compound, the remainder being a solid solution of titanium boride and hafnium boride and / or the remainder of titanium boride and zirconium boride Compared with conventional high-Cr steel and sialon liners, the sintered body obtained by sintering a mixed powder consisting of a solid solution and unavoidable impurities has improved wear resistance and significantly improved chipping and cracking resistance. Can improve.
[0010]
By the way, titanium boride powder has a high cost for pulverization, and fine powder with an average of 2 μm or less has a large effect of the surface oxidation layer, which significantly reduces the sinterability and physical properties of the sintered body. A pulverization and sizing step is required immediately before the setting step. At that time, using a silicon carbide mixing container and mixing media, 0.01 to 0.2 μm fine silicon carbide sintered powder mixed at this time was added to improve the sinterability by 0.1 to 5% by mass. It is effective to uniformly disperse the boron carbide powder to be sintered before sintering. This fine pulverized powder of silicon carbide is a hard and oxidation-resistant high melting point compound that remains as dispersed particles in the titanium boride sintered body after sintering, and the hardness and fracture toughness of the entire sintered body It has the effect | action which improves. Residual stress is generated in the vicinity of silicon carbide dispersed in a very fine state due to differences in thermal expansion and Young's modulus between titanium boride and silicon carbide. Has the effect of significantly improving toughness and improving wear resistance. The improvement of toughness has an effect on fracture resistance, and it is preferable that the fracture toughness value by the SEPB method, which allows comparative evaluation of standard toughness of ceramics, to be high toughness of 5 MPa · m 1/2 or more. In addition, the Vickers hardness, which is an index of wear resistance, uses a diamond indenter, and wear is suppressed at 2.9 × 10 4 MPa or more at an indentation load of 98 N.
[0011]
The fine crushed powder mixed from the silicon carbide sintered body is preferably 0.01 to 0.2 μm, and the addition range is preferably 0.1 to 4 % by mass, more preferably 2 to 4% by mass. The addition amount can be controlled with good reproducibility according to the silicon carbide ball diameter, the mill rotation speed, and the mixing time, which are mixed media. In addition, impurities such as metal elements such as Fe, Al, Ni, and Cr and light elements such as oxygen and carbon that are inevitably mixed in the manufacturing process are desirably less than 2% by mass.
[0012]
If necessary, titanium boride (TiB 2) the zirconium boride (ZrB 2) or Ti-ZrB solid solution or Ti-HfB solid solution in which is dissolved a hafnium boride (HfB 2) is, TiB 2 alone The hardness and fracture toughness value increase compared to. However, when these solid solutions are expressed as Ti 1-X Zr X B 2 or Ti 1-X Hf X B 2 and x is smaller than 0.02, the effect of solid solution of Zr and Hf on TiB 2 is poor. On the other hand, if x exceeds 0.25, the coefficient of thermal expansion of the dispersed fine silicon carbide crushed powder will be too far away, so that it will become dense during sintering. It becomes difficult to form a sintered body with a low relative density, and there is a high possibility that the fracture toughness is lowered. The improvement of toughness has an effect on fracture resistance, and it is preferable that the fracture toughness value by the SEPB method, which enables comparative evaluation of standard toughness of ceramics, to be high toughness of 6 MPa · m 1/2 or more. In addition, the Vickers hardness, which is an index of wear resistance, uses a diamond indenter, and wear is suppressed to 3.2 × 10 4 MPa or more at an indentation load of 98 N.
[0013]
The average particle size of the solid solution particles is preferably 1 to 10 μm. More preferably, it is 3-5 micrometers. If the average particle size is less than 1 μm, it is difficult to obtain a contribution to toughness, while if it is greater than 10 μm, the hardness and fracture toughness values are reduced. The volume fraction of the Ti-Zr-B solid solution particles and / or Ti-Hf-B solid solution particles is preferably 20 to 70%. If the volume fraction is less than 20%, it will be difficult to contribute to the improvement of hardness and toughness.On the other hand, if it exceeds 70%, the residual stress due to particle dispersion becomes excessive, resulting in a decrease in fracture toughness and a decrease in fracture resistance. To do.
[0014]
Further, titanium boride sintering in which the pulverized powder of the silicon carbide sintered body is 0.1 to 4 % by mass, the boron carbide compound is 0.1 to 2.0% by mass, and the balance is composed of titanium boride and inevitable impurities. body, and, wherein from 0.1 to 4% by weight of crushed powder of the silicon carbide sintered body, a boron carbide compound 0.1-2.0 wt%, the balance being Ti-Zr-B solid solution and / or Ti-Hf-B solid solution and unavoidable The relative density of the sintered body made of impurities is desirably 98% or more with respect to the theoretical density. If the relative density is less than 98%, the residual stress is not sufficiently applied to the sintered body due to the dispersion of fine silicon carbide crushed powder, and the effect of improving fracture toughness is not observed.
[0015]
The production method of the titanium boride-based sintered body of the present invention is not particularly limited, and is mixed when pulverizing titanium boride powder or Ti-Zr-B solid solution particles and / or Ti-Hf-B solid solution particles. It can also be manufactured by adding and mixing a predetermined amount of fine silicon carbide powder mixed from a container or mixed media and boron carbide as a sintering aid, and then molding the sintered product.
[0016]
Here, Ti-Zr-B solid solution particles and / or Ti-Hf-B solid solution particles are added as composite boride particles, for example, a predetermined amount of ZrB 2 , ZrC, HfB 2 , HfC is added to TiB 2. A composite boride may be formed by mixing and reaction during sintering. Further, in order to promote densification of titanium boride or Ti—Zr—B solid solution particles and / or Ti—Hf—B solid solution particles, it is desirable to add boron carbide as a sintering aid. As the sintering aid, boron carbide, mixed powder of metal boron and carbon black, various precursor materials having boron in the side chain such as organic carbon, and the like can be used. The addition amount of boron carbide is a sintered aid, it is necessary to vary the purity and particle diameter of the titanium boride powder or Ti-Zr-B solid solution particles and / or Ti-Hf-B solid solution particles, carbonization Boron 0.1-2.0 mass % is preferable.
[0017]
The sintering method is not particularly limited. For example, various methods such as vacuum sintering method, pressureless sintering method, gas pressure sintering method, hot isostatic pressing method, hot press sintering method, etc. Sintering methods can be used, and a plurality of these sintering methods may be combined. In particular, a dense sintered body can be easily obtained by holding at a temperature of 1900-2200 ° C. for 4 hours or more under a high vacuum of 1.3 × 10 −2 Pa or less. To achieve sufficient densification, perform secondary sintering by hot isostatic pressing (HIP) for 2 hours or more at 1850-2150 ° C under argon pressure at 100-200MPa. Is preferred. As the primary sintering condition, if it is less than 1900 ° C., a dense sintered body cannot be obtained, it becomes difficult to impart sufficient hardness, and a high toughness sintered body cannot be obtained. On the other hand, at a high temperature exceeding 2200 ° C., silicon carbide mixed as crushed powder is sublimated and decomposed, so that a sintered body cannot be obtained. In addition, if the holding time is less than 4 hours, densification due to the sintering reaction does not occur sufficiently, so that the desired characteristics of the sintered body cannot be obtained. If the secondary sintering condition is less than 1850 ° C., the effect of densification cannot be sufficiently obtained. On the other hand, when the temperature exceeds 2150 ° C., the matrix particles grow abnormally, which may deteriorate the characteristics of the sintered body. Further, if the holding time is less than 2 hours, the densification does not proceed sufficiently. In addition, it is preferable that the maximum temperature during the primary sintering and the maximum temperature during the secondary sintering be set at a difference of 50 ° C. to reduce the time during the secondary sintering. Abnormal grain growth does not occur and densification is promoted by a relatively short processing time, so that the yield of the sintering process is improved and the burden on the HIP apparatus is reduced.
[0018]
The steel material to be joined to the ceramic material can be used for active metal brazing, shrink fitting for setting a temperature difference of 200 to 250 ° C., bolt fastening or clamp fixing, liner In the temperature range to be used, those having an approximate thermal expansion coefficient are preferable. More specifically, 29Ni-17Co-Fe (Kovar) steel as a steel material having an average coefficient of thermal expansion from room temperature to 800 ° C. of 5 × 10 −6 to 8 × 10 −6 / K, a solid phase point of 800 ° C. or less It is possible to use a method of brazing using a metal brazing or a method of forming a concave depression in a steel material and performing shrink fitting. When performing brazed joining, the thinner the ceramic material is, the less likely it is to break due to compressive stress or tensile stress associated with joining. However, considering the service life as a wear-resistant member, it is preferable that the wall thickness is thick, and the thickness range is practically 5 to 30 mm, more preferably 10 to 20 mm.
[0019]
The size of the sintered body when used as a liner for various blast furnace members is preferably a flat plate shape having a length of 100 mm or less, a width of 100 mm or less, and a thickness of 30 mm or less. This size can be concentrated in a small area when the massive insert is dropped and collided, which is a favorable condition for the firing yield and quality stability of the ceramic pieces, and is suitable for reducing the manufacturing cost associated with mass processing during joining. In addition, by reducing the distance between the ceramic plate materials as much as possible, the load on the ceramic end is reduced, and in view of workability that makes it easy to replace or repair when worn out, at least two pieces of the bonding material are used. Next to each other, a unit in which these are fixed to a relatively inexpensive base material (SS400, etc.) located on the third layer counted from the surface layer by mechanical fastening such as wedges, screws, clamps, slits, etc. It is preferable to arrange in the surface layer part. If the sintered body of the present invention is used, in addition to the swiveling chute, bell rod wear ring, movable armor liner, ore receiving material that distributes iron ore and coke supplied and dropped from the hopper and bell to the inside of the blast furnace, It becomes possible to improve the wear resistance of stone boxes, coke oven bucket liners and the like used for crushing guides. In addition to reducing material costs due to longer life, it is expected to prevent damage to members located on the backside of members that slide directly, and to be effective in stable operation and extending the life of the blast furnace itself. . In terms of cost, if the thickness of the ceramic material is set to 30 mm or less, the unit price can be reduced and the material cost can be reduced. In addition, when the liner is coated with the bonding material, it may be used only in a portion where the load is the greatest and the wear is severe.
[0020]
【Example】
Next, examples of the present invention will be described together with comparative examples.
[0021]
(Examples 1 to 5 )
Titanium boride (TiB 2 ) powder (average particle size 4.2 μm, purity 98%), zirconium boride (ZrB 2 ) powder (average particle size 5 μm, purity 98%), zirconium carbide (ZrC) powder (average particle size 4 μm) , Purity 98%), hafnium boride (HfB 2 ) powder (average particle size 6 μm, purity 98%), hafnium carbide (HfC) powder (average particle size 3.5 μm, purity 98%), and boron carbide (B 4 C) Powder (average particle size 0.8 μm) was added in a predetermined amount (mass%) shown in Table 1, and ethanol was used as a dispersion medium, followed by kneading for 48 hours in a ball mill with silicon carbide ceramics attached thereto. The amount of ethanol added was 70 g with respect to 100 g of the ceramic powder charged.
[0022]
Next, the obtained mixed powder was molded and then sintered. The molding conditions were a pressure of 150 MPa by cold isostatic pressure, and a length of 130 mm × width of 130 mm × thickness of 25 mm was formed. This was processed into a flat plate-shaped molded body having a length of 120 mm × width of 120 mm × thickness of 20 mm. Sintering conditions were as follows: vacuum sintering at 1.0 × 10 −3 Pa at the temperature shown in Table 1 for 8 hours, followed by temperature and high pressure Ar gas as shown in Table 1 as secondary sintering Hot isostatic pressing (HIP) treatment was performed for 3 hours in the atmosphere. From the obtained sintered body, a flat plate shape of 100 mm long × 100 mm wide × 15 mm thick is ground and incorporated as a liner in the surface layer of the movable armor of the blast furnace equipment for steelmaking, and the falling and impact of the blast furnace charge is steady. It was subjected to an endurance test under the actual usage environment. The ceramic material was fixed by vacuum brazing (vacuum degree: 2.7 × 10 −3 Pa, holding at 850 ° C. × 15 minutes) using an Ag—Cu—Ti based active metal brazing agent.
[0023]
Moreover, the test piece of the predetermined shape was cut out from the obtained sintered compact, and mechanical characteristics were evaluated. The hardness was measured as Vickers hardness at an indentation load of 98N. For fracture toughness, the fracture toughness value K IC was measured at room temperature by the SEPB method of JIS R 1607. The sintered body density was measured as a relative density by the Archimedes method. Further, by using the X-ray diffraction method, TiB 2 in the raw material powder stage before mixing, ZrC, ZrB 2, HfC and HfB 2 of the X-ray diffraction peaks of the respective powders were measured, mixed and molded after sintering It was confirmed that Zr or Hf was dissolved in TiB 2 by collating with the X-ray diffraction peak of the sintered body.
[0024]
Table 2 shows various characteristics of the obtained sintered bodies together with the sintered body density. The online durability test was conducted at 200 to 400 ° C., and the passing tonnage was 100,000 tons / month for iron ore and 20,000 tons / month for coke. After mounting on the actual machine for 6 months, the depth h of the wear trace generated on each test liner material was measured with a projection microscope. In addition, the presence or absence of damage around the wear trace, the depth of chipping and cracks were evaluated by fluorescent flaw detection and observation of the cross-section polished surface with an optical microscope.
[0025]
(Comparative Examples 6 to 10 )
Comparative Examples 6 to 7 are each a comparative example in the case of a liner made of high Cr steel (Comparative Example 7) and a case in which a cemented carbide (WC) particle is used for high Cr steel (Comparative Example 7 ). It is. In Comparative Example 8 , when ordinary sialon ceramics are used, Comparative Example 9 is a sintered body of ordinary silicon carbide ceramics, and Comparative Example 10 is a sintered body of ordinary titanium boride alone. These are also shown in the comparative example column of Tables 1 and 2. These comparative examples were also subjected to an endurance test under the same conditions as in Examples 1-5 . The ceramics of Comparative Examples 8 to 9 were vacuum brazed using an Ag-Cu-Ti active metal brazing agent (vacuum degree: 2.7 × 10 −3 Pa, 850 ° C. × 15 minutes) as in the fixing method of the example. )
[0026]
[Table 1]
Figure 0004246441
[0027]
[Table 2]
Figure 0004246441
[0028]
As shown in Table 2, according to Examples 1 to 5 of the present invention, the maximum depth of the wear trace is 0.3 mm or less, which is much less than that of the comparative example, and there are cracks, chipping, etc. around the wear trace. In both cases, the wear resistance and fracture resistance are excellent, but the liner materials of Comparative Examples 6 to 10 are all unusable during the test period, and the wear traces up to that point. The maximum depth of steel is 2.5 to 15.5 mm, which is one to two orders of magnitude larger. In addition, cracks and other defects are larger in the ceramic materials shown in Comparative Examples 8 to 10 than in steel materials (Comparative Examples 6 and 7 ). It was confirmed that the wear resistance and fracture resistance were insufficient. Any of the materials of the present invention was able to obtain suitable results in an actual use environment.
[0029]
Here, the active metal brazing liner is exemplified, but by using a method such as shrink fitting, cold fitting, bolt tightening, clamp fixing, and fixing a taper processed steel rod through ceramics by welding. However, no changes were observed in the wear marks and the test results under long-term actual use environment, and the developed material showed good wear resistance. In addition, durability tests were conducted in actual usage environments such as other blast furnace members, sintered line members, coke ovens, etc. with different test environments. There wasn't.
[0030]
【The invention's effect】
As described above, 0.1 to 4 % by mass of the pulverized powder of the silicon carbide sintered body of the present invention, 0.1 to 2.0% by mass of the boron carbide compound, and the remaining powder composed of titanium boride and inevitable impurities are sintered. The titanium boride-based sintered body or the crushed powder of the silicon carbide sintered body is 0.1 to 4 % by mass, the boron carbide compound is 0.1 to 2.0% by mass, and the balance is a solid solution of titanium boride and hafnium boride and / or Titanium boride-based sintered body obtained by sintering a mixed powder consisting of a solid solution of titanium boride and zirconium boride and inevitable impurities is excellent in mechanical stability represented by hardness and fracture toughness values, and has long-term durability. Have.
[0031]
When the ceramic liner of the present invention is used on the surface layer where the load is large due to the drop impact of the massive charge in the blast furnace, when distributing the blast furnace charge such as iron ore, lime, coke, etc. This contributes to a reduction in manufacturing costs associated with a reduction in material costs by extending the lifespan of various members used in manufacturing and an improvement in productivity through stable operations.

Claims (17)

炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がホウ化チタン及び不可避的不純物からなるホウ化チタン系焼結体。A titanium boride-based sintered body comprising 0.1 to 4 % by mass of pulverized powder of a silicon carbide sintered body, 0.1 to 2.0% by mass of a boron carbide compound, and the balance of titanium boride and inevitable impurities. 前記ホウ化チタン系焼結体が、98%以上の理論密度比で、ビッカース硬度2.9×104MPa以上及び破壊靭性値5MPa・m1/2以上の高硬度・高靭性である請求項1記載のホウ化チタン系焼結体。2. The titanium boride-based sintered body has a high hardness and high toughness with a theoretical density ratio of 98% or more, a Vickers hardness of 2.9 × 10 4 MPa or more, and a fracture toughness value of 5 MPa · m 1/2 or more. Titanium boride-based sintered body. 炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がTi-Zr-B固溶体及び/又はTi-Hf-B固溶体及び不可避的不純物からなるホウ化チタン系焼結体。Boron consisting of crushed powder of silicon carbide sintered body 0.1 to 4 % by mass, boron carbide compound 0.1 to 2.0% by mass, balance of Ti-Zr-B solid solution and / or Ti-Hf-B solid solution and inevitable impurities Titanium-based sintered body. 前記ホウ化チタン系焼結体が、98%以上の理論密度比で、ビッカース硬度3.2×104MPa以上及び破壊靭性値6MPa・m1/2以上の高硬度・高靭性である請求項3記載のホウ化チタン系焼結体。4. The titanium boride-based sintered body has high hardness and high toughness with a theoretical density ratio of 98% or more, a Vickers hardness of 3.2 × 10 4 MPa or more, and a fracture toughness value of 6 MPa · m 1/2 or more. Titanium boride-based sintered body. 炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がホウ化チタン及び不可避的不純物からなる混合粉末を、1.3×10-2 Pa以下の高真空下またはアルゴン雰囲気下で、1900〜2200℃の温度にて4時間以上焼結するホウ化チタン系焼結体の製造方法。A high-vacuum of 1.3 × 10 −2 Pa or less of mixed powder consisting of 0.1 to 4 % by mass of pulverized powder of silicon carbide sintered body, 0.1 to 2.0% by mass of boron carbide compound, the balance being titanium boride and inevitable impurities A method for producing a titanium boride-based sintered body, which is sintered at a temperature of 1900 to 2200 ° C. for 4 hours or more under an argon atmosphere. さらに、アルゴン雰囲気下、100〜200MPaで、1850〜2150℃の温度にて2時間以上熱間静水圧加圧処理する請求項5記載のホウ化チタン系焼結体の製造方法。  Furthermore, the manufacturing method of the titanium boride-type sintered compact of Claim 5 which heat-isostatic-pressurizes for 2 hours or more at 100-200 MPa and the temperature of 1850-2150 degreeC by argon atmosphere. 炭化珪素焼結体の破砕粉を0.1〜4質量%、炭化ホウ素化合物を0.1〜2.0質量%、残部がTi-Zr-B固溶体及び/又はTi-Hf-B固溶体及び不可避的不純物からなる混合粉末を、1.3×10-2Pa以下の高真空下またはアルゴン雰囲気下で、1900〜2200℃の温度にて4時間以上焼結するホウ化チタン系焼結体の製造方法。0.1 to 4% by mass of crushed powder of the silicon carbide sintered body, mixed powder boron carbide compound 0.1-2.0 wt%, the balance consisting of Ti-Zr-B solid solution and / or Ti-Hf-B solid solution and unavoidable impurities Is manufactured in a high vacuum of 1.3 × 10 −2 Pa or less or in an argon atmosphere at a temperature of 1900 to 2200 ° C. for 4 hours or more. さらに、アルゴン雰囲気下、100〜200MPaで、1850〜2150℃の温度にて2時間以上熱間静水圧加圧処理する請求項7記載のホウ化チタン系焼結体の製造方法。  Furthermore, the manufacturing method of the titanium boride-type sintered compact of Claim 7 which heat-isostatic-pressure-pressurizes for 2 hours or more at the temperature of 1850-2150 degreeC by argon at 100-200 MPa. 前記炭化珪素焼結体の破砕粉が、混合容器若しくは混合メディア、又は混合容器と混合メディアの両方から混入させたものであることを特徴とする請求項5又は7記載のホウ化チタン系焼結体の製造方法。8. The titanium boride-based sintering according to claim 5, wherein the pulverized powder of the silicon carbide sintered body is mixed from a mixing container or a mixing medium, or from both the mixing container and the mixing medium. Body manufacturing method. 室温から800℃の平均熱膨張係数が5×10-6〜8×10-6/Kである鋼材に、請求項1〜4のいずれかに記載のホウ化チタン系焼結体を接合してなるライナー。The titanium boride-based sintered body according to any one of claims 1 to 4 is joined to a steel material having an average coefficient of thermal expansion from room temperature to 800 ° C of 5 × 10 -6 to 8 × 10 -6 / K. Become a liner. 前記接合が、活性金属ろう付けである請求項10記載のライナー。The liner of claim 10 , wherein the joint is active metal brazing. 前記接合が、焼き嵌め又は冷やし嵌めである請求項10記載のライナー。The liner according to claim 10 , wherein the joining is shrink fitting or cold fitting. 前記接合が、ボルト締め又はクランプである請求項10記載のライナー。The liner according to claim 10 , wherein the joining is bolting or clamping. 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなる高炉用部材。A blast furnace member formed by coating a part or all of the liner according to any one of claims 10 to 13 . 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなる旋回シュート。A turning chute formed by covering a part or all of the liner according to any one of claims 10 to 13 . 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなるムーバブルアーマー。A moveable armor formed by coating a part or all of the liner according to any one of claims 10 to 13 . 請求項1013のいずれかに記載のライナーで、一部又は全部を被覆してなる鉱石受け金物。An ore receiver comprising a liner according to any one of claims 10 to 13 , partially or entirely covered.
JP2002089094A 2002-03-27 2002-03-27 Titanium boride-based sintered body, method for producing the same, and liner using the same Expired - Fee Related JP4246441B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002089094A JP4246441B2 (en) 2002-03-27 2002-03-27 Titanium boride-based sintered body, method for producing the same, and liner using the same
AU2003220870A AU2003220870A1 (en) 2002-03-27 2003-03-27 Titanium boride based sintered product and method for producing the same, and liner using the same
PCT/JP2003/003890 WO2003080536A1 (en) 2002-03-27 2003-03-27 Titanium boride based sintered product and method for producing the same, and liner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089094A JP4246441B2 (en) 2002-03-27 2002-03-27 Titanium boride-based sintered body, method for producing the same, and liner using the same

Publications (2)

Publication Number Publication Date
JP2003286083A JP2003286083A (en) 2003-10-07
JP4246441B2 true JP4246441B2 (en) 2009-04-02

Family

ID=29234775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089094A Expired - Fee Related JP4246441B2 (en) 2002-03-27 2002-03-27 Titanium boride-based sintered body, method for producing the same, and liner using the same

Country Status (1)

Country Link
JP (1) JP4246441B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920586B2 (en) * 2012-12-26 2016-05-18 品川リフラクトリーズ株式会社 Diffuser for ejector-type thermal spraying equipment
CN117658642B (en) * 2023-11-30 2024-05-28 东莞傲众磨具制品有限公司 High-wear-resistance grinding material and preparation method thereof

Also Published As

Publication number Publication date
JP2003286083A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
US7731776B2 (en) Bimodal and multimodal dense boride cermets with superior erosion performance
US8034153B2 (en) Wear resistant low friction coating composition, coated components, and method for coating thereof
AU2010279557B2 (en) Tough coated hard particles consolidated in a tough matrix material
US6641917B2 (en) Spray powder and method for its production
TW200914628A (en) Ultra-hard composite material and method for manufacturing the same
JP2679744B2 (en) High hardness and wear resistant material
CN109477172B (en) Cemented carbide, method for producing same, and roll
KR100648070B1 (en) Tool for hot working
CN101884948A (en) Composite lining plate of ball mill and preparation method thereof
Liu et al. Enhanced wearing resistance of carbide reinforced FeCoNiCrMn high entropy alloy prepared by mechanical alloying and spark plasma sintering
TWI804570B (en) Composite rolls made of superhard alloy and superhard alloy for rolling
JP4246441B2 (en) Titanium boride-based sintered body, method for producing the same, and liner using the same
JP4422424B2 (en) Cast-in-composite and method for producing the same
CN114790521A (en) High-temperature-resistant wear-resistant metal part and preparation method thereof
JP4246440B2 (en) Metal boride solid solution ceramics, method for producing the same, and liner using the same
CN109513934A (en) A kind of preparation method of oxide enhancing multilayer potassium steel wear-resistant hammer head
JP4330157B2 (en) Screw for injection molding machine and its assembly parts
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP6743663B2 (en) Cemented Carbide and Cemented Carbide
CN105803322A (en) High-manganese steel and preparation method thereof
WO2003080536A1 (en) Titanium boride based sintered product and method for producing the same, and liner using the same
JP4050858B2 (en) Bar Smasher Roll
JP2000351671A (en) Particle-dispersed silicon carbide-based sintered product and guide roller which use the same and is used for rolling wire rod
EP4198156A1 (en) Tungsten carbide reinforced manganese steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R151 Written notification of patent or utility model registration

Ref document number: 4246441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees