JP4244353B2 - 部分放電原因自動推論用の神経網エンジンの入力ベクトル生成方法 - Google Patents
部分放電原因自動推論用の神経網エンジンの入力ベクトル生成方法 Download PDFInfo
- Publication number
- JP4244353B2 JP4244353B2 JP2006027771A JP2006027771A JP4244353B2 JP 4244353 B2 JP4244353 B2 JP 4244353B2 JP 2006027771 A JP2006027771 A JP 2006027771A JP 2006027771 A JP2006027771 A JP 2006027771A JP 4244353 B2 JP4244353 B2 JP 4244353B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- discharge
- sum
- partial discharge
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000013528 artificial neural network Methods 0.000 title claims description 52
- 239000013598 vector Substances 0.000 title claims description 45
- 238000000034 method Methods 0.000 title claims description 23
- 230000007547 defect Effects 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000007794 visualization technique Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 4
- 210000000225 synapse Anatomy 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 241001385733 Aesculus indica Species 0.000 description 1
- 102100025142 Beta-microseminoprotein Human genes 0.000 description 1
- 101000576812 Homo sapiens Beta-microseminoprotein Proteins 0.000 description 1
- 241001228709 Suruga Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1254—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/14—Circuits therefor, e.g. for generating test voltages, sensing circuits
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Neurology (AREA)
- Testing Relating To Insulation (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
従って、放電を起こす欠陥に印加された電圧の位相や相が分からない場合、既存の技術は誤った欠陥原因をユーザに知らせるので、欠陥を取り除くための適切な処理を取りにくくなるという問題点があった。
本発明の目的、作用、及び効果を含めてその他の目的、特徴、そして動作上の利点などは望ましい実施の形態によってさらに明らかになる。
Φn:Φn−1:Nによる放電タイプは放電原因別に模様が大きく異なり、放電原因別に区別できる入力ベクトルの生成を比較的に容易にすることができ、図7はGIS内突出電極の欠陥があるときに測定した放電信号のΦn:Φn−1:Nの例である。
また、相互相関などの方法でも位相を類推することができる。
110 高電圧電力機器印加電圧
120 部分放電センサ
130 部分放電測定機
140 電源位相測定用のPT/分圧器
200 高電圧電力機器に印加される電圧の波形
210、211、212、213部分放電信号
220 部分放電信号の発生時間
230 部分放電信号の大きさ
240 部分放電発生時の印加電圧の位相
300 入力ベクトル
310 1次層
320 N次層
330 出力層
340 出力ベクトル
350、351、352、353 シナプス
600 右下面
700 部分放電信号の発生頻度
800 既存のΦn:Φn−1:Nの上方
810 新たな模様の放電パターン
820、910 位相相関和
830、920 位相無関和
900 変形Φn:Φn−1:Nの可視化法
1000、1010、1020 位相相関和
1030 参照位相相関和
Claims (1)
- GIS、変圧器、電力用ケーブル、回転機器などの高電圧電力機器で発生する部分放電信号の原因を自動的に推論する、多層パーセプトロン構造及びセルフオーガナイゼーションマップを含む種類の神経網エンジンに用いられる入力ベクトル生成方法において、
部分放電測定装置で測定された放電信号特性を表示できる2次元グラフを生成するに当たり、部分放電測定機器で連続して測定された放電信号を用いて、任意の部分放電測定装置の電源相を基準に先行放電信号の発生時の印加電圧位相(Φn−1)をX軸にし、後行放電信号の発生時の印加電圧位相(Φn)をY軸にして、グラフの各座標値は与えられた時間の間に連続する2つの放電信号の位相(Φn−1、Φn)が同じ回数で表された、Φn:Φn−1:Nグラフを生成するステップと、
前記Φn:Φn−1:Nグラフを右上から左下方向の対角線で2分割した後、右下面を左上面の上方にシフトさせることにより、Y軸と新たな軸X’とからなる変形Φn:Φn−1:Nグラフに変換するステップと、
前記変形Φn:Φn−1:NグラフからY軸をシフトさせながら、X’軸上の全ての値を足して互いに異なるΦn及びΦn−1を有する連続した放電発生回数を1回ずつ足して、特定の位相情報を取り除いた位相無関和を抽出するステップと、
前記変形Φn:Φn−1:NグラフからX’軸をシフトさせながら、Y軸上の全ての値を足して互いに異なるΦに対して同じΦn−1を有する連続した放電発生回数を1回ずつ足すことにより、位相Φn−1で発生した放電回数を意味する位相相関和を抽出するステップとを含んでなり、
前記位相無関和を部分放電測定機器の増幅特性や電力機器の印加電圧の位相情報なしに普遍的に使用できる神経網エンジンを作るための入力ベクトルの形式で用いて、前記神経網エンジンを訓練し、
放電信号から前記位相無関和と、前記位相相関和及びこれを各々120°、240°ずつ位相シフトさせた位相相関和を求め、
前記位相無関和を用いて推論した欠陥原因に対応する、神経網エンジンの訓練時に用いた放電信号の参照位相相関和を、前記位相相関和とこれを120°及び240°位相シフトさせた位相相関和と比較し、
前記位相相関和とこれを120°及び240°位相シフトさせた位相相関和のうちの前記参照位相相関和と最も類似する位相相関和を検出することにより、放電発生位置に印加された電圧の相が分からないときにも印加電圧の相を検知できることを特徴とする、部分放電原因自動推論用の神経網エンジンの入力ベクトル生成方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050101969A KR100729107B1 (ko) | 2005-10-27 | 2005-10-27 | 부분방전 원인 자동 추론용 신경망 회로의 입력벡터생성방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007124880A JP2007124880A (ja) | 2007-05-17 |
JP4244353B2 true JP4244353B2 (ja) | 2009-03-25 |
Family
ID=37912931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006027771A Expired - Fee Related JP4244353B2 (ja) | 2005-10-27 | 2006-02-03 | 部分放電原因自動推論用の神経網エンジンの入力ベクトル生成方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4244353B2 (ja) |
KR (1) | KR100729107B1 (ja) |
DE (1) | DE102006008482B4 (ja) |
GB (1) | GB2431726B (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100853725B1 (ko) * | 2007-06-20 | 2008-08-22 | (주) 피에스디테크 | Prps 알고리즘을 이용한 가스절연부하개폐장치의부분방전 원인분석 방법 및 그 장치 |
KR100919293B1 (ko) * | 2008-09-24 | 2009-10-01 | 주식회사 케이디파워 | 전기 시스템의 직렬아크 검출장치 및 방법 |
KR101051099B1 (ko) * | 2008-09-30 | 2011-07-21 | 한국전력공사 | 고전압 전력 기기의 극 초단파 부분 방전 및 방전위치 측정장치 |
CN102221651B (zh) * | 2011-03-11 | 2015-05-27 | 太原理工大学 | 一种矿用隔爆型干式变压器故障在线诊断及预警方法 |
US20120330871A1 (en) * | 2011-06-27 | 2012-12-27 | Asiri Yahya Ahmed | Using values of prpd envelope to classify single and multiple partial discharge (pd) defects in hv equipment |
FR2981457B1 (fr) * | 2011-10-12 | 2015-04-03 | Michel Gaeta | Procede et dispositif de detection d'un dysfonctionnement dans un reseau electrique |
CN104391184B (zh) * | 2014-11-12 | 2017-04-12 | 珠海市齐飞信息技术有限公司 | 台变缺相检测和示警装置及方法 |
CN105334436B (zh) * | 2015-10-30 | 2018-08-10 | 山东电力研究院 | 基于som-bp组合神经网络的交联电缆局部放电模式识别方法 |
CN105606976B (zh) * | 2016-03-09 | 2018-09-18 | 国家电网公司 | 一种用于gis局部放电特高频在线监测的抗干扰方法 |
WO2018042588A1 (ja) * | 2016-09-01 | 2018-03-08 | 株式会社 東芝 | 部分放電監視システム |
US11656279B2 (en) | 2017-10-16 | 2023-05-23 | Hitachi Energy Switzerland Ag | Method for monitoring circuit breaker and apparatus and internet of things using the same |
KR102051670B1 (ko) | 2017-12-19 | 2019-12-04 | 한국전력공사 | 전력설비 기자재 불량 검출 장치, 시스템 및 방법이 기록된 컴퓨터 판독가능 기록 매체 |
CN108896857B (zh) * | 2018-07-06 | 2020-12-01 | 北京四方继保自动化股份有限公司 | 一种基于深度学习的变压器复杂工况识别方法 |
KR102183305B1 (ko) | 2018-08-03 | 2020-11-26 | 국민대학교산학협력단 | 신경망 피처 벡터 결정 장치 및 방법 |
KR102089187B1 (ko) * | 2018-12-11 | 2020-03-13 | 한국전력공사 | 전력케이블 접속함 진단 시스템 및 방법 |
CN110096723B (zh) * | 2019-01-22 | 2023-05-16 | 国网山西省电力公司长治供电公司 | 基于运维检测大数据的高压开关柜绝缘状态分析方法 |
CN110286303A (zh) * | 2019-07-10 | 2019-09-27 | 国家电网有限公司 | 一种基于bp神经网络的同轴电缆绝缘老化状态评估方法 |
KR102289411B1 (ko) | 2019-08-27 | 2021-08-12 | 국민대학교산학협력단 | 가중치 기반의 피처 벡터 생성 장치 및 방법 |
KR102269652B1 (ko) | 2019-09-24 | 2021-06-25 | 국민대학교산학협력단 | 보안관제 데이터 분석을 위한 머신러닝 기반의 학습 벡터 생성 장치 및 방법 |
KR102289401B1 (ko) | 2019-10-14 | 2021-08-12 | 국민대학교산학협력단 | 라벨 정보가 포함된 특징 벡터 생성 장치 및 방법 |
CN111707915B (zh) * | 2020-07-10 | 2022-10-14 | 中车唐山机车车辆有限公司 | 基于牵引电机局部放电的在线绝缘评估方法及装置 |
KR102607227B1 (ko) * | 2020-09-15 | 2023-11-29 | 한국전력공사 | 센서 데이터 활용 부분 방전 감지 시스템 및 방법 |
KR20230165650A (ko) | 2022-05-27 | 2023-12-05 | 국민대학교산학협력단 | 그래프 랜덤워크 기반 보안관제 이벤트 분석 장치 및 방법 |
CN115453286B (zh) * | 2022-09-01 | 2023-05-05 | 珠海市伊特高科技有限公司 | Gis局部放电诊断方法、模型训练方法、装置及系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5260871A (en) * | 1991-07-31 | 1993-11-09 | Mayo Foundation For Medical Education And Research | Method and apparatus for diagnosis of breast tumors |
DE4333259C1 (de) * | 1993-09-27 | 1995-05-24 | Siemens Ag | Verfahren zum Erzeugen eines die Richtung eines Kurzschlußstromes angebenden Richtungssignals |
JP3201959B2 (ja) * | 1996-09-03 | 2001-08-27 | 古河電気工業株式会社 | 部分放電測定方法 |
US6650779B2 (en) * | 1999-03-26 | 2003-11-18 | Georgia Tech Research Corp. | Method and apparatus for analyzing an image to detect and identify patterns |
GB0104763D0 (en) * | 2001-02-27 | 2001-04-18 | Smiths Group Plc | Arc detection |
KR200487036Y1 (ko) * | 2017-09-22 | 2018-08-28 | 동서위생 주식회사 | 화장 솜 |
-
2005
- 2005-10-27 KR KR1020050101969A patent/KR100729107B1/ko active IP Right Grant
-
2006
- 2006-01-13 GB GB0600677A patent/GB2431726B/en not_active Expired - Fee Related
- 2006-02-03 JP JP2006027771A patent/JP4244353B2/ja not_active Expired - Fee Related
- 2006-02-23 DE DE102006008482A patent/DE102006008482B4/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
GB2431726B (en) | 2010-04-21 |
DE102006008482B4 (de) | 2010-10-07 |
GB2431726A (en) | 2007-05-02 |
JP2007124880A (ja) | 2007-05-17 |
KR20070045558A (ko) | 2007-05-02 |
KR100729107B1 (ko) | 2007-06-14 |
GB0600677D0 (en) | 2006-02-22 |
DE102006008482A1 (de) | 2007-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4244353B2 (ja) | 部分放電原因自動推論用の神経網エンジンの入力ベクトル生成方法 | |
Rudd et al. | A generic knowledge-based approach to the analysis of partial discharge data | |
KR101574615B1 (ko) | 통계적 위상패턴 기반의 신호검출 방법을 이용한 전력설비 부분 방전 감시진단 시스템 | |
Booth et al. | The use of artificial neural networks for condition monitoring of electrical power transformers | |
Ma et al. | Fractal‐based autonomous partial discharge pattern recognition method for MV motors | |
US11693041B2 (en) | Method for monitoring the electric insulation status of a piece of equipment for MV or HV electric systems | |
Asiri et al. | Neural network based classification of partial discharge in HV motors | |
JP2006162541A (ja) | 事故点標定方法、システム及びプログラム | |
Na et al. | Detecting instant of multiple faults on the transmission line and its types using time–frequency analysis | |
Chu et al. | TDV-LSTM: A new methodology for series arc fault detection in low power AC systems | |
Gopinath et al. | Insulation condition assessment of high‐voltage rotating machines using hybrid techniques | |
Zhang et al. | Efficient hairpin winding fault detection using impedance measurements | |
US11300603B2 (en) | Method and system for condition monitoring electrical equipment | |
Li et al. | Artificial intelligence for real-time topology identification in power distribution systems | |
Diefenthäler et al. | Artificial neural networks: Modeling and comparison to detect high impedance faults | |
Venkataswamy et al. | Deformation diagnostic methods for transformer winding through system identification | |
Haroun et al. | Stator faults detection and diagnosis in reactor coolant pump using Kohonen self-organizing map | |
Zhang et al. | Application of morphological max-lifting scheme for identification of induction motor stator inter-turn short circuit | |
Nyanteh | Application of artificial intelligence to rotating machine condition monitoring | |
Jung et al. | Normal data-based motor fault diagnosis using stacked time-series imaging method | |
Isaev et al. | Identification of emergency modes of power asynchronous electric drives using machine learning methods | |
RU2546993C1 (ru) | Способ диагностики технического состояния электропривода по оценке динамики его параметров | |
CN118013304B (zh) | 一种基于聚类算法的变压器故障定位方法及系统 | |
JP2006105714A (ja) | 送配電線路の事故原因判別方法 | |
Yu et al. | Small-sample-based TDA Cable Emergency Rapid Access and Fault Source Intelligent Analysis System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071030 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080130 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080204 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080229 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080820 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080825 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080922 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4244353 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |