JP4242619B2 - Test method for self-excited transducer - Google Patents

Test method for self-excited transducer Download PDF

Info

Publication number
JP4242619B2
JP4242619B2 JP2002262272A JP2002262272A JP4242619B2 JP 4242619 B2 JP4242619 B2 JP 4242619B2 JP 2002262272 A JP2002262272 A JP 2002262272A JP 2002262272 A JP2002262272 A JP 2002262272A JP 4242619 B2 JP4242619 B2 JP 4242619B2
Authority
JP
Japan
Prior art keywords
self
excited converter
bridge
excited
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002262272A
Other languages
Japanese (ja)
Other versions
JP2004104891A (en
Inventor
輝雄 吉野
義彦 荒川
一秋 木村
英一 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2002262272A priority Critical patent/JP4242619B2/en
Publication of JP2004104891A publication Critical patent/JP2004104891A/en
Application granted granted Critical
Publication of JP4242619B2 publication Critical patent/JP4242619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数個の半導体素子をブリッジ接続して構成される自励式変換器の動作性能検証を行う自励式変換器の試験方法に関する。
【0002】
【従来の技術】
自励式変換器の品質保証においては、自励式変換器を構成する要素の内、自己消弧素子と付属回路により構成されるブリッジの機能・性能検証が最も重要であり、実際の運転に入る前に、実際に使用される状況下で自己消弧素子に印加する電圧・電流と同等以上の電圧・電流を自己消弧素子に印加し、検証しておく必要がある。
もし、このような検証を行わないで自励式変換器を実際のシステムに設置、運転を行った場合には、運転を行った後に初めて自励式変換器の能力不足が判明し、自励式変換器を適用するシステムの運転ができなくなったり、運転に制約が生じるなどの大きな問題が発生する可能性がある。
そこで、従来は、自励式変換器の試験をするにあたっては、模擬負荷を接続し、実際のシステムと同様の電力を流すことが行われてきた。
図9は、従来の自励式変換器の試験構成図であり、特に自励式変換器を交直変換するときのブリッジの機能・性能検証を行うための構成である。
図9に示した試験構成においては、試験対象となる自励式変換器3の交流側には変圧器2を介して、自励式変換器3に交流電力を供給する交流電源設備1が接続され、自励式変換器3の直流側には直流コンデンサ4と模擬負荷5例えば抵抗負荷が接続されている。
【0003】
このような構成において、自励式変換器3を定格運転することにより、交流電源設備1からの交流電力を直流電力に変換して、自励式変換器のブリッジを構成する自己消弧素子及び自己消弧素子に逆並列接続されるダイオードに実運転と同等の電圧・電流ストレスを印加することで、自励式変換器の性能・機能の検証を行う。このとき、自励式変換器3により変換された直流電力は、模擬負荷5により消費される。
しかし、図9の構成では、交直変換する性能・機能の検証は可能であるが、同一の自励式変換器で直交変換を行う場合の検証は行えないという問題がある。即ち、交流から直流に電力変換を行なう場合は、自己消弧素子に並列しているダイオードに大部分の電流が流れるので、自己消弧素子に流れる電流は、直流から交流への電力変換を行なう場合に比較して小さくなるので、実際のシステムで直交変換運転を行なった場合と同等な負荷を自己消弧素子に印加する試験を行なうことはできない。
図10は、従来の自励式変換器の試験構成図であり、特に自励式変換器を直交変換するときのブリッジの機能・性能検証を行うための構成である。
図10に示した試験構成においては、試験対象となる自励式変換器3の直流側には自励式変換器3に直流電力を供給する直流電源設備6と直流コンデンサ4が接続され、自励式変換器3の交流側には模擬負荷7が接続されている。
【0004】
このような構成において、自励式変換器3は定格運転され、直流電源設備6からの直流電力を交流電力に変換して、自励式変換器のブリッジを構成する自己消弧素子及び自己消弧素子に逆並列接続されるダイオードに実運転と同等の電圧・電流ストレスを印加することで、自励式変換器の性能・機能の検証を行う。このとき、模擬負荷7には、リアクトルが用いられて定格出力電圧において定格電流が流れるインダクタンスとなる。
また、このような構成においては、模擬負荷をリアクトルとしているため、負荷力率はゼロであり、少ない電力で自励式変換器を定格状態で運転することができるというメリットを有している。
しかし、本来自励式変換器が有効電力を出力しているときの自己消弧素子に流れる電流よりも楽な電流波形となっており、実際の運転と等価な電流ストレスを与えることはできなかった。
そこで、この問題点を解決するために、特開平11−285265号公報に記載されているように、第1相の電圧基準値を定格運転状態に設定しておき、第2相の電圧基準値を第1相の電圧基準に対して出力線間電圧の位相が90度進んだ位相になるように設定することにより、リアクトルに流れる電流の位相は第1相の電圧基準値と同位相とすることができる。
【0005】
これにより、第1相の自己消弧素子からみれば有効電力を出力しているのと同様の状態となり、第1相の自己消弧素子に実際の運転と等価な電流ストレスを与えることができるようになる。
【0006】
【特許文献1】
特開平11−285265号公報
【0007】
【発明が解決しようとする課題】
しかしながら、図9のような試験方法は、自励式変換器の容量が数kVA、数十kVA程度であれば、特に模擬負荷などの試験設備の構築に問題が無く、また、試験用電力の費用も小額で済んだ。しかし、昨今では、自励式変換器の大容量化が進み、数十MVAクラスの自励式変換器が製作されるに至っている。このような大容量自励式変換器を試験する場合、図9と同様な試験を実施しようとすると、模擬負荷の容量、試験電源設備容量が大容量自励式変換器と同等以上必要になり、設備増設や契約電力の増加など、試験のために大掛かりな投資を行なう必要が生じ、経済的に試験が実施できないおそれが生じるようになってきた。
また、特開平11−285265号公報に記載されたような構成では、一部の自己消弧素子には実際の運転と等価な電流ストレスを与えることができるが、自励式変換器全体として試験をすることができないという問題がある。
よって、本発明は、大掛かりな試験設備を構築することなく、かつ、消費電力の少ない自励式変換器の試験方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る自励式変換器の試験方法は、複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、複数の交直・直交変換機能を有する自励式変換器の交流端子を同一の交流母線に接続し、複数の自励式変換器の直流端子を同一の直流母線に接続し、いずれかの自励式変換器は交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、他のいずれかの自励式変換器は直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転する自励式変換器の運転電力と前記直交変換運転する自励式変換器の運転電力とが同程度になるように制御することを特徴とする。
本発明の請求項2に係る自励式変換器の試験方法は、複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、直交変換機能を有する自励式変換器の交流端子と他励式変換器の交流端子同一の交流母線に接続し、該自励式変換器と他励式変換器との直流端子を同一の直流母線に接続して、自励式変換器は直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記自励式変換器の運転電力と前記他励式変換器の運転電力とが同程度になるように制御することを特徴とする。
【0009】
本発明の請求項3に係る自励式変換器の試験方法は、複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、複数のブリッジから構成される自励式変換器の交流端子を同一の交流母線に接続しいずれかのブリッジは交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、他のいずれかのブリッジは直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転するブリッジの運転電力と前記直交変換運転するブリッジの運転電力とが同程度になるように制御することを特徴とする。
本発明の請求項4に係る自励式変換器の試験方法は、複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、3台の単相ブリッジから構成される三相自励式変換器の単相ブリッジを同一の単相電源に接続しいずれかの単相ブリッジは交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、他のいずれかの単相ブリッジは直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転する単相ブリッジの運転電力と前記直交変換運転する単相ブリッジの運転電力とが同程度になるように制御することを特徴とする。
【0010】
本発明の請求項5に係る自励式変換器の試験方法は、複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、
3組のアームから構成される三相自励式変換器の第1のアームの交流端子を単相電源の一方の端子に接続し、第2のアームの交流端子と第3のアームの交流端子を単相電源の他方の端子に接続し第1のアームと第2のアームとを第1の単相ブリッジとみなし、第1のアームと第3 のアームとを第2の単相ブリッジとみなし、第1の単相ブリッジは交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、第2の単相ブリッジは直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転する第1の単相ブリッジの運転電力と前記直交変換運転する第2の単相ブリッジの運転電力とが同程度になるように制御することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明の第1の実施の形態の自励式変換器の試験構成図であり、2台の自励式変換器の交流端子をそれぞれ変圧器を用いて、同一の交流母線を介し三相交流電源1に接続し、直流端子を同一の直流母線に接続した構成である。
図1において、第1の自励式変換器3−1の交流側は第1の変圧器2−1を介して、交流母線に接続された三相交流電源1に接続されており、第1の自励式変換器3−1の直流側には第1の直流コンデンサ4−1が接続されており、更に、後述する第2の自励式変換器3−2の直流側に接続されている。また、第2の自励式変換器3−2の交流側は第2の変圧器2−2を介して、第1の自励式変換器3−1と同一の交流母線に接続された三相交流電源1に接続されており、第2の自励式変換器3−2の直流側には第2の直流コンデンサ4−2が接続されており、更に、第1の自励式変換器3−1の直流側に接続されている。
この試験構成において、第1の自励式変換器3−1を交流から直流へ電力変換する運転(以下、交直変換運転という)させ、同様な構成の第2の自励式変換器3−2を、直流から交流へ電力変換する運転(以下、直交変換運転という)させる。
【0013】
このとき、2台の自励式変換器の電力及び直流母線の電圧が実際の運転と同程度以上になるように、かつ、2台の自励式変換器の運転電力がほぼ同一となるように調整して運転を行う。このように調整すると、本構成で試験を行った場合の試験電力は、2台の自励式変換器の電力の差に相当する小さい電力で済むことになる。
具体的には、交直変換運転を行う自励式変換器は、定電力制御で直流コンデンサ4の電圧を一定になるように制御して、直交変換運転を行う自励式変換器は、定電圧制御で変圧器2−2の電圧が一定になるように制御する。このとき、それぞれの運転電力は極性が逆で大きさがほぼ同一になるように制御し、定電力制御・定電圧制御の制御基準値はそれぞれ定格運転以上に設定する。
これにより、試験に必要とする電力は、それぞれの自励式変換器がその電力を逆性が逆で大きさが同じになるように制御しているので、直流電力を回生することになり、制御誤差による電力差に相当する電力となる。但し、実際には自励式変換器によるロス分の電力が必要となる。一般的にロス分としては、自励式変換器容量の5%程度である。
更に、第1の自励式変換器3−lについては、交直運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子と並列のダイオードの電流・電圧を実際の運転と同等以上にした試験が可能となる。また、第2の自励式変換器3−2については、直交運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子の電流・電圧を実際の運転と同等以上にした試験が可能となる。ここでは、定格運転以上、例えば、定格の105%〜110%の制御基準値により制御することで、実運転における電圧変動等を考慮して試験を行うとしているが、もちろん定格運転の試験であるのであれば、定格の制御基準値で制御すれば良い。
【0014】
また、第1の自励式変換器3−1と第2の自励式変換器3−2の役割を反転し、第2の自励式変換器3−2を交直変換運転、第1の自励式変換器3−1を直交変換運転とすれば、第2の自励式変換器3−2のダイオード、第1の自励式変換器3−1の自己消弧素子について、実際の運転と等価な試験をすることができる。
即ち、このような試験を実施することにより、実際の運転時と同等以上の電圧・電流を自己消弧素子、及び並列のダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能になり、自励式変換器を構成する半導体素子の検証目的を達成しながら、経済的な試験を実現できる。
尚、図1において、自励式変換器は電圧形自励式変換器であるとして説明しているが、同様の試験が行えるものであれば、電流形自励式変換器または他の構成の変換器でも構わない。また、三相ブリッジ構成として説明しているが、単相ブリッジでも、他のブリッジ構成でも、同様な試験ができるのは言うまでも無い。更に、2台の変換器の構成で説明しているが、3台以上の変換器を組合せた構成でも構わない。また、交直変換運転を行う自励式変換器を定電圧制御とし、直交変換運転を行う自励式変換器を定電力制御としても良い。
【0015】
次に本発明の第2の実施の形態について説明する。
図2は、本発明の第2の実施の形態の自励式変換器の試験構成図であり、自励式変換器とダイオード整流器の交流端子を各々変圧器を介して、同一の交流母線に接続し、直流端子を同一の直流母線に接続した構成である。この例では、ダイオード整流器で説明するが、サイリスタ整流器など、他の他励式変換器の場合でも同様である。
図2において、自励式変換器3の交流側は第1の変圧器2−1を介して、交流母線に接続された三相交流電源1に接続されており、自励式変換器3の直流側には直流コンデンサ4が接続されており、更に、後述するダイオード整流器8の直流側に接続されている。また、ダイオード整流器8の交流側は第2の変圧器2−2を介して、自励式変換器3と同一の交流母線に接続された三相交流電源1に接続されており、ダイオード整流器の直流側は、自励式変換器3の直流側に接続されている。
この試験構成において、自励式変換器3を直交変換運転させると、ダイオード整流器8が交直変換により直流電力を供給する動作を行ない、自励式変換器3は実際の運転と同等以上の電流・電圧での運転ができる。
【0016】
このような構成では、正味の試験電力は、ダイオード整流器8の直流電力を自励式変換器3が交流母線に回生するので、その電力差に相当する小さい電力で試験が可能となる。
具体的には、交直変換運転を行う自励式変換器は、定電力制御で直流コンデンサ4の電圧を一定になるように制御する際に、運転電力をダイオード整流器とは極性が逆で大きさがほぼ同一になるように制御し、定電力制御の制御基準値はそれぞれ定格運転以上に設定する。
これにより、試験に必要とする電力は、自励式変換器がダイオード整流器の直流電力を回生することになり、制御誤差による電力差に相当する電力となる。但し、実際には自励式変換器によるロス分の電力が必要となる。一般的にロス分としては、自励式変換器容量の5%程度である。
更に、自励式変換器3については、直交変換運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子の電流・電圧を実際の運転と同等以上にした試験が可能となる。ここでは、定格運転以上、例えば、定格の105%〜110%の制御基準値により制御することで、実運転における電圧変動等を考慮して試験を行うとしているが、もちろん定格運転の試験であるのであれば、定格の制御基準値で制御すれば良い。
【0017】
よって、本実施例においても、実際の運転時と同等以上の電圧・電流を自己消弧素子、及び並列のダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能になり、自励式変換器を構成する半導体素子の検証目的を達成しながら、経済的な試験を実現できる。
次に本発明の第3の実施の形態について説明する。
図3は、本発明の第3の実施の形態の自励式変換器の試験構成図であり、2台の三相ブリッジが変圧器で結合して構成された自励式変換器を交流母線を介し三相交流電源に接続した構成である。
図3において、第1の三相ブリッジ9−1と第2の三相ブリッジ9−2の交流側は一次巻線が直列に接続された変圧器2の二次巻線にそれぞれ接続され、交流母線に接続された三相交流電源1に接続されており、第1の三相ブリッジ9−1と第2の三相ブリッジ9−2の直流側は同一の直流母線に接続されており、更に直流コンデンサ4が接続されている。
この試験構成において、変圧器2に接続する第1の三相ブリッジ9−1を交直変換運転させ、残りの三相ブリッジ9−2を直交変換運転させる。このとき、2台の三相ブリッジの電力及び直流母線の電圧が実際の運転と同程度以上になるように、かつ、2台の三相ブリッジの運転電力がほぼ同一となるように調整する。
【0018】
このように調整すると、この試験を行ったことによる正味の試験電力は、2台の三相ブリッジの電力の差に相当する電力となり、小さい電力で済むことになる。
具体的には、交直変換運転を行う三相ブリッジは、定電力制御で直流コンデンサ4の電圧を一定になるように制御して、直交変換運転を行う三相ブリッジは、定電圧制御で変圧器2の電圧が一定になるように制御する。このとき、それぞれの運転電力は極性が逆で大きさがほぼ同一になるように制御し、定電力制御・定電圧制御の制御基準値はそれぞれ定格運転以上に設定する。
これにより、試験に必要とする電力は、それぞれの三相ブリッジがその電力を逆性が逆で大きさが同じになるように制御しているので、直流電力を回生することになり、制御誤差による電力差に相当する電力となる。但し、実際には自励式変換器によるロス分の電力が必要となる。一般的にロス分としては、自励式変換器容量の5%程度である。
更に、第1の三相ブリッジ9−1については、交直変換運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子と並列のダイオードの電流・電圧を実際の運転と同等以上にした試験が可能となる。また、三相ブリッジ7−2については、直交運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子の電流・電圧を実際の運転と同等以上にした試験が可能となる。ここでは、定格運転以上、例えば、定格の105%〜110%の制御基準値により制御することで、実運転における電圧変動等を考慮して試験を行うとしているが、もちろん定格運転の試験であるのであれば、定格の制御基準値で制御すれば良い。
【0019】
また、第1の三相ブリッジ7−1と第2の三相ブリッジ7−2の役割を反転し、第2の三相ブリッジ7−2を交直変換運転、第1の三相ブリッジ7−1を直交変換運転とすれば、第2の三相ブリッジ7−2のダイオード、第1の三相ブリッジ7−1の自己消弧素子について、実際の運転と等価な試験ができる。
よって、本実施例においても、実際の運転時と同等以上の電圧・電流を自己消弧素子、及び並列のダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能になり、自励式変換器を構成する半導体素子の検証目的を達成しながら、経済的な試験を実現できる。
尚、図3において、自励式変換器は電圧形自励式変換器であるとして説明しているが、同様の試験が行えるものであれば、電流形自励式変換器または他の構成の変換器でも構わない。また、三相ブリッジ構成として説明しているが、単相ブリッジでも、他のブリッジ構成でも、同様な試験ができるのは言うまでも無い。更に、自励式変換器が2台の三相ブリッジで構成される例を説明しているが、3台以上のブリッジを組合せた構成でも構わない。また、2台の三相ブリッジが変圧器で結合された自励式変換器で、変圧器の1次巻線が直列される構成を示すが、変圧器がブリッジ毎に個別であったり、1次側が並列構成であっても良い。更に、交直変換運転を行う三相ブリッジを定電圧制御とし、直交変換運転を行う三相ブリッジを定電力制御としても良い。
【0020】
次に本発明の第4の実施の形態について説明する。
図4は、本発明の第4の実施の形態の自励式変換器の試験構成図であり、2台の二相ブリッジを交流リアクトルにより交流母線を介し三相交流電源に接続した構成である。
図4において、第1の三相ブリッジ9−1と第2の三相ブリッジ9−2の交流側はそれぞれ第1の交流リアクトル10−1と第2の交流リアクトル10−2に接続され、交流母線に接続された三相交流電源1に接続されており、第1の三相ブリッジ9−1と第2の三相ブリッジ9−2の直流側は同一の直流母線に接続されており、更に直流コンデンサ4が接続されている。
つまり、第3の実施の形態と異なる点は、自励式変換器を構成する第1、第2の三相ブリッジを変圧器の代わりに交流リアクトルにより三相交流電源に接続した点である。
この試験構成においても、変圧器が交流リアクトルに置き換わる相連はあるが、第3の実施の形態と同様な作用により、第1、第2の三相ブリッジ9−1、9−2の試験が可能となる。
よって、本実施例においても、実際の運転時と同等以上の電圧・電流を自己消弧素子、及び並列のダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能になり、自励式変換器を構成する半導体素子の検証目的を達成しながら、経済的な試験を実現できる。
【0021】
次に本発明の第5の実施の形態について説明する。
図5は、本発明の第5の実施の形態の自励式変換器の試験構成図であり、3台の単相ブリッジを変圧器で交流電源に接続した自励式変換器の構成である。
図5において、第1の単相ブリッジ3−Uと第2の単相ブリッジ3−Vと第3の単相ブリッジ3−Wの交流側はそれぞれ第1の変圧器2−Uと第2の変圧器2−Vと第3の変圧器2−Wに接続され、交流母線に接続された単相交流電源11に接続されており、第1の単相ブリッジ3−Uと第2の単相ブリッジ3−Vと第3の単相ブリッジ3−Wの直流側は同一の直流母線に接続されており、更に直流コンデンサ4が接続されている。ここで、実際の運転では、変圧器2−U、2−V、2−Wは夫々異なる交流母線の相に接続するものであるが、試験を行うため、1つの単相交流電源に接続される例を示す。これに対し、各単相ブリッジの直流端子は、三相変換器を構成するため、元々、同一の直流母線に接続しているものである。
この試験構成において、変圧器2−Uに接続する単相ブリッジ3−Uを交直運転させ、単相ブリッジ3−Vを直交変換運転させる。単相ブリッジ3−Uの電力及び直流母線の電圧が実際の運転と同程度以上になるように、かつ、単相ブリッジ3−Vの運転電力が単相ブリッジ3−Uの運転電力を同程度になるように調整する。このように調整すると、本試験を行う場合の正味の試験電力は、複数の単相ブリッジの電力の差に相当する電力となり、小さい電力で済むことになる。
【0022】
具体的には、交直変換運転を行う単相ブリッジは、定電力制御で直流コンデンサ4の電圧を一定になるように制御して、直交変換運転を行う単相ブリッジは、定電圧制御で変圧器2の電圧が一定になるように制御する。このとき、それぞれの運転電力は極性が逆で大きさがほぼ同一になるように制御し、定電力制御・定電圧制御の制御基準値はそれぞれ定格運転以上に設定する。また、残りの単相ブリッジについては、運転を停止しておく。
これにより、試験に必要とする電力は、それぞれの単相ブリッジがその電力を逆性が逆で大きさが同じになるように制御しているので、直流電力を回生することになり、制御誤差による電力差に相当する電力となる。但し、実際には自励式変換器によるロス分の電力が必要となる。一般的にロス分としては、自励式変換器容量の5%程度である。
更に、単相ブリッジ3−Uについては、交直運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子と並列のダイオードの電流・電圧を実際の運転と同等以上にした試験が可能となる。また、単相ブリッジ3−Vについては、直交運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子の電流・電圧を実際の運転と同等以上にした試験が可能となる。ここでは、定格運転以上、例えば、定格の105%〜110%の制御基準値により制御することで、実運転における電圧変動等を考慮して試験を行うとしているが、もちろん定格運転の試験であるのであれば、定格の制御基準値で制御すれば良い。
【0023】
また、単相ブリッジ3−U、3−V、3−Wの役割を順次交替して試験を行えば、3台の単相ブリッジにつき、実際の運転と等価な試験ができる。
よって、本実施例においても、実際の運転時と同等以上の電圧・電流を自己消弧素子、及び並列のダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能になり、自励式変換器を構成する半導体素子の検証目的を達成しながら、経済的な試験を実現できる。
尚、図5において、自励式変換器は電圧形自励式変換器であるとして説明しているが、同様の試験が行えるものであれば、電流形自励式変換器または他の構成の変換器でも構わない。また、自励式変換器が3台の単相ブリッジで構成される例を説明しているが、3台以上の単相ブリッジを組合せた構成でも構わない。更に、単相ブリッジにより構成される変換器が変圧器などで多重化された構成でも構わない。また、単相ブリッジが変圧器で交流電源に接続された自励式変換器を示すが、リアクトルで接続されている場合でも構わない。また、交直変換運転を行う単相ブリッジを定電圧制御とし、直交変換運転を行う単相ブリッジを定電力制御としても良い。更に、1台の単相ブリッジの運転を停止する例を示したが、一台の単相ブリッジを定格で交直変換運転させ、他の2台の単相ブリッジをそれぞれ定格の50%で運転するようにしても良い。但し、この場合は定格の50%で運転した単相ブリッジについては実際の運転と同様の試験はできなくなる。
【0024】
次に、本発明の第6の実施の形態について説明する。
図6は、本発明の第6の実施の形態の自励式変換器の試験構成図であり、三相ブリッジの自励式変換器をリアクトルを介して交流電源に接続した構成である。
図6において、自励式変換器3を構成する三相ブリッジは、3組のアームUX,VY,WZから構成されており、アームUXの交流端子は第1のリアクトル10−UXを介して単相交流電源11の第1の端子に接続され、アームVYの交流端子は第2のリアクトル10−VYを介して単相交流電源11の第2の端子に接続され、アームWZの交流端子は第3のリアクトル10−WZを介して単相交流電源11の第2の端子に接続されている。
この試験構成において、アームUXとアームVYを単相ブリッジとみなして、交直変換運転させ、一方、アームUXとアームWZを別の単相ブリッジとみなして、直交変換運転させる。アームVYの扱う電力とアームWZの扱う電力が実際の運転と同程度以上になるように、かつ、2つのアームの運転電力の極性が逆で大きさがほぼ同一となるように調整する。このように調整すると、正味の試験電力は、2つのアームの電力の差に相当する小さい電力で済むことになる。
【0025】
具体的には、交直変換運転を行う単相ブリッジは、定電力制御で直流コンデンサ4の電圧を一定になるように制御して、直交変換運転を行う単相ブリッジは、定電圧制御で変圧器2の電圧が一定になるように制御する。このとき、それぞれの運転電力は極性が逆で大きさがほぼ同一になるように制御し、定電力制御・定電圧制御の制御基準値はそれぞれ定格運転以上に設定する。更に、そのスイッチングは、アームUXがそれぞれの単相ブリッジで共通となっているため、アームUXについては固定的なスイッチングとし、それぞれの単相ブリッジの他方のアームVY、アームWZを制御することになる。
これにより、試験に必要とする電力は、それぞれの単相ブリッジがその電力を逆性が逆で大きさが同じになるように制御しているので、直流電力を回生することになり、制御誤差による電力差に相当する電力となる。但し、実際には自励式変換器によるロス分の電力が必要となる。一般的にロス分としては、自励式変換器容量の5%程度である。
更に、アームVYについては、交直運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子と並列のダイオードの電流・電圧を実際の運転と同等以上にした試験が可能となる。また、アームWZについては、直交運転で実際の運転時と同等以上の電圧・電流での運転を行なうことができ、自己消弧素子の電流・電圧を実際の運転と同等以上にした試験が可能となる。ここでは、定格運転以上、例えば、定格の105%〜110%の制御基準値により制御することで、実運転における電圧変動等を考慮して試験を行うとしているが、もちろん定格運転の試験であるのであれば、定格の制御基準値で制御すれば良い。
【0026】
また、3つのアームの接続を換え、役割を順次変えることで、全てのアームにつき、実際の運転と等価な試験ができる。
よって、本実施の形態においても、実際の運転時と同等以上の電圧・電流を自己消弧素子、及び並列のダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能になり、自励式変換器を構成する半導体素子の検証目的を達成しながら、経済的な試験を実現できる。
尚、図6において、自励式変換器は電圧形自励式変換器であるとして説明するが、電流形自励式変換器または他の構成の変換器でも、同様な試験ができるものであれば構わない。また、自励式変換器3が1台の三相ブリッジで構成される例を示すが、2台以上のブリッジを組合せた構成でも、順次ブリッジ毎に試験すれば良い。更に、ブリッジがリアクトルで交流電源に接続された自励式変換器を示したが、変圧器で接続されている場合でも構わない。また、交直変換運転を行う単相ブリッジを定電圧制御とし、直交変換運転を行う単相ブリッジを定電力制御としても良い。
次に本発明の第7の実施の形態について説明する。
図7は、本発明の第7の実施の形態の自励式変換器の試験構成図であり、特に交直変換運転時の電流印加試験を行うための構成であり、図8は、本発明の第7の実施の形態の自励式変換器の試験構成図であり、特に直交変換運転時の電流印加試験を行うための構成である。
【0027】
図7において、自励式変換器3の交流側は変圧器2を介して交流母線に接続され、更に交流電圧調整器12を介して三相交流電源1に接続されており、自励式変換器3の直流側はケーブルやシャントなどの低インピーダンス13を介して短絡されている。
このような試験構成において、交流電圧調整器12により、交流電圧を低く調整し、低インピーダンス13に流れる電流を実際の運転時の電流と同等以上となるように調整した上で、自励式変換器3を交直変換運転させる。この運転を行なうことにより、自己消弧素子と並列するダイオードの通電能力の検証ができる。さらに、低電圧で行われる試験なので、使用する電力は実際の運転時の電力に比較し、非常に小さい電力で済むことになる。
また、図8において、自励式変換器3の交流側は変圧器2を介して交流母線に接続され、更に交流電圧調整器12を介して三相交流電源1に接続されており、自励式変換器3の直流側は直流電源14が接続されている。
このような試験構成において、直流電源14の出力電圧を低く設定し、直流端子からブリッジを経由し、交流電圧調整器12に流れる電流を実際の運転時の電流と同等以上となるように調整した運転を行なう。この運転を行なうことにより、自己消弧素子の通電能力の検証ができる。さらに、低電圧での試験なので、使用する電力は実際の運転時の電力に比較し、非常に小さい電力で済むことになる。
【0028】
このような交直変換運転と直交変換運転の試験を組み合わせて実施することにより、実際の運転時と同等以上の電流を自己消弧素子及びダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能になり、検証目的を達成しながら、経済的な試験を実現できる。
尚、図7、図8において、自励式変換器は電圧形自励式変換器であるとして説明しているが、電流形自励式変換器または他の構成の変換器でも、同様な試験ができるものであれば構わない。また、三相ブリッジとしているが、単相ブリッジでも、他のブリッジ構成でも、同様な試験ができるのは言うまでも無い。また、交流端子の短絡を変圧器を介して行う構成を示しているが、リアクトルを介して短絡しても良い。
【0029】
【発明の効果】
以上詳述したように、本発明によれば、実際の運転と同等以上の電圧・電流を自己消弧素子及び並列接続されたダイオードに印加することができ、かつ、使用する設備容量・使用電力を低減することが可能となり、自励式変換器を構成する半導体素子の検証目的を達成しながら、経済的な試験を実現することが出来る。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の自励式変換器の試験構成図。
【図2】 本発明の第2の実施の形態の自励式変換器の試験構成図。
【図3】 本発明の第3の実施の形態の自励式変換器の試験構成図。
【図4】 本発明の第4の実施の形態の自励式変換器の試験構成図。
【図5】 本発明の第5の実施の形態の自励式変換器の試験構成図。
【図6】 本発明の第6の実施の形態の自励式変換器の試験構成図。
【図7】 本発明の第7の実施の形態の自励式変換器の試験構成図。
【図8】 本発明の第7の実施の形態の自励式変換器の試験構成図。
【図9】 従来の自励式変換器の試験構成図。
【図10】 他の従来の自励式変換器の試験構成図。
【符号の説明】
1・・三相交流電源
2、2−1、2−1、2−U、2−V、2−W・・変圧器
3、3−1、3−2・・自励式変換器
3−U、3−V、3−W・・単相ブリッジ
4、4−1、4−2・・直流コンデンサ
8・・ダイオード整流器
9−1、9−2・・三相ブリッジ
10−1、10−2、10−VX、10−VY、10−WZ・・リアクトル
11・・単相交流電源
12・・交流電圧調整器
13・・低インピーダンス
14・・直流電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-excited converter testing method for verifying the operation performance of a self-excited converter configured by bridge-connecting a plurality of semiconductor elements.
[0002]
[Prior art]
In the quality assurance of self-excited converters, it is most important to verify the function and performance of the bridge composed of self-extinguishing elements and attached circuits among the elements composing the self-excited converter. In addition, it is necessary to verify by applying a voltage / current equal to or higher than the voltage / current applied to the self-extinguishing element in a situation where it is actually used.
If the self-excited converter is installed and operated in an actual system without performing such verification, the self-excited converter is found to be insufficient for the first time after operation. There is a possibility that a big problem such as the inability to operate the system to which the system is applied or the restriction on the operation may occur.
Therefore, conventionally, when testing a self-excited converter, a simulated load is connected and power similar to that in an actual system is passed.
FIG. 9 is a test configuration diagram of a conventional self-excited converter, and particularly a configuration for verifying the function and performance of the bridge when the self-excited converter is AC / DC converted.
In the test configuration shown in FIG. 9, an AC power supply facility 1 for supplying AC power to the self-excited converter 3 is connected to the AC side of the self-excited converter 3 to be tested via the transformer 2. A DC capacitor 4 and a simulated load 5 such as a resistance load are connected to the DC side of the self-excited converter 3.
[0003]
In such a configuration, by operating the self-excited converter 3 at a rated operation, the AC power from the AC power supply facility 1 is converted into DC power, and the self-extinguishing element and the self-extinguishing element constituting the bridge of the self-excited converter are converted. The performance and function of the self-excited converter will be verified by applying voltage and current stress equivalent to actual operation to the diode connected in reverse parallel to the arc element. At this time, the DC power converted by the self-excited converter 3 is consumed by the simulated load 5.
However, in the configuration of FIG. 9, it is possible to verify the performance and function of AC / DC conversion, but there is a problem that verification cannot be performed when orthogonal conversion is performed by the same self-excited converter. That is, when power is converted from AC to DC, most of the current flows through the diode in parallel with the self-extinguishing element, so that the current flowing through the self-extinguishing element performs power conversion from DC to AC. Therefore, it is not possible to perform a test in which a load equivalent to that obtained when the orthogonal transformation operation is performed in the actual system is applied to the self-extinguishing element.
FIG. 10 is a test configuration diagram of a conventional self-excited converter, and particularly a configuration for verifying the function and performance of the bridge when the self-excited converter is orthogonally transformed.
In the test configuration shown in FIG. 10, a DC power supply facility 6 for supplying DC power to the self-excited converter 3 and a DC capacitor 4 are connected to the DC side of the self-excited converter 3 to be tested, and the self-excited conversion is performed. A simulated load 7 is connected to the AC side of the vessel 3.
[0004]
In such a configuration, the self-excited converter 3 is rated-operated, converts the DC power from the DC power supply facility 6 into AC power, and forms a bridge of the self-excited converter and the self-extinguishing element. The performance and function of the self-excited converter are verified by applying the same voltage and current stress to the diode connected in reverse parallel to the actual operation. At this time, a reactor is used for the simulated load 7 and becomes an inductance through which a rated current flows at a rated output voltage.
In such a configuration, since the simulated load is a reactor, the load power factor is zero, and there is an advantage that the self-excited converter can be operated in a rated state with a small amount of power.
However, the current waveform is easier than the current flowing in the self-extinguishing element when the self-excited converter outputs active power, and current stress equivalent to actual operation could not be applied. .
Therefore, in order to solve this problem, as described in JP-A-11-285265, the voltage reference value of the first phase is set to the rated operation state, and the voltage reference value of the second phase is set. Is set so that the phase of the output line voltage is 90 degrees ahead of the voltage reference of the first phase, so that the phase of the current flowing through the reactor is the same as the voltage reference value of the first phase. be able to.
[0005]
As a result, when viewed from the first-phase self-extinguishing element, the state is the same as outputting active power, and the first-phase self-extinguishing element can be given a current stress equivalent to actual operation. It becomes like this.
[0006]
[Patent Document 1]
JP-A-11-285265
[0007]
[Problems to be solved by the invention]
However, in the test method as shown in FIG. 9, if the capacity of the self-excited converter is about several kVA or several tens of kVA, there is no problem particularly in the construction of a test facility such as a simulated load, and the cost of the test power is increased. Was small. However, in recent years, the capacity of self-excited converters has been increased, and several tens of MVA class self-excited converters have been manufactured. When testing such a large-capacity self-excited converter, if an attempt is made to perform the same test as in FIG. 9, the capacity of the simulated load and the capacity of the test power supply facility must be equal to or greater than those of the large-capacity self-excited converter. It has become necessary to make a large investment for testing such as expansion and increase of contract power, and there is a possibility that the testing cannot be conducted economically.
Further, in the configuration described in Japanese Patent Application Laid-Open No. 11-285265, some self-extinguishing elements can be subjected to current stress equivalent to actual operation, but the self-excited converter as a whole is tested. There is a problem that you can not.
Therefore, an object of the present invention is to provide a test method for a self-excited converter that consumes less power without constructing a large-scale test facility.
[0008]
[Means for Solving the Problems]
  To achieve the above object, a self-excited converter testing method according to claim 1 of the present invention.Is a test method for a self-excited converter that performs functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,Connect the AC terminals of self-excited converters with multiple AC / DC transformation functions to the same AC bus,TheConnect the DC terminals of multiple self-excited converters to the same DC bus.TheOne of the self-excited converters is AC / DC converted so that the voltage / current stress of the self-extinguishing element during AC / DC conversion operation is equal to or higher than that of actual operation, and any other self-excited converter is orthogonally converted. The self-extinguishing operation is performed so that the voltage / current stress of the self-extinguishing element during operation is equal to or higher than that of the actual operation, and the operation power of the self-excited converter performing the AC / DC conversion operation and the self-exciting converter performing the orthogonal conversion operation. Control so that the operating power ofIt is characterized by.
  Test method for self-excited converter according to claim 2 of the present inventionIs a self-excited converter test method in which the functional verification of a self-excited converter configured by connecting a plurality of self-extinguishing elements in a bridge is performed prior to the actual operation of the self-excited converter.AC terminal of self-excited converter with AC conversion function and AC terminal of separately-excited converterTheConnect to the same AC busTheConnect the DC terminals of the self-excited converter and the separately-excited converter to the same DC bus.AndThe self-excited converter performs an orthogonal transform operation so that the voltage / current stress of the self-extinguishing element during the orthogonal transform operation is equal to or higher than the actual operation, and the operation power of the self-excited converter and the separately excited converter Control so that the operating power is about the sameIt is characterized by.
[0009]
  Test method for self-excited converter according to claim 3 of the present inventionIs a test method for a self-excited converter that performs functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,AC terminal of self-excited converter consisting of multiple bridgesSameConnected to one AC bus,Either bridge performs AC / DC conversion operation so that the voltage / current stress of the self-extinguishing element during AC / DC conversion operation is equal to or higher than the actual operation, and any other bridge operates as a self-extinguishing element during orthogonal conversion operation. The orthogonal transformation operation is performed so that the voltage / current stress is equal to or higher than the actual operation, and the operation power of the bridge for the AC / DC conversion operation and the operation power of the bridge for the orthogonal transformation operation are controlled to be approximately the same. thingIt is characterized by.
  The self-excited converter test method according to claim 4 of the present invention is:A self-excited converter test method for performing functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,A three-phase self-excited converter consisting of three single-phase bridges is connected to the same single-phase power source.,One of the single-phase bridges is AC / DC-converted so that the voltage / current stress of the self-extinguishing element during AC / DC conversion is equal to or greater than that of actual operation, and any of the other single-phase bridges is The orthogonal transformation operation is performed so that the voltage / current stress of the self-extinguishing element is equal to or higher than that of the actual operation, and the operation power of the single-phase bridge that performs the AC / DC conversion operation and the operation power of the single-phase bridge that performs the orthogonal conversion operation are Control to be the same levelIt is characterized by.
[0010]
  Test method for self-excited converter according to claim 5 of the present inventionIs a test method for a self-excited converter that performs functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,
  Connect the AC terminal of the first arm of the three-phase self-excited converter composed of three sets of arms to one terminal of the single-phase power supply, and connect the AC terminal of the second arm and the AC terminal of the third arm. Connect to the other terminal of the single-phase power supply,The first arm and the second arm are regarded as a first single-phase bridge, the first arm and the third arm are regarded as a second single-phase bridge, and the first single-phase bridge is operated by AC / DC conversion AC / DC conversion operation is performed so that the voltage / current stress of the self-extinguishing element during operation is equal to or higher than the actual operation, and the voltage / current stress of the self-extinguishing element during the orthogonal conversion operation is actually operated in the second single-phase bridge. So that the operation power of the first single-phase bridge that performs the AC / DC conversion operation and the operation power of the second single-phase bridge that performs the orthogonal conversion operation are approximately the same. To controlIt is characterized by.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a test configuration diagram of the self-excited converter according to the first embodiment of the present invention. The AC terminals of the two self-excited converters are respectively connected via the same AC bus using transformers. It is the structure which connected to the phase alternating current power supply 1, and connected the DC terminal to the same DC bus.
In FIG. 1, the AC side of the first self-excited converter 3-1 is connected to a three-phase AC power source 1 connected to an AC bus via a first transformer 2-1, A first DC capacitor 4-1 is connected to the DC side of the self-excited converter 3-1, and is further connected to the DC side of a second self-excited converter 3-2 described later. The AC side of the second self-excited converter 3-2 is a three-phase AC connected to the same AC bus as the first self-excited converter 3-1, via the second transformer 2-2. A second DC capacitor 4-2 is connected to the power source 1 and the DC side of the second self-excited converter 3-2. Further, the first self-excited converter 3-1 Connected to the DC side.
In this test configuration, the first self-excited converter 3-1 is operated to convert power from AC to DC (hereinafter referred to as AC / DC conversion operation), and the second self-excited converter 3-2 having the same configuration is An operation for converting power from DC to AC (hereinafter referred to as orthogonal conversion operation) is performed.
[0013]
At this time, adjust so that the power of the two self-excited converters and the voltage of the DC bus are about the same or higher than the actual operation, and the operating power of the two self-excited converters are almost the same. And drive. By adjusting in this way, the test power when the test is performed with this configuration can be small power corresponding to the difference in power between the two self-excited converters.
Specifically, a self-excited converter that performs AC / DC conversion operation is controlled by constant power control so that the voltage of the DC capacitor 4 is constant, and a self-excited converter that performs orthogonal conversion operation is by constant voltage control. Control is performed so that the voltage of the transformer 2-2 becomes constant. At this time, the operation powers are controlled so that the polarities are opposite and the magnitudes are substantially the same, and the control reference values for constant power control and constant voltage control are set to be equal to or higher than the rated operation, respectively.
As a result, the power required for the test is controlled by each self-excited converter so that the power is reversed and the magnitude is the same. The power corresponds to the power difference due to the error. However, in actuality, power corresponding to the loss due to the self-excited converter is required. Generally, the loss is about 5% of the self-excited converter capacity.
Further, the first self-excited converter 3-1 can be operated in the AC / DC operation at a voltage / current equal to or higher than that in the actual operation, and the current / voltage of the diode in parallel with the self-extinguishing element. This makes it possible to perform tests that are equivalent to or better than actual operation. Further, the second self-excited converter 3-2 can be operated at a voltage / current equal to or higher than that at the actual operation in the orthogonal operation, and the current / voltage of the self-extinguishing element can be changed to the actual operation. It is possible to perform tests that are equivalent to or better than. Here, the test is performed in consideration of the voltage fluctuation in the actual operation by controlling with the control reference value of the rated operation or more, for example, 105% to 110% of the rating. In this case, the control may be performed with the rated control reference value.
[0014]
Further, the roles of the first self-excited converter 3-1 and the second self-excited converter 3-2 are reversed, and the second self-excited converter 3-2 is subjected to the AC / DC conversion operation and the first self-excited conversion. If the device 3-1 is set to an orthogonal transform operation, a test equivalent to the actual operation is performed on the diode of the second self-excited converter 3-2 and the self-extinguishing element of the first self-excited converter 3-1. can do.
That is, by carrying out such a test, it is possible to apply a voltage and current equal to or higher than those in actual operation to the self-extinguishing element and the parallel diode, and to reduce the installed capacity and power used. This makes it possible to reduce the cost and achieve an economical test while achieving the verification purpose of the semiconductor elements constituting the self-excited converter.
In FIG. 1, the self-excited converter is described as a voltage-type self-excited converter. However, a current-type self-excited converter or a converter having another configuration can be used as long as the same test can be performed. I do not care. Although the three-phase bridge configuration is described, it goes without saying that the same test can be performed with a single-phase bridge or other bridge configurations. Furthermore, although the configuration of two converters is described, a configuration in which three or more converters are combined may be used. In addition, a self-excited converter that performs AC / DC conversion operation may be constant voltage control, and a self-excited converter that performs orthogonal conversion operation may be constant power control.
[0015]
Next, a second embodiment of the present invention will be described.
FIG. 2 is a test configuration diagram of the self-excited converter according to the second embodiment of the present invention, in which the AC terminals of the self-excited converter and the diode rectifier are respectively connected to the same AC bus via a transformer. The DC terminal is connected to the same DC bus. In this example, a diode rectifier will be described, but the same applies to other separately-excited converters such as a thyristor rectifier.
In FIG. 2, the AC side of the self-excited converter 3 is connected to the three-phase AC power source 1 connected to the AC bus via the first transformer 2-1, and the DC side of the self-excited converter 3. Is connected to a DC capacitor 4 and further to the DC side of a diode rectifier 8 to be described later. The AC side of the diode rectifier 8 is connected to the three-phase AC power source 1 connected to the same AC bus as the self-excited converter 3 via the second transformer 2-2, and the diode rectifier DC The side is connected to the DC side of the self-excited converter 3.
In this test configuration, when the self-excited converter 3 is subjected to orthogonal conversion operation, the diode rectifier 8 performs an operation of supplying DC power by AC / DC conversion, and the self-excited converter 3 has a current / voltage equal to or higher than that of the actual operation. Can drive.
[0016]
In such a configuration, the net test power can be tested with a small power corresponding to the power difference because the self-excited converter 3 regenerates the DC power of the diode rectifier 8 to the AC bus.
Specifically, a self-excited converter that performs AC / DC conversion operation has a polarity that is opposite to that of a diode rectifier and has a magnitude smaller than that of a diode rectifier when controlling the voltage of the DC capacitor 4 to be constant by constant power control. Control so that they are almost the same, and set the control reference value for constant power control at or above the rated operation.
As a result, the power required for the test is the power corresponding to the power difference due to the control error because the self-excited converter regenerates the DC power of the diode rectifier. However, in actuality, power corresponding to the loss due to the self-excited converter is required. Generally, the loss is about 5% of the self-excited converter capacity.
Furthermore, the self-excited converter 3 can be operated at a voltage / current equal to or higher than that at the actual operation in the orthogonal transformation operation, and the current / voltage of the self-extinguishing element is equal to or higher than the actual operation. Testing is possible. Here, the test is performed in consideration of the voltage fluctuation in the actual operation by controlling with the control reference value of the rated operation or more, for example, 105% to 110% of the rating. In this case, the control may be performed with the rated control reference value.
[0017]
Therefore, also in this embodiment, it is possible to apply a voltage / current equal to or higher than that in actual operation to the self-extinguishing element and the parallel diode, and to reduce the installed capacity and power consumption. This makes it possible to realize an economical test while achieving the verification purpose of the semiconductor elements constituting the self-excited converter.
Next, a third embodiment of the present invention will be described.
FIG. 3 is a test configuration diagram of the self-excited converter according to the third embodiment of the present invention. A self-excited converter configured by connecting two three-phase bridges with a transformer is connected via an AC bus. The configuration is connected to a three-phase AC power source.
In FIG. 3, the AC sides of the first three-phase bridge 9-1 and the second three-phase bridge 9-2 are respectively connected to the secondary windings of the transformer 2 in which the primary windings are connected in series. It is connected to a three-phase AC power source 1 connected to the bus, and the DC sides of the first three-phase bridge 9-1 and the second three-phase bridge 9-2 are connected to the same DC bus, A DC capacitor 4 is connected.
In this test configuration, the first three-phase bridge 9-1 connected to the transformer 2 is subjected to AC / DC conversion operation, and the remaining three-phase bridge 9-2 is subjected to orthogonal conversion operation. At this time, adjustment is made so that the power of the two three-phase bridges and the voltage of the DC bus are equal to or higher than those of the actual operation, and the operation power of the two three-phase bridges are substantially the same.
[0018]
When adjusted in this way, the net test power resulting from this test is equivalent to the difference between the power of the two three-phase bridges, and a small amount of power is sufficient.
Specifically, a three-phase bridge that performs AC / DC conversion operation is controlled so that the voltage of the DC capacitor 4 is constant by constant power control, and a three-phase bridge that performs orthogonal conversion operation is a transformer by constant voltage control. The voltage of 2 is controlled to be constant. At this time, the operation powers are controlled so that the polarities are opposite and the magnitudes are substantially the same, and the control reference values for constant power control and constant voltage control are set to be equal to or higher than the rated operation, respectively.
As a result, the power required for the test is controlled by each three-phase bridge so that the power is reversed and the magnitude is the same. It becomes electric power equivalent to the electric power difference by. However, in actuality, power corresponding to the loss due to the self-excited converter is required. Generally, the loss is about 5% of the self-excited converter capacity.
Further, the first three-phase bridge 9-1 can be operated at a voltage / current equal to or higher than that at the actual operation in the AC / DC conversion operation, and the current / voltage of the diode in parallel with the self-extinguishing element. This makes it possible to perform tests that are equivalent to or better than actual operation. In addition, the three-phase bridge 7-2 can be operated at a voltage / current equal to or higher than that at the actual operation in the orthogonal operation, and the current / voltage of the self-extinguishing element is equal to or higher than the actual operation. Testing is possible. Here, the test is performed in consideration of the voltage fluctuation in the actual operation by controlling with the control reference value of the rated operation or more, for example, 105% to 110% of the rating. In this case, the control may be performed with the rated control reference value.
[0019]
Further, the roles of the first three-phase bridge 7-1 and the second three-phase bridge 7-2 are reversed, and the second three-phase bridge 7-2 is subjected to AC / DC conversion operation, and the first three-phase bridge 7-1. Is a quadrature transformation operation, the diode equivalent to the actual operation can be tested for the diode of the second three-phase bridge 7-2 and the self-extinguishing element of the first three-phase bridge 7-1.
Therefore, also in this embodiment, it is possible to apply a voltage / current equal to or higher than that in actual operation to the self-extinguishing element and the parallel diode, and to reduce the installed capacity and power consumption. This makes it possible to realize an economical test while achieving the verification purpose of the semiconductor elements constituting the self-excited converter.
In FIG. 3, the self-excited converter is described as a voltage-type self-excited converter. However, a current-type self-excited converter or a converter having another configuration can be used as long as the same test can be performed. I do not care. Although the three-phase bridge configuration is described, it goes without saying that the same test can be performed with a single-phase bridge or other bridge configurations. Furthermore, although the example in which the self-excited converter is configured by two three-phase bridges has been described, a configuration in which three or more bridges are combined may be used. In addition, a self-excited converter in which two three-phase bridges are coupled by a transformer and the primary winding of the transformer is shown in series, but the transformer is individual for each bridge, The side may be a parallel configuration. Further, a three-phase bridge that performs AC / DC conversion operation may be constant voltage control, and a three-phase bridge that performs quadrature conversion operation may be constant power control.
[0020]
Next, a fourth embodiment of the present invention will be described.
FIG. 4 is a test configuration diagram of the self-excited converter according to the fourth embodiment of the present invention, in which two two-phase bridges are connected to a three-phase AC power source via an AC bus by an AC reactor.
In FIG. 4, the AC sides of the first three-phase bridge 9-1 and the second three-phase bridge 9-2 are connected to the first AC reactor 10-1 and the second AC reactor 10-2, respectively. It is connected to a three-phase AC power source 1 connected to the bus, and the DC sides of the first three-phase bridge 9-1 and the second three-phase bridge 9-2 are connected to the same DC bus, A DC capacitor 4 is connected.
That is, the difference from the third embodiment is that the first and second three-phase bridges constituting the self-excited converter are connected to a three-phase AC power source by an AC reactor instead of a transformer.
Even in this test configuration, the transformer is replaced with an AC reactor, but the first and second three-phase bridges 9-1 and 9-2 can be tested by the same operation as the third embodiment. It becomes.
Therefore, also in this embodiment, it is possible to apply a voltage / current equal to or higher than that in actual operation to the self-extinguishing element and the parallel diode, and to reduce the installed capacity and power consumption. This makes it possible to realize an economical test while achieving the verification purpose of the semiconductor elements constituting the self-excited converter.
[0021]
Next, a fifth embodiment of the present invention will be described.
FIG. 5 is a test configuration diagram of the self-excited converter according to the fifth embodiment of the present invention, and is a configuration of a self-excited converter in which three single-phase bridges are connected to an AC power source by a transformer.
In FIG. 5, the AC sides of the first single-phase bridge 3-U, the second single-phase bridge 3-V, and the third single-phase bridge 3-W are the first transformer 2-U and the second one, respectively. Connected to the transformer 2-V and the third transformer 2-W, and connected to the single-phase AC power supply 11 connected to the AC bus, the first single-phase bridge 3-U and the second single-phase The DC side of the bridge 3-V and the third single-phase bridge 3-W is connected to the same DC bus, and further a DC capacitor 4 is connected. Here, in actual operation, the transformers 2-U, 2-V, 2-W are connected to different AC bus phases, but are connected to one single-phase AC power source for testing. An example is shown. On the other hand, the DC terminal of each single-phase bridge is originally connected to the same DC bus in order to constitute a three-phase converter.
In this test configuration, the single-phase bridge 3-U connected to the transformer 2-U is operated AC / DC and the single-phase bridge 3-V is orthogonally converted. The power of the single-phase bridge 3-U and the voltage of the DC bus are about the same or higher than the actual operation, and the operating power of the single-phase bridge 3-V is the same as that of the single-phase bridge 3-U. Adjust so that When adjusted in this way, the net test power when performing this test is a power corresponding to the difference between the powers of a plurality of single-phase bridges, and a small power is sufficient.
[0022]
Specifically, a single-phase bridge that performs AC / DC conversion operation is controlled so that the voltage of the DC capacitor 4 is constant by constant power control, and a single-phase bridge that performs orthogonal conversion operation is a transformer with constant voltage control. The voltage of 2 is controlled to be constant. At this time, the operation powers are controlled so that the polarities are opposite and the magnitudes are substantially the same, and the control reference values for constant power control and constant voltage control are set to be equal to or higher than the rated operation, respectively. Further, the operation of the remaining single-phase bridge is stopped.
As a result, the power required for the test is controlled by each single-phase bridge so that the power is reversed and the magnitude is the same. It becomes electric power equivalent to the electric power difference by. However, in actuality, power corresponding to the loss due to the self-excited converter is required. Generally, the loss is about 5% of the self-excited converter capacity.
Further, the single-phase bridge 3-U can be operated in the AC / DC operation at a voltage / current equal to or higher than that in the actual operation, and the current / voltage of the diode in parallel with the self-extinguishing element can be actually operated. It is possible to perform tests that are equivalent to or better than. In addition, the single-phase bridge 3-V can be operated at a voltage / current equal to or higher than that in actual operation in orthogonal operation, and the current / voltage of the self-extinguishing element can be equal to or higher than that in actual operation. Testing is possible. Here, the test is performed in consideration of the voltage fluctuation in the actual operation by controlling with the control reference value of the rated operation or more, for example, 105% to 110% of the rating. In this case, the control may be performed with the rated control reference value.
[0023]
Moreover, if the test is performed by sequentially changing the roles of the single-phase bridges 3-U, 3-V, and 3-W, a test equivalent to the actual operation can be performed for the three single-phase bridges.
Therefore, also in this embodiment, it is possible to apply a voltage / current equal to or higher than that in actual operation to the self-extinguishing element and the parallel diode, and to reduce the installed capacity and power consumption. This makes it possible to realize an economical test while achieving the verification purpose of the semiconductor elements constituting the self-excited converter.
In FIG. 5, the self-excited converter is described as a voltage-type self-excited converter. However, a current-type self-excited converter or a converter having another configuration can be used as long as the same test can be performed. I do not care. Further, although an example in which the self-excited converter is configured by three single-phase bridges has been described, a configuration in which three or more single-phase bridges are combined may be employed. Furthermore, the converter comprised by the single phase bridge may be multiplexed with a transformer or the like. Moreover, although the single phase bridge | bridging shows the self-excited converter connected to AC power supply with the transformer, the case where it connects with a reactor may be sufficient. In addition, a single-phase bridge that performs AC / DC conversion operation may be constant voltage control, and a single-phase bridge that performs orthogonal conversion operation may be constant power control. Furthermore, although the example of stopping the operation of one single-phase bridge has been shown, one single-phase bridge is operated for AC / DC conversion at the rated value, and the other two single-phase bridges are operated at 50% of the rated value, respectively. You may do it. However, in this case, a single-phase bridge operated at 50% of the rating cannot be tested in the same manner as in actual operation.
[0024]
Next, a sixth embodiment of the present invention will be described.
FIG. 6 is a test configuration diagram of a self-excited converter according to a sixth embodiment of the present invention, in which a three-phase bridge self-excited converter is connected to an AC power supply via a reactor.
In FIG. 6, the three-phase bridge constituting the self-excited converter 3 is composed of three sets of arms UX, VY, WZ, and the AC terminal of the arm UX is a single phase via the first reactor 10-UX. The AC terminal of the AC power source 11 is connected to the AC terminal of the arm VY. The AC terminal of the arm VY is connected to the second terminal of the single-phase AC power source 11 via the second reactor 10-VY. Is connected to the second terminal of the single-phase AC power supply 11 through the reactor 10-WZ.
In this test configuration, the arm UX and the arm VY are regarded as a single-phase bridge and are subjected to an AC / DC conversion operation, while the arm UX and the arm WZ are regarded as another single-phase bridge and are subjected to a quadrature conversion operation. Adjustment is made so that the power handled by the arm VY and the power handled by the arm WZ are approximately equal to or higher than those of the actual operation, and the polarities of the operation powers of the two arms are reversed and the magnitudes are almost the same. With this adjustment, the net test power can be as small as the difference in power between the two arms.
[0025]
Specifically, a single-phase bridge that performs AC / DC conversion operation is controlled so that the voltage of the DC capacitor 4 is constant by constant power control, and a single-phase bridge that performs orthogonal conversion operation is a transformer with constant voltage control. The voltage of 2 is controlled to be constant. At this time, the operation powers are controlled so that the polarities are opposite and the magnitudes are substantially the same, and the control reference values for constant power control and constant voltage control are set to be equal to or higher than the rated operation, respectively. Furthermore, since the arm UX is shared by each single-phase bridge, the arm UX is fixedly switched, and the other arm VY and arm WZ of each single-phase bridge are controlled. Become.
As a result, the power required for the test is controlled by each single-phase bridge so that the power is reversed and the magnitude is the same. It becomes electric power equivalent to the electric power difference by. However, in actuality, power corresponding to the loss due to the self-excited converter is required. Generally, the loss is about 5% of the self-excited converter capacity.
Furthermore, with regard to the arm VY, the AC / DC operation can be performed at a voltage / current equal to or greater than that during actual operation, and the current / voltage of the diode in parallel with the self-extinguishing element is equal to or greater than that during actual operation. Testing is possible. In addition, the arm WZ can be operated with a voltage and current equal to or higher than those during actual operation in orthogonal operation, and a test in which the current and voltage of the self-extinguishing element is equal to or higher than in actual operation is possible. It becomes. Here, the test is performed in consideration of the voltage fluctuation in the actual operation by controlling with the control reference value of the rated operation or more, for example, 105% to 110% of the rating. In this case, the control may be performed with the rated control reference value.
[0026]
Also, by changing the connection of the three arms and changing the roles in sequence, a test equivalent to actual operation can be performed for all arms.
Therefore, also in the present embodiment, a voltage / current equal to or higher than that in actual operation can be applied to the self-extinguishing element and the parallel diode, and the installed capacity / power consumption can be reduced. Therefore, an economical test can be realized while achieving the verification purpose of the semiconductor elements constituting the self-excited converter.
In FIG. 6, the self-excited converter is described as a voltage-type self-excited converter, but a current-type self-excited converter or a converter having another configuration may be used as long as the same test can be performed. . Further, although an example in which the self-excited converter 3 is configured by one three-phase bridge is shown, even a configuration in which two or more bridges are combined may be sequentially tested for each bridge. Furthermore, although the self-excited converter in which the bridge is connected to the AC power supply by the reactor is shown, it may be connected by a transformer. In addition, a single-phase bridge that performs AC / DC conversion operation may be constant voltage control, and a single-phase bridge that performs orthogonal conversion operation may be constant power control.
Next, a seventh embodiment of the present invention will be described.
FIG. 7 is a test configuration diagram of the self-excited converter according to the seventh embodiment of the present invention. In particular, FIG. 7 is a configuration for conducting a current application test during AC / DC conversion operation. FIG. It is a test block diagram of the self-excited converter of 7 embodiment, It is a structure for performing the electric current application test at the time of orthogonal transformation driving | operation especially.
[0027]
In FIG. 7, the AC side of the self-excited converter 3 is connected to the AC bus via the transformer 2, and further connected to the three-phase AC power source 1 via the AC voltage regulator 12. Is short-circuited via a low impedance 13 such as a cable or shunt.
In such a test configuration, the AC voltage regulator 12 adjusts the AC voltage to be low, and the current flowing through the low impedance 13 is adjusted to be equal to or higher than the current during actual operation. 3 is AC / DC converted. By performing this operation, it is possible to verify the current-carrying capacity of the diode in parallel with the self-extinguishing element. Furthermore, since the test is performed at a low voltage, the power used is very small compared to the power during actual operation.
In FIG. 8, the AC side of the self-excited converter 3 is connected to the AC bus via the transformer 2 and further connected to the three-phase AC power source 1 via the AC voltage regulator 12. A DC power supply 14 is connected to the DC side of the device 3.
In such a test configuration, the output voltage of the DC power supply 14 was set low, and the current flowing through the AC voltage regulator 12 from the DC terminal via the bridge was adjusted to be equal to or higher than the current during actual operation. Do the driving. By performing this operation, it is possible to verify the energization capability of the self-extinguishing element. Furthermore, since the test is performed at a low voltage, the power used is very small compared to the power during actual operation.
[0028]
By carrying out a combination of such tests of AC / DC conversion operation and orthogonal conversion operation, it is possible to apply a current equal to or higher than that during actual operation to the self-extinguishing element and diode, and to use the installed capacity / It is possible to reduce the power consumption and achieve an economical test while achieving the verification purpose.
7 and 8, the self-excited converter is described as a voltage-type self-excited converter, but a current-type self-excited converter or a converter having another configuration can perform the same test. If it is okay. Although a three-phase bridge is used, it goes without saying that the same test can be performed with a single-phase bridge or other bridge configurations. Moreover, although the structure which short-circuits an alternating current terminal via a transformer is shown, you may short-circuit via a reactor.
[0029]
【The invention's effect】
As described above in detail, according to the present invention, a voltage / current equal to or higher than that in actual operation can be applied to the self-extinguishing element and the diode connected in parallel, and the installed capacity / power used. Thus, an economical test can be realized while achieving the verification purpose of the semiconductor element constituting the self-excited converter.
[Brief description of the drawings]
FIG. 1 is a test configuration diagram of a self-excited converter according to a first embodiment of the present invention.
FIG. 2 is a test configuration diagram of a self-excited converter according to a second embodiment of the present invention.
FIG. 3 is a test configuration diagram of a self-excited converter according to a third embodiment of the present invention.
FIG. 4 is a test configuration diagram of a self-excited converter according to a fourth embodiment of the present invention.
FIG. 5 is a test configuration diagram of a self-excited converter according to a fifth embodiment of the present invention.
FIG. 6 is a test configuration diagram of a self-excited converter according to a sixth embodiment of the present invention.
FIG. 7 is a test configuration diagram of a self-excited converter according to a seventh embodiment of the present invention.
FIG. 8 is a test configuration diagram of a self-excited converter according to a seventh embodiment of the present invention.
FIG. 9 is a test configuration diagram of a conventional self-excited converter.
FIG. 10 is a test configuration diagram of another conventional self-excited converter.
[Explanation of symbols]
1. Three-phase AC power supply
2, 2-1, 2-1, 2-U, 2-V, 2-W
3, 3-1, 3-2 ... Self-excited converter
3-U, 3-V, 3-W, single phase bridge
4, 4-1, 4-2 ... DC capacitors
8. Diode rectifier
9-1, 9-2 .. Three-phase bridge
10-1, 10-2, 10-VX, 10-VY, 10-WZ, reactor
11. Single phase AC power supply
12. ・ AC voltage regulator
13. Low impedance
14. DC power supply

Claims (5)

複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、
複数の交直・直交変換機能を有する自励式変換器の交流端子を同一の交流母線に接続し、該複数の自励式変換器の直流端子を同一の直流母線に接続して、いずれかの自励式変換器は交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、他のいずれかの自励式変換器は直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転する自励式変換器の運転電力と前記直交変換運転する自励式変換器の運転電力とが同程度になるように制御することを特徴とする自励式変換器の試験方法。
A self-excited converter test method for performing functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,
Connect the AC terminals of a plurality of self-excited converters having an AC / DC conversion function to the same AC bus, connect the DC terminals of the plurality of self-excited converters to the same DC bus, The converter performs AC / DC conversion operation so that the voltage / current stress of the self-extinguishing element during AC / DC conversion operation is equal to or higher than that of actual operation, and any other self-excited converter is self-extinguishing during orthogonal conversion operation. The orthogonal transformation operation is performed so that the voltage / current stress of the element becomes equal to or higher than the actual operation, and the operation power of the self-excited converter that performs the AC / DC conversion operation is the same as the operation power of the self-excited converter that performs the orthogonal conversion operation. A test method for a self-excited converter, characterized in that the control is performed to a degree.
複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、
直交変換機能を有する自励式変換器の交流端子と他励式変換器の交流端子を同一の交流母線に接続し、該自励式変換器と他励式変換器との直流端子を同一の直流母線に接続して、自励式変換器は直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記自励式変換器の運転電力と前記他励式変換器の運転電力とが同程度になるように制御することを特徴とする自励式変換器の試験方法。
A self-excited converter test method for performing functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,
Connect the AC terminal of the self-excited converter with orthogonal transform function and the AC terminal of the separately excited converter to the same AC bus, and connect the DC terminals of the self-excited converter and the separately excited converter to the same DC bus. The self-excited converter performs an orthogonal transform operation so that the voltage / current stress of the self-extinguishing element during the orthogonal transform operation is equal to or higher than that of the actual operation, and the operating power of the self-excited converter and the separately excited type A test method for a self-excited converter, characterized in that control is performed so that the operating power of the converter is approximately the same.
複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、
複数のブリッジから構成される自励式変換器の交流端子を同一の交流母線に接続し、いずれかのブリッジは交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、他のいずれかのブリッジは直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転するブリッジの運転電力と前記直交変換運転するブリッジの運転電力とが同程度になるように制御することを特徴とする自励式変換器の試験方法。
A self-excited converter test method for performing functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,
Connect the AC terminal of a self-excited converter consisting of multiple bridges to the same AC bus, and the voltage / current stress of the self-extinguishing element during AC / DC conversion operation will be equal to or higher than that of actual operation. The other bridge is a bridge that performs the orthogonal conversion operation so that the voltage / current stress of the self-extinguishing element during the orthogonal conversion operation is equal to or higher than that of the actual operation, and the AC / DC conversion operation. The self-excited converter testing method is characterized in that control is performed such that the operating power of the bridge and the operating power of the bridge that performs the orthogonal transform operation are approximately the same.
複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、
3台の単相ブリッジから構成される三相自励式変換器の単相ブリッジを同一の単相電源に接続し、いずれかの単相ブリッジは交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、他のいずれかの単相ブリッジは直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転する単相ブリッジの運転電力と前記直交変換運転する単相ブリッジの運転電力とが同程度になるように制御することを特徴とする自励式変換器の試験方法。
A self-excited converter test method for performing functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,
A single-phase bridge of a three-phase self-excited converter consisting of three single-phase bridges is connected to the same single-phase power source, and any single-phase bridge is the voltage / current of the self-extinguishing element during AC / DC conversion operation. AC-DC conversion operation is performed so that the stress is equal to or greater than that of actual operation, and any other single-phase bridge is orthogonal so that the voltage / current stress of the self-extinguishing element during orthogonal conversion operation is equal to or greater than that of actual operation. A test method for a self-excited converter, wherein the operation power of the single-phase bridge that performs the AC / DC conversion operation and the operation power of the single-phase bridge that performs the orthogonal conversion operation are controlled to be approximately the same as the conversion operation .
複数の自己消弧素子をブリッジ接続して構成される自励式変換器の機能検証を、当該自励式変換器の実運転に先立って行う自励式変換器の試験方法であって、
3組のアームから構成される三相自励式変換器の第1のアームの交流端子を単相電源の一方の端子に接続し、第2のアームの交流端子と第3のアームの交流端子を単相電源の他方の端子に接続し、第1のアームと第2のアームとを第1の単相ブリッジとみなし、第1のアームと第3 のアームとを第2 の単相ブリッジとみなし、第1 の単相ブリッジは交直変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように交直変換運転し、第2 の単相ブリッジは直交変換運転時の自己消弧素子の電圧・電流ストレスが実運転と同等以上になるように直交変換運転すると共に、前記交直変換運転する第1 の単相ブリッジの運転電力と前記直交変換運転する第2 の単相ブリッジの運転電力とが同程度になるように制御することを特徴とする自励式変換器の試験方法
A self-excited converter test method for performing functional verification of a self-excited converter configured by bridge-connecting a plurality of self-extinguishing elements, prior to actual operation of the self-excited converter,
Connect the AC terminal of the first arm of the three-phase self-excited converter composed of three sets of arms to one terminal of the single-phase power supply, and connect the AC terminal of the second arm and the AC terminal of the third arm. Connected to the other terminal of the single-phase power supply, the first arm and the second arm are regarded as the first single-phase bridge, and the first arm and the third arm are regarded as the second single-phase bridge The first single-phase bridge performs AC / DC conversion operation so that the voltage / current stress of the self-extinguishing element during AC / DC conversion operation is equal to or higher than that during actual operation, and the second single-phase bridge operates during self-extinguishing operation during quadrature conversion operation. The orthogonal transformation operation is performed so that the voltage / current stress of the arc extinguishing element is equal to or higher than that of the actual operation, and the operation power of the first single-phase bridge that performs the AC / DC conversion operation and the second single-phase bridge that performs the orthogonal transformation operation. Control so that the operating power of The method of testing self-commutated converter to symptoms.
JP2002262272A 2002-09-09 2002-09-09 Test method for self-excited transducer Expired - Lifetime JP4242619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262272A JP4242619B2 (en) 2002-09-09 2002-09-09 Test method for self-excited transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262272A JP4242619B2 (en) 2002-09-09 2002-09-09 Test method for self-excited transducer

Publications (2)

Publication Number Publication Date
JP2004104891A JP2004104891A (en) 2004-04-02
JP4242619B2 true JP4242619B2 (en) 2009-03-25

Family

ID=32262358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262272A Expired - Lifetime JP4242619B2 (en) 2002-09-09 2002-09-09 Test method for self-excited transducer

Country Status (1)

Country Link
JP (1) JP4242619B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141943A (en) * 2008-12-09 2010-06-24 Shindengen Electric Mfg Co Ltd Rectifier circuit
US20140063877A1 (en) * 2011-08-01 2014-03-06 Mitsubishi Electric Corporation Power conversion apparatus
JP5885601B2 (en) * 2012-06-27 2016-03-15 本田技研工業株式会社 Inspection device
CN105723233B (en) * 2014-03-07 2020-04-17 东芝三菱电机产业系统株式会社 Inverter test device
WO2018037499A1 (en) * 2016-08-24 2018-03-01 東芝三菱電機産業システム株式会社 Energization evaluation test device for input filter for pwm converter
KR101923690B1 (en) * 2016-11-11 2018-11-29 엘에스산전 주식회사 Synthetic test circuit for submodule performance test in a power compensator and testing method thereof
JP6456578B1 (en) * 2017-11-10 2019-01-23 三菱電機株式会社 Test system and test method for power converter
CN109188156A (en) * 2018-11-06 2019-01-11 威凡智能电气高科技有限公司 A kind of high pressure direct screening energy accumulation current converter modular testing platform and test circuit
CN111220859B (en) * 2018-11-23 2021-06-11 株洲中车时代电气股份有限公司 Converter power examination test system based on isolation transformer
TWI695177B (en) 2018-12-14 2020-06-01 財團法人船舶暨海洋產業研發中心 Electrical power converter full load test system and the test method thereof
CN116819201B (en) * 2023-06-12 2024-03-26 国网湖北省电力有限公司电力科学研究院 Device and method for testing composite function of energy storage converter in distributed new energy

Also Published As

Publication number Publication date
JP2004104891A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP6181132B2 (en) Power converter
WO2010116806A1 (en) Power conversion device
CN110266243B (en) Variable-speed power generation electric system
DK2806552T3 (en) Energy converter layout
JP4242619B2 (en) Test method for self-excited transducer
US5949221A (en) Line powered, primary side connected apparatus injecting voltage compensation into an electric power line using one transformer
WO2010121523A1 (en) Full load testing method of low power consumption for converter
CN106031012A (en) Converter for an ac system
Singh et al. Polygon-connected autotransformer-based 24-pulse AC–DC converter for vector-controlled induction-motor drives
KR101297080B1 (en) Half bridges multi-module converter using series compensation
JP5047210B2 (en) Power converter
Singh et al. Power quality improvements in isolated twelve-pulse AC-DC converters using delta/double-polygon transformer
JP2001047894A (en) Alternate current feeding device and control method for the same
JP3044119B2 (en) Power failure countermeasure device
CN114034971B (en) Method, system, device and medium for processing line fault in low-frequency power transmission system
JPH11187576A (en) Distributed power supply
US11671028B2 (en) AC-to-AC MMC with reduced number of converter arms
JP2000037078A (en) Multilevel power converter
JP4395669B2 (en) Three-phase rectifier
Giri et al. Transformer based Passive Neutral Current Compensation Techniques in Distributed Power Generation System
Chakraborty et al. Transformer Isolated Fault Tolerant Three Phase Active Front End Converter for EV Charging
JP3171488B2 (en) Transformer for cyclo converter
JP3071787B1 (en) Three-phase to single-phase converter.
Du et al. Load Flow under Power Converter Control Studies in MVDC Shipboard Power Systems
RU2037948C1 (en) Compensated ac-to-dc voltage changer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4242619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term