JP4241427B2 - Crystalline polymer - Google Patents

Crystalline polymer Download PDF

Info

Publication number
JP4241427B2
JP4241427B2 JP2004046216A JP2004046216A JP4241427B2 JP 4241427 B2 JP4241427 B2 JP 4241427B2 JP 2004046216 A JP2004046216 A JP 2004046216A JP 2004046216 A JP2004046216 A JP 2004046216A JP 4241427 B2 JP4241427 B2 JP 4241427B2
Authority
JP
Japan
Prior art keywords
crystal transition
temperature
butadiene
polymer
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004046216A
Other languages
Japanese (ja)
Other versions
JP2004277721A (en
Inventor
淳也 高橋
洋一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004046216A priority Critical patent/JP4241427B2/en
Publication of JP2004277721A publication Critical patent/JP2004277721A/en
Application granted granted Critical
Publication of JP4241427B2 publication Critical patent/JP4241427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、新規な物性を持つ固相状態で結晶転移する結晶性ポリマーに関する。   The present invention relates to a crystalline polymer having a novel physical property and undergoing crystal transition in a solid state.

固相状態で可逆的に結晶転移する結晶性ポリマーとして、トランス−1,4−ポリブタジエンが良く知られている。
固相状態で可逆的な結晶転移を生じる結晶性ポリマーは、結晶転移に伴う熱授受や体積変化現象を利用して、蓄熱材やPTC素子といった機能材料への応用が可能である。(例えば本出願人による特開2003―45704号公報(特許文献1)。)DSCで測定される昇温時の結晶転移温度は、蓄熱材として利用した場合における熱吸収温度やPTCに利用した場合の電気抵抗ジャンプ温度のような機能発現温度にあたり、また結晶転移エンタルピーは、蓄熱量等の機能の大きさに影響する。
Trans-1,4-polybutadiene is well known as a crystalline polymer that reversibly crystallizes in the solid phase.
A crystalline polymer that generates a reversible crystal transition in a solid phase can be applied to a functional material such as a heat storage material or a PTC element by utilizing heat transfer and volume change phenomenon accompanying the crystal transition. (For example, Japanese Patent Application Laid-Open No. 2003-45704 by the present applicant (Patent Document 1).) The crystal transition temperature at the time of temperature rise measured by DSC is a heat absorption temperature when used as a heat storage material or a PTC. And the crystal transition enthalpy affects the magnitude of the function such as the amount of heat storage.

例えば、Finterらによる報文(Makromol.Chem.誌 Vol.182 p1859-1874(1981))(非特許文献1)には、ブタジエンユニットのミクロ構造がトランス100%であり、結晶転移温度83℃、結晶転移熱量変化7.79kJ/mol(140J/g)のトランス−1,4−ポリブタジエンが開示されている。   For example, in a report by Finter et al. (Makromol. Chem. Vol. 182 p1859-1874 (1981)) (Non-patent Document 1), the microstructure of the butadiene unit is 100% transformer, the crystal transition temperature is 83 ° C., A trans-1,4-polybutadiene having a crystal transition heat value change of 7.79 kJ / mol (140 J / g) is disclosed.

また、Bautzらによる報文(Colloid and Polymer Scienece誌 Vol.259 No.7 P714-723(1981))(非特許文献2)には、結晶転移温度68℃(341K)、結晶転移熱量98J/gのトランス−1,4ポリブタジエンが記載されている。   Also, a report by Bautz et al. (Colloid and Polymer Scienece Vol.259 No.7 P714-723 (1981)) (Non-patent Document 2) includes a crystal transition temperature of 68 ° C. (341 K) and a crystal transition heat of 98 J / g. Of trans-1,4 polybutadiene is described.

また、本出願人による特開2000−230103号公報(特許文献2)には、トランス−1,4−ポリブタジエンと熱可塑性樹脂と主成分とする混合物及び蓄熱材料への応用が開示されている。   Japanese Patent Application Laid-Open No. 2000-230103 (Patent Document 2) by the present applicant discloses a mixture of trans-1,4-polybutadiene and a thermoplastic resin as main components and application to a heat storage material.

また、同じく本出願人による特開2001−81135号公報(特許文献3)には、特定の構造と物性をもち可逆的な相転移を示すトランス−1,4−ポリブタジエンが開示されている。
しかしながら上記の従来技術では、結晶転移温度が68℃以上に限定されるため、例えば蓄熱材として利用する場合、必要とされる熱源温度が高くなり、改良が求められていた。
Similarly, Japanese Patent Application Laid-Open No. 2001-81135 (Patent Document 3) by the present applicant discloses trans-1,4-polybutadiene having a specific structure and physical properties and showing a reversible phase transition.
However, in the above prior art, since the crystal transition temperature is limited to 68 ° C. or higher, for example, when it is used as a heat storage material, the required heat source temperature is increased, and improvement has been demanded.

また、Bermudezらによる報文(European Polymer Journal誌 Vol.8 p575-583(1972))(非特許文献3)には、結晶転移温度50〜52℃、結晶転移熱量変化48〜57.2J/gのトランス−1,4ポリブタジエンが記載されている。
しかしながら上記の従来技術では、結晶転移エンタルピー変化の低下が著しく、例えば蓄熱材として利用する場合、蓄熱性能そのものが低下し、改良が求められていた。
In addition, a report by Bermudez et al. (European Polymer Journal Vol.8 p575-583 (1972)) (Non-Patent Document 3) includes a crystal transition temperature of 50 to 52 ° C. and a crystal transition calorie change of 48 to 57.2 J / g. Of trans-1,4 polybutadiene is described.
However, in the above prior art, the change in crystal transition enthalpy is remarkably reduced. For example, when it is used as a heat storage material, the heat storage performance itself is lowered and improvement is required.

また、Antipovらによる報文(Macromol.Chem.Phys.誌 Vol.202, p82-89(2001))(非特許文献4)には、ポリブタジエンの1,4―トランス結合と1,2−ビニル結合の比を制御し、トランス結合の比率を98%以下とすることにより、結晶転移温度を低下(最低40℃)させた結晶性ポリブタジエンが開示されている。(ただし、数値化された相転移エンタルピー変化量は開示されていない。)
しかしながら上記の従来技術では、結晶転移温度の低下とともに融点が低下するため、機能発現温度とポリマーの流動温度が近くなり、密閉を必要としないという固体蓄熱材としての特徴が打消され、また蓄熱材として使用可能な環境温度にも制約を生じるため、改良が求められていた。
In addition, a report by Antipov et al. (Macromol. Chem. Phys. Vol. 202, p82-89 (2001)) (non-patent document 4) includes 1,4-trans bond and 1,2-vinyl bond of polybutadiene. A crystalline polybutadiene having a reduced crystal transition temperature (minimum of 40 ° C.) by controlling the ratio of the above and controlling the trans bond ratio to 98% or less is disclosed. (However, the quantified phase transition enthalpy change amount is not disclosed.)
However, in the above prior art, since the melting point decreases with a decrease in the crystal transition temperature, the function expression temperature and the polymer flow temperature become close, and the feature as a solid heat storage material that does not require sealing is negated, and the heat storage material As the environmental temperature that can be used as a restriction is also generated, improvement has been demanded.

また、本出願人による特開平9−268208号公報(特許文献4)には、トランス結合含有量が95mol%以上、重量平均分子量100万以下、ΔHtrが70J/g以上のトランス−1,4ポリブタジエンおよびそれを用いた蓄熱材が開示されており、特に結晶転移温度60℃において比較的高い相転移熱量92J/gを有する数平均分子量80万のポリマーが開示されている。   Japanese Patent Application Laid-Open No. 9-268208 (Patent Document 4) by the present applicant describes a trans-1,4 polybutadiene having a trans bond content of 95 mol% or more, a weight average molecular weight of 1 million or less, and ΔHtr of 70 J / g or more. And a heat storage material using the same, and in particular, a polymer having a number average molecular weight of 800,000 having a relatively high phase transition heat of 92 J / g at a crystal transition temperature of 60 ° C. is disclosed.

しかしながら上記の従来技術では、結晶転移温度が高いため改良が求められるか、あるいは結晶転移温度が低い場合には分子量が80万と高いために加工性が低く、改良が求められていた。   However, the above prior art requires improvement because the crystal transition temperature is high, or if the crystal transition temperature is low, the molecular weight is as high as 800,000, so the workability is low and improvement is required.

すなわち、従来技術では、結晶転移に伴う発熱量、結晶転移温度、融点、成形性などの諸性質が用途によって満足できない場合があり、改良が求められていた。   That is, in the prior art, there are cases where various properties such as calorific value, crystal transition temperature, melting point, moldability and the like accompanying crystal transition cannot be satisfied depending on the application, and improvement has been demanded.

また、ナッタらは、USP3407185(特許文献5)において、最大で71.3mol%のブタジエンユニットを含有し、かつブタジエンの長い連鎖とエチレンユニットが交互に存在し、かつブタジエンユニットのミクロ構造が最大95.3%のトランス結合を含有するブタジエンエチレン共重合体からなる結晶性ポリマーを開示している。
しかしながら、上記技術によるポリマーは、結晶転移特性を示すトランス−1,4−ポリブタジエンに由来する結晶成分が少なく、蓄熱材として用いる場合にはその特性が満足できるものでは無く、改良が望まれていた。
Natta et al. In US Pat. No. 3,407,185 (Patent Document 5) contains 71.3 mol% of butadiene units at the maximum, has long butadiene chains and ethylene units alternately, and has a microstructure of butadiene units of 95 at maximum. A crystalline polymer comprising a butadiene ethylene copolymer containing 3% trans bonds is disclosed.
However, the polymer according to the above technique has few crystal components derived from trans-1,4-polybutadiene exhibiting crystal transition characteristics, and when used as a heat storage material, the characteristics are not satisfactory, and improvement has been desired. .

特開2003―45704号公報Japanese Patent Laid-Open No. 2003-45704 特開2000−230103号公報JP 2000-230103 A 特開2001−81135号公報JP 2001-81135 A 特開平9−268208号公報Japanese Patent Laid-Open No. 9-268208 USP3407185USP 3407185 Makromol.Chem.誌 Vol.182 p1859-1874(1981)Makromol.Chem. Vol.182 p1859-1874 (1981) Colloid and Polymer Scienece誌 Vol.259 No.7 P714-723(1981)Colloid and Polymer Scienece Vol.259 No.7 P714-723 (1981) European Polymer Journal誌 Vol.8 p575-583(1972)European Polymer Journal Vol.8 p575-583 (1972) Macromol.Chem.Phys.誌 Vol.202, p82-89(2001)Macromol. Chem. Phys. Vol.202, p82-89 (2001)

従来技術による結晶性ポリマーは、相転移熱量が十分高い場合は結晶転移温度が高く、機能発現の温度が限定される。また逆に結晶性ポリマーで結晶転移温度が低い場合には、相転移熱量の低下が著しく蓄熱等の機能が劣るか、分子量が高くて加工性が悪く、あるいは融点が低くて使用条件に制約がある。このため、いずれかの面で物性の改良が求められていた。
本発明は、低い相転移温度、高い相転移熱量、高い加工性(低い分子量)の3要件のバランスを改善し、さらに高い融点を保持したポリマーを提供することを目的とする。
The crystalline polymer according to the prior art has a high crystal transition temperature when the phase transition heat quantity is sufficiently high, and the temperature of function expression is limited. On the other hand, when the crystalline transition temperature is low with a crystalline polymer, the phase transition heat amount is significantly decreased, the function of heat storage, etc. is inferior, the molecular weight is high and the processability is poor, or the melting point is low and the usage conditions are limited. is there. For this reason, improvement in physical properties has been demanded on either side.
An object of the present invention is to provide a polymer that improves the balance of the three requirements of low phase transition temperature, high phase transition heat, and high processability (low molecular weight), and further maintains a high melting point.

本発明は、ブタジエンとエチレンの共重合体であって、(A)GPCで測定される重量平均分子量が60万以下であり、
(B)固相状態で可逆結晶転移現象を示し、昇温時の結晶転移温度(Ttr)が67〜40℃であり、かつ、下式(1)
ΔHtr>2Ttr−40 (1)
(ただし、ΔHtrは結晶転移に伴う吸熱量の単位ポリマー量当たりの総量(J/g)、Ttrは10℃/分で昇温した場合の結晶転移に伴う吸熱ピークの最大値を示す温度(℃)であり、いずれも示差走査型熱量計で測定した値である。)
を満足し、
(C)融点(Tm)が120〜140℃であり、
(D)ブタジエンユニットのミクロ構造がトランス−1,4構造含量が97モル%以上であり、
(E)ブタジエンユニットとエチレンユニットの割合が93:7〜70:30であることを特徴とする結晶性ポリマーに関する。
The present invention is a copolymer of butadiene and ethylene , (A) the weight average molecular weight measured by GPC is 600,000 or less,
(B) shows a reversible crystal transition phenomenon in a solid state, a crystal transition temperature (Ttr) at a temperature rise of 67 to 40 ° C., and the following formula (1)
ΔHtr> 2Ttr-40 (1)
(However, ΔHtr is the total amount (J / g) of the endothermic amount associated with the crystal transition per unit polymer amount, and Ttr is the temperature indicating the maximum value of the endothermic peak associated with the crystal transition when the temperature is raised at 10 ° C./min (° All are values measured with a differential scanning calorimeter.)
Satisfied,
(C) Melting point (Tm) is 120-140 ° C ,
(D) The microstructure of the butadiene unit has a trans-1,4 structure content of 97 mol% or more,
(E) It is related with the crystalline polymer characterized by the ratio of a butadiene unit and an ethylene unit being 93: 7-70: 30 .

本発明は、固相転移現象を生じ、成形加工が容易で、低い結晶転移温度において結晶転移による熱授受量の大きな、新規な結晶性ポリマーを提供する。   The present invention provides a novel crystalline polymer that causes a solid phase transition phenomenon, is easy to mold, and has a large heat transfer amount due to crystal transition at a low crystal transition temperature.

本発明の固相状態で結晶転移する結晶性ポリマーは、
重量平均分子量が60万以下、好ましくは50万以下、特に好ましくは10万〜40万であり、
結晶転移温度(Ttr)が40〜67℃、好ましくは 40〜65℃、特に好ましくは 55〜65℃であり、かつ、
下式(1)
ΔHtr>2Ttr−40.....(1)
好ましくは
ΔHtr>2Ttr−35
(ただし、ΔHtrは結晶転移に伴う吸熱量の単位ポリマー量当たりの総量(J/g)、Ttrは10℃/分で昇温した場合の結晶転移に伴う吸熱ピークの最大値を示す温度(℃)であり、いずれも示差走査型熱量計で測定した値である。
を満足する。
The crystalline polymer that crystallizes in the solid phase of the present invention is:
The weight average molecular weight is 600,000 or less, preferably 500,000 or less, particularly preferably 100,000 to 400,000.
The crystal transition temperature (Ttr) is 40 to 67 ° C., preferably 40 to 65 ° C., particularly preferably 55 to 65 ° C., and
The following formula (1)
ΔHtr> 2Ttr-40. . . . . (1)
Preferably ΔHtr> 2Ttr−35
(However, ΔHtr is the total amount of the endotherm per unit polymer amount (J / g) associated with the crystal transition, and Ttr is the temperature (° C.) indicating the maximum endothermic peak associated with the crystal transition when the temperature is raised at 10 ° C./min. These are values measured with a differential scanning calorimeter.
Satisfied.

結晶性ポリマーの具体例としては、トランス−1,4−ポリブタジエン、ブタジエンとオレフィンの共重合体などが挙げられる。   Specific examples of the crystalline polymer include trans-1,4-polybutadiene, a copolymer of butadiene and olefin, and the like.

ブタジエンユニットのミクロ構造は、トランス−1,4結合の含量がIRスペクトル、あるいは1H−NMR、13C−NMR 等スペクトルからの算出で、トランス−1,4構造含量が、97モル% 以上、好ましくは98%以上である。   The microstructure of the butadiene unit has a trans-1,4 bond content calculated from an IR spectrum, or a spectrum such as 1H-NMR, 13C-NMR, etc., and the trans-1,4 structure content is 97 mol% or more, preferably 98% or more.

ブタジエンとオレフィンの共重合体の場合のオレフィンとしては、エチレン、プロピレン、ブテンなどが挙げられる。中でも、エチレンが好ましい。   Examples of the olefin in the case of a copolymer of butadiene and olefin include ethylene, propylene, and butene. Of these, ethylene is preferable.

該結晶性ポリマーがブタジエンとオレフィンの共重合体である場合のブタジエンユニットとオレフィンユニットの割合は、93:7〜70:30が好ましく、特に86:14〜75:25が好ましい。   When the crystalline polymer is a copolymer of butadiene and olefin, the ratio of the butadiene unit to the olefin unit is preferably 93: 7 to 70:30, and particularly preferably 86:14 to 75:25.

本発明の結晶ポリマーの特性として、結晶転移に伴う吸熱量(結晶転移熱量)ΔHtr(J/g)は、40〜160が好ましく、特に60〜150が好ましい。   As the characteristics of the crystalline polymer of the present invention, the endothermic amount (crystal transition heat amount) ΔHtr (J / g) accompanying crystal transition is preferably 40 to 160, particularly preferably 60 to 150.

結晶性ポリマーの融点(Tm)は100℃以上が好ましく、特に120〜140℃が好ましい。   The melting point (Tm) of the crystalline polymer is preferably 100 ° C. or higher, and particularly preferably 120 to 140 ° C.

結晶性ポリマーの融解熱量(ΔHf)(J/g)は、35〜60が好ましく、特に40〜55が好ましい。   The heat of fusion (ΔHf) (J / g) of the crystalline polymer is preferably 35-60, and particularly preferably 40-55.

重量平均分子量(Mw)が60万以下、好ましくは3万〜40万である。ここで重量平均分子量とは、スチレンを標準物質としゲル浸透クロマトグラフィ−(GPC)により、溶媒としてo−ジクロロベンゼンを用いて求めたものである。   The weight average molecular weight (Mw) is 600,000 or less, preferably 30,000 to 400,000. Here, the weight average molecular weight is obtained by gel permeation chromatography (GPC) using styrene as a standard substance and o-dichlorobenzene as a solvent.

数平均分子量(Mn)が20万以下、好ましくは1万〜10万である。   The number average molecular weight (Mn) is 200,000 or less, preferably 10,000 to 100,000.

分子量分布(Mw/Mn)は、2〜40が好ましく、3〜15が特に好ましい。   The molecular weight distribution (Mw / Mn) is preferably from 2 to 40, particularly preferably from 3 to 15.

本発明の結晶性ポリマーは、ペレット、薄板、金属板とのラミネ−ション、中空糸、構造体、キャストフィルム等への成形加工が可能である。ペレット、あるいは成形体等として熱媒体と接触させて使用される。また、相転移現象を示さない他のポリマーと混合して使用しても良い。   The crystalline polymer of the present invention can be molded into pellets, thin plates, lamination with metal plates, hollow fibers, structures, cast films and the like. It is used in contact with a heat medium as pellets or molded bodies. Moreover, you may mix and use with the other polymer which does not show a phase transition phenomenon.

本発明のトランス−1,4−ポリブタジエンは、(A)バナジウム化合物、(B)塩化アルキルアルミニウムからなる触媒を用いる重合によって製造することができる。   The trans-1,4-polybutadiene of the present invention can be produced by polymerization using a catalyst comprising (A) a vanadium compound and (B) an alkylaluminum chloride.

(A)バナジウム化合物触媒として、バナジウムトリアセチルアセトナ−ト、三塩化バナジウムTHF錯体、オキシ三塩化バナジウム、ナフテン酸バナジウム、バナジウムオキシアルコキシドなどのバナジウム化合物などが挙げられる。中でも、オキシ三塩化バナジウム(VOCl)が好ましい。 (A) Vanadium compound catalysts include vanadium compounds such as vanadium triacetylacetonate, vanadium trichloride THF complex, vanadium oxytrichloride, vanadium naphthenate, and vanadium oxyalkoxide. Among these, vanadium oxytrichloride (VOCl 3 ) is preferable.

(B)塩化アルキルアルミニウムとしては、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、メチルアルミニウムジクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライドなどが挙げられる。中でも、ジエチルアルミニウムクロライド(DEAC)およびエチルアルミニウムセスキクロライド(EASC)が好ましい。   Examples of (B) alkylaluminum chloride include dimethylaluminum chloride, diethylaluminum chloride, diisobutylaluminum chloride, methylaluminum dichloride, ethylaluminum sesquichloride, and ethylaluminum dichloride. Of these, diethylaluminum chloride (DEAC) and ethylaluminum sesquichloride (EASC) are preferable.

(A)成分と(B)成分の割合は、mol比にて 1 : 300 〜 10 :1 が好ましい。   The ratio of the component (A) to the component (B) is preferably 1: 300 to 10: 1 in terms of a molar ratio.

重合法として溶媒を用いて行う溶液重合、触媒を担体に担持して用いる気相重合、ブタジエンモノマ−を媒体とするバルク重合など採用できる。溶液重合で使用できる溶媒としては例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、クロロホルム、メチレンクロライド、ジクロロエタン、クロロベンゼンなどのハロゲン化炭化水素、ミネラルオイルなどが挙げられる。
α−オレフィンとの共重合である場合、α−オレフィンは重合初期のみに添加しても、連続的に供給しても良い。
As the polymerization method, solution polymerization performed using a solvent, gas phase polymerization using a catalyst supported on a carrier, bulk polymerization using a butadiene monomer as a medium, and the like can be employed. Examples of the solvent that can be used in the solution polymerization include aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, and halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethane, and chlorobenzene. And mineral oil.
In the case of copolymerization with an α-olefin, the α-olefin may be added only at the initial stage of polymerization or continuously supplied.

各々の重合方法においては、通常、重合時間が1分〜12時間、好ましくは5分〜2時間、重合温度が−10〜60℃、好ましくは0〜40℃で行うことができる。   In each polymerization method, the polymerization time is usually 1 minute to 12 hours, preferably 5 minutes to 2 hours, and the polymerization temperature is −10 to 60 ° C., preferably 0 to 40 ° C.

実施例において、「重合活性」とは、オキシ三塩化バナジウムVOCl3含有触媒のバナジウム金属成分1mmol当たりの生成ポリマ−の収量(g)である。 In the examples, “polymerization activity” is the yield (g) of polymer produced per 1 mmol of vanadium metal component of the catalyst containing vanadium oxytrichloride VOCl 3 .

「重量平均分子量」は以下のように求めた。スチレンを標準物質としWaters製150C型(カラムは昭和電工製ShodexHT−806M2本、プレカラムとしてShodexHT−800P1本を使用)のゲル浸透クロマトグラフィ−(GPC)により、溶媒o−ジクロロベンゼン、カラム温度135 ℃で、同一条件で標準ポリスチレンの測定を行い校正曲線を作成し校正して求めたGPC 曲線より求めたものを示す。   The “weight average molecular weight” was determined as follows. By gel permeation chromatography (GPC) of Waters 150C type using styrene as a standard substance (using 2 ShodexHT-806M columns manufactured by Showa Denko and 1 ShodexHT-800P as a precolumn), solvent o-dichlorobenzene at a column temperature of 135 ° C. The standard polystyrene is measured under the same conditions, and a calibration curve is created and calibrated to obtain the GPC curve.

「トランス−1,4結合の含量」および「オレフィン含有量」は、日本電子製EX−400を用いて測定したC13−NMRスペクトルにおける各ピークの強度比から算出した。 “Trans-1,4 bond content” and “olefin content” were calculated from the intensity ratio of each peak in the C 13 -NMR spectrum measured using EX-400 manufactured by JEOL.

「結晶相転移点」、「結晶相転移熱」は以下のように求めた。セイコーインスツルメンツ株式会社製SSC 5200の示差走査型熱量計(DSC)を用い、アルミ製サンプルパンに試料約5mgを入れシ−ルしたものを、窒素雰囲気下、250℃10分加熱することにより完全に融解させた後、−5℃/分で−30℃まで降温し再結晶化した。このポリマーを 10℃/分で昇温し、結晶転移に伴う吸熱ピークの最大値を示す温度を結晶転移温度、結晶転移による吸熱量の単位ポリマー量当りの総量を結晶転移熱量とした。また、結晶融解に伴う吸熱ピークの最大値を示す温度を融点、結晶融解に伴う吸熱量の単位ポリマー量当りの総量を融解熱量とした。   “Crystal phase transition point” and “crystal phase transition heat” were determined as follows. Using a differential scanning calorimeter (DSC) of SSC 5200 manufactured by Seiko Instruments Inc., a sample of about 5 mg placed in an aluminum sample pan and sealed was heated at 250 ° C. for 10 minutes in a nitrogen atmosphere. After melting, the temperature was lowered to −30 ° C. at −5 ° C./min for recrystallization. The temperature of this polymer was raised at 10 ° C./min, the temperature showing the maximum value of the endothermic peak accompanying the crystal transition was taken as the crystal transition temperature, and the total amount per unit polymer of the endotherm due to the crystal transition was taken as the crystal transition heat quantity. Further, the temperature showing the maximum value of the endothermic peak accompanying crystal melting was taken as the melting point, and the total amount per unit polymer of the endothermic quantity accompanying crystal melting was taken as the heat of fusion.

(実施例1)内容積15mlの小型加圧重合装置を十分に窒素置換した後、トルエン2mlを入れ,助触媒としてジエチルアルミニウムクロライド(DEAC)を0.05mmol(0.05Mトルエン溶液)を加えた後,0.4MPaのエチレンを導入、次いでブタジエン(Bd)2mlを加えた。反応容器内を35℃に加温した後,触媒としてオキシ三塩化バナジウム (VOCl3)を0.01mmol(0.01M)加え,重合を開始した。重合操作は、窒素雰囲気下,35℃で15分間,密閉系にて行った。エタノール6mlの注入により重合反応を停止した後、全反応液を15mlのエタノール(老化防止剤イルガノックス1076 100ppm添加物)中に加え,ポリマーを析出させ回収した。回収したポリマーは,エタノールで洗浄後,乾燥させた。 (Example 1) A small pressure polymerization apparatus having an internal volume of 15 ml was sufficiently purged with nitrogen, then 2 ml of toluene was added, and 0.05 mmol (0.05 M toluene solution) of diethylaluminum chloride (DEAC) was added as a co-catalyst. 0.4 MPa of ethylene was introduced and then 2 ml of butadiene (Bd) was added. After the inside of the reaction vessel was heated to 35 ° C., 0.01 mmol (0.01 M) of vanadium oxytrichloride (VOCl 3 ) was added as a catalyst to initiate polymerization. The polymerization operation was performed in a closed system at 35 ° C. for 15 minutes in a nitrogen atmosphere. After stopping the polymerization reaction by injecting 6 ml of ethanol, the whole reaction solution was added to 15 ml of ethanol (100 ppm additive of anti-aging agent Irganox 1076) to precipitate and collect the polymer. The recovered polymer was washed with ethanol and dried.

(実施例2,比較例1〜10)
エチレンの導入圧が異なる点を除き、実施例1と同様にして行った。
図1および図2に、実施例2のポリマーのC13NMRスペクトルおよびDSC昇温曲線を示す。
(Example 2, Comparative Examples 1-10)
The same procedure as in Example 1 was performed except that the introduction pressure of ethylene was different.
1 and 2 show the C 13 NMR spectrum and DSC temperature rise curve of the polymer of Example 2. FIG.

(実施例3)
DEAC導入後、ブタジエン導入の前に0.4MPaのエチレンを導入した後、重合中、全圧が一定となるようエチレンを供給した、すなわち消費量にほぼ相当する量のエチレンを連続的の供給した点以外は実施例1と同様にして行った。
(実施例4〜7)
実施例4と同様であるが,重合時間は5〜60min間行った。
(Example 3)
After DEAC introduction, ethylene of 0.4 MPa was introduced before butadiene introduction, and then ethylene was supplied so that the total pressure was constant during the polymerization, that is, ethylene was continuously supplied in an amount substantially corresponding to consumption. Except for this point, the same procedure as in Example 1 was performed.
(Examples 4 to 7)
As in Example 4, but the polymerization time was 5-60 min.

(実施例8〜10)
DEACを加えた,ブタジエンを加えて35℃に加温した後、その後0.4MPaのエチレンを導入。さらにVOClを加えた後エチレン分圧を所定圧力まで上げた後、エチレンを連続的に供給した点以外は、実施例4と同様にして行った。
(Examples 8 to 10)
After DEAC was added, butadiene was added and heated to 35 ° C, and then 0.4 MPa of ethylene was introduced. Further, after adding VOCl 3 , the ethylene partial pressure was increased to a predetermined pressure, and then ethylene was continuously supplied.

(実施例11、比較例11〜14)
エチレンの導入圧が異なる点を除き、実施例2と同様にして行った。
(Example 11, Comparative Examples 11-14)
The same operation as in Example 2 was performed except that the introduction pressure of ethylene was different.

(実施例12)内容量2Lの加圧重合装置を、内部にオキシ三塩化バナジウム(0.3mmol/0.2Mトルエン溶液)を封入したガラスアンプルを固定設置した後密閉した。同装置の内部を十分に窒素置換した後、トルエン800mlを導入し、ブタジエン200mlを加え,ついで助触媒であるジエチルアルミニウムクロリド(DEAC:1Mトルエン溶液)1.5mmolを加えた。反応容器内を35℃に加温した後,気相分圧0.2MPaのエチレンを導入して溶媒に飽和させた後、触媒ガラスアンプルを破砕することで重合を開始した。重合操作は,窒素雰囲気下,35℃で15分間,密閉式にて行った。
エタノール5mlの注入により重合反応を停止させた後,全反応溶液を1Lのエタノール(老化防止剤イルガノックス1076 700ppm添加物)中に加え,ポリマーを析出させ回収した。回収したポリマーは,エタノール洗浄後,乾燥させた。
(Example 12) A pressure polymerization apparatus having an internal volume of 2 L was sealed after a glass ampoule in which vanadium oxytrichloride (0.3 mmol / 0.2 M toluene solution) was sealed was fixedly installed. After sufficiently replacing the inside of the apparatus with nitrogen, 800 ml of toluene was introduced, 200 ml of butadiene was added, and then 1.5 mmol of diethylaluminum chloride (DEAC: 1 M toluene solution) as a cocatalyst was added. After the inside of the reaction vessel was heated to 35 ° C., ethylene having a gas phase partial pressure of 0.2 MPa was introduced and saturated with a solvent, and then polymerization was started by crushing the catalyst glass ampoule. The polymerization operation was carried out in a sealed manner in a nitrogen atmosphere at 35 ° C for 15 minutes.
After terminating the polymerization reaction by injecting 5 ml of ethanol, the entire reaction solution was added to 1 L of ethanol (additive of anti-aging agent Irganox 1076 700 ppm) to precipitate and collect the polymer. The recovered polymer was washed with ethanol and dried.

(比較例15〜18)
エチレンの導入圧が異なる点を除き、実施例12と同様にして行った。
(Comparative Examples 15-18)
The same procedure as in Example 12 was performed except that the ethylene introduction pressure was different.

(実施例13)
有機アルミニウム助触媒として、DEACのかわりにエチルアルミニウムセスキクロリド(EASC)を用いた点を除き、比較例18と同様にして行った。
(Example 13)
The same procedure as in Comparative Example 18 was performed except that ethylaluminum sesquichloride (EASC) was used in place of DEAC as the organoaluminum promoter.

(比較例19)
エチレンの導入圧が異なる点を除き、実施例13と同様にして行った。
(Comparative Example 19)
The same procedure as in Example 13 was performed except that the ethylene introduction pressure was different.

上記の実施例の条件と結果をまとめて表1〜3に示した。 The conditions and results of the above examples are summarized in Tables 1 to 3.

Figure 0004241427
Figure 0004241427

Figure 0004241427
Figure 0004241427

Figure 0004241427
Figure 0004241427

図1は本発明の実施例2のポリマーのC13NMRスペクトルを示す。FIG. 1 shows the C 13 NMR spectrum of the polymer of Example 2 of the present invention. 図2は本発明の実施例2のポリマーのDSC昇温曲線を示す。FIG. 2 shows a DSC temperature rise curve of the polymer of Example 2 of the present invention.

Claims (1)

ブタジエンとエチレンの共重合体であって、(A)GPCで測定される重量平均分子量が60万以下であり、
(B)固相状態で可逆結晶転移現象を示し、昇温時の結晶転移温度(Ttr)が67〜40℃であり、かつ、下式(1)
ΔHtr>2Ttr−40 (1)
(ただし、ΔHtrは結晶転移に伴う吸熱量の単位ポリマー量当たりの総量(J/g)、Ttrは10℃/分で昇温した場合の結晶転移に伴う吸熱ピークの最大値を示す温度(℃)であり、いずれも示差走査型熱量計で測定した値である。)
を満足し、
(C)融点(Tm)が120〜140℃であり、
(D)ブタジエンユニットのミクロ構造がトランス−1,4構造含量が97モル%以上であり、
(E)ブタジエンユニットとエチレンユニットの割合が93:7〜70:30であることを特徴とする結晶性ポリマー。
A copolymer of butadiene and ethylene , (A) the weight average molecular weight measured by GPC is 600,000 or less,
(B) shows a reversible crystal transition phenomenon in a solid state, a crystal transition temperature (Ttr) at a temperature rise of 67 to 40 ° C., and the following formula (1)
ΔHtr> 2Ttr-40 (1)
(However, ΔHtr is the total amount (J / g) of the endothermic amount associated with the crystal transition per unit polymer amount, and Ttr is the temperature indicating the maximum value of the endothermic peak associated with the crystal transition when the temperature is raised at 10 ° C./min (° All are values measured with a differential scanning calorimeter.)
Satisfied,
(C) Melting point (Tm) is 120-140 ° C ,
(D) The microstructure of the butadiene unit has a trans-1,4 structure content of 97 mol% or more,
(E) A crystalline polymer, wherein the ratio of butadiene units to ethylene units is 93: 7 to 70:30 .
JP2004046216A 2003-02-24 2004-02-23 Crystalline polymer Expired - Fee Related JP4241427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046216A JP4241427B2 (en) 2003-02-24 2004-02-23 Crystalline polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003046355 2003-02-24
JP2004046216A JP4241427B2 (en) 2003-02-24 2004-02-23 Crystalline polymer

Publications (2)

Publication Number Publication Date
JP2004277721A JP2004277721A (en) 2004-10-07
JP4241427B2 true JP4241427B2 (en) 2009-03-18

Family

ID=33301689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046216A Expired - Fee Related JP4241427B2 (en) 2003-02-24 2004-02-23 Crystalline polymer

Country Status (1)

Country Link
JP (1) JP4241427B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557642B2 (en) * 2010-07-30 2014-07-23 株式会社ブリヂストン Copolymer of conjugated diene compound and non-conjugated olefin
CN103140521B (en) 2010-07-30 2015-07-01 株式会社普利司通 Method for controlling chain structure in copolymers
JP5823674B2 (en) * 2010-07-30 2015-11-25 株式会社ブリヂストン Copolymer of conjugated diene compound and non-conjugated olefin
JP5612512B2 (en) * 2011-02-28 2014-10-22 株式会社ブリヂストン Rubber composition, crosslinked rubber composition, and tire
RU2553474C1 (en) 2011-06-02 2015-06-20 Бриджстоун Корпорейшн Copolymer, rubber mixture, cross-linked rubber mixture and tyre
JP5917886B2 (en) * 2011-11-04 2016-05-18 株式会社ブリヂストン Conjugated diene polymers
KR102052439B1 (en) * 2016-03-11 2019-12-05 제이에스알 가부시끼가이샤 Process for producing copolymer, process for preparing polymer composition and process for preparing crosslinked polymer

Also Published As

Publication number Publication date
JP2004277721A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP5640994B2 (en) Cyclopentene ring-opening polymer and process for producing the same
JP4241427B2 (en) Crystalline polymer
CN113480690B (en) Multipolymer and preparation method thereof
JPH0580493B2 (en)
JP2684696B2 (en) Unsaturated ethylene-α-olefin random copolymer and composition thereof
WO2009128545A1 (en) Cyclized isoprene polymer, alicyclic polymer and optical resin
JP2005272521A (en) Butadiene-isoprene copolymer
Xie et al. Synthesis and properties of bromide‐functionalized poly (isobutylene‐co‐p‐methylstyrene) random copolymer
JPWO2016158677A1 (en) Cycloolefin ring-opening copolymer and process for producing the same
JP3709613B2 (en) Heat storage material
JP4207814B2 (en) Method for producing trans-1,4-polybutadiene
JP5422274B2 (en) Process for producing olefin-aromatic polyene copolymer
KR102353554B1 (en) Copolymer, polymer composition, and crosslinked polymer
KR20090128926A (en) Method for preparing cyclic olefin polymer
JP2004346310A (en) Polybutadiene modified material
JPS63150307A (en) Hexene-1/4-methylpentene-1 random copolymer
KR101910345B1 (en) α-Olefinic Copolymer Compositions
JP4389646B2 (en) Method for adjusting molecular weight of trans-1,4-polybutadiene
JP3050196B2 (en) Norbornene ring-opening polymer
CN114516929B (en) Ethylene copolymer, process for producing the same, composition and crosslinked polymer, and tire
JP2004359704A (en) Transparent norbornene resin having excellent heat resistance
JP2005264056A (en) Method for producing trans-1,4-polybutadiene
JP2005120313A (en) Method for controlling molecular weight of trans-1,4-polybutadiene
JP2008214416A (en) 5-methyl-5-phenyl-bicyclo[2.2.1]hept-2-ene composition
JP2004359886A (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees