JPH0580493B2 - - Google Patents

Info

Publication number
JPH0580493B2
JPH0580493B2 JP60259834A JP25983485A JPH0580493B2 JP H0580493 B2 JPH0580493 B2 JP H0580493B2 JP 60259834 A JP60259834 A JP 60259834A JP 25983485 A JP25983485 A JP 25983485A JP H0580493 B2 JPH0580493 B2 JP H0580493B2
Authority
JP
Japan
Prior art keywords
ethylene
olefin
weight
component
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60259834A
Other languages
Japanese (ja)
Other versions
JPS62121711A (en
Inventor
Toshuki Tsutsui
Akinori Toyoda
Norio Kashiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP25983485A priority Critical patent/JPS62121711A/en
Publication of JPS62121711A publication Critical patent/JPS62121711A/en
Publication of JPH0580493B2 publication Critical patent/JPH0580493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は低結晶性エチレン系ランダム共重合体
に関する。さらに詳しくは、分子量分布および組
成分布が狭く且つ透明性、表面非粘着性および力
学物性に優れた低結晶性のエチレン系ランダム共
重合体に関する。 〔従来の技術〕 従来、エチレン・プロピレン・非共役ジエン共
重合ゴムなどの低結晶性エチレン・α−オレフイ
ン・非共役ポリエン共重合体は耐候性および耐熱
性が要求される弾性重合体の成形用途または種々
の樹脂用改質剤などの用途に需要はますます拡大
しつつある。その製造方法としては、チタン化合
物と有機アルミニウム化合物からなるチタン系触
媒またはバナジウム化合物と有機アルミニウム化
合物からなるバナジウム系触媒の存在下に、エチ
レン、α−オレフインおよび非共役ポリエンを共
重合する方法が知られている。チタン系触媒で得
られる低結晶性エチレン・α−オレフイン・非共
役ポリエン共重合体は一般にランダム共重合性に
劣り、分子量分布および組成分布が広く、かつ透
明性、表面非粘着および力学物性が劣つている。
また、バナジウム系触媒で得られる低結晶性エチ
レン・α−オレフイン・非共役ポリエン共重合体
はチタン系触媒で得られるそれにくらべてランダ
ム共重合性が向上し、分子量分布および組成分布
が狭くなりかつ透明性、表面非粘着性、力学物性
はかなり改善されるが、これらの性能が厳しく要
求される用途にはなお不充分であり、さらにこれ
らの性能の改善された低結晶性エチレン・α−オ
レフイン・非共役ポリエン共重合体が要求されて
いる。 一方、新しいチーグラー型オレフイン重合触媒
としてジルコニウム化合物およびアルミノオキサ
ンからなる触媒が次の一連の先行技術文献に提案
されている。しかし、これらの先行技術文献には
いずれにも低結晶性エチレン・α−オレフイン・
非共役ポリエン共重合体を具体的に示唆する記載
は存在しない。 特開昭58−19309号公報には下記式 (シクロペンタジエニル)2MeRHal ここで、Rはシクロペンタジエニル、C1〜C6
−アルキル、ハロゲンであり、Meは遷移金属で
あり、Halはハロゲンである、 で表わされる遷移金属含有化合物と、下記式 Al2OR4(Al(R)−O)o ここで、Rはメチル又はエチルであり、nは4
〜20の数である、 で表わされる線状アルミノキサン又は下記式 (Al(R)−O)o+2 ここで、Rおよびnの定義は上記に同じであ
る、 で表わされる環状アルミノキサンとから成る触媒
の存在下、エチレン及びC3〜C12のα−オレフイ
ンの1種又は2種以上を−50℃〜200℃の温度で
重合させる方法が記載されている。同公報には、
得られるポリエチレンの密度を調節するには、10
重量%までの少量の幾分長鎖のα−オレフイン又
は混合物の存在下でエチレンの重合を行うべきこ
とが記載されている。 特開昭59−95292号公報には、下記式
[Industrial Field of Application] The present invention relates to a low-crystalline ethylene random copolymer. More specifically, the present invention relates to a low-crystalline ethylene-based random copolymer that has a narrow molecular weight distribution and composition distribution, and is excellent in transparency, surface non-adhesion, and mechanical properties. [Prior art] Conventionally, low-crystalline ethylene/α-olefin/non-conjugated polyene copolymers such as ethylene/propylene/non-conjugated diene copolymer rubber have been used for molding elastic polymers that require weather resistance and heat resistance. Demand is also increasing for applications such as modifiers for various resins. A known method for producing it is to copolymerize ethylene, α-olefin, and non-conjugated polyene in the presence of a titanium-based catalyst consisting of a titanium compound and an organoaluminum compound or a vanadium-based catalyst consisting of a vanadium compound and an organoaluminum compound. It is being Low-crystalline ethylene/α-olefin/nonconjugated polyene copolymers obtained with titanium-based catalysts generally have poor random copolymerizability, wide molecular weight distribution and composition distribution, and poor transparency, surface non-adhesion, and mechanical properties. It's on.
In addition, the low-crystalline ethylene/α-olefin/nonconjugated polyene copolymer obtained with a vanadium-based catalyst has improved random copolymerizability, narrower molecular weight distribution and compositional distribution, and narrower molecular weight and composition distributions than those obtained with a titanium-based catalyst. Although transparency, surface non-adhesiveness, and mechanical properties are considerably improved, these properties are still insufficient for applications where these properties are strictly required. - Non-conjugated polyene copolymers are required. On the other hand, a catalyst comprising a zirconium compound and an aluminoxane has been proposed as a new Ziegler type olefin polymerization catalyst in the following series of prior art documents. However, none of these prior art documents contain low-crystalline ethylene, α-olefin,
There is no description specifically suggesting a non-conjugated polyene copolymer. JP-A-58-19309 describes the following formula (cyclopentadienyl) 2 MeRHal where R is cyclopentadienyl, C 1 to C 6
- alkyl, halogen, Me is a transition metal, Hal is a halogen, and a transition metal-containing compound represented by the following formula Al 2 OR 4 (Al(R)-O) o , where R is methyl or ethyl and n is 4
consisting of a linear aluminoxane represented by the number ~20 or a cyclic aluminoxane represented by the following formula (Al(R)-O) o+2 , where the definitions of R and n are the same as above. A method is described in which ethylene and one or more C3 to C12 α-olefins are polymerized at temperatures from -50°C to 200°C in the presence of a catalyst. In the same bulletin,
To adjust the density of the resulting polyethylene, 10
It is stated that the polymerization of ethylene should be carried out in the presence of small amounts of up to % by weight of somewhat long-chain alpha-olefins or mixtures. In Japanese Patent Application Laid-open No. 59-95292, the following formula is

【式】 ここで、nは2〜40であり、RはC1〜C6アル
キルである、 で表わされる線状アルミノキサンおよび下記式
[Formula] Here, n is 2 to 40, and R is C 1 to C 6 alkyl.

【式】 ここでnおよびRの定義は上記に同じである、 で表わされる環状アルミノキサンの製造法に関す
る発明が記載されている。同公報には、同製造法
により製造された例えばメチルアルミノキサンと
チタン又はジルコニウムのビス(シクロペンタジ
エニル)化合物とを混合して、オレフインの重合
を行うと、1gの遷移金属当り且つ1時間当り、
25百万g以上のポリエチレンが得られると記載さ
れている。 特開昭60−35005号公報には、下記式
[Formula] Here, the definitions of n and R are the same as above, and an invention relating to a method for producing a cyclic aluminoxane represented by the following is described. The publication states that when olefin polymerization is performed by mixing, for example, methylaluminoxane produced by the same production method with a titanium or zirconium bis(cyclopentadienyl) compound, the amount of olefin produced per gram of transition metal and per hour is ,
It is stated that more than 25 million g of polyethylene can be obtained. In Japanese Patent Application Laid-open No. 60-35005, the following formula is

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は新規な低結晶性エチレン系ラン
ダム共重合体を提供することにある。 本発明の他の目的は分子量分布および組成分布
が狭く、透明性、表面非粘着性および力学物性に
優れた且つ低結晶性のエチレン系ランダム共重合
体を提供することにある。 本発明のさらに他の目的は例えば破断点応力、
破断点伸び、の如き力学特性において優れた低結
晶性のエチレン系ランダム共重合体を提供するこ
とにある。 本発明のさらに他の目的および利点は以下の説
明から明らかとなろう。 〔問題点を解決するための手段および作用〕 本発明のかかる目的および利点は、エチレン、
炭素原子数3〜10のα−オレフインおよび炭素原
子数が5〜20の非共役ポリエンからの低結晶性エ
チレン系ランダム共重合体であつて、 (a) エチレン成分の含有率が50〜95モル%の範囲
にあり、α−オレフイン成分の含有率が5〜50
モル%の範囲にあり、そして非共役ポリエン成
分の含有率がゼロモル%ではなく5モル%以下
であり、 (b) 135℃のデカリン中で測定した極限粘度[η]
が0.5〜10dl/gの範囲にあり、 (c) ゲルパーミエーシヨンクロマトグラフイーで
求めた分子量分布(w/n)が3以下であ
り、 (d) X−線回折法で求めた結晶化度が30%以下で
あり、 (e) 下記式() B≡POE/2PO・PE ……() 〔式中、PEは共重合体中の非共役ポリエン
成分に由来するエチレン成分をエチレン成分の
含有モル分率を示し、POはα−オレフイン成
分の含有モル分率を示し、POEは全dyad連鎖の
α−オレフイン・エチレン連鎖のモル分率を示
す〕 で表わされるB値が、下記式() 1.00≦B≦2 ……() を満足する範囲にあり、そして (f) 13C−NMRスペクトル中には、共重合体主
鎖中の隣接した2個の3級炭素原子間のメチレ
ン連鎖に基づくαβおよびβγのシグナルが観測
されない、 (g) 沸騰酢酸メチル可溶部が2.0重量%以下であ
る ことを特徴とする低結晶性エチレン系ランダム共
重合体によつて達成される。 上記本発明の低結晶性エチレン系ランダム共重
合体は、 (A) 共役π電子を有する基を配位子としたジルコ
ニウムハイドライド化合物、および (B) アルミノオキサン から成る触媒の存在下に、エチレン、炭素原子数
3〜10のα−オレフインおよび炭素原子数5〜20
の非共役ポリエンを共重合せしめる方法によつて
製造することができる。 上記共役π電子を有する基を配位子としたジル
コニウムハイドライド化合物(A)は、例えば下記式
() R1R2R3ZrH ……() ここで、R1はシクロアルカジエニル基を示し、
R2およびR3はシクロアルカジエニル基、アリー
ル基、アルキル基、ハロゲン原子または水素原子
である、 で示される化合物である。 シクロアルカジエニル基は、例えばシクロペン
タジエニル基、メチルシクロペンタジエニル基、
エチルシクロペンタジエニル基、ジメチルシクロ
ペンタジエニル基、インデニル基、テトラヒドロ
インデニル基等である。R2およびR3のアルキル
基としては例えばメチル基、エチル基、プロピル
基、イソプロピル基、ブチル基などを例示するこ
とができ、アリール基としては、例えば、フエニ
ル基、ベンジル基、ネオフイル基などを例示する
ことができ、ハロゲン原子としてはフツ素、塩
素、臭素などを例示することができる。該ジルコ
ニウムハイドライド化合物としては次の化合物を
例示することができる。 ビス(シクロペンタジエニル)ジルコニウムモ
ノクロリドモノハイドライド、 ビス(シクロペンタジエニル)ジルコニウムモ
ノブロミドモノハイドライド、 ビス(シクロペンタジエニル)メチルジルコニ
ウムハイドライド、 ビス(シクロペンタジエニル)エチルジルコニ
ウムハイドライド、 ビス(シクロペンタジエニル)シクロヘキシル
ジルコニウムハイドライド、 ビス(シクロペンタジエニル)フエニルジルコ
ニウムハイドライド、 ビス(シクロペンタジエニル)ベンジルジルコ
ニウムハイドライド、 ビス(シクロペンタジエニル)ネオペンチルジ
ルコニウムハイドライド、 ビス(メチルシクロペンタジエニル)ジルコニ
ウムモノクロリドモノハイドライド、 ビスインデニルジルコニウムモノクロリドモノ
ハイドライド、 上記ジルコニウムハイドライド化合物はそのま
ま使用しても差支えないが、ビス(シクロペンタ
ジエニル)ジルコニウムモノクロリドモノハイド
ライドのようなトルエン等の溶媒に難溶な化合物
は有機アルミニウム化合物と接触させた後使用す
ることが好ましい。この操作により、溶媒難溶の
ジルコニウムハイドライド化合物を溶媒易溶とす
ることができる。 上記ジルコニウムハイドライド化合物と接触さ
せる有機アルミニウム化合物は具体的には、トリ
メチルアルミニウム、トリエチルアルミニウム、
トリブチルアルミニウムなどのトリアルキルアル
ミニウム、トリイソプレニルアルミニウムのよう
なトリアルケニルアルミニウム、ジメチルアルミ
ニウムメトキシドジエチルアルミニウムエトキシ
ド、ジブチルアルミニウムブトキシドなどのジア
ルキルアルミニウムアルコキシド、メチルアルミ
ニウムセスキメトキシド、エチルアルミニウムセ
スキエトキシドなどのアルキルアルミニウムセス
キアルコキシドのほかに、R1 2.5Al(OR20.5などで
表わされる平均組成を有する部分的にアルコキシ
化されたアルキルアルミニウム、ジメチルアルミ
ニウムクロリド、ジエチルアルミニウムクロリ
ド、ジメチルアルミニウムブロミドのようなジア
ルキルアルミニウムハライド、メチルアルミニウ
ムセスキクロリド、エチルアルミニウムセスキク
ロリドのようなアルキルアルミニウムセスキハラ
イド、メチルアルミニウムジクロリド、エチルア
ルミニウムジクロリドのようなアルキルアルミニ
ウムジハライドなどの部分的にハロゲン化された
アルキルアルミニウムなどを例示できる。 両者化合物の反応は光をしや断し、炭化水素媒
体中で行うのが好ましく、有機アルミニウム化合
物とジルコニウム化合物の混合モル比(Al/Zr)
は0.5ないし30、好ましくは1ないし20とし、ジ
ルコニウムの濃度は液相1当り0.001ないし1
モル、好ましくは0.005ないし0.1モル程度に保
ち、反応温度を0ないし120℃程度とし両者を接
触させればよい。上記炭化水素媒体としては、後
記重合用溶媒として例示したものから選択するこ
とができる。 上記方法において使用される触媒構成成分のア
ルミノオキサン(B)として具体的には、一般式
()又は一般式()
An object of the present invention is to provide a novel low-crystalline ethylene random copolymer. Another object of the present invention is to provide an ethylene-based random copolymer that has a narrow molecular weight distribution and composition distribution, is excellent in transparency, surface non-adhesion, and mechanical properties, and has low crystallinity. Still another object of the present invention is, for example, stress at break,
The object of the present invention is to provide a low-crystalline ethylene-based random copolymer that is excellent in mechanical properties such as elongation at break. Further objects and advantages of the present invention will become apparent from the description below. [Means and effects for solving the problems] The objects and advantages of the present invention are that ethylene,
A low-crystalline ethylene-based random copolymer from an α-olefin having 3 to 10 carbon atoms and a nonconjugated polyene having 5 to 20 carbon atoms, the content of which is (a) ethylene component 50 to 95 moles; %, and the content of α-olefin component is 5 to 50%.
(b) the intrinsic viscosity [η] measured in decalin at 135°C;
is in the range of 0.5 to 10 dl/g, (c) the molecular weight distribution (w/n) determined by gel permeation chromatography is 3 or less, and (d) the crystallization rate determined by X-ray diffraction method. (e) The following formula () B≡P OE /2P O・P E ... () [In the formula, P E is the ethylene component derived from the non-conjugated polyene component in the copolymer. represents the molar fraction of the ethylene component, P O represents the molar fraction of the α-olefin component, and P OE represents the molar fraction of the α-olefin/ethylene chain in all dyad chains. The value is in a range that satisfies the following formula () 1.00≦B≦2 ... (), and (f) the 13 C-NMR spectrum shows that two adjacent tertiary groups in the copolymer main chain (g) A low-crystalline ethylene-based random copolymer characterized by having a boiling methyl acetate soluble portion of 2.0% by weight or less, in which αβ and βγ signals based on methylene chains between carbon atoms are not observed. achieved. The low-crystalline ethylene-based random copolymer of the present invention is produced by producing ethylene in the presence of a catalyst consisting of (A) a zirconium hydride compound having a group having conjugated π electrons as a ligand, and (B) aluminoxane. , α-olefins having 3 to 10 carbon atoms and 5 to 20 carbon atoms
It can be produced by a method of copolymerizing non-conjugated polyenes. The zirconium hydride compound (A) having the above-mentioned group having conjugated π electrons as a ligand can be prepared, for example, by the following formula () R 1 R 2 R 3 ZrH ... () where R 1 represents a cycloalkadienyl group. ,
R 2 and R 3 are a cycloalkadienyl group, an aryl group, an alkyl group, a halogen atom, or a hydrogen atom. The cycloalkadienyl group is, for example, a cyclopentadienyl group, a methylcyclopentadienyl group,
These include ethylcyclopentadienyl group, dimethylcyclopentadienyl group, indenyl group, and tetrahydroindenyl group. Examples of the alkyl group for R 2 and R 3 include a methyl group, ethyl group, propyl group, isopropyl group, butyl group, and examples of the aryl group include a phenyl group, benzyl group, and neophyl group. For example, examples of the halogen atom include fluorine, chlorine, and bromine. Examples of the zirconium hydride compound include the following compounds. Bis (cyclopentadienyl) zirconium monochloride monohydride, bis (cyclopentadienyl) zirconium monobromide monohydride, bis (cyclopentadienyl) methyl zirconium hydride, bis (cyclopentadienyl) ethyl zirconium hydride, bis ( cyclopentadienyl)cyclohexylzirconium hydride, bis(cyclopentadienyl)phenylzirconium hydride, bis(cyclopentadienyl)benzylzirconium hydride, bis(cyclopentadienyl)neopentylzirconium hydride, bis(methylcyclopentadi) enyl)zirconium monochloride monohydride, bisindenylzirconium monochloride monohydride, The above zirconium hydride compounds can be used as is, but solvents such as toluene such as bis(cyclopentadienyl)zirconium monochloride monohydride may be used as is. It is preferable to use the compound that is poorly soluble in the organic aluminum compound after contacting it with the organoaluminum compound. By this operation, a zirconium hydride compound that is poorly soluble in a solvent can be made easily soluble in a solvent. Specifically, the organoaluminum compound to be brought into contact with the zirconium hydride compound is trimethylaluminum, triethylaluminum,
Trialkyl aluminum such as tributyl aluminum, trialkenyl aluminum such as triisoprenyl aluminum, dialkyl aluminum alkoxide such as dimethyl aluminum methoxide, diethyl aluminum ethoxide, dibutyl aluminum butoxide, methyl aluminum sesquimethoxide, ethyl aluminum sesquiethoxide, etc. In addition to alkyl aluminum sesquialkoxides, partially alkoxylated alkylaluminums with an average composition of R 1 2.5 Al(OR 2 ) 0.5 , etc., dialkyls such as dimethylaluminum chloride, diethylaluminum chloride, dimethylaluminum bromide Examples include partially halogenated aluminum alkyls such as aluminum halide, alkyl aluminum sesquihalides such as methylaluminum sesquichloride and ethylaluminum sesquichloride, and alkyl aluminum dihalides such as methylaluminum dichloride and ethylaluminum dichloride. The reaction of both compounds is preferably carried out in a hydrocarbon medium while blocking light, and the mixing molar ratio of the organoaluminum compound and zirconium compound (Al/Zr)
is 0.5 to 30, preferably 1 to 20, and the concentration of zirconium is 0.001 to 1 per liquid phase.
It is sufficient to keep the amount in mole, preferably about 0.005 to 0.1 mole, and to bring the two into contact at a reaction temperature of about 0 to 120°C. The hydrocarbon medium can be selected from those exemplified as the polymerization solvent described later. Specifically, the aluminoxane (B) of the catalyst component used in the above method has the general formula () or the general formula ()

【化】[ka]

〔サンプル調製〕[Sample preparation]

(イ) 試料を0.1wt%になるようにo−ジクロロベ
ンゼン溶媒とともに三角フラスコに分取する。 (ロ) 試料の入つている三角フラスコに老化防止剤
2,6−ジtert−ブチル−p−クレゾールをポ
リマー溶液に対して0.05wt%添加する。 (ハ) 三角フラスコを140℃に加温し、約30分間攪
拌し、溶解させる。 (ニ) その液をGPCにかける。 〔GPC測定条件〕 次の条件で実施した。 (イ) 装置 Waters社製(150C−ALC/GPC) (ロ) カラム 東洋ソーダ製(GMHタイプ) (ハ) サンプル量 400μ (ニ) 温 度 140℃ (ホ) 流 速 1ml/min また、該低結晶性エチレン系ランダム共重合体
は低結晶性であり、X線回折より求めたその結晶
化度は30%以下、好ましくは20%以下、とくに好
ましくは0ないし15%の範囲である。 さらに、本発明の低結晶性エチレン系ランダム
共重合体は、下記式() B≡POE/2PO・PE ……() 〔式中、PEは共重合体中の非共役ポリエン成
分に由来するエチレン成分を含のエチレン成分の
含有モルを示し、POはα−オレフイン成分の含
有モル分率を示し、全dyad連鎖のα−オレフイ
ン・エチレン連鎖のモル分率を示す〕 で表わされるB値が、下記式() 1.00≦B≦2 ……() を満足する範囲にある。 上記B値は共重合体鎖中における各モノマーの
分布状態を表わす指標であり、J.C.Randall、
(Macromolecules,15,353(1982))、G.J.Ray
(Macromolecules,10,773(1977))らの報告に
基づいて、上記定義PE,POおよびPOEを求めるこ
とによつて、算出される。 上記B値が大きい程、ブロツク的な連鎖が少な
く、エチレン及びα−オレフインの分布が一様で
あり組成分布の狭い共重合体であることを示して
いる。 本発明の低結晶性エチレン系ランダム共重合体
は、好ましくは下記の如きB値を有している。 1.2−0.2×PE≦B≦1/PE、 より好ましくは一般式 1.3−0.3×PE≦B≦1/PE、 とくに好ましくは一般式 1.4−0.4×PE≦B≦1/PE、 なお、組成分布B値は、10mmφの試料管中で約
200mgの共重合体を1mlのヘキサクロロブタジエ
ンに均一に溶解させた試料の13C−NMRのスペ
クトルを、通常、測定温度120℃、測定周波数
25.05MHz、スペクトル幅1500Hz、フイルター幅
1500Hz、パルス繰り返し時間4.2sec、パルス幅
7μsec、積算回数2000〜5000回の測定条件の下で
測定し、このスペクトルからPE,PO,POEを求め
ることにより算出した。 さらに、本発明の低結晶性エチレン系ランダム
共重合体の13C−NMRスペクトル中には、共重
合体主鎖中の隣接した2個の3級炭素原子間のメ
チレン連鎖に基づくαβおよびβγのシグナルが観
測されない。 例えばエチレンと1−ブテンとの共重合体連鎖
部分において下記結合:
(a) Transfer the sample to an Erlenmeyer flask together with o-dichlorobenzene solvent to a concentration of 0.1 wt%. (b) Add 0.05 wt% of the anti-aging agent 2,6-di-tert-butyl-p-cresol to the polymer solution in the Erlenmeyer flask containing the sample. (c) Heat the Erlenmeyer flask to 140°C and stir for about 30 minutes to dissolve. (d) Apply the liquid to GPC. [GPC measurement conditions] It was carried out under the following conditions. (a) Equipment manufactured by Waters (150C-ALC/GPC) (b) Column manufactured by Toyo Soda (GMH type) (c) Sample amount 400μ (d) Temperature 140℃ (e) Flow rate 1ml/min The crystalline ethylene random copolymer has low crystallinity, and its crystallinity determined by X-ray diffraction is 30% or less, preferably 20% or less, and particularly preferably in the range of 0 to 15%. Furthermore, the low-crystalline ethylene random copolymer of the present invention has the following formula () B≡P OE /2P O・P E ... () [In the formula, P E is the non-conjugated polyene component in the copolymer. [ PO] indicates the mole content of the ethylene component, including the ethylene component derived from The B value is within a range that satisfies the following formula () 1.00≦B≦2 (). The above B value is an index representing the distribution state of each monomer in the copolymer chain.
(Macromolecules, 15 , 353 (1982)), GJRay
(Macromolecules, 10 , 773 (1977)) et al., it is calculated by determining the above definitions P E , P O and P OE . The larger the B value, the fewer block-like chains, the more uniform the distribution of ethylene and α-olefin, and the narrower the composition distribution of the copolymer. The low crystalline ethylene random copolymer of the present invention preferably has the following B value. 1.2−0.2×P E ≦B≦1/P E , more preferably the general formula 1.3−0.3×P E ≦B≦1/P E , particularly preferably the general formula 1.4−0.4×P E ≦B≦1/P E , The composition distribution B value is approximately in a 10mmφ sample tube.
The 13C -NMR spectrum of a sample obtained by uniformly dissolving 200mg of copolymer in 1ml of hexachlorobutadiene is usually measured at a measurement temperature of 120℃ and a measurement frequency of 120℃.
25.05MHz, spectrum width 1500Hz, filter width
1500Hz, pulse repetition time 4.2sec, pulse width
Measurement was performed under measurement conditions of 7 μsec and 2000 to 5000 integration times, and calculations were made by determining P E , P O , and P OE from this spectrum. Furthermore, in the 13C-NMR spectrum of the low-crystalline ethylene random copolymer of the present invention, there are αβ and βγ signals based on methylene chains between two adjacent tertiary carbon atoms in the copolymer main chain. is not observed. For example, in the copolymer chain part of ethylene and 1-butene, the following bonds:

【化】 は、1−ヘキサンに由来する左側の3級炭素から
みれ中央の3個のメチレン基は左側からα,β,
γの位置あり、一方右側の3級炭素からみれば右
側からα,β,γの位置にある。それ故、上記結
合単位中には、αγおよびββのシグナルを与える
メチレン基はあるが、αβおよびβγシグナルを与
えるメチレン基はない。 同様に1−ブテン同志が頭対尾で結合した下結
合:
[C] is the tertiary carbon on the left derived from 1-hexane, and the three methylene groups in the center are α, β,
On the other hand, when viewed from the tertiary carbon on the right side, the positions are α, β, and γ from the right. Therefore, in the above bonding unit, there are methylene groups that give αγ and ββ signals, but there are no methylene groups that give αβ and βγ signals. Similarly, a lower bond in which 1-butenes are bonded head-to-tail:

【式】 には、ααのシグナルを与えるメチレン基のみが
存在し、αβおよびβγのシグナルを与えるメチレ
ン基はない。 他方、下記結合
In the formula, there is only a methylene group that gives an αα signal, and there are no methylene groups that give αβ and βγ signals. On the other hand, the following combination

【化】 および[ka] and

〔実施例〕〔Example〕

次に、本発明を実施例によつて具体的に説明す
る。 実施例 1 ジルコニウム触媒の調製 充分に窒素置換した100mlのガラス製フラスコ
にトルエン30mlとビス(シクロペンタジエニル)
ジルコニウムモノクロリドモノハイライド2ミリ
モルを装入しスラリー状にした。それにトルエン
で希釈したトリメチルアルミニウム(1M溶液)
20ミリモルを室温下で滴下した。 滴下終了後、60℃に昇温し1時間反応させた。
ビス(シクロペンタジエニル)ジルコニウムモノ
クロリドモノハイライドはトルエンに溶解し溶液
は暗赤色となつた。尚、上記反応は、光をしや断
し行つた。 メチルアミノオキサンの調製 充分にアルゴンで置換した400mlのガラス製フ
ラスコに塩化マグネシウムの6水和物13.9gとト
ルエン125mlを装入し、0℃に冷却後、トルエン
125mlで希釈したトリメチルアルミニウム250ミリ
モルを滴下した。滴下終了後、70℃に昇温しその
温度で96時間反応させた。反応後、過により固
液分離を行い更に、分離液より減圧下にトルエン
を除去し白色固体のメチルアミノオキサン7.3g
を得た。ベンゼン中での凝固点降下により求めら
れた分子量は、1910であり、該アルミノオキサン
のm値は31であつた。尚、重合時には前記アルミ
ノオキサンをトルエンに再溶解して用いた。 重 合 2の連続重合反応器を用いて、精製トルエン
を1/hr、メチルアルミノオキサンをアルミニ
ウム原子換算で5ミリグラム原子/hr、前記で調
製したジルコニウム触媒をジルコニウム原子換算
で1×10-2ミリグラム原子/hrの割合で連続的に
供給し、重合器内において同時にエチレン360
/hr、1−ブテン240/hr、およびジシクロ
ペンタジエン3g/hrの割合で連続的に供給し重
合温度25℃、常圧、滞留時間1時間、ポリマー濃
度15g/となる条件下に重合を行つた。生成し
たポリマー溶液を重合器より連続的に抜き出し、
少量のメタノールを添加することにより重合を停
止し、更にそのポリマー溶液を多量のメタノール
中に移し、析出したポリマーを80℃で12時間減圧
乾燥した。エチレン含量89.4モル%、1−ブテン
含量9.4モル%、ジシクロペンタジエン含量1.2モ
ル%、〔η〕1.41dl/g、ヨウ素価9.5、w/
n=2.13、結晶化度6.1%、B値1.09、沸騰酢酸メ
チル可溶部0.25重量%、密度0.888g/cm3のゴム
状のポリマーが得られた。このポリマーのJIS K
−6301に準じて測定した破断点応力、破断点伸
び、JIS A硬度、およびJIS K−6758に基づいて
成形した厚さ1mmのシートの透明度(ヘイズ値)
はそれぞれ110Kg/cm2、980%、74、2.1%であつ
た。得られたポリマーの13C−NMRスペクトル
には隣接した2個の3級炭素原子間のメチレン連
鎖に基づくαβおよびβγのジクナルは観測されな
かつた。単位ジルコニウム当りの活性は、1500g
−ポリマー/ミリグラム原子−Zrであつた。 さらに、共重合体100重量部、亜鉛華5重量部、
ステアリン酸、1.5重量部、カーボンブラツク55
重量部、ナフテン系オイル10重量部、2−メルカ
プトベンゾチアゾール0.5重量部、テトラメチル
チウラムモノサルフアイド1.5重量部、イオウ1.0
重量部の割合で8インチオーブンロールを用い
て、ロール温度50℃で30分間混練して配合物を作
成した。この配合物を160℃、30分間プレス加硫
して得られた加硫物をJIS K−6301によつて引張
試験を行つた。加硫物性は300%モジユラス180
Kg/cm2、破断点応力350Kg/cm2、破断点伸び440
%、JIS A硬度85であつた。 実施例2〜9、比較例1 表1に示した条件下に重合した以外は実施例1
と全く同様に行つた。得られたポリマーの13C−
NMRスペクトルには隣接した2個の3級炭素原
子間のメチレン連鎖に基づくαβ位およびβγのジ
クナルは観測されなかつた。結果を表3に示し
た。 なお実施例7〜9における加硫時の配合処法
は、以下のように変更した。 実施例7においては、 共重合体100重量部、亜鉛華5重量部、ステア
リン酸1重量部、カーボンブラツク80重量部、ナ
フテン系オイル10重量部、イオウ1.0重量部、2
−メチルカプトベンゾチアゾール0.5重量部、テ
トラメチルチウラムモノサルフアイド1.0重量部 実施例8,9においては、 共重合体100重量部、亜鉛華5重量部、ステア
リン酸1重量部、カーボンブラツク40重量部、ナ
フテン系オイル30重量部、イオウ1.5重量部、2
−メチルカプトベンゾチアゾール1.5重量部、テ
トラメチルチウラムモノサルフアイド0.5重量部 加硫時間 20分 比較例 2 15の連続重合反応器を用いて精製ヘキサンを
5/hr、バナジルトリクロリドとエタノールを
1/1のモル比で反応させたバナジウム触媒をバ
ナジウム原子換算で3.5ミリグラム原子/hr、エ
チルアルミニウムセスキクロリドとエチルアルミ
ニウムジクロリドを7/3のモル比で混合した有
機アルミニウムをアルミニウム原子換算で35ミリ
グラム原子/hrの割合で連続的に供給し重合器内
において同時にエチレン380/hr、1−ブテン
270−hr、水素2/hrおよびジシクロペンタ
ジエン30g/hrの割合で連続的に供給し重合温度
60℃、滞留時間1時間、ポリマー濃度70g/と
なる条件下に重合を行つた。この時、重合器内圧
力は7.2Kg/cm2(ゲージ)であつた。その後の操
作は実施例1と同様に行つた。 このポリマーの13C−NMRスペクトルには隣
接した2個の3級炭素原子間のメチレン連鎖に基
づくαβ位、βγ位のシグナルが観測された。結果
を表3に示した。 比較例 3,4 表2に示した条件下に重合した以外は、比較例
2と全く同様に行つた。得られたポリマーの13C
−NMRスペクトルには、隣接した2個の3級炭
素原子間のメチレン連鎖に基づくαβ位およびβγ
位のシグナルが観測された。結果を表3に示す。 比較例 5 チタン触媒の調製 2.8KgのSUS製ボール(15mmφ)を内蔵した800
mlのSUS製ポツトにテトラブトキシチタン2g
および無水の塩化マグネシウム20gを入れ、窒素
雰囲気下8時間粉砕した(振動ミル)。共粉砕物
をエチレンジクロリド200ml中に移し80℃で2時
間熱した。その後、共粉砕物を別し、n−デカ
ンで遊離の四塩化チタンが検出されなくなるまで
洗浄した。このようにして得られた触媒1g中に
21mgのチタン原子が担持されていた。 重 合 実施例1と同様の重合装置を用いて精製デカン
1/hr、エチルアルミニウムセスキクロリドを
アルミニウム原子換算で5ミリグラム原子/hr、
前記で調製したチタン触媒をチタン原子換算で
0.25ミリグラム原子/hrの割合で連続的に供給
し、重合器内において同時にエチレン300/hr、
1−ブテン100/hr、および5−エチリデン−
2−ノルボルネン10g/hrの割合で連続的に供給
し、重合温度110℃常圧、滞留時間1時間、ポリ
マー濃度22g/となる条件下に重合を行つた。
その後の操作は実施例1と同様に行つた。単位チ
タン当りの活性は90g−ポリマー/ミリグラム原
子−Tiであつた。得られたポリマーの13C−
NMRスペクトルには隣接した2個の3級炭素原
子間のメチレン連鎖に基づくαβ位およびβγ位の
シグナルが観測されなかつた。
Next, the present invention will be specifically explained using examples. Example 1 Preparation of zirconium catalyst 30 ml of toluene and bis(cyclopentadienyl) were placed in a 100 ml glass flask that was sufficiently purged with nitrogen.
2 mmol of zirconium monochloride monohydride was charged and made into a slurry. Trimethylaluminum diluted with toluene (1M solution)
20 mmol was added dropwise at room temperature. After the dropwise addition was completed, the temperature was raised to 60°C and the mixture was reacted for 1 hour.
Bis(cyclopentadienyl)zirconium monochloride monohydride was dissolved in toluene and the solution turned dark red. Incidentally, the above reaction was carried out in the absence of light. Preparation of methylaminoxane 13.9 g of magnesium chloride hexahydrate and 125 ml of toluene were placed in a 400 ml glass flask that had been sufficiently purged with argon, and after cooling to 0°C, toluene was added.
250 mmol of trimethylaluminum diluted in 125 ml was added dropwise. After the dropwise addition was completed, the temperature was raised to 70°C and the reaction was continued at that temperature for 96 hours. After the reaction, solid-liquid separation was performed by filtration, and toluene was removed from the separated liquid under reduced pressure to obtain 7.3 g of methylaminooxane as a white solid.
I got it. The molecular weight determined by freezing point depression in benzene was 1910, and the m value of the aluminoxane was 31. During the polymerization, the aluminoxane was redissolved in toluene. Polymerization Using the continuous polymerization reactor in step 2, purified toluene was added at 1/hr, methylaluminoxane was added at 5 mg atom/hr in terms of aluminum atoms, and the zirconium catalyst prepared above was added at 1×10 -2 in terms of zirconium atoms. Ethylene 360
/hr, 1-butene 240/hr, and dicyclopentadiene 3g/hr were continuously supplied at a rate of 25°C, normal pressure, residence time 1 hour, and polymer concentration 15g/hr. Ivy. The generated polymer solution is continuously extracted from the polymerization vessel,
Polymerization was stopped by adding a small amount of methanol, and the polymer solution was further transferred into a large amount of methanol, and the precipitated polymer was dried under reduced pressure at 80° C. for 12 hours. Ethylene content 89.4 mol%, 1-butene content 9.4 mol%, dicyclopentadiene content 1.2 mol%, [η] 1.41 dl/g, iodine value 9.5, w/
A rubbery polymer was obtained with n=2.13, crystallinity 6.1%, B value 1.09, boiling methyl acetate soluble portion 0.25% by weight, and density 0.888 g/cm 3 . JIS K of this polymer
- Stress at break, elongation at break, JIS A hardness measured according to JIS K-6301, and transparency (haze value) of a 1 mm thick sheet formed according to JIS K-6758.
were 110Kg/cm 2 , 980%, 74, and 2.1%, respectively. In the 13 C-NMR spectrum of the obtained polymer, no αβ and βγ dicnals based on methylene chains between two adjacent tertiary carbon atoms were observed. Activity per unit zirconium is 1500g
-Polymer/milligram atom-Zr. Furthermore, 100 parts by weight of copolymer, 5 parts by weight of zinc white,
Stearic acid, 1.5 parts by weight, Carbon Black 55
Parts by weight, 10 parts by weight of naphthenic oil, 0.5 parts by weight of 2-mercaptobenzothiazole, 1.5 parts by weight of tetramethylthiuram monosulfide, 1.0 parts by weight of sulfur.
A blend was prepared by kneading parts by weight using an 8-inch oven roll at a roll temperature of 50°C for 30 minutes. This compound was press-vulcanized at 160° C. for 30 minutes, and the resulting vulcanizate was subjected to a tensile test according to JIS K-6301. Vulcanized physical properties are 300% modulus 180
Kg/cm 2 , stress at break 350Kg/cm 2 , elongation at break 440
%, JIS A hardness was 85. Examples 2 to 9, Comparative Example 1 Example 1 except that polymerization was performed under the conditions shown in Table 1.
I went exactly the same way. 13C− of the obtained polymer
In the NMR spectrum, dicnals at αβ and βγ positions based on methylene chains between two adjacent tertiary carbon atoms were not observed. The results are shown in Table 3. In addition, the compounding method during vulcanization in Examples 7 to 9 was changed as follows. In Example 7, 100 parts by weight of copolymer, 5 parts by weight of zinc white, 1 part by weight of stearic acid, 80 parts by weight of carbon black, 10 parts by weight of naphthenic oil, 1.0 parts by weight of sulfur, 2 parts by weight of naphthenic oil.
-0.5 parts by weight of methylcaptobenzothiazole, 1.0 parts by weight of tetramethylthiuram monosulfide In Examples 8 and 9, 100 parts by weight of copolymer, 5 parts by weight of zinc white, 1 part by weight of stearic acid, 40 parts by weight of carbon black. , 30 parts by weight of naphthenic oil, 1.5 parts by weight of sulfur, 2
- 1.5 parts by weight of methylcaptobenzothiazole, 0.5 parts by weight of tetramethylthiuram monosulfide Vulcanization time 20 minutes Comparative example 2 Using 15 continuous polymerization reactors, purified hexane was mixed at 5/hr, vanadyl trichloride and ethanol were mixed at 1/hr. A vanadium catalyst reacted at a molar ratio of 1:1 is 3.5 mg atom/hr in terms of vanadium atoms, and an organic aluminum prepared by mixing ethylaluminum sesquichloride and ethylaluminum dichloride in a molar ratio of 7/3 is 35 mg atom/hr in terms of aluminum atoms. Ethylene 380/hr and 1-butene were simultaneously supplied in the polymerization vessel at a rate of 380/hr.
270-hr, hydrogen 2/hr and dicyclopentadiene 30 g/hr were continuously supplied at the polymerization temperature.
Polymerization was carried out at 60° C., residence time: 1 hour, and polymer concentration: 70 g/min. At this time, the pressure inside the polymerization vessel was 7.2 Kg/cm 2 (gauge). The subsequent operations were performed in the same manner as in Example 1. In the 13C-NMR spectrum of this polymer, signals at the αβ and βγ positions were observed due to methylene chains between two adjacent tertiary carbon atoms. The results are shown in Table 3. Comparative Examples 3 and 4 The same procedure as Comparative Example 2 was conducted except that polymerization was carried out under the conditions shown in Table 2. 13C of the resulting polymer
-NMR spectra include αβ and βγ positions based on methylene chains between two adjacent tertiary carbon atoms.
A signal was observed. The results are shown in Table 3. Comparative Example 5 Preparation of titanium catalyst 800 with built-in 2.8Kg SUS ball (15mmφ)
2g of tetrabutoxytitanium in a ml SUS pot
and 20 g of anhydrous magnesium chloride were added thereto and pulverized for 8 hours under a nitrogen atmosphere (vibration mill). The co-ground product was transferred to 200 ml of ethylene dichloride and heated at 80°C for 2 hours. Thereafter, the co-pulverized product was separated and washed with n-decane until free titanium tetrachloride was no longer detected. In 1 g of the catalyst thus obtained,
21 mg of titanium atoms were supported. Polymerization Using the same polymerization apparatus as in Example 1, purified decane was added at 1/hr, ethylaluminum sesquichloride was added at 5 milligram atoms/hr in terms of aluminum atoms,
The titanium catalyst prepared above is calculated in terms of titanium atoms.
Continuously supplying ethylene at a rate of 0.25 milligram atoms/hr, 300/hr of ethylene simultaneously in the polymerization vessel,
1-butene 100/hr, and 5-ethylidene-
2-Norbornene was continuously supplied at a rate of 10 g/hr, the polymerization temperature was 110 DEG C. under normal pressure, the residence time was 1 hour, and the polymer concentration was 22 g/hr.
The subsequent operations were performed in the same manner as in Example 1. The activity per unit titanium was 90 g-polymer/milligram atom-Ti. 13 C− of the obtained polymer
In the NMR spectrum, no signals at the αβ and βγ positions based on the methylene chain between two adjacent tertiary carbon atoms were observed.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明の低結晶性エチレン系ラ
ンダム共重合体は分子量分布、組成分布が狭く、
透明性に優れ、表面非粘着性でありそして低結晶
性である。
As described above, the low-crystalline ethylene random copolymer of the present invention has a narrow molecular weight distribution and a narrow composition distribution.
It has excellent transparency, non-stick surface and low crystallinity.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明の共重合体の製造工程を示すフ
ローチヤート図である。
FIG. 1 is a flowchart showing the process for producing the copolymer of the present invention.

Claims (1)

【特許請求の範囲】 1 エチレン、炭素原子数3〜10のα−オレフイ
ンおよび炭素原子数が5〜20の非共役ポリエンか
らの低結晶性エチレン系ランダム共重合体であつ
て、 (a) エチレン成分の含有率が50〜95モル%の範囲
にあり、α−オレフイン成分の含有率が5〜50
モル%の範囲にあり、そして非共役ポリエン成
分の含有率がゼロモル%ではなく5モル%以下
であり、 (b) 135℃のデカリン中で測定した極限粘度[η]
が0.5〜10dl/gの範囲にあり、 (c) ゲルパーミエーシヨンクロマトグラフイーで
求めた分子量分布(w/n)が3以下であ
り、 (d) X−線回析法で求めた結晶化度が30%以下で
あり、 (e) 下記式() B≡POE/2PO・PE () [式中、PEは共重合体中の非共役ポリエン
成分に由来するエチレン成分を含まないエチレ
ン成分の含有モル分率を示し、POはα−オレ
フイン成分の含有モル分率を示し、POEは全
dyad連鎖のαオレフイン・エチレン連鎖のモ
ル分率を示す] で表わされるB値が、下記式() 1.00≦B≦2 () を満足する範囲にあり、 (f) 13C−NMRスペクトル中には、共重合体主
鎖中の隣接した2個の3級炭素原子間のメチレ
ン連鎖に基づくαβおよびβγのシグナルが観測
されない、そして (g) 沸騰酢酸メチル可溶部が2重量%以下である ことを特徴とする低結晶性エチレン系ランダム共
重合体。
[Scope of Claims] 1. A low-crystalline ethylene-based random copolymer of ethylene, an α-olefin having 3 to 10 carbon atoms, and a nonconjugated polyene having 5 to 20 carbon atoms, comprising: (a) ethylene; The content of the components is in the range of 50 to 95 mol%, and the content of the α-olefin component is in the range of 5 to 50%.
(b) the intrinsic viscosity [η] measured in decalin at 135°C;
is in the range of 0.5 to 10 dl/g, (c) the molecular weight distribution (w/n) determined by gel permeation chromatography is 3 or less, and (d) the crystal size determined by X-ray diffraction (e) The following formula () B≡P OE /2P O・P E () [In the formula, P E represents the ethylene component derived from the non-conjugated polyene component in the copolymer. Indicates the molar fraction of the ethylene component not included, P O indicates the molar fraction of the α-olefin component, and P OE is the total
Indicates the mole fraction of α-olefin/ethylene chain in the dyad chain] The B value , expressed as (g) The boiling methyl acetate soluble fraction is 2% by weight or less. A low-crystalline ethylene-based random copolymer.
JP25983485A 1985-11-21 1985-11-21 Lowly crystalline ethylene random copolymer and its production Granted JPS62121711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25983485A JPS62121711A (en) 1985-11-21 1985-11-21 Lowly crystalline ethylene random copolymer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25983485A JPS62121711A (en) 1985-11-21 1985-11-21 Lowly crystalline ethylene random copolymer and its production

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP28241594A Division JPH07196717A (en) 1994-10-24 1994-10-24 Low-crystalline ethylenic random copolymer
JP29706696A Division JP2786432B2 (en) 1996-10-21 1996-10-21 Vulcanizates of low crystalline ethylene random copolymers and their production

Publications (2)

Publication Number Publication Date
JPS62121711A JPS62121711A (en) 1987-06-03
JPH0580493B2 true JPH0580493B2 (en) 1993-11-09

Family

ID=17339638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25983485A Granted JPS62121711A (en) 1985-11-21 1985-11-21 Lowly crystalline ethylene random copolymer and its production

Country Status (1)

Country Link
JP (1) JPS62121711A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175440A (en) * 1996-12-19 1998-06-30 Jsr Corp Rubber composite for weather strip
EP0855413A1 (en) 1997-01-23 1998-07-29 Japan Synthetic Rubber Co., Ltd. Ethylene copolymer rubber composition
JP2011052231A (en) * 2003-01-23 2011-03-17 Mitsui Chemicals Inc ETHYLENE/alpha-OLEFIN/NON-CONJUGATED POLYENE COPOLYMER
WO2024053261A1 (en) * 2022-09-08 2024-03-14 横浜ゴム株式会社 Rubber composition and hose

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714982B2 (en) * 1987-01-19 1995-02-22 住友化学工業株式会社 Ethylene copolymer rubber
US5229478A (en) * 1988-06-16 1993-07-20 Exxon Chemical Patents Inc. Process for production of high molecular weight EPDM elastomers using a metallocene-alumoxane catalyst system
US5017665A (en) * 1989-07-25 1991-05-21 Exxon Chemical Patents Inc. Supported catalyst for 1-olefin and 1,4-diolefin copolymerization
US5692481A (en) * 1994-05-18 1997-12-02 Lockheed Corporation Method and apparatus for reducing contaminants in exhaust gases of an engine
TW383314B (en) * 1994-12-20 2000-03-01 Mitsui Petrochemical Ind Ethylene-alpha-olefin-nonconjugated polyene random copolymer, rubber composition, and process for preparing the random copolymer
TW383313B (en) * 1994-12-20 2000-03-01 Mitsui Petrochemical Ind Preparation of ethylene-alpha-olefin-nonconjugate polyene random copolymers, the copolymers obtaining which, and the use of the copolymers
AU2819697A (en) * 1997-04-30 1998-11-24 Dow Chemical Company, The Ethylene/alpha-olefin/diene interpolymers and their preparation
KR100646249B1 (en) 2004-04-08 2006-11-23 주식회사 엘지화학 Polyethylene Pipe Having Good Melt Processibilty and High Resistance to Stress and Method for Preparing the Same Using Metallocene Catalysts
JP2005314551A (en) * 2004-04-28 2005-11-10 Mitsui Chemicals Inc Nonconjugated polyene copolymer, rubber composition and use thereof
JP6941225B2 (en) 2018-03-20 2021-09-29 三井化学株式会社 Ethylene / α-olefin / non-conjugated polyene copolymer, its production method and application
WO2023182473A1 (en) * 2022-03-24 2023-09-28 三井化学株式会社 ETHYLENE/α-OLEFIN/5-VINYL-2-NORBORNENE COPOLYMER, COMPOSITION CONTAINING SAID COPOLYMER, AND CROSSLINKED BODY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379984A (en) * 1976-12-24 1978-07-14 Mitsui Petrochem Ind Ltd Copolymer and production
US4404344A (en) * 1980-02-29 1983-09-13 Basf Aktiengesellschaft Preparing ethylene polymers using Ziegler catalyst comprising cyclodienyl compound of zirconium
JPS6059643A (en) * 1983-09-09 1985-04-06 Ulvac Corp Method and device for cleaning inner surface of sample chamber of electron microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379984A (en) * 1976-12-24 1978-07-14 Mitsui Petrochem Ind Ltd Copolymer and production
US4404344A (en) * 1980-02-29 1983-09-13 Basf Aktiengesellschaft Preparing ethylene polymers using Ziegler catalyst comprising cyclodienyl compound of zirconium
JPS6059643A (en) * 1983-09-09 1985-04-06 Ulvac Corp Method and device for cleaning inner surface of sample chamber of electron microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175440A (en) * 1996-12-19 1998-06-30 Jsr Corp Rubber composite for weather strip
EP0855413A1 (en) 1997-01-23 1998-07-29 Japan Synthetic Rubber Co., Ltd. Ethylene copolymer rubber composition
JP2011052231A (en) * 2003-01-23 2011-03-17 Mitsui Chemicals Inc ETHYLENE/alpha-OLEFIN/NON-CONJUGATED POLYENE COPOLYMER
WO2024053261A1 (en) * 2022-09-08 2024-03-14 横浜ゴム株式会社 Rubber composition and hose

Also Published As

Publication number Publication date
JPS62121711A (en) 1987-06-03

Similar Documents

Publication Publication Date Title
KR0122879B1 (en) Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions
EP0200351B2 (en) Liquid ethylene-type random copolymer, process for production thereof, and use thereof
US6388040B1 (en) Propylene/ethylene/α-olefin terpolymers and processes for the production thereof
EP2220128B1 (en) Process for preparation of polyolefins via living coordinative chain transfer polymerization
EP1131360B1 (en) Process for the polymerization of an olefin, metallocene catalyst therefor and cocatalyst for activating a metallocene procatalyst
JPH0580492B2 (en)
KR101381879B1 (en) A preparation method for olefin-aromatic vinyl copolymer or terpolymer comprising polar groups
EP0855413B1 (en) Ethylene copolymer rubber composition
JPH0580493B2 (en)
EP0799250A2 (en) Azametallocene polymerization catalysts
CA2222917C (en) Metallocenes, their preparation and use in the polymerization of alpha-olefins
CN109384885B (en) Preparation method of comb-shaped vinyl polyolefin thermoplastic elastomer
JPS62121709A (en) Lowly crystalline ethylene random copolymer and its production and use
JP4517695B2 (en) Ethylene polymer and process for producing the same
JPH06821B2 (en) Liquid ethylene random copolymer and its use
KR20180033008A (en) Olefin based copolymer and preparation method thereof
US20230416426A1 (en) Olefin-based polymer, film prepared therefrom, and preparation methods therefor
JPH05310847A (en) Ethylene/alpha-olefin copolymer
US3937763A (en) Olefinic copolymer compositions
CN111662417A (en) Preparation method of novel crosslinkable comb-shaped propenyl olefin polymer
JP3506147B2 (en) Ethylene / α-olefin copolymer and thermoplastic resin composition containing the same
JP6666089B2 (en) Propylene resin composition and molded article
EP4265654A1 (en) Olefin-based polymer and preparation method therefor
JP2786432B2 (en) Vulcanizates of low crystalline ethylene random copolymers and their production
JPH05500080A (en) Alpha-olefin copolymers with narrow MWD and wide composition distribution

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term