JP4241353B2 - Arbitrary waveform generator - Google Patents

Arbitrary waveform generator Download PDF

Info

Publication number
JP4241353B2
JP4241353B2 JP2003411363A JP2003411363A JP4241353B2 JP 4241353 B2 JP4241353 B2 JP 4241353B2 JP 2003411363 A JP2003411363 A JP 2003411363A JP 2003411363 A JP2003411363 A JP 2003411363A JP 4241353 B2 JP4241353 B2 JP 4241353B2
Authority
JP
Japan
Prior art keywords
terminal
multiplier
input terminal
output
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003411363A
Other languages
Japanese (ja)
Other versions
JP2005175750A (en
Inventor
健一 成川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003411363A priority Critical patent/JP4241353B2/en
Publication of JP2005175750A publication Critical patent/JP2005175750A/en
Application granted granted Critical
Publication of JP4241353B2 publication Critical patent/JP4241353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は任意波形発生器に関するものであり、詳しくは、デジタル通信用デバイスをテストするためのIQベースバンド信号などの複数信号を発生するのに適した任意波形発生器に関するものである。 The present invention relates to an arbitrary waveform generator , and more particularly to an arbitrary waveform generator suitable for generating a plurality of signals such as an IQ baseband signal for testing a digital communication device.

非特許文献1には、実用化されたディジタルIQ信号発生器の一例が開示されている。   Non-Patent Document 1 discloses an example of a practical digital IQ signal generator.

すなわち、非特許文献1には、W-CDMA(Wideband-Code Devision Multiple Access;広帯域符号分割多重アクセス)方式に対応したベースバンド信号発生器の特長、ハードウェア構成、使用例などが記載されている。
しかし、本発明が目的とするレベルや周波数変更の自由度が確保できるテスト信号発生装置を実現するための具体的な構成に関する言及はない。
That is, Non-Patent Document 1 describes features, hardware configurations, usage examples, and the like of a baseband signal generator that supports a W-CDMA (Wideband-Code Division Multiple Access) system. .
However, there is no mention of a specific configuration for realizing a test signal generator capable of ensuring the desired level and frequency change degree desired by the present invention.

ディジタルIQ信号発生器 VB2000 7 横河技報 Vol.44 No.1 (2000) http://www.yokogawa.co.jp/TR/pdf/Japanese/2000-01/20000102.pdfDigital IQ signal generator VB2000 7 Yokogawa Technical Report Vol.44 No.1 (2000) http://www.yokogawa.co.jp/TR/pdf/Japanese/2000-01/20000102.pdf

特許文献1は、多チャンネルデジタル放送擬似信号発生装置に関するものであり、地上デジタル放送開始後の電波発射状況をシミュレートした多チャンネルのデジタル放送擬似信号を発生する技術が開示されている。   Patent Document 1 relates to a multi-channel digital broadcast pseudo signal generator, and discloses a technique for generating a multi-channel digital broadcast pseudo signal that simulates a radio wave emission situation after the start of terrestrial digital broadcasting.

この特許文献1の段落番号0024には、OFDM信号を発生する任意波形発生部を構成する波形バンク部13に、デジタル放送擬似信号波形データを予め登録することが記載されている。段落番号0026には、波形バンク部13の各EPROMに登録するOFDM信号の生成方法が記載され、デジタル放送擬似信号のキャリアとして複素数のデータが出力されることが示されている。段落番号0030には、波形バンク部13に記憶するこれら複素数のデータに基づく最終的なOFDMの時間波形信号について記載されている。   Paragraph No. 0024 of this Patent Document 1 describes that digital broadcast pseudo signal waveform data is registered in advance in the waveform bank unit 13 that constitutes an arbitrary waveform generation unit that generates an OFDM signal. Paragraph number 0026 describes a method of generating an OFDM signal to be registered in each EPROM of the waveform bank unit 13, and indicates that complex data is output as a carrier of a digital broadcast pseudo signal. Paragraph number 0030 describes the final OFDM time waveform signal based on the complex data stored in the waveform bank unit 13.

すなわち、特許文献1に開示されているOFDM信号を発生する任意波形発生部を構成する波形バンク部13は、複素数のデータに基づく最終的なOFDMの時間波形信号が記憶されるものであり、本発明の任意波形発生部を構成する任意波形メモリとは異なる。   That is, the waveform bank unit 13 constituting the arbitrary waveform generation unit that generates the OFDM signal disclosed in Patent Document 1 stores a final OFDM time waveform signal based on complex data. This is different from the arbitrary waveform memory constituting the arbitrary waveform generator of the invention.

特開2003−69524JP 2003-69524 A

図5は、従来のテスト信号発生装置の一例を示すブロック図である。図5において、任意波形発生部10はIQベースバンド信号を発生し、高周波信号発生部20はIQ変調機能を備えたものであって、任意波形発生部10が発生するIQベースバンド信号により変調された高周波信号を発生する。なお、IQにおけるIはInphaseの頭文字で同相成分を表し、QはQuadratureの頭文字で直交成分を表す。   FIG. 5 is a block diagram showing an example of a conventional test signal generator. In FIG. 5, an arbitrary waveform generator 10 generates an IQ baseband signal, and a high-frequency signal generator 20 has an IQ modulation function, and is modulated by the IQ baseband signal generated by the arbitrary waveform generator 10. Generate high frequency signals. Note that I in IQ represents an in-phase component with an initial of Inphase, and Q represents an orthogonal component with an initial of Quadrature.

ここで、任意波形発生部10は、大きく分けて、I信号系統とQ信号系統の2系統を備えている。   Here, the arbitrary waveform generator 10 is roughly divided into two systems, an I signal system and a Q signal system.

I信号系統は、I信号用に発生すべき任意波形を格納する任意波形メモリ11、任意波形メモリ11の出力をアナログ波形に変換するD/A変換器12、D/A変換器12の変換出力にゲイン・オフセット調整、フィルタ処理などを施す波形整形部13とで構成されている。   The I signal system includes an arbitrary waveform memory 11 that stores an arbitrary waveform to be generated for the I signal, a D / A converter 12 that converts an output of the arbitrary waveform memory 11 into an analog waveform, and a conversion output of the D / A converter 12 And a waveform shaping unit 13 that performs gain / offset adjustment, filter processing, and the like.

Q信号系統は、Q信号用に発生すべき任意波形を格納する任意波形メモリ14、任意波形メモリ14の出力をアナログ波形に変換するD/A変換器15、D/A変換器15の変換出力にゲイン・オフセット調整、フィルタ処理などを施す波形整形部16とで構成されている。   The Q signal system includes an arbitrary waveform memory 14 that stores an arbitrary waveform to be generated for the Q signal, a D / A converter 15 that converts the output of the arbitrary waveform memory 14 into an analog waveform, and a conversion output of the D / A converter 15 And a waveform shaping unit 16 that performs gain / offset adjustment, filter processing, and the like.

このような構成において、テスト信号を発生させるのにあたっては、各任意波形メモリ11,14に変調波とすべきI,Q信号を各々書き込むようにする。   In such a configuration, when the test signal is generated, the I and Q signals to be modulated waves are written in the arbitrary waveform memories 11 and 14, respectively.

ところで、このようなテスト信号発生装置の用途として、妨害波と希望波を同時に含むようなテスト信号を発生させたい場合がある。そこで、図5に示した従来の構成で妨害波と希望波を同時に含むようなテスト信号を発生させるのにあたり、
1)妨害波と希望波を予め合成したIQ信号を各任意波形メモリ11,14に書き込む
2)妨害波、希望波用に任意波形発生部10を複数用意し、それらの出力を加算合成した上で高周波信号発生部20に入力する
3)妨害波、希望波用にそれぞれ任意波形発生部10と高周波信号発生部20を用意し、各高周波信号発生部20の出力を加算合成する
といった方法が取られていた。
By the way, as an application of such a test signal generator, there is a case where it is desired to generate a test signal that simultaneously includes an interference wave and a desired wave. Therefore, in generating the test signal that includes the interference wave and the desired wave at the same time in the conventional configuration shown in FIG.
1) Write IQ signals, which are pre-combined interference wave and desired wave, to each arbitrary waveform memory 11, 14
2) Prepare multiple arbitrary waveform generators 10 for interfering and desired waves, add and synthesize those outputs, and input to high frequency signal generator 20
3) A method has been adopted in which an arbitrary waveform generator 10 and a high-frequency signal generator 20 are prepared for the interference wave and the desired wave, and the outputs of the high-frequency signal generators 20 are added and synthesized.

しかし、前者2つの方法では、妨害波と希望波のレベルや周波数の関係を変更しようとした場合には、各任意波形メモリ11,14に書き込まれている波形自体の変更を行わなければならず、変更の自由度に欠けている。
これらに対し、3番目の方法によれば変更の自由度は確保できるが、高価で規模の大きい高周波信号発生部20を複数用意しなければならず、コスト面で問題があった。
However, in the former two methods, when the relationship between the level and frequency of the disturbing wave and the desired wave is to be changed, the waveform itself written in the arbitrary waveform memories 11 and 14 must be changed. Lacks freedom of change.
On the other hand, according to the third method, the degree of freedom of change can be ensured, but there is a problem in terms of cost because it is necessary to prepare a plurality of high-frequency and large-scale high-frequency signal generators 20.

本発明は、これらの従来の問題点を解決するものであり、その目的は、比較的安価な構成で、複数信号相互間のレベルや周波数の関係を変更する自由度が確保できる任意波形発生器を提供することにある。 The present invention solves these conventional problems, and an object of the present invention is to provide an arbitrary waveform generator capable of ensuring a degree of freedom to change the relationship between levels and frequencies between a plurality of signals with a relatively inexpensive configuration . Is to provide.

このような課題を達成する本発明のうち、請求項1の発明は、
第1の波形データと第2の波形データを格納する第1,第2の任意波形メモリと、
余弦波出力端子と正弦波出力端子を有し、直交する2系統の正弦波を出力する複素正弦波発生部と、
虚数端子と実数端子よりなる第1,第2の入力端子と出力端子を有し、前記第1の任意波形メモリの出力端子は前記第1の入力端子の実数端子に接続されて前記第2の任意波形メモリの出力端子は前記第1の入力端子の虚数端子に接続され、前記第2の入力端子の実数端子には前記複素正弦波発生部の余弦波出力端子が接続されて前記第2の入力端子の虚数端子には前記複素正弦波発生部の出力の正弦波出力端子が接続され、これら任意波形メモリの出力と複素正弦波発生部の出力を複素乗算する複素乗算器と、
複素乗算器の実数側出力データと虚数側出力データを個別にアナログ波形に変換し整形出力するアナログ波形処理手段とで構成され、
直交する2系統の信号を生成することを特徴とする任意波形発生器である。
Among the present inventions that achieve such problems, the invention of claim 1
First and second arbitrary waveform memories for storing first waveform data and second waveform data;
A complex sine wave generator having a cosine wave output terminal and a sine wave output terminal and outputting two orthogonal sine waves;
The first arbitrary waveform memory has a first input terminal and an output terminal each consisting of an imaginary number terminal and a real number terminal, and an output terminal of the first arbitrary waveform memory is connected to a real number terminal of the first input terminal, The output terminal of the arbitrary waveform memory is connected to the imaginary terminal of the first input terminal, and the cosine wave output terminal of the complex sine wave generator is connected to the real terminal of the second input terminal. A sine wave output terminal of the output of the complex sine wave generator is connected to the imaginary terminal of the input terminal, and a complex multiplier that performs complex multiplication of the output of the arbitrary waveform memory and the output of the complex sine wave generator,
Consists of analog waveform processing means for individually converting the real side output data and the imaginary side output data of the complex multiplier to an analog waveform and shaping the output,
An arbitrary waveform generator characterized in that it generates two orthogonal signals.

請求項2記載の発明は、請求項1記載の任意波形発生器において、
前記複素乗算器の一方の入力端子の実数端子は第1の乗算器の一方の入力端子および第2の乗算器の一方の入力端子に接続され、
前記複素乗算器の一方の入力端子の虚数端子は第3の乗算器の一方の入力端子および第4の乗算器の一方の入力端子に接続され、
前記複素乗算器の他方の入力端子の実数端子は第1の乗算器の他方の入力端子および第4の乗算器の他方の入力端子に接続され、
前記複素乗算器の他方の入力端子の虚数端子は第2の乗算器の他方の入力端子および第3の乗算器の他方の入力端子に接続され、
第1の乗算器の出力端子は減算器の加算端子に接続され、第2の乗算器の出力端子は加算器の一方の入力端子に接続され、第3の乗算器の出力端子は減算器の減算端子に接続され、第4の乗算器の出力端子は加算器の他方の入力端子に接続され、
減算器の出力端子は複素乗算器の出力端子の実数端子に接続され、加算器の出力端子は複素乗算器の出力端子の虚数端子に接続されていることを特徴とする。
The invention according to claim 2 is the arbitrary waveform generator according to claim 1,
The real terminal of one input terminal of the complex multiplier is connected to one input terminal of the first multiplier and one input terminal of the second multiplier,
The imaginary terminal of one input terminal of the complex multiplier is connected to one input terminal of the third multiplier and one input terminal of the fourth multiplier,
The real terminal of the other input terminal of the complex multiplier is connected to the other input terminal of the first multiplier and the other input terminal of the fourth multiplier,
The imaginary terminal of the other input terminal of the complex multiplier is connected to the other input terminal of the second multiplier and the other input terminal of the third multiplier,
The output terminal of the first multiplier is connected to the addition terminal of the subtracter, the output terminal of the second multiplier is connected to one input terminal of the adder, and the output terminal of the third multiplier is connected to the subtracter. Connected to the subtraction terminal, the output terminal of the fourth multiplier is connected to the other input terminal of the adder,
The output terminal of the subtractor is connected to the real terminal of the output terminal of the complex multiplier, and the output terminal of the adder is connected to the imaginary terminal of the output terminal of the complex multiplier.

請求項3記載の発明は、請求項1記載の任意波形発生器において、
前記複素正弦波発生部は、フェーズアキュムレータと正弦波テーブルを使用した数値演算オシレータであることを特徴とする。
The invention according to claim 3 is the arbitrary waveform generator according to claim 1,
The complex sine wave generator is a numerical operation oscillator using a phase accumulator and a sine wave table.

請求項4記載の発明は、請求項1から請求項3のいずれかに記載の任意波形発生器において、
IQベースバンド信号を出力することを特徴とする。
The invention according to claim 4 is the arbitrary waveform generator according to any one of claims 1 to 3,
An IQ baseband signal is output.

本発明によれば、比較的安価な構成で、複数信号相互間のレベルや周波数の関係を変更する自由度が確保できる任意波形発生器を実現できる。

ADVANTAGE OF THE INVENTION According to this invention, the arbitrary waveform generator which can ensure the freedom degree which changes the relationship of the level and frequency between several signals with a comparatively cheap structure is realizable.

以下、本発明を図面を用いて詳細に説明する。図1は本発明の一実施例を示すブロック図であり、図5と共通する部分には同一の符号を付けている。
図1において、任意波形メモリ11の出力端子は複素乗算器30の一方の入力端子IN1の実数端子Re.に接続され、任意波形メモリ14の出力端子は複素乗算器30の一方の入力端子IN1の虚数端子Im.に接続されている。複素乗算器30の他方の入力端子IN2の実数端子Re.には複素正弦波発生部40の余弦波出力端子cosωtが接続され、複素乗算器30の他方の入力端子IN2の虚数端子Im.には複素正弦波発生部40の出力の正弦波出力端子sinωtが接続されている。そして、複素乗算器30の出力端子OUTの実数端子Re.はD/A変換器12の入力端子に接続され、複素乗算器30の出力端子OUTの虚数端子Im.はD/A変換器15の入力端子に接続されている。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention, and the same reference numerals are given to portions common to FIG.
1, the output terminal of the arbitrary waveform memory 11 is connected to the real terminal Re. Of one input terminal IN1 of the complex multiplier 30, and the output terminal of the arbitrary waveform memory 14 is connected to one input terminal IN1 of the complex multiplier 30. Connected to imaginary terminal Im. The cosine wave output terminal cosωt of the complex sine wave generator 40 is connected to the real terminal Re. Of the other input terminal IN2 of the complex multiplier 30, and the imaginary terminal Im. Of the other input terminal IN2 of the complex multiplier 30 is connected to the real terminal Re. A sine wave output terminal sinωt that is an output of the complex sine wave generator 40 is connected. The real terminal Re. Of the output terminal OUT of the complex multiplier 30 is connected to the input terminal of the D / A converter 12, and the imaginary terminal Im. Of the output terminal OUT of the complex multiplier 30 is connected to the D / A converter 15. Connected to the input terminal.

図2は複素乗算器30の具体例を示すブロック図である。複素乗算器30は、例えば4つの乗算器31〜34と減算器35と加算器36とで構成されている。   FIG. 2 is a block diagram showing a specific example of the complex multiplier 30. The complex multiplier 30 includes, for example, four multipliers 31 to 34, a subtracter 35, and an adder 36.

複素乗算器30の一方の入力端子IN1の実数端子Re.は乗算器31の一方の入力端子および乗算器32の一方の入力端子に接続され、複素乗算器30の一方の入力端子IN1の虚数端子Im.は乗算器33の一方の入力端子および乗算器34の一方の入力端子に接続されている。   The real terminal Re. Of one input terminal IN1 of the complex multiplier 30 is connected to one input terminal of the multiplier 31 and one input terminal of the multiplier 32, and the imaginary terminal of one input terminal IN1 of the complex multiplier 30. Im. Is connected to one input terminal of the multiplier 33 and one input terminal of the multiplier 34.

複素乗算器30の他方の入力端子IN2の実数端子Re.は乗算器31の他方の入力端子および乗算器34の他方の入力端子に接続され、複素乗算器30の他方の入力端子IN2の虚数端子Im.は乗算器32の他方の入力端子および乗算器33の他方の入力端子に接続されている。   The real terminal Re. Of the other input terminal IN2 of the complex multiplier 30 is connected to the other input terminal of the multiplier 31 and the other input terminal of the multiplier 34, and the imaginary terminal of the other input terminal IN2 of the complex multiplier 30. Im. Is connected to the other input terminal of the multiplier 32 and the other input terminal of the multiplier 33.

乗算器31の出力端子は減算器35の加算端子に接続され、乗算器32の出力端子は加算器36の一方の入力端子に接続され、乗算器33の出力端子は減算器35の減算端子に接続され、乗算器34の出力端子は加算器36の他方の入力端子に接続されている。   The output terminal of the multiplier 31 is connected to the addition terminal of the subtractor 35, the output terminal of the multiplier 32 is connected to one input terminal of the adder 36, and the output terminal of the multiplier 33 is connected to the subtraction terminal of the subtractor 35. The output terminal of the multiplier 34 is connected to the other input terminal of the adder 36.

そして、減算器35の出力端子は複素乗算器30の出力端子OUTの実数端子Re.に接続され、加算器36の出力端子は複素乗算器30の出力端子OUTの虚数端子Im.に接続されている。   The output terminal of the subtractor 35 is connected to the real terminal Re. Of the output terminal OUT of the complex multiplier 30, and the output terminal of the adder 36 is connected to the imaginary terminal Im. Of the output terminal OUT of the complex multiplier 30. Yes.

複素正弦波発生部40としては、例えばフェーズアキュムレータと正弦波テーブルを使用した数値演算オシレータ(NCO)を用いる。この複素正弦波発生部40は、直交する2つの正弦波信号cosωtとsinωtを発生する。   As the complex sine wave generator 40, for example, a numerical operation oscillator (NCO) using a phase accumulator and a sine wave table is used. The complex sine wave generator 40 generates two orthogonal sine wave signals cosωt and sinωt.

図1および図2の動作を説明する。任意波形メモリ11の出力信号をI'、任意波形メモリ14の出力信号をQ'、複素正弦波発生部40の出力をexp(jωt)とすると、複素乗算器30の出力(I+jQ)は次式で示される。
I+jQ=(I'+jQ')・exp(jωt)
これは、(I'+jQ')で示される複素信号の周波数スペクトルを、周波数ωだけ平行移動する操作を表している。すなわち複素乗算器30のωの値によって、任意にメモリ波形のスペクトルを移動できることになる。ちなみにω=0であれば、スペクトルの移動は行われない。
The operation of FIGS. 1 and 2 will be described. If the output signal of the arbitrary waveform memory 11 is I ′, the output signal of the arbitrary waveform memory 14 is Q ′, and the output of the complex sine wave generator 40 is exp (jωt), the output (I + jQ) of the complex multiplier 30 is Indicated by
I + jQ = (I ′ + jQ ′) · exp (jωt)
This represents an operation of translating the frequency spectrum of the complex signal represented by (I ′ + jQ ′) by the frequency ω. That is, the spectrum of the memory waveform can be arbitrarily moved according to the value of ω of the complex multiplier 30. Incidentally, if ω = 0, the spectrum is not moved.

このような任意波形発生部10の構成によれば、任波波形メモリ11,14に書き込まれている波形を書き換えることなく、出力されるIQ信号の中心周波数を変更することが可能となる。   According to such a configuration of the arbitrary waveform generation unit 10, it is possible to change the center frequency of the output IQ signal without rewriting the waveforms written in the arbitrary waveform memories 11 and 14.

したがって、このようなIQ信号をIQ変調機能を備えた高周波信号発生部20の入力として用いることにより、高周波信号発生部20側の設定周波数を固定していても、任意波形発生部10を構成する複素正弦波発生器40の周波数を変更することで、高周波信号発生部20の出力周波数を任意に変更することができる。   Therefore, by using such an IQ signal as an input of the high frequency signal generator 20 having the IQ modulation function, the arbitrary waveform generator 10 is configured even if the set frequency on the high frequency signal generator 20 side is fixed. By changing the frequency of the complex sine wave generator 40, the output frequency of the high-frequency signal generator 20 can be arbitrarily changed.

図3は、本発明に基づき、妨害波と希望波を同時に含むテスト信号を発生させるように構成したテスト信号発生装置の一例を示すブロック図である。図3において、任意波形発生部50,60はそれぞれ図1のように構成されている。任意波形発生部50のI信号出力端子は加算器71の一方の入力端子に接続され、任意波形発生部50のQ信号出力端子は加算器72の一方の入力端子に接続されている。任意波形発生部60のI信号出力端子は加算器71の他方の入力端子に接続され、任意波形発生部60のQ信号出力端子は加算器72の他方の入力端子に接続されている。そして、加算器71の出力端子は高周波信号発生部20のI信号入力端子に接続され、加算器72の出力端子は高周波信号発生部20のQ信号入力端子に接続されている。   FIG. 3 is a block diagram showing an example of a test signal generator configured to generate a test signal that simultaneously includes an interference wave and a desired wave according to the present invention. In FIG. 3, each of the arbitrary waveform generators 50 and 60 is configured as shown in FIG. The I signal output terminal of the arbitrary waveform generator 50 is connected to one input terminal of the adder 71, and the Q signal output terminal of the arbitrary waveform generator 50 is connected to one input terminal of the adder 72. The I signal output terminal of the arbitrary waveform generator 60 is connected to the other input terminal of the adder 71, and the Q signal output terminal of the arbitrary waveform generator 60 is connected to the other input terminal of the adder 72. The output terminal of the adder 71 is connected to the I signal input terminal of the high frequency signal generator 20, and the output terminal of the adder 72 is connected to the Q signal input terminal of the high frequency signal generator 20.

ここで、任意波形発生部50の任意波形メモリには希望波のベースバンド波形が書き込まれ、任意波形発生部60の任意波形メモリには妨害波のベースバンド波形が書き込まれているものとする。そして、任意波形発生部50の複素正弦波発生器の設定周波数をω1、任意波形発生部60の複素正弦波発生器の周波数をω2、高周波信号発生部20の設定周波数をωcとすると、高周波信号発生部20の出力として図4のような希望波、妨害波の合成波形が得られることになる。   Here, it is assumed that the baseband waveform of the desired wave is written in the arbitrary waveform memory of the arbitrary waveform generation unit 50, and the baseband waveform of the interference wave is written in the arbitrary waveform memory of the arbitrary waveform generation unit 60. When the set frequency of the complex sine wave generator of the arbitrary waveform generator 50 is ω1, the frequency of the complex sine wave generator of the arbitrary waveform generator 60 is ω2, and the set frequency of the high frequency signal generator 20 is ωc, the high frequency signal A combined waveform of the desired wave and the interference wave as shown in FIG.

図4において、希望波と妨害波の周波数関係は、ω1、ω2の設定により任意に変更可能である。また、希望波と妨害波のレベル関係は、任意波形発生部50と任意波形発生部60のそれぞれのゲイン調整機能で調整できる。
これにより、低コストで、自由度の高い希望波、妨害波を含んだテスト信号の発生が可能となる。
In FIG. 4, the frequency relationship between the desired wave and the interference wave can be arbitrarily changed by setting ω1 and ω2. Further, the level relationship between the desired wave and the interference wave can be adjusted by the respective gain adjustment functions of the arbitrary waveform generator 50 and the arbitrary waveform generator 60.
As a result, it is possible to generate a test signal including a desired wave and a disturbing wave with a high degree of freedom at a low cost.

なお上記実施例ではIQベースバンド信号を出力する装置について説明したが、本発明は、携帯電話やデジタル放送などのデジタル通信用デバイスをテストするための各種の信号発生器としても有効である。   In the above embodiment, an apparatus for outputting an IQ baseband signal has been described. However, the present invention is also effective as various signal generators for testing digital communication devices such as mobile phones and digital broadcasts.

本発明の一実施例を示すブロック図である。It is a block diagram which shows one Example of this invention. 図1の複素乗算器30の具体例を示すブロック図である。FIG. 2 is a block diagram illustrating a specific example of a complex multiplier 30 in FIG. 1. 妨害波と希望波を同時に含むテスト信号を発生させるテスト信号発生装置の一例を示すブロック図である。It is a block diagram which shows an example of the test signal generator which generates the test signal containing an interference wave and a desired wave simultaneously. 図3の装置から出力される希望波と妨害波の合成波形説明図である。FIG. 4 is an explanatory diagram of a combined waveform of a desired wave and an interference wave output from the apparatus of FIG. 3. 従来のテスト信号発生装置の一例を示すブロック図である。It is a block diagram which shows an example of the conventional test signal generator.

符号の説明Explanation of symbols

11,14 任意波形メモリ
12,15 D/A変換器
13,16 波形整形部
20 高周波信号発生部
30 複素演算器
31〜34 乗算器
35 減算器
36,71,72 加算器
40 複素正弦波発生器
50,60 任意波形発生器

DESCRIPTION OF SYMBOLS 11,14 Arbitrary waveform memory 12,15 D / A converter 13,16 Waveform shaping part 20 High frequency signal generation part 30 Complex arithmetic units 31-34 Multiplier 35 Subtractor 36,71,72 Adder 40 Complex sine wave generator 50,60 Arbitrary waveform generator

Claims (4)

第1の波形データと第2の波形データを格納する第1,第2の任意波形メモリと、
余弦波出力端子と正弦波出力端子を有し、直交する2系統の正弦波を出力する複素正弦波発生部と、
虚数端子と実数端子よりなる第1,第2の入力端子と出力端子を有し、前記第1の任意波形メモリの出力端子は前記第1の入力端子の実数端子に接続されて前記第2の任意波形メモリの出力端子は前記第1の入力端子の虚数端子に接続され、前記第2の入力端子の実数端子には前記複素正弦波発生部の余弦波出力端子が接続されて前記第2の入力端子の虚数端子には前記複素正弦波発生部の出力の正弦波出力端子が接続され、これら任意波形メモリの出力と複素正弦波発生部の出力を複素乗算する複素乗算器と、
複素乗算器の実数側出力データと虚数側出力データを個別にアナログ波形に変換し整形出力するアナログ波形処理手段とで構成され、
直交する2系統の信号を生成することを特徴とする任意波形発生器。
First and second arbitrary waveform memories for storing first waveform data and second waveform data;
A complex sine wave generator having a cosine wave output terminal and a sine wave output terminal and outputting two orthogonal sine waves;
The first arbitrary waveform memory has a first input terminal and an output terminal each consisting of an imaginary number terminal and a real number terminal, and an output terminal of the first arbitrary waveform memory is connected to a real number terminal of the first input terminal, The output terminal of the arbitrary waveform memory is connected to the imaginary terminal of the first input terminal, and the cosine wave output terminal of the complex sine wave generator is connected to the real terminal of the second input terminal. A sine wave output terminal of the output of the complex sine wave generator is connected to the imaginary terminal of the input terminal, and a complex multiplier that performs complex multiplication of the output of the arbitrary waveform memory and the output of the complex sine wave generator,
Consists of analog waveform processing means for individually converting the real side output data and the imaginary side output data of the complex multiplier to an analog waveform and shaping the output,
An arbitrary waveform generator characterized by generating two orthogonal signals.
前記複素乗算器の一方の入力端子の実数端子は第1の乗算器の一方の入力端子および第2の乗算器の一方の入力端子に接続され、
前記複素乗算器の一方の入力端子の虚数端子は第3の乗算器の一方の入力端子および第4の乗算器の一方の入力端子に接続され、
前記複素乗算器の他方の入力端子の実数端子は第1の乗算器の他方の入力端子および第4の乗算器の他方の入力端子に接続され、
前記複素乗算器の他方の入力端子の虚数端子は第2の乗算器の他方の入力端子および第3の乗算器の他方の入力端子に接続され、
第1の乗算器の出力端子は減算器の加算端子に接続され、第2の乗算器の出力端子は加算器の一方の入力端子に接続され、第3の乗算器の出力端子は減算器の減算端子に接続され、第4の乗算器の出力端子は加算器の他方の入力端子に接続され、
減算器の出力端子は複素乗算器の出力端子の実数端子に接続され、加算器の出力端子は複素乗算器の出力端子の虚数端子に接続されていることを特徴とする請求項1記載の任意波形発生器。
The real terminal of one input terminal of the complex multiplier is connected to one input terminal of the first multiplier and one input terminal of the second multiplier,
The imaginary terminal of one input terminal of the complex multiplier is connected to one input terminal of the third multiplier and one input terminal of the fourth multiplier,
The real terminal of the other input terminal of the complex multiplier is connected to the other input terminal of the first multiplier and the other input terminal of the fourth multiplier,
The imaginary terminal of the other input terminal of the complex multiplier is connected to the other input terminal of the second multiplier and the other input terminal of the third multiplier,
The output terminal of the first multiplier is connected to the addition terminal of the subtracter, the output terminal of the second multiplier is connected to one input terminal of the adder, and the output terminal of the third multiplier is connected to the subtracter. Connected to the subtraction terminal, the output terminal of the fourth multiplier is connected to the other input terminal of the adder,
2. An arbitrary output terminal according to claim 1, wherein the output terminal of the subtractor is connected to the real number terminal of the output terminal of the complex multiplier, and the output terminal of the adder is connected to the imaginary number terminal of the output terminal of the complex multiplier. Waveform generator.
前記複素正弦波発生部は、フェーズアキュムレータと正弦波テーブルを使用した数値演算オシレータであることを特徴とする請求項1記載の任意波形発生器。   2. The arbitrary waveform generator according to claim 1, wherein the complex sine wave generator is a numerical operation oscillator using a phase accumulator and a sine wave table. IQベースバンド信号を出力することを特徴とする請求項1から請求項3のいずれかに記載の任意波形発生器。   The arbitrary waveform generator according to any one of claims 1 to 3, wherein an IQ baseband signal is output.
JP2003411363A 2003-12-10 2003-12-10 Arbitrary waveform generator Expired - Fee Related JP4241353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411363A JP4241353B2 (en) 2003-12-10 2003-12-10 Arbitrary waveform generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411363A JP4241353B2 (en) 2003-12-10 2003-12-10 Arbitrary waveform generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008225717A Division JP4803227B2 (en) 2008-09-03 2008-09-03 Test signal generator

Publications (2)

Publication Number Publication Date
JP2005175750A JP2005175750A (en) 2005-06-30
JP4241353B2 true JP4241353B2 (en) 2009-03-18

Family

ID=34732122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411363A Expired - Fee Related JP4241353B2 (en) 2003-12-10 2003-12-10 Arbitrary waveform generator

Country Status (1)

Country Link
JP (1) JP4241353B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006655B (en) * 2005-06-14 2011-01-19 安立股份有限公司 Communication device test signal generating apparatus and communication device test signal generating method
CN1767384B (en) * 2005-08-22 2010-04-28 华南理工大学 Arbitrary waveform composite signal generator and signal generating method
CN108918924A (en) * 2018-08-31 2018-11-30 上海交通大学 Complicated Periodic wave voltage simulation generator based on signal times die pressing type
CN114356022A (en) * 2021-12-23 2022-04-15 中国航空工业集团公司西安航空计算技术研究所 Arbitrary waveform direct digital synthesis unit

Also Published As

Publication number Publication date
JP2005175750A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US7817746B2 (en) Peak factor reduction unit and baseband signal processing device
CN107211209B (en) For reducing the method and system of the distortion in ultrasonic wave audio system
JP2010507965A (en) Switch modulation of radio frequency amplifiers
US9590663B2 (en) Radio apparatus
JPH10304001A (en) Modulator and modulation method
JP4617232B2 (en) Transmitter
JP2006174364A (en) Multi-carrier signal transmission apparatus, multi-carrier signal reception apparatus, multi-carrier signal transmission method, multi-carrier signal reception method, and communication system
JP4523941B2 (en) Communication device test signal generator and communication device test signal generation method
JP4241353B2 (en) Arbitrary waveform generator
JP4322268B2 (en) Signal generating apparatus and method
CN107484197B (en) Wireless fading channel simulation device and method of any Doppler power spectrum
JP5603890B2 (en) Signal generation method and signal generation system
JP4803227B2 (en) Test signal generator
US7130361B1 (en) Telecommunication device with analog fourier transformation unit
JP2014192648A (en) Peak reducing circuit and peak reducing method
KR20210145551A (en) A digital radio frequency transmitter and an wireless communication device including the same
JP3837058B2 (en) Transmitter
JPH11251969A (en) Receiver for frequency hopping spread spectrum system
JP3697400B2 (en) Signal generator
JPH06152675A (en) Digital modulator
JP6731315B2 (en) Simulated target generation device and method
JP6637645B1 (en) Quadrature modulator
CN109729038B (en) Agile broadband vector baseband signal generating device and method
US20150134342A1 (en) Enhancement of Narrowband Audio Signals Using Single Sideband AM Modulation
CN108344976B (en) Hardware frequency-reduction sampling method and system for narrow-band signal and digital signal processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees