JP4240935B2 - Control method and control device for rotary tool for friction stir welding - Google Patents

Control method and control device for rotary tool for friction stir welding Download PDF

Info

Publication number
JP4240935B2
JP4240935B2 JP2002211538A JP2002211538A JP4240935B2 JP 4240935 B2 JP4240935 B2 JP 4240935B2 JP 2002211538 A JP2002211538 A JP 2002211538A JP 2002211538 A JP2002211538 A JP 2002211538A JP 4240935 B2 JP4240935 B2 JP 4240935B2
Authority
JP
Japan
Prior art keywords
tool
reaction force
joining
speed
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002211538A
Other languages
Japanese (ja)
Other versions
JP2004050234A (en
Inventor
慶訓 加藤
悦己 広本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002211538A priority Critical patent/JP4240935B2/en
Publication of JP2004050234A publication Critical patent/JP2004050234A/en
Application granted granted Critical
Publication of JP4240935B2 publication Critical patent/JP4240935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、摩擦撹拌接合における回転工具速度制御方法とその装置に係り、特に摩擦撹拌接合中における回転工具が受ける反力に対応して工具速度を調整可能にした摩擦攪拌制御方法とその装置に関する。
【0002】
【従来の技術】
例えば特表平7−505090号公報には、摩擦攪拌による固相接合方法として長尺材同士の新規な接合方法が開示されており、かかる接合方法は、加工物より実質的に硬い材質からなる回転ツ−ルを加工物の接合部に挿入し、回転ツ−ルを回転させながら移動することにより、回転ツ−ルと加工物との間に生じる摩擦熱による塑性流動によって加工物を接合する接合方法で、かかる摩擦接合法は、接合部材を固相状態で、回転ツ−ルを回転させながら移動させつつ軟化させた固相部分を一体化しながら接合できるために、熱歪みがなく接合方向に対して実質的に無限に長い長尺材でもその長手方向に連続的に固相接合できる利点がある。さらに、回転ツ−ルと接合部材との摩擦熱による金属の塑性流動を利用した固相接合のため、接合部を溶融させることなく接合できる。また、加熱温度が低いため、接合後の変形が少ない。接合部は溶融されないため、欠陥が少ないなどの多くの利点がある。
【0003】
次に摩擦撹拌接合に使用される回転工具について説明する。摩擦撹拌接合は特表平7−505090号に開示されているように、ブローブ型とボビンツール型の回転工具が存在し、プローブ型工具20は図4(A)に示すように、ショルダ部21とこのショルダ部21に備えられたプローブ22とを備えており、このショルダ部21は円形ショルダ面を有している。そして、複数の型材を突き合わせ、若しくは嵌合された状態の接合線表面より、前記回転工具20を回転させて、プローブ21を被加工物の接合線に設けた不図示の孔に侵入させるとともに、複数の型材の接合線上で摺接回転する円形ショルダ面21aによって被加工物に摩擦熱が付与されるとともに、プローブ22周囲が塑性流動化し、この状態で回転工具20を接合線に沿って移動させることにより、接合線周囲が塑性流動化しつつ接合線に沿って2つの素材が圧力を受けながら撹拌混練され、プローブの後方側に移行する。この結果塑性流動した素材は後方側で摩擦熱を失って急速に冷却固化するので両パネル板は素材同士が混じり合って完全に一体化した状態で接合される。
【0004】
しかしながらかかる接合方法では接合時に摩擦熱を発生させるために、回転工具20を接合線側に押しつける必要があり、従ってこの反力に対処するために、裏当金が使用されている。この裏当金は被加工物の面板の裏面に密着させて設置するものであり、高い剛性を必要とする。
【0005】
従ってこのような摩擦攪拌接合では、前記回転工具を支持する機械主軸に大きな負荷が、また、接合中に前記工具の特にプローブ(ピン)大きな負荷がかかり、破損する場合がある。
接合中に工具が破損すると、作業者が駆動モーターの音の変化などを感知して速やかに運転を停止するが、それでもそれまでの間に工具は前進するので、接合不良部分がある程度の長さになることは避けられず、摩擦撹拌接合作業を自動化し、摩擦撹拌接合機複数台を一人の作業員で監視する場合などは、かかる不具合が一層顕著になり、特にピンが破損して後に工具Tが前進した部分は再度接合する必要があるが、この接合不良部分を補修するのに多大の工数がかかる。
【0006】
かかる欠点を解消するために、特開2001−340977において、摩擦撹拌接合工具の回転駆動モータの電流値を基準値と比較し、電流値が基準値の80%以下になったときに、運転を停止(回転駆動モータ及び前進駆動モータの停止、または接合工具の引上げ、あるいは前進動作の停止など)することであり、他の解決手段は、摩擦撹拌接合工具の前進駆動モータの電流値を基準値と比較し、電流値が基準値の80%以下になったときに、運転を停止(前進駆動モータ及び前進駆動モータを停止)する技術を提案している。
【0007】
しかしながらかかる技術は、ピンが破損した場合の早期発見を促すものであり、ピンが破損しないようにした工夫ではない。
このため実際の摩擦攪拌接合では、摩擦撹拌接合工具は接合する板厚によってそのサイズが適宜選択され、当該工具の大きさによって回転駆動モータにかかる負荷はほぼ一定になるように、主軸回転数と送り速度が一定にして駆動制御しているが、実際の接合では材料の硬度や厚みのばらつきを考慮して最も負荷のかかる状況を想定して送り速度を低く設定している。
このため前記摩擦攪拌接合では、工具の接合能力に比較して接合時間が無用に長くなるという問題があった。
特に摩擦撹拌接合が用いられている鉄道車両の床板、側板などに使用されるアルミ型材等の接合継手の長さは25m前後ときわめて長く、このためこれらの摩擦接合技術では、工具の接合能力に対応させて接合時間を、工具が破損しない範囲で如何に短くするかは極めて重要な問題である。
【0008】
さて近年ブローブ型回転工具の欠点を解消するために、図4(B)に示すように、ボビンツール10と呼ばれる回転工具が提案されている。
かかる工具は接合する金属板の表裏両面を挟持するように一定間隔を設けた一対のショルダ10A、10Bが設けられているとともに、該上下一対のショルダ10A、10B間にプローブ11が設けられているので、接合面の両面において摩擦発熱させることが出来、裏面側の接合不良が生じないのみならず、上下一対のショルダ10A、10B間で互いの反力を受けているために、前記した裏当金や、支柱が不要になる。
しかしながら、かかる従来技術においてもブローブ11により上下一対のショルダ10A、10B間隔が固定されているために、被接合部材の変形や肉厚の変動があると、これを吸収することができず、円滑な摩擦攪拌接合ができない。特に、接合過程(製造過程)において、接合部に生じるギャップ(隙間)が異なることを考慮すると、ギャップに変動があると、搬送速度が一定でもギャップや接合部の厚さの変動により負荷の変動も生じやすく、やはり、最大負荷より低い送り速度に設定しなければならない。
【0009】
【解決しようとする課題】
本発明は、かかる課題に鑑み、ブローブ型、ボビン型のいずれの工具の場合でも摩擦撹拌接合工具が破損することなく良好な接合面を維持して工具の接合能力を最大限発揮して接合時間が無用に長くなるという課題を解消することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、接合部位内に侵入される小径部と接合面に圧接される大径部を具えた摩擦攪拌接合用回転工具の速度制御方法において、
接合動作時における工具の移動の際に受ける工具の反作用力(以下反力という)を検知測定し、該測定反力と基準値とを比較し、該基準値に基づいて接合方向における工具の移動速度を可変として接合速度を制御することを特徴とする。
【0011】
本発明の着目は、摩擦攪拌接合の場合に、接合面より受ける回転工具の反力と工具の移動速度が比例関係にあり、工具の移動速度が速くなればなるほど、それだけ工具の破損の確率が高くなったり、接合表面に凹凸が出来る確率が高くなることに着目したものである。
従って本発明は、良好な接合表面を維持できる最大移動速度を前もって求め、それに対応する反力を基準値として設定し、運転時に測定した反力が基準値に近づくように接合方向における工具の移動速度を制御して接合動作を行うことを要旨とする。
【0012】
かかる発明によれば、接合側の母材の厚みや硬度に変動が生じ、これに対応してブローブ型ボビン型のいずれの工具の場合でもその押圧力に対応する反力に変動が生じても、これに対応して接合方向における工具移動速度を増速若しくは減速させることができるために、回転工具が破損することなく該工具の接合能力に常に近い速度で接合できるために、接合時間が無用に長くなるという問題を解消できる。
【0013】
かかる発明を好適に実施する装置として、接合動作時における工具の移動の際に受ける工具の反作用力(反力)を検知する手段と、該測定反力と基準値とを比較する手段と、該比較値に基づいて接合方向における工具の移動速度(接合速度)を演算する手段と、該演算手段により反力に対応した工具移動速度に設定する手段からなるように構成される。
【0014】
この場合に前記基準値は例えば負荷最大値の90%等のように一定値に設定する必要がなく、請求項2に記載のように、例えば90〜98%のようにレベルゾーンに設定してもよい。即ち前記基準値をレベルゾーンとして認識し、接合動作時における工具の移動の際に受ける工具の反作用力(反力)を検知測定し、該測定反力と基準レベルゾーンとを比較し、該測定反力が基準レベルゾーン下限値以下の場合に接合方向における工具の移動速度を上げ、該測定反力が基準レベルゾーン上限値以上の場合に接合方向における工具の移動速度をさげ、該測定反力が基準レベルゾーン以内にある場合にその工具の移動速度を維持するように構成することも本発明の一つである。
【0015】
このようにゾーン制御することにより、頻繁に工具速度を変えることなく、安定かつ高品質な摩擦攪拌接合が可能となる。
【0016】
このような発明の好適な装置としては、接合動作時における工具の移動の際に受ける工具の反作用力(反力)を検知する手段と、該検知反力と基準レベルゾーンとを比較する手段と、該検知反力が基準レベルゾーン下限値以下の場合に接合方向における工具の移動速度を上げ、該検知反力が基準レベルゾーン上限値以上の場合に接合方向における工具の移動速度をさげ、該検知反力が基準レベルゾーン以内にある場合にその工具の移動速度を維持する工具移動速度設定手段からなるように構成できる。
【0017】
また、前記いずれの発明も、良好な接合表面を維持できる接合方向における最大移動速度を前もって求め、それに対応する反力を基準値若しくはレベルゾーン(以下基準値という)として設定し、運転時に逐次測定した反力が基準値に近づくように工具移動速度を制御して接合動作を行うのがよい。
【0018】
尚、前記回転工具は、ブローブ型工具でもボビンツール型工具のいずれの工具を用いてもよい。
【0019】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0020】
図1は本発明の第1実施例にかかる摩擦接合装置の制御構成を示す概略図である。
図中1は接合されるワークで、例えばシングルスキンパネル同士を突き合わせて接合する構成をとっている。
また回転工具20は円筒ショルダー21中心軸にピン22が突設するブローブ型回転工具を用い、該工具20をチャックする主軸2との間にロードセルやひずみセンサ等の反力検知センサ3を介装している。又4は、反力検知センサ3よりの信号を受けて工具反力をデジタル変換して測定するための測定器である。ここで工具反力とは前記接合動作時における工具の移動の際に受ける反作用力で、接合時における工具20の移動速度に対応して変化するものである。
【0021】
5は基準データ格納データベースで、該データベースには接合すべきアルミ板の種類および厚みに対応選択すべき接合工具の種類がマップ上にメモりされており、該メモリには接合工具のピン1の直径、基準回転速度、基準前進速度および、摩擦撹拌接合する回転駆動モータの規格電流値が記憶されている。
尚、反力基準値は規格電圧±10%の範囲内で、モータ焼損やピン破損が生じない最大反力値を予め実験で求めて設定している。
【0022】
例えば母材の材質がA6N01―T5のアルミ合金の板厚t=4mmのものを突き合わせ接合にて接合する際に、
円筒ショルダー直径:14mm、ピン直径:6mm、ピン長さ:3.7mmの回転工具を用いて工具回転数:400rpm一定で工具反力/接合速度/接合状態を調べてみた。
その結果、
▲1▼ 接合速度250mm/minの工具反力800kgfであった場合は、接合状態が良であった。
▲2▼ 接合速度350mm/minに上げて工具反力が900kgfに上昇しても接合状態が良であった。
▲3▼ 次に接合速度450mm/minに更に上げて工具反力が1100kgfに上昇した場合は、接合部表面に凹凸が生じて接合状態は不良であった。
かかる実験より工具反力の基準値を900kgfにしておけば、良好な接合が得られる最大速度で接合できる。
【0023】
6は演算処理装置で、後述する図2のフローに基づく演算処理を行う。
7は、演算処理装置6で演算された接合速度に基づいて工具を移動させながら接合動作を行うNC装置である。
【0024】
かかる装置構成におけるフロー動作を図2に基づいて説明する。
まず、母材、工具に合った基準値を、基準データ格納データベース5より基準値を読出した後(S0)、接合速度を基準最高接合速度よりわずかに低い300mm/min程度で接合を行って検知センサ3よりの信号を取り込み(S1)、測定器4で測定した反力と前記基準値との比較を行う。(S2)
そして測定値が基準値の900kgfより低ければ、接合速度を上げる。(S3)
又測定値が基準値の900kgfより高ければ、接合速度を下げる。(S4)
そして前記動作を繰り返して(S5)工具反力が前記基準値にほぼ一致するように接合速度(工具移動速度)を制御して摩擦攪拌接合を行う。
これにより回転工具20が破損することなく該工具の接合能力に常に近い速度で接合できるために、接合時間の短縮につながる。
【0025】
尚、図3は基準値をレベルゾーン化した図2に対応するフロー図の実施例で、基準値を(860〜900kgf)の範囲でレベルゾーン化しておいて、ゾーン制御することにより、頻繁に工具速度を変えることなく、安定かつ高品質な摩擦攪拌接合が可能となる。
即ち、まず、基準データ格納データベース5より基準レベルゾーンを読出した後(S9)、接合速度を基準最高接合速度よりわずかに低い300mm/min程度で接合を行って検知センサ3よりの信号を取り込み(S10)、測定器で測定した反力と基準値データに格納した基準レベルゾーン(860〜900kgf)値との比較を行う。(S11)
そして測定値が基準レベルゾーン(860〜900kgf)内に入っていれば、その接合速度を維持する(S12)
基準レベルゾーン(860〜900kgf)の下限値以下の場合に工具の移動速度を上げる。(S13)
又測定値が基準レベルゾーン上限値以上の場合に工具の移動速度を下げる。(S14)
そして前記動作を繰り返して(S15)工具反力が前記基準レベルゾーンに入るように接合速度(工具移動速度)を制御して摩擦攪拌接合を行う。
【0026】
【発明の効果】
以上記載のごとく本発明によれば、ブローブ型、ボビン型のいずれの工具の場合でも摩擦撹拌接合工具が破損することなく良好な接合面を維持して工具の接合能力を最大限発揮して接合時間が無用に長くなるという課題を解消出来る。
【図面の簡単な説明】
【図1】 本発明の第1実施例にかかる摩擦接合装置の制御構成を示す概略図である。
【図2】 図1の制御動作を示すフロー図である。
【図3】 基準値をレベルゾーン化した図2に対応するフロー図である。
【図4】 従来技術に係る摩擦撹拌接合のプローブツールとボビンツールの基本構成図である。
【符号の説明】
3 反力検知センサ
4 測定器
5 基準データ格納データベース
6 演算処理装置
7 NC装置
10 ボビンツール
20 プローブ型回転工具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary tool speed control method and apparatus for friction stir welding, and more particularly to a friction stir control method and apparatus capable of adjusting the tool speed in response to a reaction force applied to the rotary tool during friction stir welding. .
[0002]
[Prior art]
For example, Japanese Patent Publication No. 7-505090 discloses a novel method for joining long materials as a solid-phase joining method by friction stirrer, and this joining method is made of a material substantially harder than a workpiece. By inserting the rotating tool into the joint of the workpiece and moving the rotating tool while rotating, the workpiece is joined by plastic flow caused by frictional heat generated between the rotating tool and the workpiece. The friction welding method is a joining method in which the joining member is in a solid phase state and can be joined while integrating the softened solid phase portion while rotating the rotating tool, so that there is no thermal distortion and the joining direction is reduced. On the other hand, there is an advantage that even a long material that is substantially infinitely long can be continuously solid-phase bonded in the longitudinal direction. Further, since the solid-phase bonding using the plastic flow of the metal by the frictional heat between the rotating tool and the bonding member, the bonding can be performed without melting. Further, since the heating temperature is low, deformation after joining is small. Since the joint is not melted, there are many advantages such as fewer defects.
[0003]
Next, a rotary tool used for friction stir welding will be described. As disclosed in JP-A-7-505090, friction stir welding includes probe-type and bobbin tool-type rotary tools, and the probe-type tool 20 includes a shoulder portion 21 as shown in FIG. And a probe 22 provided in the shoulder portion 21, and the shoulder portion 21 has a circular shoulder surface. Then, the rotating tool 20 is rotated from the surface of the joining line in a state where a plurality of mold materials are abutted or fitted, and the probe 21 is inserted into a hole (not shown) provided in the joining line of the workpiece, Frictional heat is applied to the work piece by the circular shoulder surface 21a that slides and rotates on the joining lines of a plurality of mold materials, and the periphery of the probe 22 is plastically fluidized. In this state, the rotary tool 20 is moved along the joining line. As a result, the two materials are agitated and kneaded while receiving pressure, while the periphery of the joint line is plastically fluidized, and moves to the rear side of the probe. As a result, the plastic flowed material loses frictional heat on the rear side and rapidly cools and solidifies, so that both panel plates are joined together with the materials mixed together.
[0004]
However, in such a joining method, in order to generate frictional heat at the time of joining, it is necessary to press the rotary tool 20 to the joining line side, and therefore a backing metal is used to cope with this reaction force. This backing metal is installed in close contact with the back surface of the face plate of the workpiece, and requires high rigidity.
[0005]
Therefore, in such friction stir welding, there is a case where a large load is applied to the machine spindle supporting the rotating tool, and particularly a large load (particularly a probe (pin)) of the tool is applied during the bonding, resulting in damage.
If the tool breaks during welding, the operator will immediately stop operation upon detecting a change in the sound of the drive motor, etc., but the tool will still move forward until that time, so the poorly welded part will have a certain length. In the case of automating the friction stir welding operation and monitoring a plurality of friction stir welding machines by one worker, such trouble becomes more prominent, especially after the pin breaks and the tool The part where T has advanced needs to be joined again, but it takes a lot of man-hours to repair this poorly joined part.
[0006]
In order to eliminate such drawbacks, in JP-A-2001-340977, the current value of the rotary drive motor of the friction stir welding tool is compared with a reference value, and the operation is performed when the current value becomes 80% or less of the reference value. Stop (rotating drive motor and forward drive motor, or pulling up the welding tool, or stopping forward movement, etc.), and other solution means that the current value of the forward drive motor of the friction stir welding tool is a reference value Compared to the above, a technique is proposed in which the operation is stopped (the forward drive motor and the forward drive motor are stopped) when the current value becomes 80% or less of the reference value.
[0007]
However, this technique is intended to facilitate early detection when a pin is damaged, and is not a device for preventing the pin from being damaged.
For this reason, in actual friction stir welding, the size of the friction stir welding tool is appropriately selected according to the thickness of the plate to be joined, and the spindle rotational speed is set so that the load on the rotary drive motor is substantially constant depending on the size of the tool. The drive control is performed with a constant feed rate. However, in actual joining, the feed rate is set to be low in consideration of the most loaded state in consideration of variations in material hardness and thickness.
For this reason, the friction stir welding has a problem that the joining time becomes unnecessarily long as compared with the joining ability of the tool.
In particular, the length of joints such as aluminum molds used for the floor and side panels of railway vehicles where friction stir welding is used is very long, around 25m. Correspondingly, how to shorten the joining time within a range where the tool is not damaged is a very important problem.
[0008]
Now, in order to eliminate the drawbacks of the probe type rotary tool, a rotary tool called a bobbin tool 10 has been proposed as shown in FIG. 4B.
Such a tool is provided with a pair of shoulders 10A and 10B spaced apart so as to sandwich both front and back surfaces of a metal plate to be joined, and a probe 11 is provided between the pair of upper and lower shoulders 10A and 10B. Therefore, frictional heat can be generated on both sides of the joint surface, and not only the back side is not poorly bonded, but also because the mutual reaction force is received between the pair of upper and lower shoulders 10A and 10B. No gold or support is required.
However, since the distance between the pair of upper and lower shoulders 10A and 10B is fixed by the probe 11 in this prior art, if the member to be joined is deformed or the thickness varies, this cannot be absorbed and smooth. Unable to perform friction stir welding. In particular, considering the gap (gap) generated in the joint in the joining process (manufacturing process), if the gap varies, the load fluctuates due to variations in the thickness of the gap or joint even if the transport speed is constant. Again, the feed rate must be set lower than the maximum load.
[0009]
[Problems to be solved]
In view of such a problem, the present invention maintains a good joint surface without damaging the friction stir welding tool in any of the probe type and bobbin type tools, and maximizes the joining ability of the tool to achieve the joining time. The purpose is to solve the problem of unnecessarily long.
[0010]
[Means for Solving the Problems]
The present invention is a method for controlling the speed of a friction stir welding rotary tool comprising a small diameter portion that penetrates into a joining portion and a large diameter portion that is pressed against a joining surface.
The reaction force (hereinafter referred to as reaction force) of the tool received during the movement of the tool during the joining operation is detected and measured, the measured reaction force is compared with a reference value, and the tool is moved in the joining direction based on the reference value. and controlling the welding speed and velocity as a variable.
[0011]
The focus of the present invention is that in the case of friction stir welding, there is a proportional relationship between the reaction force of the rotating tool received from the joining surface and the moving speed of the tool, and the higher the moving speed of the tool, the more likely the tool will be broken. It pays attention to the possibility that it becomes higher and the unevenness is formed on the bonding surface.
Accordingly, the present invention obtains in advance the maximum moving speed capable of maintaining a good joining surface, sets the reaction force corresponding to it as a reference value, and moves the tool in the joining direction so that the reaction force measured during operation approaches the reference value. The gist is to perform the joining operation by controlling the speed.
[0012]
According to this invention, the thickness and hardness of the base metal on the joining side vary, and in response to this, even in the case of any probe of the probe type bobbin type, the reaction force corresponding to the pressing force varies. Correspondingly, the tool moving speed in the welding direction can be increased or decreased, so that the rotating tool can be joined at a speed that is always close to the joining ability of the tool without being damaged, so that no joining time is required. Can solve the problem of lengthening.
[0013]
As an apparatus for suitably carrying out the invention, means for detecting a reaction force (reaction force) of a tool received during movement of a tool during a joining operation, means for comparing the measured reaction force and a reference value, It is comprised from the means to calculate the moving speed (joining speed) of the tool in a joining direction based on a comparison value, and the means to set to the tool moving speed corresponding to reaction force by this calculating means.
[0014]
In this case, the reference value does not need to be set to a constant value such as 90% of the maximum load value, and is set to a level zone such as 90 to 98% as described in claim 2. Also good. That is, the reference value is recognized as a level zone, the reaction force (reaction force) of the tool received during the movement of the tool during the joining operation is detected and measured, the measured reaction force is compared with the reference level zone, and the measurement is performed. When the reaction force is lower than the reference level zone lower limit value, the tool moving speed in the welding direction is increased, and when the measured reaction force is higher than the reference level zone upper limit value, the tool moving speed in the welding direction is reduced. It is also one aspect of the present invention that the moving speed of the tool is maintained when is within the reference level zone.
[0015]
By performing zone control in this way, stable and high-quality friction stir welding can be performed without frequently changing the tool speed.
[0016]
As a preferred apparatus of such an invention, there are means for detecting a reaction force (reaction force) of the tool received during movement of the tool during the joining operation, and means for comparing the detected reaction force with a reference level zone. When the detected reaction force is lower than the reference level zone lower limit value, the moving speed of the tool in the welding direction is increased, and when the detected reaction force is higher than the reference level zone upper limit value, the tool moving speed in the welding direction is reduced, When the detected reaction force is within the reference level zone, it can be configured to include a tool moving speed setting means for maintaining the moving speed of the tool.
[0017]
In any of the above-described inventions, the maximum moving speed in the joining direction capable of maintaining a good joining surface is obtained in advance, the reaction force corresponding thereto is set as a reference value or a level zone (hereinafter referred to as a reference value), and sequentially measured during operation. It is preferable to perform the joining operation by controlling the tool moving speed so that the reaction force that is applied approaches the reference value.
[0018]
The rotary tool may be either a probe type tool or a bobbin tool type tool.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
[0020]
FIG. 1 is a schematic diagram showing a control configuration of the friction welding apparatus according to the first embodiment of the present invention.
In the figure, reference numeral 1 denotes a workpiece to be joined, for example, a structure in which single skin panels are butted together and joined.
The rotary tool 20 is a probe-type rotary tool in which a pin 22 projects from the central axis of the cylindrical shoulder 21, and a reaction force detection sensor 3 such as a load cell or a strain sensor is interposed between the rotary tool 20 and the main shaft 2 that chucks the tool 20. is doing. Reference numeral 4 denotes a measuring instrument for receiving a signal from the reaction force detection sensor 3 and converting the tool reaction force into a digital value and measuring it. Here, the tool reaction force is a reaction force received during the movement of the tool during the joining operation, and changes according to the moving speed of the tool 20 during the joining.
[0021]
Reference numeral 5 denotes a reference data storage database. In this database, the types of aluminum plates to be joined and the types of joining tools to be selected corresponding to the thicknesses are recorded on a map, and the pin 1 of the joining tool is stored in the memory. The diameter, the reference rotation speed, the reference advance speed, and the standard current value of the rotary drive motor that performs friction stir welding are stored.
The reaction force reference value is within the range of the standard voltage ± 10%, and the maximum reaction force value that does not cause motor burnout or pin breakage is determined in advance through experiments.
[0022]
For example, when joining a base material of an A6N01-T5 aluminum alloy with a thickness t = 4 mm by butt joining,
Using a rotating tool having a cylindrical shoulder diameter of 14 mm, a pin diameter of 6 mm, and a pin length of 3.7 mm, the tool reaction force / joining speed / joining state was examined at a constant tool rotation speed of 400 rpm.
as a result,
(1) When the tool reaction force was 800 kgf with a joining speed of 250 mm / min, the joining condition was good.
(2) Even when the welding speed was increased to 350 mm / min and the tool reaction force increased to 900 kgf, the bonding condition was good.
(3) Next, when the welding speed was further increased to 450 mm / min and the tool reaction force increased to 1100 kgf, irregularities were formed on the surface of the joint and the joining state was poor.
From this experiment, if the reference value of the tool reaction force is set to 900 kgf, it is possible to join at the maximum speed at which good joining can be obtained.
[0023]
An arithmetic processing unit 6 performs arithmetic processing based on the flow of FIG.
Reference numeral 7 denotes an NC apparatus that performs a joining operation while moving a tool based on the joining speed calculated by the arithmetic processing unit 6.
[0024]
A flow operation in the apparatus configuration will be described with reference to FIG.
First, a reference value suitable for the base material and the tool is detected by reading the reference value from the reference data storage database 5 (S0), and then welding is performed at a joining speed of about 300 mm / min, which is slightly lower than the reference maximum joining speed. A signal from the sensor 3 is captured (S1), and the reaction force measured by the measuring instrument 4 is compared with the reference value. (S2)
If the measured value is lower than the reference value of 900 kgf, the joining speed is increased. (S3)
If the measured value is higher than the standard value of 900 kgf, the joining speed is reduced. (S4)
Then, the above operation is repeated (S5), and the friction stir welding is performed by controlling the joining speed (tool moving speed) so that the tool reaction force substantially coincides with the reference value.
As a result, the rotating tool 20 can be joined at a speed that is always close to the joining ability of the tool without being damaged, leading to a reduction in joining time.
[0025]
FIG. 3 is an example of a flow chart corresponding to FIG. 2 in which the reference value is leveled. In FIG. 3, the reference value is frequently zoned by setting the level zone in the range of (860 to 900 kgf) and performing zone control. Stable and high-quality friction stir welding can be performed without changing the tool speed.
That is, first, after reading the reference level zone from the reference data storage database 5 (S9), the welding is performed at a joining speed of about 300 mm / min, which is slightly lower than the reference maximum joining speed, and the signal from the detection sensor 3 is captured ( S10) The reaction force measured by the measuring instrument is compared with the reference level zone (860 to 900 kgf) value stored in the reference value data. (S11)
If the measured value is within the reference level zone (860 to 900 kgf), the joining speed is maintained (S12).
When the reference level zone (860 to 900 kgf) is below the lower limit value, the moving speed of the tool is increased. (S13)
If the measured value is equal to or higher than the reference level zone upper limit value, the moving speed of the tool is reduced. (S14)
The above operation is repeated (S15), and the friction stir welding is performed by controlling the joining speed (tool moving speed) so that the tool reaction force enters the reference level zone.
[0026]
【The invention's effect】
As described above, according to the present invention, in the case of both a probe type and a bobbin type tool, the friction stir welding tool is maintained without a breakage, and the joining ability of the tool is maximized and the joining is performed to the maximum. The problem of unnecessarily long time can be solved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a control configuration of a friction welding apparatus according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing the control operation of FIG. 1;
FIG. 3 is a flowchart corresponding to FIG. 2 in which the reference value is leveled into zones.
FIG. 4 is a basic configuration diagram of a friction stir welding probe tool and a bobbin tool according to the prior art.
[Explanation of symbols]
3 Reaction force detection sensor 4 Measuring instrument 5 Reference data storage database 6 Arithmetic processing device 7 NC device 10 Bobbin tool 20 Probe type rotary tool

Claims (6)

接合部位内に侵入される小径部と接合面に圧接される大径部を具えた摩擦攪拌接合用回転工具の速度制御方法において、
接合動作時における工具の移動の際に受ける工具の反作用力(以下反力という)を検知測定し、該測定反力と基準値とを比較し、該基準値に基づいて接合方向における工具の移動速度を可変として接合速度を制御することを特徴とする摩擦攪拌接合用回転工具の制御方法。
In the speed control method of the rotary tool for friction stir welding comprising a small diameter part that penetrates into the joining part and a large diameter part that is pressed against the joining surface,
The reaction force (hereinafter referred to as reaction force) of the tool received during the movement of the tool during the joining operation is detected and measured, the measured reaction force is compared with a reference value, and the tool is moved in the joining direction based on the reference value. the method of friction stir welding rotary tool and controlling the welding speed and velocity as a variable.
請求項1記載の工具の速度制御方法において、
接合動作時における工具の移動の際に受ける工具の反作用力を検知測定し、該測定反力と基準レベルゾーンとを比較し、該測定反力が基準レベルゾーン下限値以下の場合に接合方向における工具の移動速度を上げ、該測定反力が基準レベルゾーン上限値以上の場合に工具の移動速度をさげ、該測定反力が基準レベルゾーン以内にある場合にその工具の移動速度を維持することを特徴とする摩擦攪拌接合用回転工具の制御方法。
In the method of controlling the speed of the tool according to claim 1,
The reaction force of the tool experienced during movement of the tool is detected measured at the time of bonding operation, compares the said measured reaction force and the reference level zone, in the welding direction if the measured reaction force is below the reference level zone lower limit Increase the moving speed of the tool, reduce the moving speed of the tool when the measured reaction force exceeds the upper limit of the reference level zone, and maintain the moving speed of the tool when the measured reaction force is within the reference level zone A control method of a rotary tool for friction stir welding characterized by the above.
請求項1記載の工具の速度制御方法において、
良好な接合表面を維持できる最大移動速度を前もって求め、それに対応する反力を基準値若しくはレベルゾーン(以下基準値という)として設定し、運転時に逐次測定した反力が基準値に近づくように接合方向における工具移動速度を制御して接合動作を行うことを特徴とする摩擦攪拌接合用回転工具の制御方法。
In the method of controlling the speed of the tool according to claim 1,
The maximum moving speed that can maintain a good bonding surface is obtained in advance, the reaction force corresponding to it is set as a reference value or level zone (hereinafter referred to as the reference value), and bonding is performed so that the reaction force measured sequentially during operation approaches the reference value. A control method of a rotary tool for friction stir welding, characterized in that a welding operation is performed by controlling a tool moving speed in a direction .
接合部位内に侵入される小径部と接合面に圧接される大径部を具えた摩擦攪拌接合用回転工具の制御装置において、
接合動作時における工具の移動の際に受ける工具の反作用力(反力)を検知する手段と、該測定反力と基準値とを比較する手段と、該比較値に基づいて接合方向における工具の移動速度を演算する手段と、該演算手段により反力に対応した工具移動速度に設定する手段からなることを特徴とする摩擦攪拌接合用回転工具の制御装置。
In the control device of the rotary tool for friction stir welding comprising a small diameter portion that penetrates into the joining portion and a large diameter portion that is pressed against the joining surface,
Means for detecting the reaction force (reaction force) of the tool received during the movement of the tool during the joining operation, means for comparing the measured reaction force with a reference value, and the tool in the joining direction based on the comparison value means for calculating a moving speed, the control device of the friction stir welding rotary tool, characterized in that it comprises means for setting the tool movement speed corresponding to the reaction force by the computing means.
請求項4記載の工具の速度制御装置において、
接合動作時における工具の移動の際に受ける工具の反作用力(反力)を検知する手段と、該検知反力と基準レベルゾーンとを比較する手段と、該検知反力が基準レベルゾーン下限値以下の場合に接合方向における工具の移動速度を上げ、該検知反力が基準レベルゾーン上限値以上の場合に接合方向における工具の移動速度をさげ、該検知反力が基準レベルゾーン以内にある場合にその工具の移動速度を維持する工具移動速度設定手段からなることを特徴とする摩擦攪拌接合用回転工具の速度制御装置。
The tool speed control apparatus according to claim 4, wherein
Means for detecting the reaction force (reaction force) of the tool received during the movement of the tool during the joining operation, means for comparing the detected reaction force with the reference level zone, and the detected reaction force is a reference level zone lower limit value When the moving speed of the tool in the joining direction is increased in the following cases, and when the detected reaction force is greater than or equal to the upper limit of the reference level zone, the moving speed of the tool in the joining direction is reduced, and the detected reaction force is within the reference level zone And a speed control device for a rotary tool for friction stir welding, characterized by comprising tool moving speed setting means for maintaining the moving speed of the tool.
前記基準値(レベルゾーンも含む)が、良好な接合表面を維持できる接合方向における最大移動速度を前もって求め、それに対応する反力を基準値として設定された請求項4若しくは5記載の摩擦攪拌接合用回転工具の制御装置。6. The friction stir welding according to claim 4 or 5, wherein the reference value (including the level zone) is obtained in advance as a maximum moving speed in a joining direction capable of maintaining a good joining surface, and a corresponding reaction force is set as a reference value. Rotary tool control device.
JP2002211538A 2002-07-19 2002-07-19 Control method and control device for rotary tool for friction stir welding Expired - Lifetime JP4240935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211538A JP4240935B2 (en) 2002-07-19 2002-07-19 Control method and control device for rotary tool for friction stir welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211538A JP4240935B2 (en) 2002-07-19 2002-07-19 Control method and control device for rotary tool for friction stir welding

Publications (2)

Publication Number Publication Date
JP2004050234A JP2004050234A (en) 2004-02-19
JP4240935B2 true JP4240935B2 (en) 2009-03-18

Family

ID=31934748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211538A Expired - Lifetime JP4240935B2 (en) 2002-07-19 2002-07-19 Control method and control device for rotary tool for friction stir welding

Country Status (1)

Country Link
JP (1) JP4240935B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074985B2 (en) * 2008-03-31 2012-11-14 株式会社総合車両製作所 Backing member for friction stir welding and friction stir welding method
JP5461476B2 (en) 2011-05-27 2014-04-02 三菱重工業株式会社 Friction stir welding equipment
JP5949071B2 (en) * 2012-04-03 2016-07-06 新日鐵住金株式会社 Friction stir welding tool and friction stir welding method for heterogeneous members
US8544714B1 (en) * 2012-11-15 2013-10-01 Fluor Technologies Corporation Certification of a weld produced by friction stir welding
CN104972193A (en) * 2015-07-23 2015-10-14 四川蓝讯宝迩电子科技有限公司 Auxiliary welding device

Also Published As

Publication number Publication date
JP2004050234A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP4332157B2 (en) Friction stir welding equipment
JP5391046B2 (en) Friction stir welding apparatus and joining method thereof
US7255258B2 (en) System and associated friction stir welding (FSW) assembly, controller and method for performing a friction stir welding operation
JP3763734B2 (en) Panel member processing method
US7455210B2 (en) Processing operation control method, processing operation controller, computer program for carrying out the method, information storage medium storing the computer program
JP3261433B2 (en) Joining apparatus and joining method
JP4240935B2 (en) Control method and control device for rotary tool for friction stir welding
JP4956029B2 (en) Friction stir welding apparatus and friction stir welding method
JP4288055B2 (en) Friction stir welding method and apparatus
JPH11104849A (en) Welding control device for spot welding equipment
JP2003205374A (en) Spot welding system and fixing device
JP3859582B2 (en) Friction stir welding apparatus and friction stir welding method
JP3401499B2 (en) Welding equipment using friction stir
JP3463671B2 (en) Joining method and apparatus using friction stirring
KR100790775B1 (en) Friction stir spot welding device
JP2001170782A (en) Frictional joining apparatus, and frictional joining method
JP2006007327A (en) Friction stirring and joining method, its joining device, and its friction joined body
JP2004298900A (en) Friction stir welding method, its welding equipment, and friction welding body
JP6941248B1 (en) How to insert a friction stir welding device and a joining tool
JP2000094156A (en) Frictional agitation joining method and frictional agitation joining device
JP2002239754A (en) Friction stirring joining method and its apparatus
JP3433637B2 (en) Friction welding method
JP4671523B2 (en) Process management method and process management apparatus using friction stirring
JP3491661B2 (en) Friction welding method
JP7142797B1 (en) Friction stir welding apparatus and friction stir welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4240935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term