JP4239489B2 - Activated carbon carrier, catalyst-supported activated carbon and method for producing them - Google Patents

Activated carbon carrier, catalyst-supported activated carbon and method for producing them Download PDF

Info

Publication number
JP4239489B2
JP4239489B2 JP2002184393A JP2002184393A JP4239489B2 JP 4239489 B2 JP4239489 B2 JP 4239489B2 JP 2002184393 A JP2002184393 A JP 2002184393A JP 2002184393 A JP2002184393 A JP 2002184393A JP 4239489 B2 JP4239489 B2 JP 4239489B2
Authority
JP
Japan
Prior art keywords
activated carbon
catalyst
supported
fibrous
knitted fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184393A
Other languages
Japanese (ja)
Other versions
JP2004025024A (en
Inventor
真申 小林
誠 井上
敏昭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002184393A priority Critical patent/JP4239489B2/en
Publication of JP2004025024A publication Critical patent/JP2004025024A/en
Application granted granted Critical
Publication of JP4239489B2 publication Critical patent/JP4239489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒を担持するための活性炭担体および該活性炭担体に触媒を担持してなる触媒担持活性炭に関するものであり、さらに詳しくは、高分子固体電解質型燃料電池の電極に用いられる活性炭担体および触媒担持活性炭や、水素化、脱水素化反応に用いられる活性炭担体および触媒担持活性炭に関するものである。
【0002】
たとえば、ベンゼン、トルエン、キシレン、メシチレンなどの単環芳香族化合物、ナフタレン、メチルナフタレンなどの2環芳香族化合物及びアントラセンなどの3環芳香族化合物を水素化するシステム、あるいは水素化物であるシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサンなどの単環水素化芳香族化合物、テトラリン、デカリン、メチルデカリンなどの2環水素化芳香族化合物、テトラデカヒドロアントラセン、テトラデカヒドロメチルアントラセンなどの3環水素化芳香族化合物を脱水素するシステムなどに用いられる活性炭担体および触媒担持活性炭に関するものである。
【0003】
【従来の技術】
従来、触媒を担持する担体として、表面積が大きく耐薬品性の高い活性炭等が用いられている。水素化物を脱水素するシステムに用いられる触媒担体は、脱水素反応が吸熱反応であるため、反応促進のために400℃までの雰囲気にする必要があるため、熱伝導性に優れ、かつ水素ガスや芳香族化合物などの生成物の拡散性にも優れていることを求められるが、十分な性能は得られていなかった。
【0004】
たとえば、特開2001−110437公報には、常温で液体の水素化芳香族化合物原料から加熱した脱水素触媒反応装置により水素を生成、分離し、燃料電池に水素を供給するシステムが考案されている。このシステムではCO、CO2などの副生成物を生じることなく、高純度水素を効率よく製造、供給することができ、システムのコンパクト化ができる特徴を有する。
【0005】
上記公報では、触媒として活性成分として白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、レニウム、バナジウム、タングステン、モリブデンからなる群から選ばれる少なくとも1種を含有するものが用いられており、触媒担体として表面積970m2/gのシルカアルミナ系メゾ細孔多孔質材や表面積3200m2/gのアルカリ処理の活性炭が用いられているが、より一層の反応効率の向上が求められていた。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、触媒による水素化反応および脱水素反応の反応効率の向上を図るべく、比表面積が大きく、熱伝導性に優れかつ水素ガス、原料および生成物の拡散性に優れた活性炭担体およびかかる活性炭に担持した触媒を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明にかかる活性炭担体は、触媒を担持するために用いられる活性炭担体であって、リブ編みまたは両面編みの繊維状高分子編物を炭化し賦活して得られた繊維状活性炭編物により構成され、繊維状活性炭編物の全酸性官能基量が0.1meq/g以上 . 5meq/g以下であJIS L1018に準拠し圧力差125Paにおける厚み方向の通気性が200cm3/cm2・s以上であり、かつBET法による比表面積が600m 2 /g〜1180m 2 /gであることを特徴とする。また、活性炭担体は、好ましくは、JIS K1477に準拠し25℃で乾燥空気で1/10に希釈したトルエン蒸気を通じたときのトルエン吸着性能が20g/m2〜50g/m2である。さらに好ましくは、活性炭担体に担持される触媒が水素化または脱水素反応の触媒である。
【0008】
本発明にかかる触媒担持活性炭は、上記の活性炭担体に水素化または脱水素反応の触媒を担持して得られる。また、触媒担持活性炭は、好ましくは、触媒担持後のJIS K1477に準拠し25℃で乾燥空気で1/10に希釈したトルエン蒸気を通じたときのトルエン吸着性能が、10g/m 2 〜45g/m 2 である。また、好ましくは、触媒担持後のBET法による比表面積が、400m 2 /g〜1050m 2 /gである。
【0009】
本発明にかかる活性炭担体の製造方法は、触媒を担持するために用いられる活性炭担体の製造方法であって、リブ編みまたは両面編みの繊維状高分子編物を炭化し賦活して繊維状活性炭編物を製造する工程と、繊維状活性炭編物を1.33Pa以上の酸素分圧を有する酸素雰囲気下で300℃〜450℃で熱処理して繊維状活性炭編物を表面改質する工程とを含み、繊維状活性炭編物の全酸性官能基量が0.1meq/g以上1 . 5meq/g以下であって、JIS L1018に準拠し圧力差125Paにおける厚み方向の通気性が200cm 3 /cm 2 ・s以上である活性炭担体を得ることを特徴とする。また、活性炭担体の製造方法とは、好ましくは、活性炭担体に担持される触媒が水素化反応または脱水素反応の触媒である。
【0010】
本発明にかかる触媒担持活性炭の製造方法は、上記の活性炭担体に触媒を担持することにより、JIS L1018に準拠し圧力差125Paにおける厚み方向の通気性が200cm 3 /cm 2 ・s以上である触媒担持活性炭を得ることを特徴とする。
【0011】
【発明の実施の形態】
本発明にかかる活性炭担体は、繊維状活性炭により構成されることを必要とする。比表面積を大きくするためである。本発明にかかる活性炭担体は、繊維状であれば特に形状は問わないが、繊維状活性炭編物により構成されていることが、好ましい。単繊維でなく繊維束とすることにより熱伝導率が良くなり、また疎な組織であるためより通気性の向上が可能になるからである。
【0012】
繊維状活性炭編物の製造方法について特に制限はないが、繊維状高分子を製編後、炭化処理および必要に応じて賦活処理する方法が好ましい方法として挙げられる。
【0013】
本発明における繊維状高分子の材質は、フェノール系繊維であることが望ましい。繊維状活性炭の原料繊維としては他にセルロース系、ピッチ系やPAN系が知られている。セルロース系繊維を原料繊維とする場合は、炭化・賦活により十分な吸着性能を発揮する比表面積を有する繊維状活性炭が得られるが、収率が低く、また収縮率が大きいので剛性が高く、編物の強度、特に引裂強さの小さいものとなる。PAN系繊維を原料繊維とする場合は、比較的編物強度の高いものが得られるが、大きな吸着性能を有する繊維状活性炭を得ることが困難である。ピッチ系繊維を用いるとセルロース系とPAN系の中間程度の強度と吸着性能が得られるが、必ずしも両方の特性とも満足するものではない。
【0014】
本発明における繊維状高分子の形状は、ステープルから得られる紡績糸あるいはフィラメント糸状いずれの場合でもよく、また両者を混合した混繊糸状でもよい。全体としての糸状の繊度は150dtex以上、好ましくは295〜590dtexがよい。150dtex以下の場合、製編し炭化・賦活した後の繊維状活性炭編物の密度が緻密となって十分な通気性が得られないからである。
【0015】
紡績糸または混繊糸の場合、それを構成する各単繊維の繊度は1.1dtex〜5.5dtexがよい。単繊維繊度が1.1dtex以下であると、加工後の単繊維強度が著しく弱くなり、編み物を保持することができず、また単繊維繊度が5.5dtex以上であると、炭化、賦活の進行具合が繊維表面と内部で偏りを生じ、やはり単繊維強度が著しく弱くなり、編み物を保持することができないからである。
【0016】
このような糸状を用いて原料編物を製編するにあたって、繊維状活性炭にした後の生地の通気性と熱伝導性を保持するためには編組織としてはリブ編み又は両面編みが好ましい。この中でもフライス編みやスムース編みは連続焼成する際に生地の収縮によるコース方向の応力によって生じる生地の耳部の巻き込みがほとんどなく、繊維状活性炭編物の均一な形態保持の点で好ましい。
【0017】
このようにして得られた原料編地を活性炭にする際には、炭化処理および必要に応じて賦活処理を行なう。炭化処理および賦活処理を行なう場合は、バッチ式あるいは連続式に炭化・賦活工程を施すが、繊維状活性炭編物の生地特性や吸着性能の均一性を得ることや工業的生産性を考慮すると炭化・賦活を連続的に行なうことが好ましい。原料編物を350℃以上1300℃以下の温度の不活性雰囲気で炭化し、次いで500℃以上1300℃以下の温度で炭素と反応する水蒸気、酸素、二酸化炭素等を含む活性雰囲気で賦活し活性炭化する。
【0018】
また、場合によっては雰囲気条件を制御することにより炭化と賦活を同時に行なうことも可能である。尚、賦活処理、すなわち活性炭化を行なう際の最高到達温度が1300℃を超えると質量収率が著しく減少するため、最高到達温度は1300℃以下にすることが好ましい。これにより、BET法による比表面積が500〜3000m2/gである繊維状活性炭が得られる。
【0019】
また、本発明にかかる活性炭担体は、繊維状活性炭の全酸性官能基量が0.1meq/g(すなわち0.1ミリモル当量)以上であることを必要とする。全酸性官能基量が0.1meq/g未満である場合には、水溶液系で触媒を担持する際の濡れ性が悪く均一に担持できず、また脱水素反応における反応原料および生成物の拡散性が著しく低下し、反応効率を低下させるからである。
【0020】
したがって、上記の方法によって得られた活性炭担体は、全酸性官能基量が0.1meq/g未満である場合には、0.1meq/g以上になるように酸素雰囲気中で表面改質を行なう。表面改質の方法に特に制限は無いが、たとえば1.33Pa以上の酸素分圧を有する酸素雰囲気下で熱処理を行ない、質量収率にして65%〜99%の範囲になるようにする。
【0021】
処理温度は300〜700℃が好ましい。低温では、処理する炭素材料の反応性が低下するため、酸化効果が低減するからである。他方、高温では、表面にカルボキシル基、水酸基等の親水基を付与できないからである。特に、活性炭担体の表面だけでなく全体的に多くの酸性官能基を付与するためには、低温側で長時間の空気酸化をすることが好ましい。具体的には、処理温度は300℃〜500℃が好ましく、350℃〜450℃がより好ましい。また、強酸、電気酸化等による湿式処理、プラズマ処理等によっても同様の効果が得られる。
【0022】
上記表面改質によって、全酸性官能基量が0.1〜1.5meq/gである編物状の繊維状活性炭を得ることが好ましい。より好ましくは、全酸性官能基量が0.2〜1.5meq/gであり、さらに好ましくは、0.4〜1.5meq/gである。
【0023】
ここで、酸性官能基とは、解離できるプロトンを有し塩基性物質と反応し得る官能基をいい、本明細書中においては特にNaOH水溶液と反応し得る官能基を意味し、たとえばカルボキシル基、水酸基等が挙げられる。
【0024】
得られた活性炭担体(表面改質された場合は表面改質後のもの)の目付量は、50g/m2〜300g/m2が好ましい。50g/m2未満であると活性炭の強度が弱く、300g/m2を超えると通気性が悪くなるからである。より好ましくは60g/m2〜150g/m2である。
【0025】
また、本発明にかかる活性炭担体は、通気性(編物状の活性炭担体である場合は、厚み方向の通気性)が200cm3/cm2・s以上であることを必要とする。通気性が200cm3/cm2・s未満であれば、触媒担体として用いた場合、生成した水素ガスの拡散が悪くなり、反応効率が低下するからである。
【0026】
また、活性化担体のトルエン吸着性能またはBET法による比表面積等の吸着性能も触媒を担持する際の重要な指標となる。すなわち、トルエン吸着性能とBET法による比表面積はいずれも触媒の担持、脱水素反応場としてのスペースを評価する点で共通するため相当の相関が認められるが、トルエン吸着性能は脱水素化反応における原料、生成物類似の化合物であるトルエンを用いて、主として反応場を評価するのに対し、BET法による比表面積は、窒素ガスを用いて、主として触媒の担持場を評価する点で異なり、それぞれ重要な指標である。
【0027】
本発明にかかる活性炭担体は、トルエン吸着性能が20g/m2〜50g/m2であることが好ましい。20g/m2未満であると原料化合物の反応場の低減により媒担持活性炭の性能が低下し、50g/m2を超えようとすると表面改質の際の処理温度を高くする必要があり、そうすると全酸性官能基量を多くすることが困難になるからである。また、BET法による比表面積は、600m2/g〜2000m2/gであることが好ましい。600m2/g未満であると触媒担持量の低下により触媒担持活性炭の性能が低下し、2000m2/gを超えると繊維比重の低下により担体の強度が低下するからである。
【0028】
本発明にかかる触媒担持活性炭は、上記活性炭担体に触媒が担持されているものであることを必要とする。上記担体に担持されることにより、比表面積の増大、水素ガス、反応原料および生成物の拡散性が向上し、反応効率の高い触媒担持活性炭が得られるからである。
【0029】
上記活性炭担体に担持される触媒に特に制限はないが、脱水素化反応の触媒としては、白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、レニウム、バナジウム、タングステン、モリブデン等の各種触媒が挙げられる。またこれらの触媒を複数組み合わせて用いることもできる。
【0030】
また、上記活性炭担体に触媒を担持する方法についても特に制限はないが、たとえば白金を担持する場合、10質量%以下の塩化白金酸水溶液に該活性炭担体を12時間以上浸漬、乾燥することによって10質量%以下の白金を担持することができる。ここで、溶液の溶媒として水の他にメタノール、エタノール、アセトン等の水溶性有機溶媒と水との混合溶媒を用いることもできる。なお、触媒活性を高めるため、使用前に還元処理を行なうことが極めて好ましい。
【0031】
本発明にかかる触媒担持活性炭は、触媒担持後のトルエン吸着性能が10g/m2〜45g/m2、または触媒担持後のBET法による比表面積が400m2/g〜1600m2/gであることが好ましい。トルエン吸着性能が10g/m2未満であると原料化合物の反応場の低減により十分な触媒活性が得られず、45g/m2を超えようとすると触媒担持前の表面改質の際に処理温度を高くする必要があり、そうすると全酸性官能基量を多くすることが困難になるからである。また、比表面積が400m2/g未満であると、十分な触媒活性が得られず、比表面積が1600m2/gを超えると、触媒担持活性炭を構成する繊維状活性炭の比重が低下し触媒担持活性炭の機械的強度が低下するからである。
【0032】
また、本発明にかかる触媒担持活性炭においては、触媒を担持した後の通気性が触媒を担持する前の通気性と同様であることが好ましい。すなわち、触媒を担持した後の通気性も、200cm3/cm2・s以上であることが好ましい。触媒を担持した後の通気性が200cm3/cm2・s未満の場合は、脱水素反応において生成した水素ガスの拡散が悪くなり、反応効率が低下するからである。
【0033】
【実施例】
以下、実施例に基づいて本発明を詳細に説明する。なお、繊維高分子編物、繊維状活性炭編物、活性炭担体および触媒担持活性炭についての各特性値の測定方法は以下の通りである。
【0034】
(1)通気性
通気性は、JIS L1018の8.33.1に記載されているように、フラジュール形試験機を用いて、圧力差125Paにおいて単位面積当たりに試料を通過する空気の速度(cm3/cm2・s)を測定した。
【0035】
(2)トルエン吸着性能
トルエン吸着性能は、JIS K1477に準拠して、25℃で乾燥空気で1/10に希釈したトルエン蒸気を通じたとき、試料単位面積当たりに吸着したトルエン質量(g/m2)を測定した。
【0036】
(3)比表面積
比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.2の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量当たりの表面積(m2/g)を求めた。なお、試料は、予め1Mの塩酸水溶液で12時間洗浄し、十分に水洗いし乾燥したものを、約0.1g採取し120℃で12時間真空乾燥させたものを用いた。
【0037】
(4)全酸性官能基量
全酸性官能基量の測定は以下の要領で行った。試料を水洗、乾燥後、約0.2gを採取し、120℃で12時間真空乾燥して秤量し、0.01MのNaOH水溶液60ml中に浸漬し、25℃で2時間振とうした。この液をガラス濾過器で濾過し、濾液25mlを正確に分取して、フェノールフタレインを指示薬として0.01MのHCl水溶液により逆滴定した。さらに、試料を入れないで上記と同様の要領で空試験を行ない、空試験での滴定量を差し引いた値から全酸性官能基量(単位:meq/g)を求めた。
【0038】
(5)水素発生速度
図1に水素発生装置の概略図を示す。10cm2(直径3.5cm)の触媒担持活性炭2をアルゴン置換された丸底フラスコ1の下部に設置し、丸底フラスコ1の下方に設けた電気ヒータ3により200℃に熱しながら、該触媒担持活性炭に噴霧器付き水素化物導入部9よりシクロヘキサンを10ml/min吹き付けた。生成した水素ガスは冷却管4を通って水素捕集管6に捕集され、生成したベンゼンは未反応のシクロヘキサンとともに冷却管7を通って芳香族回収部8に回収された。30分後と5時間後の水素ガスの発生速度(L/min)を測定した。
【0039】
(実施例1)
単繊維繊度2.2dtex、糸状の繊度295dtexのフェノール系繊維を使用し、22ゲージ両面丸編み機によりフライス編地を編成した。この編地は、目付225g/m2、厚さ1.65mm、見掛密度0.14g/cm2、通気性は320cm3/cm2・sであった。
【0040】
この編地を常温から800℃まで30分間、不活性雰囲気中で炭化させ、次に水蒸気12質量%を含有する雰囲気中800℃の温度で90分間賦活した。得られた編地状の繊維状活性炭布は、絶乾目付130g/m2、厚さ1.05mm、通気性は330cm3/cm2・sであった。また、この繊維状活性炭布のトルエン吸着性能は43g/m2、BET比表面積は1010m2/gと高い吸着性能を有するものであった。
【0041】
この編地状の繊維状活性炭布をさらに空気中400℃で45分間熱処理を行った。熱処理収率は86質量%であり、絶乾目付112g/m2、厚さ1.05mm、全酸性基量は0.22meq/g、通気性は330cm3/cm2・sであった。また、トルエン吸着性能は37g/m2、BET比表面積は980m2/gと高い吸着性能を示した。
【0042】
さらに、塩化白金酸の水溶液に該編地状の繊維状活性炭布を浸漬し、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は30g/m2、BET比表面積は820m2/gであった。なお、白金触媒担持後の通気性は、担持前と同じく330cm3/cm2・sであった。この白金触媒担持活性炭10cm2を120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は5.3L/minで、5時間後も5.3L/minと非常に良好であった。結果を表1に示す。
【0043】
(実施例2)
実施例1と同様のフライス編地を編成し、同様の条件で炭化、賦活した。得られた編地状の繊維状活性炭布は、実施例1と同等の物性を有していた。この編地状の繊維状活性炭布をさらに空気中400℃で60分間熱処理を行った。熱処理収率は80質量%であり、絶乾目付104g/m2、厚さ1.00mm、全酸性基量は0.84meq/g、通気性は330cm3/cm2・sであった。また、トルエン吸着性能は32g/m2、BET比表面積は960m2/gであった。
【0044】
さらに、実施例1と同様にして、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は29g/m2、BET比表面積は840m2/gであった。なお、白金触媒担持後の通気性は、担持前と同じく330cm3/cm2・sであった。この白金触媒担持活性炭10cm2を120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は5.4L/minで、5時間後も5.4L/minと非常に良好であった。結果を表1に示す。
【0045】
(実施例3)
実施例1と同様のフライス編地を編成し、同様の条件で炭化、賦活した。得られた編地状の繊維状活性炭布は、実施例1と同等の物性を有していた。この編地状の繊維状活性炭布をさらに空気中400℃で90分間熱処理を行った。熱処理収率は73質量%であり、絶乾目付95g/m2、厚さ1.00mm、全酸性官能基量は1.02meq/g、通気性は330cm3/cm2・sであった。また、トルエン吸着性能は30g/m2、BET比表面積は950m2/gであった。
【0046】
さらに、実施例1と同様にして、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は27g/m2、BET比表面積は840m2/gであった。なお、白金触媒担持後の通気性は、担持前と同じく330cm3/cm2・sであった。この白金触媒担持活性炭10cm2を120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は5.3L/minで、5時間後も5.2L/minと非常に良好であった。結果を表1に示す。
【0047】
(実施例4)
実施例1と同様のフライス編地を編成し、同様の条件で炭化した後、水蒸気12質量%を含有する雰囲気中800℃の温度で60分間賦活した。得られた編地状の繊維状活性炭布は、絶乾目付138g/m2、厚さ1.00mm、通気性は330cm3/cm2・sであった。また、この繊維状活性炭布のトルエン吸着性能は37g/m2、BET比表面積は820m2/gであった。
【0048】
この編地状の繊維状活性炭布をさらに空気中400℃で60分間熱処理を行った。熱処理収率は76質量%であり、絶乾目付105g/m2、厚さ1.00mm、全酸性官能基量は1.20meq/g、通気性は330cm3/cm2・sであった。また、トルエン吸着性能は28g/m2、BET比表面積は790m2/gであった。
【0049】
さらに、実施例1と同様にして、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は21g/m2、BET比表面積は630m2/gであった。なお、白金触媒担持後の通気性は、担持前と同じく330cm3/cm2・sであった。この白金触媒担持活性炭10cm2を120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は4.4L/minで、5時間後も4.4L/minと良好であった。結果を表1に示す。
【0050】
(実施例5)
実施例1と同様のフライス編地を編成し、常温から850℃まで30分間、不活性雰囲気中で炭化させ、次に水蒸気12質量%を含有する雰囲気中850℃の温度で90分間賦活した。得られた編地状の繊維状活性炭布は、絶乾目付126g/m2、厚さ1.00mm、通気性は330cm3/cm2・sであった。また、この繊維状活性炭布のトルエン吸着性能は50g/m2、BET比表面積は1250m2/gと非常に高い吸着性能を有するものであった。
【0051】
この編地状の繊維状活性炭布をさらに空気中400℃で90分間熱処理を行った。熱処理収率は79質量%であり、絶乾目付100g/m2、厚さ1.00mm、全酸性官能基量は0.43meq/g、通気性は330cm3/cm2・sであった。また、トルエン吸着性能は42g/m2、BET比表面積は1180m2/gと高い吸着性能を示した。
【0052】
さらに、実施例1と同様にして、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は35g/m2、BET比表面積は1050m2/gであった。なお、白金触媒担持後の通気性は、担持前と同じく330cm3/cm2・sであった。この白金触媒担持活性炭10cm2を120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は4.5L/minで、5時間後も4.4L/minと良好であった。結果を表1に示す。
【0053】
(比較例1)
実施例1と同様のフライス編を編成し、実施例1と同様の条件で炭化、賦活した。得られた編地状の繊維状活性炭布は、実施例1と同様に、絶乾目付130g/m2、厚さ1.10mm、通気性330cm3/cm2・s、トルエン吸着性能は43g/m2、BET比表面積は1010m2/g、全酸性官能基量は0.09であった。
【0054】
次に、この編地状の繊維状活性炭布を熱処理することなく、実施例1と同様にして、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は29g/m2、BET比表面積は710m2/gであった。なお、白金触媒担持後の通気性は、担持前と同じく330cm3/cm2・sであった。この白金触媒担持活性炭10cm2を120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は3.2L/minで、5時間後もそれぞれ3.1L/minであった。結果を表1に示す。
【0055】
(比較例2)
単繊維繊度2.2dtex、糸状の繊度295dtexのフェノール系繊維を使用し、18ゲージ両面丸編み機によりスムース編地を編成した。この編地は、目付259g/m2、厚さ1.75mm、見掛密度0.15g/cm2、通気性は250cm3/cm2・sであった。
【0056】
この編地を実施例1と同様に、常温から800℃まで30分間で不活性雰囲気中で炭化させ、次に水蒸気12質量%を含有する雰囲気中800℃の温度で90分間賦活した。得られた編地状の繊維状活性炭布は、絶乾目付145g/m2、厚さ1.10mm、また、この繊維状活性炭布のトルエン吸着性能は48g/m2、BET比表面積は990m2/gと高い吸着性能を有するものであったが、通気性は170cm3/cm2・sであった。
【0057】
この編地状の繊維状活性炭布をさらに実施例2と同様に、空気中400℃で60分間熱処理を行った。熱処理収率は80質量%であり、絶乾目付116g/m2、厚さ1.10mm、全酸性基量は0.50meq/g、通気性は170cm3/cm2・sであった。また、トルエン吸着性能は36g/m2、BET比表面積は950m2/gであった。
【0058】
さらに、実施例1と同様にして、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は31g/m2、BET比表面積は815m2/gであった。なお、白金触媒担持後の通気性は、担持前と同じく170cm3/cm2・sであった。この白金触媒担持活性炭10cm2を120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は2.0L/minで、5時間後も1.9L/minと低かった。結果を表1に示す。
【0059】
【表1】

Figure 0004239489
【0060】
ここで、表1において触媒担持前の繊維状活性炭とは、実施例1〜実施例5および比較例2においては炭化・賦活後かつ表面改質のための空気中での熱処理後の繊維状活性炭を、比較例1においては炭化・賦活後の繊維状活性炭を意味する。
【0061】
実施例1〜実施例5は、白金触媒担持活性炭が、繊維状活性炭により構成され全酸性官能基量が0.1meq/gであって通気性が200cm3/cm2・s以上の活性炭担体に白金が担持されたものであり、また、トルエン吸着性能およびBET法による比表面積も所定の範囲内にあるため、水素ガスの発生量が多い。
【0062】
これに対し、比較例1は全酸性官能基量が0.1meq/g未満であるため、比較例2は通気性が200cm3/cm2・s未満であるため、いずれも水素ガスの発生量は少ない。
【0063】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
【0064】
【発明の効果】
上述のように、本発明にかかる活性炭担体は、繊維状構造(好ましくはさらに編物構造)をとり通気性が高いため、熱伝導性に優れ、水素ガス、水素化または脱水素化反応における反応原料および生成物の拡散性に優れている。また、本発明にかかる活性炭担体は、全酸性官能基量が0.1meq/g以上であるため、触媒を均一に担持できるとともに反応原料および生成物の拡散を助ける。このため、本発明にかかる触媒担持活性炭は、水素化または脱水素反応の反応効率を向上することができる。
【図面の簡単な説明】
【図1】 本発明に用いられる水素発生装置の概略図である。
【符号の説明】
1 丸底フラスコ、2 触媒担持活性炭、3 電気ヒータ、4 冷却管、5 コック、6 水素捕集管、7 冷却管、8 芳香族回収部、9 噴霧器付き水素化物導入部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an activated carbon carrier for supporting a catalyst, and a catalyst-supported activated carbon obtained by supporting a catalyst on the activated carbon carrier, and more particularly, an activated carbon carrier used for an electrode of a polymer solid electrolyte fuel cell, and The present invention relates to a catalyst-supported activated carbon, an activated carbon support used for hydrogenation and dehydrogenation reactions, and a catalyst-supported activated carbon.
[0002]
For example, a monocyclic aromatic compound such as benzene, toluene, xylene and mesitylene, a bicyclic aromatic compound such as naphthalene and methylnaphthalene and a tricyclic aromatic compound such as anthracene, or a hydride cyclohexane, Monocyclic hydrogenated aromatic compounds such as methylcyclohexane and dimethylcyclohexane, bicyclic hydrogenated aromatic compounds such as tetralin, decalin and methyldecalin, and tricyclic hydrogenated aromatic compounds such as tetradecahydroanthracene and tetradecahydromethylanthracene The present invention relates to an activated carbon support and a catalyst-supported activated carbon used in a system for dehydrogenating the catalyst.
[0003]
[Prior art]
Conventionally, activated carbon having a large surface area and high chemical resistance has been used as a carrier for supporting a catalyst. The catalyst carrier used in the system for dehydrogenating hydride is excellent in thermal conductivity and hydrogen gas because the dehydrogenation reaction is an endothermic reaction and therefore it is necessary to make the atmosphere up to 400 ° C. to promote the reaction. Although it is required to have excellent diffusibility of products such as benzene and aromatic compounds, sufficient performance has not been obtained.
[0004]
For example, Japanese Patent Laid-Open No. 2001-110437 has devised a system for generating and separating hydrogen by a dehydrogenation catalytic reactor heated from a liquid hydrogenated aromatic compound raw material at room temperature and supplying hydrogen to a fuel cell. . In this system, CO, CO2Therefore, high-purity hydrogen can be efficiently produced and supplied without generating by-products such as the above, and the system can be made compact.
[0005]
In the above publication, a catalyst containing at least one selected from the group consisting of platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, rhenium, vanadium, tungsten, and molybdenum is used as a catalyst. Surface area 970m as carrier2/ G silk alumina alumina mesoporous material and surface area 3200m2/ G of alkali-treated activated carbon is used, but further improvement in reaction efficiency has been demanded.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, the present invention has a large specific surface area, excellent thermal conductivity, and excellent diffusibility of hydrogen gas, raw materials and products in order to improve the reaction efficiency of the hydrogenation reaction and dehydrogenation reaction using a catalyst. It is an object of the present invention to provide an activated carbon carrier and a catalyst supported on the activated carbon.
[0007]
[Means for Solving the Problems]
  The activated carbon carrier according to the present invention isFibrous activated carbon knitted fabric obtained by carbonizing and activating a ribbed or double-sided fibrous polymer knitted fabric, which is an activated carbon carrier used for supporting a catalystComposed of fibrous activated carbonknittingThe total acidic functional group amount of 0.1 meq / g or more1 . 5 meq / g or lessInR,According to JIS L1018, in the thickness direction at a pressure difference of 125 Pa.Breathability is 200cmThree/ Cm2・ More than sYes, and BET specific surface area is 600m 2 / G-1180m 2 / GIt is characterized by being. AlsoAliveThe charcoal carrier is preferablyWhen passing through toluene vapor diluted to 1/10 with dry air at 25 ° C in accordance with JIS K1477Toluene adsorption performance is 20g / m2~ 50g / m2InTheMore preferably,The catalyst supported on the activated carbon support is a hydrogenation or dehydrogenation catalyst.
[0008]
  The catalyst-supported activated carbon according to the present invention is obtained by supporting a catalyst for hydrogenation or dehydrogenation reaction on the above-mentioned activated carbon support. The catalyst-supported activated carbon preferably has a toluene adsorption performance of 10 g / m when passing through toluene vapor diluted to 1/10 with dry air at 25 ° C. in accordance with JIS K1477 after catalyst support. 2 ~ 45g / m 2 It is. Preferably, the specific surface area by the BET method after supporting the catalyst is 400 m. 2 / G-1050m 2 / G.
[0009]
  The method for producing an activated carbon carrier according to the present invention is a method for producing an activated carbon carrier used for supporting a catalyst, and carbonized and activated a fibrous polymer knitted rib- or double-sided knitted fabric to activate the fibrous activated carbon knitted fabric. A fibrous activated carbon knitted fabric comprising a step of manufacturing and a surface modification of the fibrous activated carbon knitted fabric by heat-treating the fibrous activated carbon knitted fabric at 300 ° C. to 450 ° C. in an oxygen atmosphere having an oxygen partial pressure of 1.33 Pa or more. The total acidic functional group amount of the knitted fabric is 0.1 meq / g or more 1 . 5 meq / g or less, and the air permeability in the thickness direction at a pressure difference of 125 Pa is 200 cm in accordance with JIS L1018. Three / Cm 2 -Obtaining activated carbon carrier which is more than s. In the method for producing an activated carbon carrier, the catalyst supported on the activated carbon carrier is preferably a hydrogenation or dehydrogenation catalyst.
[0010]
  The method for producing a catalyst-supported activated carbon according to the present invention has a gas permeability in the thickness direction of 200 cm at a pressure difference of 125 Pa in accordance with JIS L1018, by supporting the catalyst on the activated carbon support. Three / Cm 2 -It is characterized by obtaining catalyst-supported activated carbon that is s or more.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The activated carbon carrier according to the present invention needs to be composed of fibrous activated carbon. This is to increase the specific surface area. The shape of the activated carbon carrier according to the present invention is not particularly limited as long as it is fibrous, but it is preferably composed of a fibrous activated carbon knitted fabric. This is because by using a fiber bundle instead of a single fiber, the thermal conductivity is improved, and since the structure is sparse, the air permeability can be further improved.
[0012]
Although there is no restriction | limiting in particular about the manufacturing method of a fibrous activated carbon knitted fabric, The method of carrying out the carbonization process and the activation process as needed is mentioned as a preferable method after knitting a fibrous polymer.
[0013]
The material of the fibrous polymer in the present invention is preferably a phenol fiber. Cellulose-based, pitch-based, and PAN-based fibers are also known as the raw material fibers for fibrous activated carbon. When cellulosic fibers are used as raw material fibers, fibrous activated carbon having a specific surface area that exhibits sufficient adsorption performance by carbonization and activation can be obtained, but the yield is low and the shrinkage ratio is large, so the rigidity is high, and the knitted fabric Strength, particularly tear strength. When PAN-based fibers are used as raw material fibers, those having relatively high knitting strength can be obtained, but it is difficult to obtain fibrous activated carbon having large adsorption performance. When pitch fibers are used, intermediate strength and adsorption performance between cellulose and PAN can be obtained, but both properties are not necessarily satisfied.
[0014]
The shape of the fibrous polymer in the present invention may be a spun yarn or a filament yarn obtained from staples, or may be a mixed yarn obtained by mixing the two. As a whole, the fineness of the yarn is 150 dtex or more, preferably 295 to 590 dtex. In the case of 150 dtex or less, the density of the fibrous activated carbon knitted fabric after knitting, carbonization and activation becomes dense, and sufficient air permeability cannot be obtained.
[0015]
In the case of spun yarn or mixed yarn, the fineness of each single fiber constituting the yarn is preferably 1.1 dtex to 5.5 dtex. When the single fiber fineness is 1.1 dtex or less, the single fiber strength after processing becomes extremely weak and the knitted fabric cannot be held, and when the single fiber fineness is 5.5 dtex or more, the carbonization and activation progress. This is because the condition causes a deviation between the fiber surface and the inside, and the single fiber strength is remarkably weak so that the knitted fabric cannot be held.
[0016]
In knitting a raw material knitted fabric using such a yarn shape, rib knitting or double-sided knitting is preferable as a knitted structure in order to maintain the breathability and thermal conductivity of the fabric after it is made into fibrous activated carbon. Among these, milling and smooth knitting are preferable from the standpoint of maintaining a uniform shape of the fibrous activated carbon knitted fabric because there is almost no entanglement of the ear of the fabric caused by the stress in the course direction due to shrinkage of the fabric during continuous firing.
[0017]
When the raw material knitted fabric thus obtained is activated carbon, carbonization treatment and activation treatment as necessary are performed. When performing carbonization treatment and activation treatment, the carbonization / activation process is performed batchwise or continuously. However, considering the uniformity of the fabric characteristics and adsorption performance of the fibrous activated carbon knitted fabric and the industrial productivity, It is preferable to perform activation continuously. The raw material knitted material is carbonized in an inert atmosphere at a temperature of 350 ° C. or higher and 1300 ° C. or lower, and then activated and activated carbonized in an active atmosphere containing water vapor, oxygen, carbon dioxide, etc. that reacts with carbon at a temperature of 500 ° C. or higher and 1300 ° C. or lower. .
[0018]
In some cases, carbonization and activation can be performed simultaneously by controlling the atmospheric conditions. In addition, since the mass yield will reduce remarkably when the maximum reached temperature at the time of activation process, ie, activated carbonization, exceeds 1300 degreeC, it is preferable to make the maximum reached temperature below 1300 degreeC. Thereby, the specific surface area by BET method is 500-3000m.2/ G of fibrous activated carbon is obtained.
[0019]
In addition, the activated carbon carrier according to the present invention requires that the total amount of acidic functional groups of the fibrous activated carbon is 0.1 meq / g (that is, 0.1 mmol equivalent) or more. When the total amount of acidic functional groups is less than 0.1 meq / g, the wettability when loading the catalyst in the aqueous solution system is poor and cannot be uniformly supported, and the diffusibility of the reaction raw materials and products in the dehydrogenation reaction This is because the remarkably lowers the reaction efficiency.
[0020]
Therefore, when the total amount of acidic functional groups is less than 0.1 meq / g, the activated carbon carrier obtained by the above method is subjected to surface modification in an oxygen atmosphere so that it becomes 0.1 meq / g or more. . The surface modification method is not particularly limited, but for example, heat treatment is performed in an oxygen atmosphere having an oxygen partial pressure of 1.33 Pa or higher so that the mass yield is in the range of 65% to 99%.
[0021]
The treatment temperature is preferably 300 to 700 ° C. This is because, at low temperatures, the reactivity of the carbon material to be treated is lowered, and the oxidation effect is reduced. On the other hand, at high temperatures, hydrophilic groups such as carboxyl groups and hydroxyl groups cannot be imparted to the surface. In particular, in order to impart many acidic functional groups not only on the surface of the activated carbon carrier, it is preferable to perform air oxidation for a long time on the low temperature side. Specifically, the treatment temperature is preferably 300 ° C to 500 ° C, more preferably 350 ° C to 450 ° C. Similar effects can also be obtained by wet treatment using strong acid, electrooxidation, etc., plasma treatment, or the like.
[0022]
It is preferable to obtain a knitted fibrous activated carbon having a total acidic functional group amount of 0.1 to 1.5 meq / g by the surface modification. More preferably, the total amount of acidic functional groups is 0.2 to 1.5 meq / g, and further preferably 0.4 to 1.5 meq / g.
[0023]
Here, the acidic functional group means a functional group having a dissociable proton and capable of reacting with a basic substance, and in the present specification, particularly means a functional group capable of reacting with an aqueous NaOH solution, such as a carboxyl group, A hydroxyl group etc. are mentioned.
[0024]
The weight per unit area of the obtained activated carbon carrier (after surface modification when the surface is modified) is 50 g / m2~ 300g / m2Is preferred. 50 g / m2If it is less than 300 g, the strength of the activated carbon is weak and 300 g / m.2It is because air permeability will worsen if it exceeds. More preferably 60 g / m2~ 150g / m2It is.
[0025]
In addition, the activated carbon carrier according to the present invention has an air permeability (in the case of a knitted activated carbon carrier, the air permeability in the thickness direction) of 200 cm.Three/ Cm2・ It needs to be more than s. Breathability is 200cmThree/ Cm2-If it is less than s, when it is used as a catalyst carrier, the diffusion of the generated hydrogen gas is deteriorated and the reaction efficiency is lowered.
[0026]
Further, the toluene adsorption performance of the activated carrier or the adsorption performance such as the specific surface area by the BET method is also an important index when loading the catalyst. That is, both the toluene adsorption performance and the specific surface area by the BET method are common in terms of evaluating catalyst loading and space as a dehydrogenation reaction field. While the reaction field is mainly evaluated using toluene, which is a compound similar to the raw material and product, the specific surface area according to the BET method is different in that the catalyst loading field is mainly evaluated using nitrogen gas. It is an important indicator.
[0027]
The activated carbon carrier according to the present invention has a toluene adsorption performance of 20 g / m.2~ 50g / m2It is preferable that 20 g / m2If it is less than 50g / m, the performance of the medium-supported activated carbon is reduced due to the reduction of the reaction field of the raw material compound2This is because it is necessary to increase the treatment temperature at the time of surface modification, so that it becomes difficult to increase the total amount of acidic functional groups. The specific surface area by the BET method is 600 m.2/ G-2000m2/ G is preferable. 600m2If it is less than / g, the performance of the catalyst-supported activated carbon decreases due to a decrease in the amount of catalyst supported, and 2000 m2This is because the strength of the carrier decreases due to a decrease in the specific gravity of the fiber when the amount exceeds / g.
[0028]
The catalyst-supported activated carbon according to the present invention needs to have a catalyst supported on the activated carbon support. This is because, by being supported on the support, the specific surface area is increased, the diffusibility of hydrogen gas, reaction raw materials and products is improved, and a catalyst-supported activated carbon with high reaction efficiency is obtained.
[0029]
The catalyst supported on the activated carbon carrier is not particularly limited, but as a catalyst for the dehydrogenation reaction, there are various catalysts such as platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, rhenium, vanadium, tungsten, molybdenum, and the like. Can be mentioned. A combination of a plurality of these catalysts can also be used.
[0030]
The method for supporting the catalyst on the activated carbon support is not particularly limited. For example, when platinum is supported, the activated carbon support is immersed in a 10% by mass or less chloroplatinic acid aqueous solution for 12 hours or more and dried. It is possible to carry platinum in an amount of not more than mass%. Here, a mixed solvent of water and a water-soluble organic solvent such as methanol, ethanol, and acetone can be used in addition to water as a solvent of the solution. In order to increase the catalytic activity, it is extremely preferable to perform a reduction treatment before use.
[0031]
The catalyst-supported activated carbon according to the present invention has a toluene adsorption performance of 10 g / m after catalyst support.2~ 45g / m2Or specific surface area by BET method after catalyst loading is 400m2/ G-1600m2/ G is preferable. Toluene adsorption performance is 10g / m2If it is less than 45 g / m, sufficient catalytic activity cannot be obtained due to the reduction of the reaction field of the raw material compound.2This is because it is necessary to increase the treatment temperature during surface modification before supporting the catalyst, and it becomes difficult to increase the total amount of acidic functional groups. The specific surface area is 400m2If it is less than / g, sufficient catalytic activity cannot be obtained and the specific surface area is 1600 m.2This is because the specific gravity of the fibrous activated carbon constituting the catalyst-supported activated carbon is reduced and the mechanical strength of the catalyst-supported activated carbon is decreased when the amount exceeds / g.
[0032]
In the catalyst-supported activated carbon according to the present invention, the air permeability after supporting the catalyst is preferably the same as the air permeability before supporting the catalyst. That is, the air permeability after supporting the catalyst is also 200 cm.Three/ Cm2-It is preferable that it is more than s. The air permeability after loading the catalyst is 200cmThree/ Cm2-If it is less than s, the diffusion of the hydrogen gas produced in the dehydrogenation reaction becomes worse and the reaction efficiency is lowered.
[0033]
【Example】
Hereinafter, the present invention will be described in detail based on examples. In addition, the measuring method of each characteristic value about a fiber polymer knitted fabric, a fibrous activated carbon knitted fabric, an activated carbon carrier, and a catalyst carrying activated carbon is as follows.
[0034]
(1) Breathability
As described in 8.33.1 of JIS L1018, the air permeability is measured by using the fragile tester to measure the velocity of air passing through the sample per unit area at a pressure difference of 125 Pa (cmThree/ Cm2-S) was measured.
[0035]
(2) Toluene adsorption performance
Toluene adsorption performance is the mass of toluene adsorbed per unit area (g / m) when passing through toluene vapor diluted to 1/10 with dry air at 25 ° C. according to JIS K1477.2) Was measured.
[0036]
(3) Specific surface area
The specific surface area was measured by measuring the amount of nitrogen adsorbed on the sample when the relative pressure was raised in the range of 0.0 to 0.2 under the atmosphere of the boiling point (-195.8 ° C) of liquid nitrogen, and BET plot. Surface area per unit mass of sample (m2/ G). As the sample, about 0.1 g of a sample washed beforehand with a 1M hydrochloric acid aqueous solution for 12 hours, sufficiently washed with water and dried and vacuum-dried at 120 ° C. for 12 hours was used.
[0037]
(4) Total acidic functional group amount
The total acid functional group amount was measured as follows. After the sample was washed with water and dried, about 0.2 g was collected, vacuum-dried at 120 ° C. for 12 hours, weighed, immersed in 60 ml of 0.01M NaOH aqueous solution, and shaken at 25 ° C. for 2 hours. This liquid was filtered with a glass filter, 25 ml of the filtrate was accurately collected, and titrated back with 0.01 M HCl aqueous solution using phenolphthalein as an indicator. Further, a blank test was performed in the same manner as described above without putting a sample, and the total amount of acidic functional groups (unit: meq / g) was determined from the value obtained by subtracting the titer in the blank test.
[0038]
(5) Hydrogen generation rate
FIG. 1 shows a schematic diagram of a hydrogen generator. 10cm2The catalyst-supported activated carbon 2 having a diameter of 3.5 cm is placed at the bottom of the argon-substituted round bottom flask 1 and heated to 200 ° C. by the electric heater 3 provided below the round bottom flask 1. Cyclohexane was sprayed at a rate of 10 ml / min from the hydride introducing portion 9 with a sprayer. The produced hydrogen gas was collected in the hydrogen collecting pipe 6 through the cooling pipe 4, and the produced benzene was collected in the aromatic collecting section 8 through the cooling pipe 7 together with unreacted cyclohexane. The hydrogen gas generation rate (L / min) after 30 minutes and 5 hours was measured.
[0039]
Example 1
A milled knitted fabric was knitted with a 22 gauge double-side circular knitting machine using phenolic fibers having a single fiber fineness of 2.2 dtex and a yarn-like fineness of 295 dtex. This knitted fabric has a basis weight of 225 g / m.2, Thickness 1.65mm, apparent density 0.14g / cm2The breathability is 320cmThree/ Cm2・ It was s.
[0040]
This knitted fabric was carbonized from normal temperature to 800 ° C. for 30 minutes in an inert atmosphere, and then activated for 90 minutes at a temperature of 800 ° C. in an atmosphere containing 12% by mass of water vapor. The resulting knitted fabric-like fibrous activated carbon cloth has a dry dry texture of 130 g / m.2, Thickness 1.05mm, breathability is 330cmThree/ Cm2・ It was s. The fibrous activated carbon cloth has a toluene adsorption performance of 43 g / m.2, BET specific surface area is 1010m2/ G and high adsorption performance.
[0041]
This knitted fabric-like fibrous activated carbon cloth was further heat-treated at 400 ° C. in air for 45 minutes. The heat treatment yield is 86% by mass and 112g / m2, Thickness 1.05mm, total acidic group amount 0.22meq / g, breathability 330cmThree/ Cm2・ It was s. The toluene adsorption performance is 37 g / m.2, BET specific surface area is 980m2/ G, showing high adsorption performance.
[0042]
Furthermore, the knitted fabric-like fibrous activated carbon cloth was immersed in an aqueous solution of chloroplatinic acid to prepare 5% by mass of a platinum catalyst-supported activated carbon. This platinum catalyst-supported activated carbon has a toluene adsorption performance of 30 g / m.2, BET specific surface area is 820m2/ G. The air permeability after supporting the platinum catalyst is 330 cm as before the supporting.Three/ Cm2・ It was s. This platinum catalyst-supported activated carbon 10cm2After being reduced by vacuum drying at 120 ° C. for 12 hours, the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 5.3 L / min, and the hydrogen generation rate after 5 hours was 5. It was very good at 3 L / min. The results are shown in Table 1.
[0043]
(Example 2)
A milled knitted fabric similar to that in Example 1 was knitted, and carbonized and activated under the same conditions. The obtained knitted fabric-like fibrous activated carbon cloth had the same physical properties as in Example 1. This knitted fabric-like fibrous activated carbon cloth was further heat-treated at 400 ° C. for 60 minutes in the air. The heat treatment yield is 80% by mass and the dryness is 104 g / m.2, Thickness 1.00mm, Total acidic group amount 0.84meq / g, Breathability 330cmThree/ Cm2・ It was s. The toluene adsorption performance is 32g / m2, BET specific surface area is 960m2/ G.
[0044]
Further, in the same manner as in Example 1, a 5% by mass platinum catalyst-supported activated carbon was prepared. Toluene adsorption performance of this platinum catalyst-supported activated carbon is 29 g / m2, BET specific surface area is 840m2/ G. The air permeability after supporting the platinum catalyst is 330 cm as before the supporting.Three/ Cm2・ It was s. This platinum catalyst-supported activated carbon 10cm2After being reduced by vacuum drying at 120 ° C. for 12 hours, the hydrogen gas generation rate (L / min) was measured, and the hydrogen generation rate after 30 minutes was 5.4 L / min, and after 5 hours, 5. It was very good at 4 L / min. The results are shown in Table 1.
[0045]
(Example 3)
A milled knitted fabric similar to that in Example 1 was knitted, and carbonized and activated under the same conditions. The obtained knitted fabric-like fibrous activated carbon cloth had the same physical properties as in Example 1. This knitted fabric fibrous activated carbon cloth was further heat-treated at 400 ° C. in air for 90 minutes. The heat treatment yield is 73% by mass, with an absolute dryness of 95 g / m2, Thickness 1.00mm, total acidic functional group amount 1.02 meq / g, breathability 330cmThree/ Cm2・ It was s. The toluene adsorption performance is 30 g / m2, BET specific surface area is 950m2/ G.
[0046]
Further, in the same manner as in Example 1, a 5% by mass platinum catalyst-supported activated carbon was prepared. This platinum catalyst-supported activated carbon has a toluene adsorption performance of 27 g / m.2, BET specific surface area is 840m2/ G. The air permeability after supporting the platinum catalyst is 330 cm as before the supporting.Three/ Cm2・ It was s. This platinum catalyst-supported activated carbon 10cm2After being reduced by vacuum drying at 120 ° C. for 12 hours, the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 5.3 L / min, and the hydrogen generation rate after 5 hours was 5. It was very good at 2 L / min. The results are shown in Table 1.
[0047]
(Example 4)
A milled knitted fabric similar to that in Example 1 was knitted, carbonized under the same conditions, and then activated for 60 minutes at a temperature of 800 ° C. in an atmosphere containing 12% by mass of water vapor. The resulting knitted fabric-like fibrous activated carbon cloth has a dryness of 138 g / m.2, Thickness 1.00mm, Breathability is 330cmThree/ Cm2・ It was s. The fibrous activated carbon cloth has a toluene adsorption performance of 37 g / m.2, BET specific surface area is 820m2/ G.
[0048]
This knitted fabric-like fibrous activated carbon cloth was further heat-treated at 400 ° C. for 60 minutes in the air. The heat treatment yield is 76% by mass and 105g / m2, Thickness 1.00mm, total acidic functional group amount 1.20meq / g, breathability 330cmThree/ Cm2・ It was s. The toluene adsorption performance is 28g / m2, BET specific surface area is 790m2/ G.
[0049]
Further, in the same manner as in Example 1, a 5% by mass platinum catalyst-supported activated carbon was prepared. This platinum catalyst-supported activated carbon has a toluene adsorption performance of 21 g / m.2, BET specific surface area is 630m2/ G. The air permeability after supporting the platinum catalyst is 330 cm as before the supporting.Three/ Cm2・ It was s. This platinum catalyst-supported activated carbon 10cm2After being reduced by vacuum drying at 120 ° C. for 12 hours, the hydrogen gas generation rate (L / min) was measured, and the hydrogen generation rate after 30 minutes was 4.4 L / min, and after 5 hours, 4. It was good at 4 L / min. The results are shown in Table 1.
[0050]
(Example 5)
A milled knitted fabric similar to that of Example 1 was knitted, carbonized in an inert atmosphere from room temperature to 850 ° C. for 30 minutes, and then activated for 90 minutes at a temperature of 850 ° C. in an atmosphere containing 12% by mass of water vapor. The resulting fibrous activated carbon cloth in the form of knitted fabric has a dryness of 126 g / m.2, Thickness 1.00mm, Breathability is 330cmThree/ Cm2・ It was s. Moreover, the toluene adsorption performance of this fibrous activated carbon cloth is 50 g / m.2, BET specific surface area is 1250m2/ G and very high adsorption performance.
[0051]
This knitted fabric fibrous activated carbon cloth was further heat-treated at 400 ° C. in air for 90 minutes. Heat treatment yield is 79% by mass, 100g / m2, Thickness 1.00mm, Total acidic functional group amount 0.43meq / g, Breathability 330cmThree/ Cm2・ It was s. The toluene adsorption performance is 42g / m2, BET specific surface area is 1180m2/ G, showing high adsorption performance.
[0052]
Further, in the same manner as in Example 1, a 5% by mass platinum catalyst-supported activated carbon was prepared. This platinum catalyst-supported activated carbon has a toluene adsorption performance of 35 g / m.2, BET specific surface area is 1050m2/ G. The air permeability after supporting the platinum catalyst is 330 cm as before the supporting.Three/ Cm2・ It was s. This platinum catalyst-supported activated carbon 10cm2After being reduced by vacuum drying at 120 ° C. for 12 hours, the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 4.5 L / min, and after 5 hours, 4. It was good at 4 L / min. The results are shown in Table 1.
[0053]
(Comparative Example 1)
The same milling knitting as in Example 1 was knitted, and carbonized and activated under the same conditions as in Example 1. The obtained fibrous activated carbon cloth in the form of knitted fabric is 130 g / m with an absolutely dry eye as in Example 1.2, Thickness 1.10mm, Breathable 330cmThree/ Cm2・ S and toluene adsorption performance is 43g / m2, BET specific surface area is 1010m2/ G, the total amount of acidic functional groups was 0.09.
[0054]
Next, 5 mass% platinum catalyst-supported activated carbon was prepared in the same manner as in Example 1 without heat-treating the knitted fabric-like fibrous activated carbon cloth. Toluene adsorption performance of this platinum catalyst-supported activated carbon is 29 g / m2, BET specific surface area is 710m2/ G. The air permeability after supporting the platinum catalyst is 330 cm as before the supporting.Three/ Cm2・ It was s. This platinum catalyst-supported activated carbon 10cm2After being reduced by vacuum drying at 120 ° C. for 12 hours, the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 3.2 L / min and 3 hours after 5 hours. It was 1 L / min. The results are shown in Table 1.
[0055]
(Comparative Example 2)
A smooth knitted fabric was knitted using an 18 gauge double-sided circular knitting machine using phenolic fibers having a single fiber fineness of 2.2 dtex and a yarn-like fineness of 295 dtex. This knitted fabric has a basis weight of 259 g / m.2, Thickness 1.75mm, apparent density 0.15g / cm2The breathability is 250cmThree/ Cm2・ It was s.
[0056]
In the same manner as in Example 1, this knitted fabric was carbonized in an inert atmosphere for 30 minutes from room temperature to 800 ° C., and then activated for 90 minutes at a temperature of 800 ° C. in an atmosphere containing 12% by mass of water vapor. The resulting fibrous activated carbon cloth in the form of knitted fabric is 145 g / m with an absolute dryness.21.10 mm in thickness, and this fibrous activated carbon cloth has a toluene adsorption performance of 48 g / m2, BET specific surface area is 990m2/ G and high adsorption performance, but air permeability is 170cmThree/ Cm2・ It was s.
[0057]
This knitted fabric fibrous activated carbon cloth was further heat-treated at 400 ° C. for 60 minutes in the same manner as in Example 2. The heat treatment yield is 80% by mass, with an absolutely dry weight of 116 g / m2, Thickness 1.10mm, total acidic group amount 0.50meq / g, breathability 170cmThree/ Cm2・ It was s. The toluene adsorption performance is 36 g / m2, BET specific surface area is 950m2/ G.
[0058]
Further, in the same manner as in Example 1, a 5% by mass platinum catalyst-supported activated carbon was prepared. This platinum catalyst-supported activated carbon has a toluene adsorption performance of 31 g / m.2, BET specific surface area is 815m2/ G. The air permeability after supporting the platinum catalyst is 170 cm as before the supporting.Three/ Cm2・ It was s. This platinum catalyst-supported activated carbon 10cm2After being reduced by vacuum drying at 120 ° C. for 12 hours, the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 2.0 L / min, and 1. It was as low as 9 L / min. The results are shown in Table 1.
[0059]
[Table 1]
Figure 0004239489
[0060]
Here, the fibrous activated carbon before catalyst loading in Table 1 means fibrous activated carbon after carbonization / activation and heat treatment in air for surface modification in Examples 1 to 5 and Comparative Example 2. In Comparative Example 1, it means fibrous activated carbon after carbonization / activation.
[0061]
In Examples 1 to 5, the platinum catalyst-supported activated carbon is composed of fibrous activated carbon, the total acidic functional group amount is 0.1 meq / g, and the air permeability is 200 cm.Three/ Cm2Since platinum is supported on an activated carbon carrier of s or more, and the toluene adsorption performance and the specific surface area by the BET method are also within a predetermined range, the amount of hydrogen gas generated is large.
[0062]
In contrast, since Comparative Example 1 has a total acidic functional group amount of less than 0.1 meq / g, Comparative Example 2 has an air permeability of 200 cm.Three/ Cm2-Since it is less than s, the generation amount of hydrogen gas is small in all cases.
[0063]
It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0064]
【The invention's effect】
As described above, since the activated carbon carrier according to the present invention has a fibrous structure (preferably a knitted structure) and high air permeability, it has excellent thermal conductivity and is a raw material for reaction in hydrogen gas, hydrogenation or dehydrogenation reaction. And excellent diffusibility of the product. Moreover, since the activated carbon carrier according to the present invention has a total acidic functional group amount of 0.1 meq / g or more, it can support the catalyst uniformly and assist the diffusion of the reaction raw materials and products. For this reason, the catalyst-supported activated carbon according to the present invention can improve the reaction efficiency of the hydrogenation or dehydrogenation reaction.
[Brief description of the drawings]
FIG. 1 is a schematic view of a hydrogen generator used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Round bottom flask, 2 catalyst carrying activated carbon, 3 Electric heater, 4 Cooling pipe, 5 cock, 6 Hydrogen collection pipe, 7 Cooling pipe, 8 Aromatic recovery part, 9 Hydride introduction part with a sprayer.

Claims (9)

触媒を担持するために用いられる活性炭担体であって、リブ編みまたは両面編みの繊維状高分子編物を炭化し賦活して得られた繊維状活性炭編物により構成され、前記繊維状活性炭編物の全酸性官能基量が0.1meq/g以上 . 5meq/g以下であJIS L1018に準拠し圧力差125Paにおける厚み方向の通気性が200cm3/cm2・s以上であり、かつBET法による比表面積が600m 2 /g〜1180m 2 /gであることを特徴とする活性炭担体。 An activated carbon carrier used for supporting a catalyst , comprising a fibrous activated carbon knitted fabric obtained by carbonizing and activating a ribbed or double-sided fibrous polymer knitted fabric , wherein the fibrous activated carbon knitted fabric is totally acidic functional group amount is 0.1 meq / g or more 1. 5 meq / g Ri der less, the air permeability in the thickness direction 200cm 3 / cm 2 · s or more at a pressure differential 125Pa conforming to JIS L1018, and by the BET method activated carbon support, wherein the specific surface area of 600m 2 / g~1180m 2 / g. JIS K1477に準拠し25℃で乾燥空気で1/10に希釈したトルエン蒸気を通じたときのトルエン吸着性能が20g/m2〜50g/m2である請求項1に記載の活性炭担体。Activated carbon support according to claim 1 toluene adsorption performance is 20g / m 2 ~50g / m 2 when through toluene vapor diluted to 1/10 with dry air at compliant 25 ° C. to JIS K1477. 前記活性炭担体に担持される前記触媒は、水素化または脱水素反応の触媒である請求項1または請求項2に記載の活性炭担体。The activated carbon carrier according to claim 1 or 2, wherein the catalyst supported on the activated carbon carrier is a hydrogenation or dehydrogenation catalyst. 請求項1〜請求項3までのいずれかの活性炭担体に水素化または脱水素反応の触媒を担持して得られる触媒担持活性炭。 A catalyst-supported activated carbon obtained by supporting a catalyst for hydrogenation or dehydrogenation on the activated carbon support according to any one of claims 1 to 3 . 触媒担持後のJIS K1477に準拠し25℃で乾燥空気で1/10に希釈したトルエン蒸気を通じたときのトルエン吸着性能が、10g/m2〜45g/m2である請求項4に記載の触媒担持活性炭。The catalyst of claim 4 toluene adsorption performance is a 10g / m 2 ~45g / m 2 when through toluene vapor diluted to 1/10 with dry air at compliant 25 ° C. to JIS K1477 after catalyst supporting Supported activated carbon. 触媒担持後のBET法による比表面積が、400m2/g〜10502/gである請求項4または請求項5に記載の触媒担持活性炭。BET specific surface area after catalyst carrying have a catalyst on activated carbon as claimed in claim 4 or claim 5 which is 400m 2 / g~ 1050 m 2 / g. 触媒を担持するために用いられる活性炭担体の製造方法であって、リブ編みまたは両面編みの繊維状高分子編物を炭化し賦活して繊維状活性炭編物を製造する工程と、前記繊維状活性炭編物を1.33Pa以上の酸素分圧を有する酸素雰囲気下で300℃〜450℃で熱処理して前記繊維状活性炭編物を表面改質する工程とを含み、前記繊維状活性炭編物の全酸性官能基量が0.1meq/g以上 . 5meq/g以下であって、JIS L1018に準拠し圧力差125Paにおける厚み方向の通気性が200cm3/cm2・s以上である活性炭担体を得ることを特徴とする活性炭担体の製造方法。 A manufacturing method of the activated carbon support used for supporting the catalyst, the step of producing a fibrous activated carbon knit by carbonizing fiber維状polymer knitted ribbed or both knitting activation, the activated carbon fiber knit the and a step of surface modification the fibrous activated carbon knit was heat-treated at 300 ° C. to 450 ° C. in an oxygen atmosphere with an oxygen partial pressure of more than 1.33 Pa, the total acidic functional group amount of the fibrous activated carbon knit there be up 0.1 meq / g or more 1. 5meq / g, and wherein the air permeability in the thickness direction at a pressure differential 125Pa conforming to JIS L1018 is obtained activated carbon carrier is 200cm 3 / cm 2 · s or more A method for producing an activated carbon carrier. 前記活性炭担体に担持される前記触媒は、水素化反応または脱水素反応の触媒である請求項7に記載の活性炭担体の製造方法。The method for producing an activated carbon carrier according to claim 7, wherein the catalyst supported on the activated carbon carrier is a catalyst for a hydrogenation reaction or a dehydrogenation reaction. 請求項7または請求項8で得られた活性炭担体に触媒を担持することにより、JIS L1018に準拠し圧力差125Paにおける厚み方向の通気性が200cm3/cm2・s以上である触媒担持活性炭を得ることを特徴とする触媒担持活性炭の製造方法。By supporting a catalyst on the activated carbon carrier obtained in claim 7 or claim 8 , a catalyst-supported activated carbon having a gas permeability in the thickness direction of 200 cm 3 / cm 2 · s or more at a pressure difference of 125 Pa in accordance with JIS L1018 is obtained. A process for producing a catalyst-supported activated carbon, characterized in that it is obtained .
JP2002184393A 2002-06-25 2002-06-25 Activated carbon carrier, catalyst-supported activated carbon and method for producing them Expired - Fee Related JP4239489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184393A JP4239489B2 (en) 2002-06-25 2002-06-25 Activated carbon carrier, catalyst-supported activated carbon and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184393A JP4239489B2 (en) 2002-06-25 2002-06-25 Activated carbon carrier, catalyst-supported activated carbon and method for producing them

Publications (2)

Publication Number Publication Date
JP2004025024A JP2004025024A (en) 2004-01-29
JP4239489B2 true JP4239489B2 (en) 2009-03-18

Family

ID=31180323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184393A Expired - Fee Related JP4239489B2 (en) 2002-06-25 2002-06-25 Activated carbon carrier, catalyst-supported activated carbon and method for producing them

Country Status (1)

Country Link
JP (1) JP4239489B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008167B2 (en) * 2003-02-19 2012-08-22 国立大学法人 筑波大学 Catalyst loading method on fibrous carbon
JP4759507B2 (en) * 2004-02-26 2011-08-31 シャープ株式会社 Fuel cell electrode catalyst and fuel cell using the same
JP4910137B2 (en) * 2006-08-08 2012-04-04 国立大学法人九州大学 Carbon fiber composite having excellent desulfurization characteristics and method for producing the same
JP5270468B2 (en) * 2009-06-22 2013-08-21 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, ITS MANUFACTURING METHOD, AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
JP5555615B2 (en) * 2010-12-15 2014-07-23 株式会社キャタラー Fuel cell supported catalyst and fuel cell
CA2910374C (en) * 2013-04-25 2018-10-23 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
JP6113836B2 (en) * 2013-04-25 2017-04-12 日産自動車株式会社 Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell
CA2910229C (en) 2013-04-25 2019-11-26 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
EP2990104B1 (en) 2013-04-25 2019-10-16 Nissan Motor Co., Ltd Catalyst, method for producing same, and electrode catalyst layer using said catalyst
WO2016067878A1 (en) 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst layer for fuel cell, manufacturing method for same, and membrane electrode assembly and fuel cell using same
JP6671719B2 (en) * 2015-11-16 2020-03-25 アイシン精機株式会社 Gas diffusion electrode material for biofuel cell, method for producing gas diffusion electrode material, biofuel cell provided with gas diffusion electrode material
CN114011428B (en) * 2021-12-07 2024-05-03 太原理工大学 Catalyst for preparing decalin by naphthalene one-step hydrogenation and preparation method thereof

Also Published As

Publication number Publication date
JP2004025024A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4239489B2 (en) Activated carbon carrier, catalyst-supported activated carbon and method for producing them
US8993199B2 (en) Flexible carbon fiber nonwoven fabric
EP2077151B1 (en) Supported catalyst comprising nano-metal catalyst supported on carbon nanotubes directly grown on surface of the catalyst support and method of preparing the supported catalyst
JP5267760B2 (en) Carbon nanofiber sheet
Rybarczyk et al. N-doped mesoporous carbon nanosheets obtained by pyrolysis of a chitosan–melamine mixture for the oxygen reduction reaction in alkaline media
US9254483B2 (en) Catalysts having metal nano-particle catalyst supported on surface-treated natural cellulose fibers and preparation method thereof
CN102413922B (en) Process for the preparation of metal-carbon containing bodies
Muthuswamy et al. Evaluation of ORR active sites in nitrogen-doped carbon nanofibers by KOH post treatment
Patil et al. Metal-free N-doped ultrafine carbon fibers from electrospun Polymers of Intrinsic Microporosity (PIM-1) based fibers for oxygen reduction reaction
JP4239488B2 (en) Activated carbon carrier, catalyst-supported activated carbon and method for producing them
CN101583747A (en) Method for production of carbonized cloth, and carbonized cloth produced by the method
Bhati et al. Surface and adsorption properties of activated carbon fabric prepared from cellulosic polymer: Mixed activation method
Zhang et al. Fe (CN) 5@ PIL-derived N-doped porous carbon with FeC x N y active sites as a robust electrocatalyst for the oxygen reduction reaction
Soukup et al. Preparation and characterization of electrospun poly (p-phenylene oxide) membranes
CN101506414A (en) Method for production of carbonized cloth, and carbonized cloth produced by the method
WO2017048053A1 (en) Carbon nanotube having improved crystallizability
Kang et al. Multifunctional N and O co-doped 3D carbon aerogel as a monolithic electrode for either enzyme immobilization, oxygen reduction and showing supercapacitance
JP2004025021A (en) Active carbon carrier, catalyst-carrying active carbon, and method of producing them
JP2004025023A (en) Active carbon carrier, catalyst-carrying active carbons, and method of producing them
JP4392433B2 (en) Method for producing carbonized fabric
WO2020016258A1 (en) Novel carbon fibre textile materials
JP4355344B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
Kim et al. Enhanced activity and durability of the oxygen reduction catalysts supported on the surface expanded tubular-type carbon nanofiber
KR20110133320A (en) Preparation method of carbon nano-fiber using electrospinning
JP2017101350A (en) Manufacturing method of carbon material using cupra fiber material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees