JP2004025023A - Active carbon carrier, catalyst-carrying active carbons, and method of producing them - Google Patents

Active carbon carrier, catalyst-carrying active carbons, and method of producing them Download PDF

Info

Publication number
JP2004025023A
JP2004025023A JP2002184392A JP2002184392A JP2004025023A JP 2004025023 A JP2004025023 A JP 2004025023A JP 2002184392 A JP2002184392 A JP 2002184392A JP 2002184392 A JP2002184392 A JP 2002184392A JP 2004025023 A JP2004025023 A JP 2004025023A
Authority
JP
Japan
Prior art keywords
activated carbon
catalyst
fibrous
carbon carrier
knit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002184392A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
小林 真申
Makoto Inoue
井上 誠
Toshiaki Hayashi
林 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002184392A priority Critical patent/JP2004025023A/en
Publication of JP2004025023A publication Critical patent/JP2004025023A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inorganic Fibers (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active carbon carrier which, in order to improve the reaction efficiency of hydrogenation and dehydrogenation reactions by a catalyst, has a large specific area and is excellent in thermal conductivity and diffucibility of hydrogen gas, a raw material, and a product and catalyst-carrying active carbon in which a metal catalyst is carried on the active carbon carrier. <P>SOLUTION: The active carbon carrier of a fibrous active carbon fabric is obtained by knitting a fibrous polymer, then carbonizing/activating the fibrous polymer and characterized in that the O/C ratio on the surface by an X-ray photoelectron spectroscopy method (XPS) is at least 10%, gas-permeability is at least 200 cm<SP>3</SP>/cm<SP>2</SP>s, a toluene adsorption capacity is at least 25 g/m<SP>2</SP>, and a specific surface area by a BET adsorption istherm method is 500-3,000 m<SP>2</SP>/g. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属触媒を担持するための繊維状活性炭および金属触媒を担持した繊維状活性炭に関し、より詳細には、高分子固体電解質燃料電池の電極に使用され、水素化および脱水素化反応に用いられる活性炭担体および触媒担持活性炭に関する。
【0002】
たとえば、ベンゼン、トルエン、キシレン、メシチレンなどの単環芳香族化合物、ナフタレン、メチルナフタレンなどの2環芳香族化合物およびアントラセンなどの3環芳香族化合物を水素化するシステム、あるいは水素化物であるシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサンなどの単環水素化芳香族化合物、テトラリン、デカリン、メチルデカリンなどの2環水素化芳香族化合物、およびテトラデカヒドロアントラセン、テトラデカヒドロメチルアントラセンなどの3環水素化芳香族化合物を脱水素するシステムなどに用いられる活性炭担体および触媒担持活性炭に関するものである。
【0003】
【従来の技術】
従来、触媒を担持する担体としては、表面積が大きく、耐薬品性の高い粒状活性炭、活性炭ペーパーなどが用いられている。たとえば、水素化物を脱水素するシステムに用いられる触媒担体は、脱水素反応が吸熱反応であるので、反応促進のために400℃までの雰囲気にする必要があり、したがって熱伝導性に優れ、かつ水素ガスや芳香族化合物などの生成物の拡散性にも優れていることを求められるが、十分な性能は得られていなかった。
【0004】
たとえば、特開2001−110437には、常温で液体の水素化芳香族化合物原料から加熱した脱水素触媒反応装置により水素を生成、分離し、燃料電池に水素を供給するシステムが考案されている。このシステムではCO、COなどの副生成物を生じることなく、高純度水素を効率よく製造、供給することができ、システムのコンパクト化ができる特徴を有する。
【0005】
上記公報では触媒として活性成分が白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、レニウム、バナジウム、タングステン、モリブデンからなる群から選ばれる少なくとも1種を含有するものが用いられており、触媒担体として表面積970m/gのシルカアルミナ系メゾ細孔多孔質材や表面積3200m/gのアルカリ処理の活性炭が用いられているが、触媒担体の熱伝導性やガス・液の拡散性において重要なシート化については言及されるには至っていなかった。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、触媒による水素化反応および脱水素化反応の反応効率の向上を図るために、比表面積が大きく、熱伝導性に優れかつ水素ガス、原料および生成物の拡散性に優れた活性炭担体、該活性炭担体が金属触媒を担持した触媒担持活性炭およびそれらの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、繊維状活性炭からなる活性炭担体であって、X線光電子分光法(XPS)による該活性炭担体上表面のO/C比が10%以上であり、かつ通気性が200cm/cm・s以上であることを特徴とする。
【0008】
活性炭担体は、繊維状高分子を製編後、炭化して得られ、かつ編物であることが好ましい。さらに、トルエン吸着性能が25g/m以上であることが好ましい。
【0009】
好ましくは、BET法による比表面積が800〜3000m/gであり、繊維状活性炭の原料となる繊維状高分子の糸状の繊度が150dtex以上の太さを有してもよい。
【0010】
別の局面では、本発明の活性炭担体の製造方法は、繊維状高分子を製編して繊維状高分子編物を製造する工程と、該繊維状高分子編物を炭化して繊維状活性炭編物を製造する工程とを包含し、該活性炭担体は、X線光電子分光法によるO/C比が10%以上であり、通気性が200cm/cm・s以上であることを特徴とする。
【0011】
また、本発明は、上記の活性炭担体に金属触媒が担持した触媒担持活性炭を提供し、該触媒担持活性炭は、好ましくは、トルエン吸着性能が、15g/m以上であり、BET法により求めた比表面積が、500〜2400m/gである。
【0012】
また別の局面では、本発明の触媒担持活性炭の製造方法は、繊維状高分子を製編して繊維状高分子編物を製造する工程と、該繊維状高分子編物を炭化して繊維状活性炭編物を製造する工程と、表面処理後の繊維状活性炭編物に金属触媒を担持させる工程と、を包含し、該触媒担持活性炭は通気性が200cm/cm・s以上であることを特徴とする。
【0013】
【発明の実施の形態】
本発明にかかる活性炭担体は、比表面積を大きくするために、繊維状活性炭により構成されることを必要とする。本発明にかかる活性炭担体は、繊維状であれば特に形状は問わないが、繊維状活性炭は編物であることが、活性炭担体の通気性を向上させる観点から、好ましい形態である。また、単繊維でなく繊維束とすることにより熱伝導率が良くなり、また疎な組織であるため通気性の向上が可能になる。
【0014】
繊維状活性炭編物の製造方法について特に制限はないが、繊維状高分子を製編後、炭化処理および必要に応じて賦活処理する方法が好ましい方法として挙げられる。そして、表面処理をさらに行なうことにより、触媒を効率良く担持することができ、またトルエンなどの吸着能も向上し、水素化および脱水素化反応の良好な触媒担体として使用することができる。
【0015】
本発明において、繊維状活性炭の原料となる繊維状高分子の材質は、フェノール系繊維であることが望ましい。繊維状活性炭の原料繊維としては他にセルロース系、ピッチ系やPAN系などがある。セルロース系繊維を原料繊維とする場合は、炭化・賦活により十分な吸着性能を発揮する比表面積を有する繊維状活性炭が得られるが、収率が低く、また収縮率が大きいので剛性が高く、布帛の強度、特に引裂強さの小さいものとなる。PAN系繊維を原料繊維とする場合は、比較的布帛強度の高いものが得られるが、大きな吸着性能を有する繊維状活性炭を得ることが困難である。ピッチ系繊維を用いるとセルロース系とPAN系の中間程度の強度と吸着性能が得られるが、必ずしも両方の特性とも満足するものではない。
【0016】
本発明において、繊維状高分子の形状は、ステープルから得られる紡績糸あるいはフィラメント糸のいずれの場合でもよく、また両者を混合した混繊糸状でもよい。全体としての糸状の繊度は、150dtex以上、好ましくは295〜590dtexがよい。150dtex以下の場合、製編し、炭化および賦活した後の繊維状活性炭編物の密度が緻密となって十分な通気性が得られないからである。
【0017】
紡績糸または混繊糸の場合、それを構成する各単繊維の繊度は、1.1dtex〜5.5dtexがよい。単繊維繊度が1.1dtex以下であると、加工後の単繊維強度が著しく弱くなり、編物を保持することができず、また単繊維繊度が5.5dtex以上であると、炭化、賦活の進行具合が繊維表面と内部で偏りを生じ、単繊維強度が著しく弱くなり、編物を保持することができないからである。
【0018】
このような糸状を用いて原料編地を製編するにあたって、繊維状活性炭にした後の編地の通気性と熱伝導性を保持するためには編組織としてはリブ編または両面編が好ましい。この中でもフライス網やスムース編は連続焼成する際に生地の収縮によるコース方向の応力によって生じる生地の耳部の巻き込みがほとんどなく、繊維状活性炭編物の均一な形態保持の点で好ましい。
【0019】
このようにして得られた原料編地を活性炭にする際には、炭化処理、必要に応じて賦活処理を行なうことができ、炭化および賦活処理を行なう場合は、バッチ式あるいは連続式に炭化および賦活することにより得ることができる。繊維状活性炭編物の生地特性や吸着性能の均一性を得ることや工業的生産性を考慮すると、炭化および賦活を連続的に行なうことが好ましい。原料シートを350℃以上1300℃以下の温度の不活性雰囲気で炭化し、次いで500℃以上1300℃以下の温度で炭素と反応する水蒸気、酸素、二酸化炭素などを含む活性な雰囲気で賦活し活性炭化する。
【0020】
また、場合によっては雰囲気条件を制御することにより炭化と賦活を同時に行なうことも可能である。なお、賦活処理、すなわち活性炭化を行なう際の最高到達温度を1300℃を超えると重量収率が著しく減少するため、最高到達温度は1300℃以下にすることが好ましい。これにより、BET法による比表面積が500〜3000m/gである繊維状活性炭が得られる。
【0021】
また、本発明にかかる活性炭担体は、XPSによるO/C比が、10%以上であることを必要とする。O/C比が、10%未満であると、水溶液系で触媒を担持する際の濡れ性が悪く均一に担持できず、また脱水素反応における反応原料および生成物の拡散性が著しく低下し、反応効率を低下させるからである。ここで、O/C比における、「O」および「C」は、それぞれ酸素原子および炭素原子を表わす。
【0022】
したがって、本発明の活性炭担体は、XPSによるO/C比が10%未満である場合には、10%以上になるように酸素雰囲気中で表面処理を行なう。これにより、繊維状活性炭の表面に酸素含有官能基を導入することができる。ここで、酸素含有官能基は、カルボキシル基、水酸基、ケトン基、ラクトン基などが挙げられるが、これらに限定されない。表面処理の方法は特に限定されないが、たとえば、1.33Pa以上の酸素分圧を有する酸素雰囲気下で、300〜700℃の温度にて、重量収率にして65〜99%の範囲にように乾式酸化することが好ましい。低温では処理する炭素材料の反応性が落ちるため、酸化の効果が得られない。また高温では表面に水酸基やカルボキシル基などの親水基が付与できない場合がある。特に、酸性基を強固に固定するためには450〜700℃で行なうことや、ホウ素、窒素などを導入するような炭化・賦活をすることが望ましい。酸素雰囲気中であれば強酸や電気酸化などによる湿式処理、プラズマ処理でも同様な効果を得ることができる。これにより、O/C比が10〜40%である編物状の繊維状活性炭を得ることが好ましい。より好ましくはO/C比が15〜40%であり、さらに好ましくは20〜40%である。
【0023】
本発明において、表面処理された後の活性炭担体の目付量は、50〜300g/mが好ましい。50g/m以下の場合は、活性炭の強度が弱く、300g/m以上の場合は、通気性が悪くなるからである。より好ましくは、60〜150g/mである。
【0024】
また、本発明にかかる活性炭担体は、通気性(編物状の活性炭担体である場合は、厚み方向の通気性)が200cm/cm・s以上であることを必要とする。通気性が200cm/cm・s未満であれば、触媒担体として用いた場合、生成した水素ガスの拡散が悪くなり、反応効率が低下するからである。
【0025】
また、活性炭担体のトルエン吸着性能またはBET法による比表面積等の吸着性能も触媒を担持する際の重要な指標となる。つまり、トルエン吸着性能とBET法による比表面積はいずれも触媒の担持、脱水素反応場としてのスペースを評価する点で共通するため相当の相関が認められるが、トルエン吸着性能は脱水素化反応における原料、生成物類似の化合物であるトルエンを用いて、主として反応場を評価するのに対し、BET法による比表面積は、窒素ガスを用いて、主として触媒の担持場を評価する点で異なり、それぞれ重要な指標である。
【0026】
本発明にかかる活性炭担体は、トルエン吸着性能が25g/m以上であることが好ましい。25g/m未満の場合は、脱水素および水素化反応に使用する原料化合物の反応場の低減より、触媒担持活性炭の性能が低下するからである。また、BET法による比表面積は、800m/g〜3000m/gであることが好ましい。800m/g未満であると触媒の担持量が低下し触媒担持活性炭の性能が低下し、3000m/gを超えると繊維の比重が著しく低下し担体の強度が低下するからである。
【0027】
本発明において、触媒担持活性炭とは、前記活性炭担体に金属触媒を担持させたものをいい、脱水素化または水素化反応等の触媒として使用し得る。本発明にかかる触媒担持活性炭は、上記活性炭担体に担持させたものであるので、比表面積が増大しており、水素ガス、反応原料および生成物の拡散性が向上しており、反応効率も高く、非常に高性能である。
【0028】
上記金属触媒としては、白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、レニウム、バナジウム、タングステン、モリブデン等の各種触媒が挙げられるが、これらに限定されない。また、これらの触媒を複数組合せて用いることもできる。活性炭担体に触媒を担持させる方法は、特に限定されないが、たとえば、白金を担持させる場合、10質量%以下の塩化白金酸水溶液に該活性炭担体を12時間以上浸漬し、乾燥することによって行なうことができる。また、溶液はメタノール、エタノール、アセトン等の水溶性有機溶媒で希釈した水溶液を用いることもできる。なお、触媒活性を高めるため、使用前に還元処理を行なうことが極めて好ましい。
【0029】
本発明にかかる触媒担持活性炭は、トルエン吸着性能が15g/m以上であり、BET法による比表面積が500〜2400m/gであることが好ましい。トルエン吸着性能が15g/m未満であり、比表面積が500m/g未満であると、十分な触媒活性が得られず、比表面積が2400m/gを超えると、触媒担持活性炭を構成する繊維状活性炭の比重が低下し触媒担持活性炭の機械的強度が低下するからである。
【0030】
また、本発明にかかる触媒担持活性炭においては、通気性が触媒を担持する前の通気性と同様であることが好ましい。すなわち、触媒を担持した後の通気性も、200cm/cm・s以上であることが好ましい。触媒を担持した後の通気性が200cm/cm・s未満の場合は、脱水素反応において生成した水素ガスの拡散が悪くなり、反応効率が低下するからである。
【0031】
【実施例】
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、繊維状高分子編物、繊維状活性炭編物、活性炭担体および触媒担持活性炭についての各特性値の測定方法は以下のとおりである。
【0032】
(1)通気性
通気性は、JIS L1018に準拠して、圧力125hPaにて単位面積当たりに試料を通過する空気の速度(cm/cm・s)を測定した。
【0033】
(2)トルエン吸着性能
トルエン吸着性能は、JIS 1477に準拠して、25℃で乾燥空気で1/10に希釈したトルエン蒸気を通じたときの、試料単位面積当たりに吸着したトルエン質量(g/m)を測定した。
【0034】
(3)比表面積
比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.2の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量当たりの表面積(m/g)を求めた。なお、試料は、予め1Mの塩酸水溶液で12時間洗浄し、十分に水荒いし乾燥したものを、約0.1g採取し120℃で12時間真空乾燥させたものを使用した。
【0035】
(4)XPSによるO/C比の測定
X線光電子分光法(ESCAまたはXPSと称される)による測定に用いた装置は島津ESCA750で、解析には島津ESCAPAC760を使用した。O/C比は、以下の手順により求めた。予め、測定前に試料を120℃に加熱し、3時間以上真空脱気した。試料を6mm径に打ち抜き、導電性ペーストにより加熱式試料台に貼り付け、分析に供した。線源にはMgKα線(1253.6eV)を用い、装置内真空度は133×10−7Paとした。測定はC1sピーク、O1sピークに対して行ない、各ピーク面積を求めた。得られた面積は、C1sピークについては1.00、O1sピークについては2.85の相対強度を乗じたものであり、その面積から直接表面(酸素/炭素)原子数比を百分率(%)で算出した。
【0036】
(5)水素発生速度
図1に水素発生装置の概略図を示す。10cm(直径3.5cm)の触媒担持活性炭2をアルゴン置換された丸底フラスコ1の下部に設置し、丸底フラスコ1の下方に設けた電気ヒータ3により200℃に熱しながら、該触媒担持活性炭に噴霧器付き水素化物導入部9よりシクロヘキサンを10ml/分にて吹き付けた。生成した水素ガスは冷却管4を通って水素捕集管6に捕集され、生成したベンゼンは未反応のシクロヘキサンとともに冷却管7を通って芳香族回収部8に回収された。30分後と5時間後の水素ガスの発生速度(L/min)を測定した。
【0037】
(実施例1)
単繊維繊度2.2dtex、糸状の繊度295dtexのフェノール系繊維を使用し、22ゲージ両面丸編み機によりフライス編物を編成した。この編物は、目付225g/m、厚さ1.65mm、見掛密度0.14g/cm、通気性は330cm/cm・sであった。
【0038】
この編物を常温から890℃まで30分間、不活性雰囲気中で炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で90分間賦活した。得られた編物状の繊維状活性炭編物は、絶乾目付120g/m、厚さ1.05mm、通気性は330cm/cm・sであった。また、この繊維状活性炭編物のトルエン吸着性能は54g/m、BET比表面積は1380m/gと非常に高い吸着性能を有するものであった。
【0039】
この編物状の繊維状活性炭編物をさらに空気中450℃で5分間熱処理を行った。重量収率は97質量%であり、絶乾目付116g/m、厚さ1.05mm、通気性330cm/cm・s、XPSによるO/C比は12であった。また、トルエン吸着性能は52g/m、BET比表面積は、1380m/gと高い吸着性能を示した。
【0040】
さらに、塩化白金酸の水溶液に該編物状の繊維状活性炭編物を浸漬し、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は42g/m、BET比表面積は1100m/g、通気性は330cm/cm・s、であった。この白金触媒担持活性炭10cmを120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は5.1L/minで、5時間後も5.0L/minと非常に良好であった。結果を表1に示す。
【0041】
(実施例2)
実施例1と同じフライス編地を編成し、同じ条件で炭化および賦活処理した。得られた編物状の繊維状活性炭編物は、実施例1と同じ物性を有していた。この編物状の繊維状活性炭編物をさらに空気中450℃で10分間熱処理を行った。重量収率は93質量%であり、絶乾目付112g/m、厚さ1.05mm、通気性330cm/cm・s、XPSによるO/C比は30であった。また、トルエン吸着性能は50g/m、BET比表面積は、1380m/gであった。
【0042】
さらに、実施例1と同様に、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は41g/m、BET比表面積は1150m/g、通気性は330cm/cm・s、であった。この白金触媒担持活性炭10cmを120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は5.5L/minで、5時間後も5.5L/minと非常に良好であった。結果を表1に示す。
【0043】
(実施例3)
実施例1と同じフライス編地を編成し、同じ条件で炭化および賦活処理した。得られた編物状の繊維状活性炭編物は、実施例1と同じ物性を有していた。この編物状の繊維状活性炭編物をさらに空気中450℃で15分間熱処理を行った。重量収率は90質量%であり、絶乾目付108g/m、厚さ1.05mm、通気性330cm/cm・s、XPSによるO/C比は43であった。また、トルエン吸着性能は50g/m、BET比表面積は、1360m/gであった。
【0044】
さらに、実施例1と同様に、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は41g/m、BET比表面積は1180m/g、通気性は330cm/cm・s、であった。この白金触媒担持活性炭10cmを120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は5.2L/minで、5時間後も5.2L/minと非常に良好であった。結果を表1に示す。
【0045】
(実施例4)
実施例1と同じフライス編地を編成し、この編物を常温から890℃まで30分間、不活性雰囲気中で炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で70分間賦活した。得られた編物状の繊維状活性炭編物は、絶乾目付126g/m、厚さ1.10mm、通気性は330cm/cm・sであった。また、この繊維状活性炭編物のトルエン吸着性能は50g/m、BET比表面積は1250m/gと非常に高い吸着性能を有するものであった。
【0046】
この編物状の繊維状活性炭編物をさらに空気中450℃で10分間熱処理を行った。重量収率は95質量%であり、絶乾目付120g/m、厚さ1.10mm、通気性330cm/cm・s、XPSによるO/C比は40であった。また、トルエン吸着性能は48g/m、BET比表面積は、1250m/gであった。
【0047】
さらに、実施例1と同様に、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は42g/m、BET比表面積は1070m/g、通気性は330cm/cm・s、であった。この白金触媒担持活性炭10cmを120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は4.8L/minで、5時間後も4.7L/minと非常に良好であった。結果を表1に示す。
【0048】
(比較例1)
実施例1と同じフライス編地を編成し、同じ条件で炭化および賦活処理した。得られた編物状の繊維状活性炭編物は、実施例1と同様に、絶乾目付120g/m、厚さ1.05mm、通気性は330cm/cm・sであった。また、この繊維状活性炭編物のトルエン吸着性能は54g/m、BET比表面積は1380m/gと非常に高い吸着性能を有するものであった。この編物状の繊維状活性炭編物を空気中での熱処理を行なわず、実施例1と同様に、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は34g/m、BET比表面積は840m/g、通気性は330cm/cm・s、であった。この白金触媒担持活性炭10cmを120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は3.3L/minで、5時間後は3.2L/minであった。結果を表1に示す。
【0049】
(比較例2)
実施例1と同じフライス編地を編成し、この編物を常温から890℃まで20分間、不活性雰囲気中で炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で20分間賦活した。得られた編物状の繊維状活性炭編物は、絶乾目付130g/m、厚さ1.10mm、通気性は330cm/cm・sであった。また、この繊維状活性炭編物のトルエン吸着性能は43g/m、BET比表面積は1010m/gと非常に高い吸着性能を有するものであった。
【0050】
この編物状の繊維状活性炭編物を空気中での熱処理を行なわず、実施例1と同様に、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は29g/m、BET比表面積は710m/g、通気性は330cm/cm・s、であった。この白金触媒担持活性炭10cmを120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は3.2L/minで、5時間後は3.1L/minであった。結果を表1に示す。
【0051】
(比較例3)
単繊維繊度2.2dtex、糸状の繊度295dtexのフェノール系繊維を使用し、18ゲージ両面丸編み機によりスムース編物を編成した。この編物は、目付140g/m、厚さ1.10mm、見掛密度0.14g/cm、通気性は174cm/cm・sであった。
【0052】
この編物を実施例1と同様に、常温から890℃まで30分間、不活性雰囲気中で炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で90分間賦活した。得られた編物状の繊維状活性炭編物は、絶乾目付140g/m、厚さ1.10mm、通気性は174cm/cm・sであった。また、この繊維状活性炭編物のトルエン吸着性能は60g/m、BET比表面積は1330m/gであった。
【0053】
この編物状の繊維状活性炭編物を実施例2と同様に、さらに空気中450℃で10分間熱処理を行った。重量収率は93質量%であり、絶乾目付130g/m、厚さ1.10mm、XPSによるO/C比は25であった。また、トルエン吸着能性能は56g/m、BET比表面積は、1330m/g、通気性は174cm/cm・sであった。
【0054】
さらに、実施例1と同様に、5質量%の白金触媒担持活性炭を調製した。この白金触媒担持活性炭のトルエン吸着性能は43g/m、BET比表面積は990m/g、通気性は174cm/cm・sであった。この白金触媒担持活性炭10cmを120℃で12時間真空乾燥して還元した後、水素ガスの発生速度(L/min)を測定したところ、30分後の水素発生速度は2.2L/minで、5時間後は2.0L/minであった。結果を表1に示す。
【0055】
【表1】

Figure 2004025023
【0056】
表1において、触媒担持前の数値は、繊維状活性炭に表面処理を行なった後の数値を表すが、比較例1および2においては、表面処理を行なっていないので、炭化および賦活後の数値を表わす。
【0057】
上記結果より、実施例1〜4の触媒担持活性炭は、表面処理を行なってO/C比が10%以上であるので、水素ガス発生量も多く、脱水素反応などの良好な触媒として使用することができる。一方、比較例1および2の触媒担持活性炭は、表面処理を行なっていなく、O/C比が10%未満であるので、水素ガス発生量が低い。
【0058】
また、実施例2と比較例3とを対比させると、実施例2は、比較例3に比べて水素発生量が明らかに多いことがわかる。したがって、繊維状高分子の編み方は、スムース編よりもフライス編みが好ましいことがわかる。なぜなら、フライス編は、スムース編と比べて良好な通気性を達成することができるからである。
【0059】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0060】
【発明の効果】
上述のとおり、本発明の活性炭担体および触媒担持活性炭は、繊維状構造、特に、編物構造をとっているため通気性が高いので、熱伝導性に優れ、水素ガス、水素化または脱水素化反応における反応原料および生成物の拡散性に優れている。また、本発明にかかる活性炭担体は、O/C比が10%以上であるので、触媒を担持する能力が飛躍的に向上し、反応原料および生成物も良好に拡散することができる。このため、本発明の触媒担持活性炭は、水素化および脱水素化反応の反応効率を向上することができ、高性能の触媒担体または触媒として機能し得る。
【図面の簡単な説明】
【図1】本発明に用いられる水素発生装置の概略図である。
【符号の説明】
1 丸底フラスコ、2 触媒担持活性炭、3 電気ヒータ、4 冷却管、5 コック、6 水素捕集管、7 冷却管、8 芳香族回収部、9 噴霧器付き水素化物導入部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fibrous activated carbon for supporting a metal catalyst and a fibrous activated carbon supporting a metal catalyst, and more particularly to an electrode of a solid polymer electrolyte fuel cell, which is used for hydrogenation and dehydrogenation reactions. The present invention relates to an activated carbon carrier and a catalyst-supporting activated carbon used.
[0002]
For example, a system for hydrogenating a monocyclic aromatic compound such as benzene, toluene, xylene, and mesitylene, a bicyclic aromatic compound such as naphthalene and methylnaphthalene, and a tricyclic aromatic compound such as anthracene, or a hydride cyclohexane; Monocyclic hydrogenated aromatic compounds such as methylcyclohexane and dimethylcyclohexane; bicyclic hydrogenated aromatic compounds such as tetralin, decalin and methyldecalin; and tricyclic hydrogenated aromatic compounds such as tetradecahydroanthracene and tetradecahydromethylanthracene The present invention relates to an activated carbon carrier and a catalyst-supporting activated carbon used in a system for dehydrogenating a compound.
[0003]
[Prior art]
Conventionally, as a carrier for supporting a catalyst, granular activated carbon having a large surface area and high chemical resistance, activated carbon paper, and the like have been used. For example, a catalyst carrier used in a system for dehydrogenating hydride requires an atmosphere of up to 400 ° C. in order to promote the reaction because the dehydrogenation reaction is an endothermic reaction, and therefore has excellent thermal conductivity, and It is required to have excellent diffusivity for products such as hydrogen gas and aromatic compounds, but sufficient performance has not been obtained.
[0004]
For example, Japanese Patent Application Laid-Open No. 2001-110439 has devised a system in which hydrogen is generated and separated by a dehydrogenation catalytic reactor heated from a hydrogenated aromatic compound raw material at room temperature and supplied to a fuel cell. This system has a feature that high-purity hydrogen can be efficiently produced and supplied without generating by-products such as CO and CO 2 , and the system can be made compact.
[0005]
In the above publication, a catalyst containing an active component containing at least one selected from the group consisting of platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, rhenium, vanadium, tungsten and molybdenum is used as a catalyst. As the material, a silica silicate mesoporous porous material having a surface area of 970 m 2 / g or an activated carbon treated with an alkali having a surface area of 3200 m 2 / g is important in terms of the thermal conductivity of the catalyst carrier and the diffusibility of gas and liquid. No mention was made of sheeting.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, the present invention has a large specific surface area, excellent thermal conductivity, and excellent diffusivity of hydrogen gas, raw materials and products in order to improve the reaction efficiency of hydrogenation and dehydrogenation reactions using a catalyst. It is an object of the present invention to provide an activated carbon carrier excellent in the above, a catalyst-supported activated carbon in which the activated carbon carrier carries a metal catalyst, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention relates to an activated carbon carrier comprising fibrous activated carbon, wherein the O / C ratio of the surface of the activated carbon carrier by X-ray photoelectron spectroscopy (XPS) is 10% or more, and air permeability is 200 cm 3 / cm 2. -It is characterized by being s or more.
[0008]
The activated carbon carrier is obtained by knitting and knitting a fibrous polymer, and is preferably a knit. Further, the toluene adsorption performance is preferably 25 g / m 2 or more.
[0009]
Preferably, the specific surface area according to the BET method is from 800 to 3000 m 2 / g, and the fibrous size of the fibrous polymer used as the raw material of the fibrous activated carbon may be 150 dtex or more.
[0010]
In another aspect, the method for producing an activated carbon carrier of the present invention comprises the steps of: knitting a fibrous polymer to produce a fibrous polymer knit; and carbonizing the fibrous polymer knit to form a fibrous activated carbon knit. The activated carbon carrier is characterized in that the activated carbon support has an O / C ratio by X-ray photoelectron spectroscopy of 10% or more and a gas permeability of 200 cm 3 / cm 2 · s or more.
[0011]
Further, the present invention provides a catalyst-supported activated carbon in which a metal catalyst is supported on the above-mentioned activated carbon carrier, and the catalyst-supported activated carbon preferably has a toluene adsorption performance of 15 g / m 2 or more, and was determined by a BET method. The specific surface area is 500 to 2400 m 2 / g.
[0012]
In another aspect, the method for producing a catalyst-supporting activated carbon of the present invention comprises the steps of knitting a fibrous polymer to produce a fibrous polymer knit, and carbonizing the fibrous polymer knit to produce a fibrous activated carbon. The method includes a step of producing a knitted article and a step of supporting a metal catalyst on the fibrous activated carbon knitted article after surface treatment, wherein the catalyst-carrying activated carbon has a gas permeability of 200 cm 3 / cm 2 · s or more. I do.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The activated carbon carrier according to the present invention needs to be constituted by fibrous activated carbon in order to increase the specific surface area. The shape of the activated carbon carrier according to the present invention is not particularly limited as long as it is fibrous. However, the fibrous activated carbon is preferably a knitted fabric from the viewpoint of improving the gas permeability of the activated carbon carrier. Further, by using a fiber bundle instead of a single fiber, the thermal conductivity is improved, and the air permeability can be improved due to the sparse structure.
[0014]
The method for producing the fibrous activated carbon knit is not particularly limited, but a method in which the fibrous polymer is knitted, then carbonized and, if necessary, activated is mentioned as a preferred method. Further, by further performing the surface treatment, the catalyst can be efficiently supported, the adsorption ability of toluene and the like can be improved, and the catalyst can be used as a favorable catalyst carrier for hydrogenation and dehydrogenation reactions.
[0015]
In the present invention, the material of the fibrous polymer serving as the raw material of the fibrous activated carbon is desirably phenolic fibers. Other examples of the raw material fiber of the fibrous activated carbon include a cellulose type, a pitch type, and a PAN type. When a cellulosic fiber is used as a raw material fiber, a fibrous activated carbon having a specific surface area capable of exhibiting sufficient adsorption performance by carbonization and activation can be obtained. , Particularly low tear strength. When a PAN fiber is used as a raw material fiber, a fiber having a relatively high fabric strength can be obtained, but it is difficult to obtain a fibrous activated carbon having a large adsorption performance. When pitch-based fibers are used, an intermediate strength and adsorption performance between cellulose-based and PAN-based fibers can be obtained, but both properties are not necessarily satisfied.
[0016]
In the present invention, the shape of the fibrous polymer may be either a spun yarn or a filament yarn obtained from staples, or may be a mixed fiber obtained by mixing both. The thread-like fineness as a whole is 150 dtex or more, and preferably 295 to 590 dtex. If it is 150 dtex or less, the density of the knitted fibrous activated carbon after knitting, carbonization and activation is so dense that sufficient air permeability cannot be obtained.
[0017]
In the case of a spun yarn or a mixed fiber, the fineness of each of the single fibers constituting the spun yarn or the mixed fiber is preferably from 1.1 dtex to 5.5 dtex. If the single fiber fineness is 1.1 dtex or less, the strength of the single fiber after processing becomes extremely weak, and the knitted fabric cannot be held. If the single fiber fineness is 5.5 dtex or more, carbonization and activation progress. This is because the condition is deviated between the fiber surface and the inside, the strength of the single fiber is significantly reduced, and the knitted fabric cannot be held.
[0018]
In knitting a raw knitted fabric using such a thread shape, a rib knit or double-sided knitting is preferable as a knitting structure in order to maintain the air permeability and the thermal conductivity of the knitted fabric after the fibrous activated carbon is formed. Among them, the milling net or the smooth knitting is preferable in that the ears of the dough are hardly entangled by the stress in the course direction due to the shrinkage of the dough during continuous firing, and the fibrous activated carbon knit is maintained in a uniform shape.
[0019]
When the raw knitted fabric thus obtained is to be activated carbon, carbonization treatment and, if necessary, activation treatment can be carried out. It can be obtained by activating. In view of obtaining uniformity of the fabric properties and adsorption performance of the fibrous activated carbon knitted fabric and considering industrial productivity, it is preferable to continuously perform carbonization and activation. The raw material sheet is carbonized in an inert atmosphere at a temperature of 350 ° C. to 1300 ° C., and then activated in an active atmosphere containing steam, oxygen, carbon dioxide, etc., which reacts with carbon at a temperature of 500 ° C. to 1300 ° C. I do.
[0020]
In some cases, carbonization and activation can be performed simultaneously by controlling the atmospheric conditions. If the maximum temperature during the activation treatment, that is, the activated carbonization, exceeds 1300 ° C., the weight yield is significantly reduced. Therefore, the maximum temperature is preferably 1300 ° C. or lower. Thereby, a fibrous activated carbon having a specific surface area of 500 to 3000 m 2 / g by the BET method is obtained.
[0021]
Further, the activated carbon carrier according to the present invention requires that the O / C ratio by XPS be 10% or more. If the O / C ratio is less than 10%, the wettability when supporting the catalyst in an aqueous solution system is poor and the catalyst cannot be uniformly supported, and the diffusibility of the reaction raw materials and products in the dehydrogenation reaction is significantly reduced, This is because the reaction efficiency is reduced. Here, “O” and “C” in the O / C ratio represent an oxygen atom and a carbon atom, respectively.
[0022]
Therefore, when the O / C ratio by XPS is less than 10%, the activated carbon carrier of the present invention is subjected to a surface treatment in an oxygen atmosphere so as to be 10% or more. Thereby, an oxygen-containing functional group can be introduced into the surface of the fibrous activated carbon. Here, examples of the oxygen-containing functional group include, but are not limited to, a carboxyl group, a hydroxyl group, a ketone group, and a lactone group. The surface treatment method is not particularly limited. For example, under an oxygen atmosphere having an oxygen partial pressure of 1.33 Pa or more, at a temperature of 300 to 700 ° C., a weight yield may be in the range of 65 to 99%. Dry oxidation is preferred. At low temperatures, the reactivity of the carbon material to be treated decreases, so that the effect of oxidation cannot be obtained. At a high temperature, a hydrophilic group such as a hydroxyl group or a carboxyl group may not be provided on the surface in some cases. In particular, in order to firmly fix the acidic group, it is desirable to perform the treatment at 450 to 700 ° C. or to perform carbonization and activation such as introduction of boron, nitrogen, or the like. In an oxygen atmosphere, the same effect can be obtained by a wet treatment using a strong acid or electric oxidation or a plasma treatment. Thereby, it is preferable to obtain a knitted fibrous activated carbon having an O / C ratio of 10 to 40%. More preferably, the O / C ratio is from 15 to 40%, and still more preferably from 20 to 40%.
[0023]
In the present invention, the basis weight of the activated carbon carrier after the surface treatment is preferably from 50 to 300 g / m 2 . If it is 50 g / m 2 or less, the strength of the activated carbon is low, and if it is 300 g / m 2 or more, the air permeability becomes poor. More preferably 60 to 150 g / m 2.
[0024]
Further, the activated carbon carrier according to the present invention needs to have air permeability (in the case of a knitted activated carbon carrier, air permeability in the thickness direction) of 200 cm 3 / cm 2 · s or more. If the gas permeability is less than 200 cm 3 / cm 2 · s, when used as a catalyst carrier, the diffusion of the generated hydrogen gas becomes worse, and the reaction efficiency decreases.
[0025]
In addition, the adsorption performance of the activated carbon carrier such as the toluene adsorption performance or the specific surface area by the BET method is also an important index when the catalyst is supported. In other words, the toluene adsorption performance and the specific surface area by the BET method are both common in that they support the catalyst and evaluate the space as a dehydrogenation reaction field, so that a considerable correlation is recognized. The raw material and the reaction surface are mainly evaluated using toluene, which is a compound similar to the product, whereas the specific surface area by the BET method is different in that the catalyst support site is mainly evaluated using nitrogen gas. It is an important indicator.
[0026]
The activated carbon carrier according to the present invention preferably has a toluene adsorption performance of 25 g / m 2 or more. If the amount is less than 25 g / m 2, the performance of the catalyst-supporting activated carbon is reduced due to a reduction in the reaction field of the raw material compounds used in the dehydrogenation and hydrogenation reactions. In addition, the specific surface area by BET method is preferably 800m 2 / g~3000m 2 / g. If the amount is less than 800 m 2 / g, the amount of the supported catalyst decreases and the performance of the catalyst-supporting activated carbon decreases. If the amount exceeds 3000 m 2 / g, the specific gravity of the fiber significantly decreases and the strength of the carrier decreases.
[0027]
In the present invention, the catalyst-supported activated carbon refers to the activated carbon carrier on which a metal catalyst is supported, and can be used as a catalyst for a dehydrogenation or hydrogenation reaction. Since the catalyst-supporting activated carbon according to the present invention is supported on the activated carbon carrier, the specific surface area is increased, the diffusivity of hydrogen gas, reaction raw materials and products is improved, and the reaction efficiency is high. , Very high performance.
[0028]
Examples of the metal catalyst include, but are not limited to, various catalysts such as platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, rhenium, vanadium, tungsten, and molybdenum. Further, a plurality of these catalysts can be used in combination. The method for supporting the catalyst on the activated carbon carrier is not particularly limited. For example, in the case of supporting platinum, the method can be carried out by immersing the activated carbon carrier in a 10 mass% or less aqueous chloroplatinic acid solution for 12 hours or more and drying. it can. Further, as the solution, an aqueous solution diluted with a water-soluble organic solvent such as methanol, ethanol, or acetone can be used. In order to enhance the catalytic activity, it is extremely preferable to carry out a reduction treatment before use.
[0029]
The catalyst-supporting activated carbon according to the present invention preferably has a toluene adsorption performance of 15 g / m 2 or more and a specific surface area of 500 to 2400 m 2 / g by a BET method. When the toluene adsorption performance is less than 15 g / m 2 and the specific surface area is less than 500 m 2 / g, sufficient catalytic activity cannot be obtained, and when the specific surface area exceeds 2400 m 2 / g, the catalyst-carrying activated carbon is constituted. This is because the specific gravity of the fibrous activated carbon decreases and the mechanical strength of the catalyst-supporting activated carbon decreases.
[0030]
In the catalyst-supporting activated carbon according to the present invention, it is preferable that the gas permeability is the same as the gas permeability before supporting the catalyst. That is, the gas permeability after supporting the catalyst is also preferably 200 cm 3 / cm 2 · s or more. If the gas permeability after supporting the catalyst is less than 200 cm 3 / cm 2 · s, the diffusion of hydrogen gas generated in the dehydrogenation reaction becomes poor, and the reaction efficiency decreases.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In addition, the measuring method of each characteristic value about a fibrous polymer knit, a fibrous activated carbon knit, an activated carbon carrier, and a catalyst-carrying activated carbon is as follows.
[0032]
(1) Air permeability The air permeability was measured by measuring the speed (cm 3 / cm 2 · s) of air passing through a sample per unit area at a pressure of 125 hPa according to JIS L1018.
[0033]
(2) Toluene adsorption performance According to JIS 1477, toluene adsorption performance was measured by the mass of toluene adsorbed per unit area of a sample (g / m 2) when passing toluene vapor diluted 1/10 with dry air at 25 ° C. 2 ) was measured.
[0034]
(3) Specific surface area The specific surface area is obtained by measuring several points of the amount of nitrogen adsorbed on a sample when the relative pressure is increased in a range of 0.0 to 0.2 under an atmosphere of liquid nitrogen boiling point (-195.8 ° C). Then, the surface area per unit mass of the sample (m 2 / g) was determined by a BET plot. The sample used was a sample which was previously washed with a 1 M aqueous hydrochloric acid solution for 12 hours, sufficiently roughened and dried, sampled about 0.1 g, and vacuum-dried at 120 ° C. for 12 hours.
[0035]
(4) Measurement of O / C ratio by XPS The apparatus used for measurement by X-ray photoelectron spectroscopy (referred to as ESCA or XPS) was Shimadzu ESCA750, and Shimadzu ESCAPAC760 was used for analysis. The O / C ratio was determined by the following procedure. Before the measurement, the sample was heated to 120 ° C. and vacuum degassed for 3 hours or more. The sample was punched out to a diameter of 6 mm, affixed to a heated sample stand with a conductive paste, and provided for analysis. MgKα radiation (1253.6 eV) was used as the radiation source, and the degree of vacuum in the apparatus was 133 × 10 −7 Pa. The measurement was performed on the C 1s peak and the O 1s peak, and the respective peak areas were determined. The obtained area is obtained by multiplying the relative intensity of 1.00 for the C 1s peak and 2.85 for the O 1s peak, and the surface (oxygen / carbon) atomic ratio is directly calculated as a percentage (% ).
[0036]
(5) Hydrogen generation rate Fig. 1 shows a schematic diagram of the hydrogen generator. 10 cm 2 (3.5 cm diameter) of activated carbon 2 carrying a catalyst was placed at the bottom of a round-bottomed flask 1 purged with argon, and heated to 200 ° C. by an electric heater 3 provided below the round-bottomed flask 1. Activated carbon was sprayed with cyclohexane at a rate of 10 ml / min from a hydride introduction unit 9 equipped with a sprayer. The generated hydrogen gas was collected in the hydrogen collection pipe 6 through the cooling pipe 4, and the generated benzene was collected in the aromatic recovery section 8 through the cooling pipe 7 together with unreacted cyclohexane. The generation rate (L / min) of the hydrogen gas after 30 minutes and 5 hours was measured.
[0037]
(Example 1)
Using a phenol-based fiber having a single fiber fineness of 2.2 dtex and a thread-like fineness of 295 dtex, a 22-gauge double-sided circular knitting machine was used to knit a milled knit. This knit had a basis weight of 225 g / m 2 , a thickness of 1.65 mm, an apparent density of 0.14 g / cm 3 , and an air permeability of 330 cm 3 / cm 2 · s.
[0038]
The knit was carbonized from ambient temperature to 890 ° C. for 30 minutes in an inert atmosphere and then activated in an atmosphere containing 12% by weight of steam at a temperature of 890 ° C. for 90 minutes. The obtained knitted fibrous activated carbon knitted fabric had an absolutely dry basis weight of 120 g / m 2 , a thickness of 1.05 mm, and a gas permeability of 330 cm 3 / cm 2 · s. In addition, this fibrous activated carbon knitted fabric had a very high adsorption performance of 54 g / m 2 and a BET specific surface area of 1380 m 2 / g.
[0039]
The knitted fibrous activated carbon knit was further heat-treated at 450 ° C. for 5 minutes in air. The weight yield was 97% by mass, the absolute dry weight was 116 g / m 2 , the thickness was 1.05 mm, the air permeability was 330 cm 3 / cm 2 · s, and the O / C ratio by XPS was 12. In addition, toluene adsorption performance was high at 52 g / m 2 , and BET specific surface area was high at 1380 m 2 / g.
[0040]
Further, the knitted fibrous activated carbon knit was immersed in an aqueous solution of chloroplatinic acid to prepare 5% by mass of a platinum catalyst-carrying activated carbon. The toluene adsorption performance of this platinum catalyst-supported activated carbon was 42 g / m 2 , the BET specific surface area was 1100 m 2 / g, and the gas permeability was 330 cm 3 / cm 2 · s. This platinum catalyst-supported activated carbon 10 cm 2 was reduced by vacuum drying at 120 ° C. for 12 hours, and the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 5.1 L / min. Even after 5 hours, it was very good at 5.0 L / min. Table 1 shows the results.
[0041]
(Example 2)
The same milling fabric as in Example 1 was knitted, and carbonized and activated under the same conditions. The obtained knitted fibrous activated carbon knit had the same physical properties as in Example 1. The knitted fibrous activated carbon knit was further heat-treated at 450 ° C. for 10 minutes in air. The weight yield was 93% by mass, the absolute dry weight was 112 g / m 2 , the thickness was 1.05 mm, the air permeability was 330 cm 3 / cm 2 · s, and the O / C ratio by XPS was 30. Further, the toluene adsorption performance was 50 g / m 2 , and the BET specific surface area was 1,380 m 2 / g.
[0042]
Further, as in Example 1, 5% by mass of activated carbon carrying a platinum catalyst was prepared. This platinum catalyst-supported activated carbon had a toluene adsorption performance of 41 g / m 2 , a BET specific surface area of 1150 m 2 / g, and a gas permeability of 330 cm 3 / cm 2 · s. This platinum catalyst-supported activated carbon 10 cm 2 was reduced by vacuum drying at 120 ° C. for 12 hours, and the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 5.5 L / min. Even after 5 hours, it was very good at 5.5 L / min. Table 1 shows the results.
[0043]
(Example 3)
The same milling fabric as in Example 1 was knitted, and carbonized and activated under the same conditions. The obtained knitted fibrous activated carbon knit had the same physical properties as in Example 1. The knitted fibrous activated carbon knit was further subjected to a heat treatment in air at 450 ° C. for 15 minutes. The weight yield was 90% by mass, the absolute dry weight was 108 g / m 2 , the thickness was 1.05 mm, the air permeability was 330 cm 3 / cm 2 · s, and the O / C ratio by XPS was 43. Further, the toluene adsorption performance was 50 g / m 2 , and the BET specific surface area was 1,360 m 2 / g.
[0044]
Further, as in Example 1, 5% by mass of activated carbon carrying a platinum catalyst was prepared. This platinum catalyst-supported activated carbon had a toluene adsorption performance of 41 g / m 2 , a BET specific surface area of 1180 m 2 / g, and a gas permeability of 330 cm 3 / cm 2 · s. This platinum catalyst-supported activated carbon (10 cm 2) was reduced by vacuum drying at 120 ° C. for 12 hours, and the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 5.2 L / min. After 5 hours, the value was very good at 5.2 L / min. Table 1 shows the results.
[0045]
(Example 4)
The same milling knitted fabric as in Example 1 is knitted and the knit is carbonized from ambient temperature to 890 ° C. for 30 minutes in an inert atmosphere, then activated in an atmosphere containing 12% by weight of steam at a temperature of 890 ° C. for 70 minutes. did. The obtained knitted fibrous activated carbon knitted fabric had an absolutely dry basis weight of 126 g / m 2 , a thickness of 1.10 mm, and a gas permeability of 330 cm 3 / cm 2 · s. Further, the fibrous activated carbon knitted fabric had a very high adsorption performance of 50 g / m 2 and a BET specific surface area of 1250 m 2 / g.
[0046]
The knitted fibrous activated carbon knit was further heat-treated at 450 ° C. for 10 minutes in air. The weight yield was 95% by mass, the absolute dry weight was 120 g / m 2 , the thickness was 1.10 mm, the air permeability was 330 cm 3 / cm 2 · s, and the O / C ratio by XPS was 40. Further, the toluene adsorption performance was 48 g / m 2 , and the BET specific surface area was 1250 m 2 / g.
[0047]
Further, as in Example 1, 5% by mass of activated carbon carrying a platinum catalyst was prepared. This platinum catalyst-supported activated carbon had a toluene adsorption performance of 42 g / m 2 , a BET specific surface area of 1070 m 2 / g, and a gas permeability of 330 cm 3 / cm 2 · s. After reducing the platinum catalyst-supported activated carbon 10 cm 2 by vacuum drying at 120 ° C. for 12 hours and measuring the hydrogen gas generation rate (L / min), the hydrogen generation rate after 30 minutes was 4.8 L / min. Even after 5 hours, the value was very good at 4.7 L / min. Table 1 shows the results.
[0048]
(Comparative Example 1)
The same milling fabric as in Example 1 was knitted, and carbonized and activated under the same conditions. As in Example 1, the obtained knitted fibrous activated carbon knitted article had an absolute dry weight of 120 g / m 2 , a thickness of 1.05 mm, and a gas permeability of 330 cm 3 / cm 2 · s. In addition, this fibrous activated carbon knitted fabric had a very high adsorption performance of 54 g / m 2 and a BET specific surface area of 1380 m 2 / g. This knitted fibrous activated carbon knit was not heat-treated in the air, and a 5% by mass platinum catalyst-supported activated carbon was prepared in the same manner as in Example 1. The toluene adsorption performance of this platinum catalyst-supported activated carbon was 34 g / m 2 , the BET specific surface area was 840 m 2 / g, and the gas permeability was 330 cm 3 / cm 2 · s. This platinum catalyst-supported activated carbon 10 cm 2 was reduced by vacuum drying at 120 ° C. for 12 hours, and the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 3.3 L / min. After 5 hours, the flow rate was 3.2 L / min. Table 1 shows the results.
[0049]
(Comparative Example 2)
The same milling knitted fabric as in Example 1 is knitted, and the knit is carbonized from room temperature to 890 ° C. for 20 minutes in an inert atmosphere, and then activated in an atmosphere containing 12% by mass of steam at a temperature of 890 ° C. for 20 minutes. did. The obtained knitted fibrous activated carbon knitted fabric had an absolutely dry basis of 130 g / m 2 , a thickness of 1.10 mm, and an air permeability of 330 cm 3 / cm 2 · s. Further, the fibrous activated carbon knitted fabric had a very high adsorption performance of 43 g / m 2 and a BET specific surface area of 1010 m 2 / g.
[0050]
This knitted fibrous activated carbon knit was not heat-treated in the air, and a 5% by mass platinum catalyst-supported activated carbon was prepared in the same manner as in Example 1. This platinum catalyst-supported activated carbon had a toluene adsorption performance of 29 g / m 2 , a BET specific surface area of 710 m 2 / g, and a gas permeability of 330 cm 3 / cm 2 · s. The platinum catalyst-supported activated carbon 10 cm 2 was reduced by vacuum drying at 120 ° C. for 12 hours, and the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 3.2 L / min. After 5 hours, it was 3.1 L / min. Table 1 shows the results.
[0051]
(Comparative Example 3)
Using a phenolic fiber having a single fiber fineness of 2.2 dtex and a thread-like fineness of 295 dtex, a smooth knitted fabric was knitted by an 18 gauge double-sided circular knitting machine. This knitted fabric had a basis weight of 140 g / m 2 , a thickness of 1.10 mm, an apparent density of 0.14 g / cm 3 , and an air permeability of 174 cm 3 / cm 2 · s.
[0052]
This knit was carbonized in an inert atmosphere for 30 minutes from room temperature to 890 ° C. in the same manner as in Example 1, and then activated in an atmosphere containing 12% by mass of steam at a temperature of 890 ° C. for 90 minutes. The obtained knitted fibrous activated carbon knitted fabric had an absolutely dry basis weight of 140 g / m 2 , a thickness of 1.10 mm, and an air permeability of 174 cm 3 / cm 2 · s. The fibrous activated carbon knitted fabric had a toluene adsorption performance of 60 g / m 2 and a BET specific surface area of 1,330 m 2 / g.
[0053]
This knitted fibrous activated carbon knit was further heat-treated at 450 ° C. for 10 minutes in air in the same manner as in Example 2. The weight yield was 93% by mass, the absolute dry weight was 130 g / m 2 , the thickness was 1.10 mm, and the O / C ratio by XPS was 25. Further, the toluene adsorption capacity was 56 g / m 2 , the BET specific surface area was 1330 m 2 / g, and the gas permeability was 174 cm 3 / cm 2 · s.
[0054]
Further, as in Example 1, 5% by mass of activated carbon carrying a platinum catalyst was prepared. This platinum catalyst-supported activated carbon had a toluene adsorption performance of 43 g / m 2 , a BET specific surface area of 990 m 2 / g, and a gas permeability of 174 cm 3 / cm 2 · s. This platinum catalyst-supported activated carbon (10 cm 2) was reduced by vacuum drying at 120 ° C. for 12 hours, and the hydrogen gas generation rate (L / min) was measured. The hydrogen generation rate after 30 minutes was 2.2 L / min. After 5 hours, the flow rate was 2.0 L / min. Table 1 shows the results.
[0055]
[Table 1]
Figure 2004025023
[0056]
In Table 1, the values before carrying the catalyst represent the values after surface treatment of the fibrous activated carbon. In Comparative Examples 1 and 2, since the surface treatment was not performed, the values after carbonization and activation were calculated. Express.
[0057]
From the above results, the catalyst-supported activated carbons of Examples 1 to 4 have been subjected to surface treatment and have an O / C ratio of 10% or more, so that they generate a large amount of hydrogen gas and are used as good catalysts for dehydrogenation reactions and the like. be able to. On the other hand, the catalyst-carrying activated carbons of Comparative Examples 1 and 2 were not subjected to the surface treatment and had an O / C ratio of less than 10%, so that the amount of hydrogen gas generated was low.
[0058]
In addition, comparing Example 2 and Comparative Example 3, it can be seen that Example 2 clearly generates a larger amount of hydrogen than Comparative Example 3. Therefore, it is understood that milling is preferable to smooth knitting for the fibrous polymer. This is because milling knitting can achieve better air permeability than smooth knitting.
[0059]
The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0060]
【The invention's effect】
As described above, the activated carbon carrier and the catalyst-supported activated carbon of the present invention have a high fibrous structure, in particular, a knitted structure, so that they have high air permeability, so that they have excellent thermal conductivity and hydrogen gas, hydrogenation or dehydrogenation reaction. Is excellent in diffusibility of reaction raw materials and products. Further, since the activated carbon carrier according to the present invention has an O / C ratio of 10% or more, the ability to support a catalyst is dramatically improved, and the reaction raw materials and products can be well diffused. For this reason, the catalyst-supporting activated carbon of the present invention can improve the reaction efficiency of the hydrogenation and dehydrogenation reactions, and can function as a high-performance catalyst carrier or catalyst.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a hydrogen generator used in the present invention.
[Explanation of symbols]
1 Round bottom flask, 2 activated carbon carrying catalyst, 3 electric heater, 4 cooling pipe, 5 cock, 6 hydrogen collecting pipe, 7 cooling pipe, 8 aromatic recovery section, 9 hydride introduction section with atomizer.

Claims (10)

繊維状活性炭からなる活性炭担体であって、X線光電子分光法(XPS)による該活性炭担体上表面のO/C比が10%以上であり、かつ通気性が200cm/cm・s以上であることを特徴とする、活性炭担体。An activated carbon carrier made of fibrous activated carbon, wherein the O / C ratio of the surface on the activated carbon carrier by X-ray photoelectron spectroscopy (XPS) is 10% or more and the air permeability is 200 cm 3 / cm 2 · s or more. An activated carbon carrier, characterized in that: 繊維状高分子を製編後、炭化して得られ、かつ編物であることを特徴とする、請求項1に記載の活性炭担体。2. The activated carbon carrier according to claim 1, wherein the activated carbon carrier is obtained by knitting and knitting a fibrous polymer, and is a knit. トルエン吸着性能が25g/m以上であることを特徴とする、請求項1または2に記載の活性炭担体。The activated carbon carrier according to claim 1, wherein the toluene adsorption performance is 25 g / m 2 or more. BET法による比表面積が800〜3000m/gであることを特徴とする、請求項1〜3のいずれかに記載の活性炭担体。Wherein the specific surface area by BET method is 800~3000m 2 / g, the activated carbon carrier according to any one of claims 1 to 3. 繊維状活性炭の原料となる繊維状高分子の糸状の繊度が150dtex以上の太さを有することを特徴とする、請求項2〜4のいずれかに記載の活性炭担体。The activated carbon carrier according to any one of claims 2 to 4, wherein the fibrous polymer serving as a raw material of the fibrous activated carbon has a thread fineness of 150 dtex or more. 繊維状高分子を製編して繊維状高分子編物を製造する工程と、該繊維状高分子編物を炭化して繊維状活性炭編物を製造する工程とを包含する活性炭担体の製造方法であって、該活性炭担体は、X線光電子分光法によるO/C比が10%以上であり、通気性が200cm/cm・s以上であることを特徴とする、活性炭担体の製造方法。A method for producing an activated carbon carrier, comprising: a step of knitting a fibrous polymer to produce a fibrous polymer knit; and a step of carbonizing the fibrous polymer to produce a fibrous activated carbon knit. A method for producing an activated carbon carrier, characterized in that the activated carbon carrier has an O / C ratio of at least 10% by X-ray photoelectron spectroscopy and a gas permeability of at least 200 cm 3 / cm 2 · s. 請求項1〜5のいずれかに記載の活性炭担体に金属触媒が担持した触媒担持活性炭。A catalyst-carrying activated carbon in which a metal catalyst is supported on the activated carbon carrier according to claim 1. トルエン吸着性能が、15g/m以上であることを特徴とする、請求項7に記載の触媒担持活性炭。Toluene adsorption performance, characterized in that it is 15 g / m 2 or more, the catalyst on activated carbon as claimed in claim 7. BET法により求めた比表面積が、500〜2400m/gであることを特徴とする、請求項7または8に記載の触媒担持活性炭。The specific surface area as determined by BET method, characterized in that it is a 500~2400m 2 / g, the catalyst on activated carbon according to claim 7 or 8. 繊維状高分子を製編して繊維状高分子編物を製造する工程と、該繊維状高分子編物を炭化して繊維状活性炭編物を製造する工程と、前記工程で得られた繊維状活性炭編物に金属触媒を担持させる工程と、を包含する触媒担持活性炭の製造方法であって、該触媒担持活性炭は、通気性が200cm/cm・s以上であることを特徴とする触媒担持活性炭の製造方法。A step of knitting a fibrous polymer to produce a fibrous polymer knit, a step of carbonizing the fibrous polymer knit to produce a fibrous activated carbon knit, and the fibrous activated carbon knit obtained in the above step And a step of supporting a metal catalyst on the activated carbon, wherein the activated carbon has a gas permeability of not less than 200 cm 3 / cm 2 · s. Production method.
JP2002184392A 2002-06-25 2002-06-25 Active carbon carrier, catalyst-carrying active carbons, and method of producing them Withdrawn JP2004025023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184392A JP2004025023A (en) 2002-06-25 2002-06-25 Active carbon carrier, catalyst-carrying active carbons, and method of producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184392A JP2004025023A (en) 2002-06-25 2002-06-25 Active carbon carrier, catalyst-carrying active carbons, and method of producing them

Publications (1)

Publication Number Publication Date
JP2004025023A true JP2004025023A (en) 2004-01-29

Family

ID=31180322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184392A Withdrawn JP2004025023A (en) 2002-06-25 2002-06-25 Active carbon carrier, catalyst-carrying active carbons, and method of producing them

Country Status (1)

Country Link
JP (1) JP2004025023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511682A (en) * 2017-12-25 2020-08-07 株式会社可乐丽 Activated carbon, metal-supporting activated carbon using same, and hydrogenation catalyst
CN115463648A (en) * 2021-06-10 2022-12-13 中国科学院大连化学物理研究所 Phosphine-containing organic polymer/active carbon composite carrier and preparation and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511682A (en) * 2017-12-25 2020-08-07 株式会社可乐丽 Activated carbon, metal-supporting activated carbon using same, and hydrogenation catalyst
CN111511682B (en) * 2017-12-25 2023-12-29 株式会社可乐丽 Activated carbon, metal-supported activated carbon using same, and hydrogenation catalyst
CN115463648A (en) * 2021-06-10 2022-12-13 中国科学院大连化学物理研究所 Phosphine-containing organic polymer/active carbon composite carrier and preparation and application thereof

Similar Documents

Publication Publication Date Title
US7776777B2 (en) Catalyst support using cellulose fibers, preparation method thereof, supported catalyst comprising nano-metal catalyst supported on carbon nanotubes directly grown on surface of the catalyst support, and method of preparing the supported catalyst
Zhou et al. Tungsten carbide nanofibers prepared by electrospinning with high electrocatalytic activity for oxygen reduction
JP4912044B2 (en) Mesoporous carbon and production method thereof, supported catalyst for fuel cell electrode and fuel cell using the same
JP6198810B2 (en) Carbon material for catalyst support
CN108579788B (en) Composite cobalt vanadium nitride nanowire electrocatalyst and preparation method and application thereof
CN108914153B (en) Nitrogen-doped carbon nanofiber electrocatalyst and preparation method and application thereof
Lai et al. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells
Liu et al. Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform
Mu et al. Graphene-carbon nanofiber hybrid supported Pt nanoparticles with enhanced catalytic performance for methanol oxidation and oxygen reduction
Li et al. Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells
JP5267760B2 (en) Carbon nanofiber sheet
Patil et al. Metal-free N-doped ultrafine carbon fibers from electrospun Polymers of Intrinsic Microporosity (PIM-1) based fibers for oxygen reduction reaction
CN102021677A (en) Preparation method for carbon nanofiber containing transition metal and nitrogen element and application of carbon nanofiber in fuel-cell catalysts
Zhang et al. Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction
Kim et al. Co-electrospun Pd-coated porous carbon nanofibers for hydrogen storage applications
Wang et al. Activated carbon fibers via reductive carbonization of cellulosic biomass for adsorption of nonpolar volatile organic compounds
TW201619049A (en) Metal composite carbon material, fuel cell catalyst, fuel cell, hydrogen-occluding material, hydrogen tank, and production method for metal composite carbon material
CN102413922A (en) Process for the preparation of metal-carbon containing bodies
JP2004025024A (en) Active carbon carrier, catalyst-carrying active carbon, and method of producing them
Li et al. Engineering Pt/carbon-nanofibers/carbon-paper composite towards highly efficient catalyst for hydrogen evolution from liquid organic hydride
Rahsepar et al. A combined physicochemical and electrocatalytic study of microwave synthesized tungsten mono-carbide nanoparticles on multiwalled carbon nanotubes as a co-catalyst for a proton-exchange membrane fuel cell
CN110148760A (en) A kind of porous carbon-carbon nano tube compound material and its preparation method and application
Ojeda-López et al. On site formation of N-doped carbon nanofibers, an efficient electrocatalyst for fuel cell applications
Litkohi et al. Synthesis of Pt-Ni-Fe/CNT/CP nanocomposite as an electrocatalytic electrode for PEM fuel cell cathode
JP4239488B2 (en) Activated carbon carrier, catalyst-supported activated carbon and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080516