JP4239259B2 - Sand-capping method - Google Patents

Sand-capping method Download PDF

Info

Publication number
JP4239259B2
JP4239259B2 JP32165398A JP32165398A JP4239259B2 JP 4239259 B2 JP4239259 B2 JP 4239259B2 JP 32165398 A JP32165398 A JP 32165398A JP 32165398 A JP32165398 A JP 32165398A JP 4239259 B2 JP4239259 B2 JP 4239259B2
Authority
JP
Japan
Prior art keywords
sand
earth
section
row
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32165398A
Other languages
Japanese (ja)
Other versions
JP2000144739A (en
Inventor
正夫 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP32165398A priority Critical patent/JP4239259B2/en
Publication of JP2000144739A publication Critical patent/JP2000144739A/en
Application granted granted Critical
Publication of JP4239259B2 publication Critical patent/JP4239259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、湖沼や河川などに堆積している泥状物を水面上から投下する土砂により覆う覆砂工法に関するものである。
【0002】
【従来の技術】
湖沼,港湾などの海域や河川など水域において、特に、水の出入りの少ない閉鎖性の水海域においては、水質の富栄養化により水質汚濁が問題となる。
【0003】
このような水海域で富栄養化が促進すると、栄養塩類の濃度が増加し、植物プランクトンや藻類が異常発生し、死滅した藻類などが水底部に堆積し、その消化に酸素が消費されて、酸欠状態になって異臭が発生し易くなる。
【0004】
このような場合の異臭防止対策として、水域の水底に堆積している堆積物を、水面上から投下する土砂で覆う覆砂工法がある。しかしながら、従来の覆砂工法には、以下に説明する技術的な課題があった。
【0005】
【発明が解決しようとする課題】
すなわち、この種の覆砂工法では、埋立土砂の撒出しは、運搬船などで運搬した土砂をベルトコンベアやクラムシェルバケットなどで水面上から投下することにより行われており、水底の堆積物上に所定厚みの覆砂層を形成する。
【0006】
この場合、形成する覆砂層の確認は、音波探査やレッド(巻尺に錘を付けた水深測定装置)で、土砂の撒出し前後の水深を測定することにより行っていた。
【0007】
ところが、前述したような富栄養化が促進している水海域の水底は、非常に柔らかくなっていて、土砂でこれを覆うことにより、堆積物自体が沈下するので、水深を測定しただけでは、覆砂層の形成確認として不十分であり、また、施工個所の全域を前述した如き水深の測定により確認するとすれば、面的に広範囲なため、測定点も多くなり、手間と費用が嵩むという問題もあった。
【0008】
本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、所定厚みの覆砂層を確実に水底堆積物上に形成することができる覆砂工法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、水底に堆積している泥状物などの水底堆積物の表面を水面上から投下した土砂により覆う覆砂工法において、前記土砂の撒出しは、投下位置の位置測定装置を備え、供給される土砂を走行方向に沿って一直線上に投下するベルトコンベア装置により、複数列,複数段で行われ、前記土砂を投下した際の前記泥状物上への覆砂層の堆積形状は、第1列目は、底辺の長さがLで、高さがHの二等辺三角形断面となるものと予測し、第2列目以降は、投下間隔を1/2・Lとして、底辺の長さがLで、高さがHの二等辺三角形断面から前列側との重なり部分を除去した断面形状となるものと予測し、第2段目は、第1列目の列方向に隣接する一対の前記二等辺三角形断面の頂点間の中心を投下位置とし、当該頂点間を結ぶ線分を底辺とし、頂角が前記二等辺三角形断面と同一となる三角形断面を、上下に連結した平行四辺形断面となるものと予測し、前記泥状物上の前記覆砂層の要求厚みと、覆砂する施工面積とに基づいて、前記土砂の撒出し量を決定するようにした。
このように構成した覆砂工法によれば、土砂の撒出し量を、土砂を投下した際の水底堆積物上への堆積形状を予測し、この予測した堆積形状と、水底堆積物上の覆砂厚みと、覆砂する施工面積とに基づいて決定するので、水底堆積物が覆砂により沈下したとしても、その上部に所定厚みの覆砂層を形成することができる。
【0010】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、添付図面を参照にして詳細に説明する。図1から図8は、本発明にかかる覆砂工法の一実施例を示している。
【0011】
同図に示した覆砂工法は、水底に堆積しているヘドロなどの泥状物や、死滅した藻類などの水底堆積物10を水面上から投下した土砂により覆い、所定厚みの覆砂層12を形成する方法である。
【0012】
この場合、本発明では、土砂を投下した際の水底堆積物10上への堆積形状を予測し、この予測した堆積形状と、水底堆積物10上に形成する覆砂層12の要求厚みと、覆砂する施工面積とに基づいて、土砂の撒出し量を決定することを基本的な思想としている。
【0013】
図1は、本発明の覆砂工法の実施状態の説明図であって、同図に示した覆砂工法では、土砂の撒出しにベルトコンベア装置14を用いる。同図に示したベルトコンベア装置14は、台船14aと、この台船14aに搭載されたベルトコンベア14bと、土砂投入用のホッパ14cと、トリッパコンベア14dとを備えている。
【0014】
ベルトコンベア14bは、図1の紙面と直交する方向に延設され、その上部側にホッパ14cが配置されている。トリッパコンベア14dは、ベルトコンベア14bに沿って移動する(紙面と直交する方向)とともに、ベルトコンベア14bと直交する方向に移動駆動され、ホッパ14cから投下された土砂を受承してその先端から水面上に投下する。
【0015】
この時の水面上への投下状態は、図1の紙面と直交する方向に沿った、一定幅の直線上に投下する。本実施例の場合には、ベルトコンベア装置14は、この土砂の投下位置を測定する位置測定装置を備えている。
【0016】
この位置測定装置は、具体的にはGPSシステムを利用した受信装置であって、図示省略の受信機本体に接続されたGPSアンテナ16が、トリッパコンベア14dの先端に取付けられている。
【0017】
このように構成されたベルトコンベア装置14により土砂を投下して覆砂する際には、水底堆積物10上に土砂を投下した際の堆積形状が予測される。
【0018】
図2には、図4に示すような試験施工区域(幅が13.2mで、長さが20m、同図に斜線で示し部分)における覆砂工法を実際に施工した際の覆砂層12の堆積予測形状が示されている。
【0019】
なお、図2においては、紙面と直交する方向がトリップコンベア14dがベルトコンベア14bに沿って移動する方向であり、同図に矢印で示した方向が、トリップコンベア14dの移動駆動方向である。
【0020】
同図に示した例では、ベルトコンベア装置14による土砂の投下は、鉛直方向に2段とし、水平方向には、所定の間隔を隔てて平行に、第1段目がA〜Mの13列、第2段目がa〜lの12列になるように設定した。
【0021】
第1段目の土砂の堆積形状A〜Mは、図3にその一部を拡大して示すように、第1段目の最初に位置する堆積形状Aは、高さがHで、底辺がLの二等辺三角形断面で有り、これに続く堆積形状Bは、堆積形状Aの右端上に頂点が位置する同形状の二等辺三角形断面から、堆積形状Aとの重なり部分を除去した断面形状であって、以後の1段目の堆積形状C〜Mは、堆積形状Bと同じ断面形状となる。
【0022】
第2段目の堆積形状a〜lは、全て同じ形状であって、例えば、堆積形状aは、堆積形状Aの一方の斜辺と堆積形状Bの斜辺とを延長した菱形断面形状になっている。
【0023】
このような堆積形状A〜M,a〜lになるように土砂を堆積させるには、水底堆積物10上に形成する覆砂層12の要求厚みと、覆砂する施工面積(幅×長さ)とに基づいて、トリップコンベア14dによる撒出し量が決定される。
【0024】
すなわち、今例えば、施工面積の幅がaで、長さがbであるとすれば、列の数は、列間隔が1/2Lとなるので、a÷1/2Lで求められる。また、トリップコンベア14dによる撒出し量は、トリップコンベア14dの幅×堆積形状A〜M,a〜lにより、必要な土砂堆積量が求められるので、この値から単位時間当たりの土砂供給量が演算により求められる。
【0025】
以下に示した表1,2は、図4に斜線部分で示すような、試験施工区域(幅が13.2mで、長さが20m)において、覆砂層12の要求厚みを500±200mmとして、覆砂工法を実際に施工した場合のトリップコンベア14dによる各列毎の土砂の撒出し量の一覧である。
【0026】
【表1】

Figure 0004239259
【0027】
【表2】
Figure 0004239259
【0028】
この表1,2に示した例では、各堆積形状A〜M,a〜lの頂点にトリップコンベア14dの端部が位置するように、GPSアンテナ16を介して人工衛星からのGPS信号を受信して位置設定を行った。
【0029】
また、各堆積形状A〜M,a〜lに一致するように、トリップコンベア14dは、長さ20mの間で複数回走行移動させた。さらに、実際に撒出す土砂の量は、投下時の細粒分の逸失などのロスを考えて、設定量に対して30%増量するように補正をした。
【0030】
土砂の撒出し前には、図4に示すように、4.4m間隔に設定した4列(赤,白,青,黄)において、各列毎に5m間隔に設定した測定点▲1▼〜▲7▼で、水底堆積物10の上端位置の水深を測定した。
【0031】
そして、1段分の土砂を堆積させた後と、施工終了後(2段分の土砂を堆積した後)にそれぞれ同一個所の覆砂層12の上端個所の水深を測定した。
【0032】
図5〜8に示したグラフがその測定結果である。これらの各図において、実線が施工前の水深であり、点線が1段分の土砂を堆積させた後の水深であって、一点鎖線が施工終了後の水深であって、各測定点に示した数値の差が形成された覆砂層12の厚みである。
【0033】
図5〜8に示した結果から明らかなように、試験施工区域(幅が13.2mで、長さが20m)内においては、要求厚みである500±200mmを満足する覆砂層12が形成されていることが確認された。
【0034】
さて、以上のように構成した覆砂工法によれば、土砂の撒出し量を、土砂を投下した際の水底堆積物10上への堆積形状A〜M,a〜lを予測し、この予測した堆積形状A〜M,a〜lと、水底堆積物10上の覆砂厚みと、覆砂する施工面積とに基づいて決定するので、水底堆積物10が覆砂により沈下したとしても、その上部に所定厚みの覆砂層12を確実に形成することができる。
【0035】
また、本実施例の場合には、土砂の撒出しは、投下位置の位置測定装置を備え、供給される土砂を走行方向に沿って一直線上に投下するベルトコンベア装置14により行われ、堆積形状A〜M,a〜lをベルトコンベア装置14で投下する一列毎に予測するので、より一層正確に覆砂層12を形成することができる。
【0036】
さらに、本実施例の場合には、土砂の撒出し量は、水底堆積物10の水深,土砂の性状などの施工条件により補正するので、さらに一層正確に覆砂層12を形成することができる。
【0037】
なお、上記実施例では、水面上から投下する土砂の堆積形状A〜M,a〜lを予測した形状に一致させるために、トリップコンベア14dを複数回走行移動させたが、これを1回の走行で一致させてもよい。
【0038】
【発明の効果】
以上、実施例で詳細に説明したように、本発明にかかる覆砂工法によれば、所定厚みの覆砂層を確実に水底堆積物上に形成することができる。
【図面の簡単な説明】
【図1】本発明にかかる覆砂工法の一実施例を示す施工状態の説明図である。
【図2】図1に示した覆砂工法で予測する土砂の堆積形状の断面図である。
【図3】図2の要部拡大図である。
【図4】図1に示した覆砂工法の試験施工区間の平面説明図である。
【図5】図4に示した試験施工において、施工の前後における列赤上の水深測定値である。
【図6】図4に示した試験施工において、施工の前後における列白上の水深測定値である。
【図7】図4に示した試験施工において、施工の前後における列青上の水深測定値である。
【図8】図4に示した試験施工において、施工の前後における列黄上の水深測定値である。
【符号の簡単な説明】
10 水底堆積物
12 覆砂層
14 ベルトコンベア装置
14a 台船
14b ベルトコンベア
14c ホッパ
14d トリッパコンベア
16 GPSアンテナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sand covering method for covering mud accumulated in lakes and rivers with earth and sand dropped from the surface of water.
[0002]
[Prior art]
In water areas such as lakes and harbors and water areas such as rivers, water pollution is a problem due to eutrophication of water quality, especially in closed water areas where water does not enter and exit.
[0003]
When eutrophication is promoted in these waters and seas, the concentration of nutrients increases, phytoplankton and algae occur abnormally, dead algae accumulate on the bottom of the water, and oxygen is consumed for their digestion, Oxygen odor is likely to occur due to lack of oxygen.
[0004]
In order to prevent a strange odor in such a case, there is a sand covering method that covers sediment deposited on the bottom of a water area with earth and sand dropped from above the water surface. However, the conventional sand-capping method has the following technical problems.
[0005]
[Problems to be solved by the invention]
In other words, in this type of sand-capping method, landfill sand is dumped by dropping the earth and sand transported by a transport ship etc. from the surface of the water with a belt conveyor or clamshell bucket. A sand-covering layer having a predetermined thickness is formed.
[0006]
In this case, confirmation of the sand-covering sand layer to be formed was performed by measuring the water depth before and after dredging the earth and sand with sonic exploration and red (a water depth measuring device with a weight attached to a tape measure).
[0007]
However, the bottom of the water and sea area promoted by eutrophication as described above is very soft, and the sediment itself sinks by covering it with earth and sand, so just measuring the water depth, Insufficient confirmation of the formation of a sand-capping layer, and if the entire area of the construction site is confirmed by measuring the water depth as described above, there are problems in that the area is extensive and the number of measurement points is increased, which increases labor and cost. There was also.
[0008]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a sand covering method capable of reliably forming a sand covering layer having a predetermined thickness on a bottom sediment. It is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a sand covering method in which the surface of a bottom sediment such as a muddy matter deposited on the bottom of the water is covered with earth and sand dropped from above the water surface. It is provided with a position measuring device for position, and is carried out in a plurality of rows and stages by a belt conveyor device that drops the supplied earth and sand in a straight line along the traveling direction, and onto the mud when the earth and sand are dropped. As for the accumulated shape of the sand covering layer, the first row is predicted to have an isosceles triangular section with a base length of L and a height of H, and after the second row the drop interval is 1 / 2 · L, it is predicted that the cross-sectional shape is obtained by removing the overlapping portion from the front row side from the isosceles triangle cross section having the base length L and the height H , and the second row is the first row the center between the pair of vertices of the isosceles triangle cross-section adjacent to the column direction of the eyes and dropped position, said And base a line segment connecting the points, a triangular cross section the apex angle is equal to the isosceles triangle cross-section, and expected to become a parallelogram cross linked vertically, the covering sand on the sludge-like material Based on the required thickness and the construction area to be covered with sand, the amount of scouring of the earth and sand was determined.
According to the sand-capping method constructed in this way, the amount of sediment discharged is predicted as the shape of the sediment deposited on the bottom sediment when the sediment is dropped. Since it is determined based on the sand thickness and the construction area to be covered with sand, even if the bottom sediment is sunk by the covered sand, a sand-covering layer having a predetermined thickness can be formed on the top .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. 1 to 8 show an embodiment of the sand covering method according to the present invention.
[0011]
In the sand-capping method shown in the figure, sludge such as sludge accumulated on the bottom of the water or bottom sediment 10 such as dead algae is covered with earth and sand dropped from above the water surface, and a sand-covering layer 12 having a predetermined thickness is covered. It is a method of forming.
[0012]
In this case, according to the present invention, the shape of the sediment deposited on the bottom sediment 10 when the earth and sand are dropped is predicted, and the predicted sediment shape, the required thickness of the sand cover layer 12 formed on the bottom sediment 10, The basic idea is to determine the amount of sand that has been laid out based on the construction area to be sanded.
[0013]
FIG. 1 is an explanatory view of an implementation state of the sand-capping method of the present invention. In the sand-capping method shown in FIG. The belt conveyor device 14 shown in the figure includes a carriage 14a, a belt conveyor 14b mounted on the carriage 14a, a hopper 14c for loading earth and sand, and a tripper conveyor 14d.
[0014]
The belt conveyor 14b extends in a direction perpendicular to the paper surface of FIG. 1, and a hopper 14c is disposed on the upper side thereof. The tripper conveyor 14d moves along the belt conveyor 14b (in a direction orthogonal to the paper surface) and is driven to move in a direction orthogonal to the belt conveyor 14b. The tripper conveyor 14d receives earth and sand dropped from the hopper 14c and receives water from its tip. Drop on top.
[0015]
The state of dropping onto the water surface at this time is dropped onto a straight line having a constant width along a direction orthogonal to the paper surface of FIG. In the case of a present Example, the belt conveyor apparatus 14 is provided with the position measuring apparatus which measures the dropping position of this earth and sand.
[0016]
This position measuring device is specifically a receiving device using a GPS system, and a GPS antenna 16 connected to a receiver body (not shown) is attached to the tip of a tripper conveyor 14d.
[0017]
When the earth and sand are dropped and covered with the belt conveyor device 14 configured as described above, the accumulated shape when the earth and sand is dropped on the bottom sediment 10 is predicted.
[0018]
FIG. 2 shows the sand-capping layer 12 when the sand-capping method is actually applied in the test construction area (width: 13.2 m, length: 20 m, the hatched portion in the figure) as shown in FIG. The predicted deposit shape is shown.
[0019]
In FIG. 2, the direction orthogonal to the paper surface is the direction in which the trip conveyor 14d moves along the belt conveyor 14b, and the direction indicated by the arrow in FIG. 2 is the movement drive direction of the trip conveyor 14d.
[0020]
In the example shown in the figure, the earth and sand is thrown down by the belt conveyor device 14 in two steps in the vertical direction, in the horizontal direction in parallel at a predetermined interval, and the first row is 13 rows of A to M. The second stage is set to be 12 columns from a to l.
[0021]
As shown in FIG. 3 in which a part of the sediment shape A to M of the first level is enlarged, the height of the sediment shape A located at the beginning of the first level is H and the bottom is L is an isosceles triangle cross section, and the subsequent deposition shape B is a cross-sectional shape obtained by removing an overlapping portion with the deposition shape A from the isosceles triangle section having the apex located on the right end of the deposition shape A. Thus, the subsequent first-stage deposition shapes C to M have the same cross-sectional shape as the deposition shape B.
[0022]
The second-stage deposition shapes a to l are all the same shape. For example, the deposition shape a has a rhombus cross-sectional shape obtained by extending one oblique side of the deposition shape A and the oblique side of the deposition shape B. .
[0023]
In order to deposit earth and sand so as to have such accumulation shapes A to M and a to l, the required thickness of the sand covering layer 12 formed on the bottom sediment 10 and the construction area (width x length) to cover the sand. Based on the above, the feed amount by the trip conveyor 14d is determined.
[0024]
That is, for example, if the width of the construction area is a and the length is b, the number of columns is obtained by a ÷ 1 / 2L because the column interval is 1 / 2L. Moreover, since the necessary amount of sediment accumulation can be obtained from the trip conveyor 14d by the width of the trip conveyor 14d × the accumulation shapes A to M and a to l, the amount of sediment supply per unit time is calculated from this value. Is required.
[0025]
Tables 1 and 2 shown below show that the required thickness of the sand covering layer 12 is 500 ± 200 mm in the test construction area (width: 13.2 m, length: 20 m) as indicated by the hatched portion in FIG. It is a list | wrist of the amount of soil sedimentation for each row | line | column by the trip conveyor 14d at the time of actually constructing the sand covering method.
[0026]
[Table 1]
Figure 0004239259
[0027]
[Table 2]
Figure 0004239259
[0028]
In the examples shown in Tables 1 and 2, GPS signals from artificial satellites are received via the GPS antenna 16 so that the end of the trip conveyor 14d is positioned at the apexes of the respective accumulation shapes A to M and a to l. To set the position.
[0029]
Further, the trip conveyor 14d was moved and moved a plurality of times within a length of 20 m so as to coincide with the respective accumulation shapes A to M and a to l. Furthermore, the amount of earth and sand actually dredged was corrected so as to increase by 30% with respect to the set amount in consideration of loss such as loss of fine particles at the time of dropping.
[0030]
Before dredging the earth and sand, as shown in FIG. 4, in four rows (red, white, blue, yellow) set at 4.4 m intervals, measurement points (1) to (5) set at 5 m intervals for each row In (7), the water depth at the upper end position of the bottom sediment 10 was measured.
[0031]
And after depositing 1 step of earth and sand, and after completion of construction (after depositing 2 steps of earth and sand), the water depth of the upper end portion of the same portion of the sand covering layer 12 was measured.
[0032]
The graphs shown in FIGS. 5 to 8 show the measurement results. In each of these figures, the solid line is the water depth before construction, the dotted line is the water depth after depositing one layer of earth and sand, and the alternate long and short dash line is the water depth after completion of construction, shown at each measurement point It is the thickness of the sand covering layer 12 in which the difference of the numerical value was formed.
[0033]
As is apparent from the results shown in FIGS. 5 to 8, in the test construction area (the width is 13.2 m and the length is 20 m), the sand covering layer 12 that satisfies the required thickness of 500 ± 200 mm is formed. It was confirmed that
[0034]
Now, according to the sand-capping method constructed as described above, the amount of dredged sediment is predicted as the sediment shapes A to M and a to l on the bottom sediment 10 when the sediment is dropped. Since it is determined on the basis of the deposited shapes A to M, a to l, the sand cover thickness on the bottom sediment 10, and the construction area to cover the sand, even if the bottom sediment 10 sinks due to the sand cover, The sand covering layer 12 having a predetermined thickness can be reliably formed on the upper part.
[0035]
Further, in the case of the present embodiment, the sediment sedimentation is carried out by the belt conveyor device 14 provided with a position measuring device for the dropping position, and dropping the supplied earth and sand in a straight line along the traveling direction. Since A to M and a to l are predicted for each row dropped by the belt conveyor device 14, the sand covering layer 12 can be formed more accurately.
[0036]
Furthermore, in the case of the present embodiment, since the amount of soil sedimentation is corrected according to construction conditions such as the water depth of the bottom sediment 10 and the properties of the soil sediment, the sand covering layer 12 can be formed even more accurately.
[0037]
In the above-described embodiment, the trip conveyor 14d is moved and moved a plurality of times in order to match the accumulated shapes A to M and a to l of the earth and sand to be dropped from above the water surface. They may be matched by running.
[0038]
【The invention's effect】
As described above in detail in the embodiment, according to the sand covering method according to the present invention, a sand covering layer having a predetermined thickness can be reliably formed on the bottom sediment.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a construction state showing an embodiment of a sand-capping method according to the present invention.
2 is a cross-sectional view of a sediment accumulation shape predicted by the sand-capping method shown in FIG.
FIG. 3 is an enlarged view of a main part of FIG. 2;
4 is an explanatory plan view of a test construction section of the sand-capping method shown in FIG. 1. FIG.
5 is a water depth measurement value on the row red before and after construction in the test construction shown in FIG.
6 is a water depth measurement value on the white before and after the construction in the test construction shown in FIG.
7 is a water depth measurement value on the row blue before and after construction in the test construction shown in FIG.
8 is a water depth measurement value on the row yellow before and after construction in the test construction shown in FIG.
[Brief description of symbols]
DESCRIPTION OF SYMBOLS 10 Water bottom deposit 12 Sand covering layer 14 Belt conveyor apparatus 14a Carrier ship 14b Belt conveyor 14c Hopper 14d Tripper conveyor 16 GPS antenna

Claims (1)

水底に堆積している泥状物などの水底堆積物の表面を水面上から投下した土砂により覆う覆砂工法において、
前記土砂の撒出しは、投下位置の位置測定装置を備え、供給される土砂を走行方向に沿って一直線上に投下するベルトコンベア装置により、複数列,複数段で行われ、
前記土砂を投下した際の前記泥状物上への覆砂層の堆積形状は、第1列目は、底辺の長さがLで、高さがHの二等辺三角形断面となるものと予測し、
第2列目以降は、投下間隔を1/2・Lとして、底辺の長さがLで、高さがHの二等辺三角形断面から前列側との重なり部分を除去した断面形状となるものと予測し、
第2段目は、第1列目の列方向に隣接する一対の前記二等辺三角形断面の頂点間の中心を投下位置とし、当該頂点間を結ぶ線分を底辺とし、頂角が前記二等辺三角形断面と同一となる三角形断面を、上下に連結した平行四辺形断面となるものと予測し、
前記泥状物上の前記覆砂層の要求厚みと、覆砂する施工面積とに基づいて、前記土砂の撒出し量を決定することを特徴とする覆砂工法。
In the sand-capping method of covering the surface of the bottom sediment such as mud deposits deposited on the bottom with earth and sand dropped from above the water surface,
The dredging of the earth and sand is performed in a plurality of rows and stages by a belt conveyor device that includes a position measuring device for the dropping position and drops the supplied earth and sand in a straight line along the traveling direction.
The shape of the sand-capping layer deposited on the mud when the earth and sand is dropped is predicted to be an isosceles triangular section with the base length L and height H in the first row. ,
In the second and subsequent rows, the drop interval is 1/2 · L, the base length is L, the height is H, and the cross-sectional shape is obtained by removing the overlapping portion with the front row side from the isosceles triangle cross section. Predict,
In the second row, the center between the vertices of a pair of isosceles triangles adjacent in the column direction of the first row is the drop position, the line segment connecting the vertices is the base, and the apex angle is the isosceles Predicting a triangular cross-section that is the same as the triangular cross- section to be a parallelogram cross-section connected vertically,
A sand-covering method for determining the amount of scouring of the earth and sand based on a required thickness of the sand-covering layer on the mud and a construction area to be covered with sand.
JP32165398A 1998-11-12 1998-11-12 Sand-capping method Expired - Fee Related JP4239259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32165398A JP4239259B2 (en) 1998-11-12 1998-11-12 Sand-capping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32165398A JP4239259B2 (en) 1998-11-12 1998-11-12 Sand-capping method

Publications (2)

Publication Number Publication Date
JP2000144739A JP2000144739A (en) 2000-05-26
JP4239259B2 true JP4239259B2 (en) 2009-03-18

Family

ID=18134915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32165398A Expired - Fee Related JP4239259B2 (en) 1998-11-12 1998-11-12 Sand-capping method

Country Status (1)

Country Link
JP (1) JP4239259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276737A (en) * 2013-06-06 2013-09-04 山东海盛海洋工程集团有限公司 Submerged pipeline protective management process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108487179A (en) * 2018-05-21 2018-09-04 长江宜昌航道工程局 A kind of positioning waterborne is jettisoninged integrated ship and method of jettisoninging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276737A (en) * 2013-06-06 2013-09-04 山东海盛海洋工程集团有限公司 Submerged pipeline protective management process

Also Published As

Publication number Publication date
JP2000144739A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
Bornhold et al. Sedimentary framework of the modern Huanghe (Yellow River) delta
Moody-Stuart High-and low-sinuosity stream deposits, with examples from the Devonian of Spitsbergen
CA2745892C (en) Method and system for broadcast sediment capping
Koteff The morphologic sequence concept and deglaciation of southern New England
De Groot The physical impact of marine aggregate extraction in the North Sea
McLellan et al. Field studies of sediment resuspension characteristics of selected dredges
JP4239259B2 (en) Sand-capping method
KR20190027529A (en) Turbid water and sediment treatment device in the settling pond
Grabemann et al. Aperiodic variations of the turbidity maxima of two German coastal plain estuaries
Hess Marine sand and gravel mining industry of the United Kingdom
Rukavina et al. Surficial sediments of Hamilton Harbour: physical properties and basin morphology
KR20100091290A (en) A method of construction of load earth and sand for a cost road side on the sea
Kraus Study of navigation channel feasibility, Willapa Bay, Washington
Fleming Sediment balance of Clyde estuary
Lawrence Guidelines on field measurement procedures for quantifying catchment sediment yields.
Kranck Bedrock and sediments of Kouchibouguac Bay, New Brunswick
Suszkowski Studies on capping of contaminated dredged material by the New York District, Corps of Engineers
JPS6073920A (en) Settled-mud dredger
SU1645523A1 (en) Method and apparatus for reclamation of land disturbed by dredge mining of mineral deposits
Craig et al. SMALL SCALE PILOT PROJECT AS A TOOL FOR PLANNING LARGE SCALE RESTORATION
Sanderson et al. Long-Term Effects of Dredging Operations: Survey of Equipment and Construction Techniques for Capping Dredged Material.
Sanderson et al. Survey of equipment and construction techniques for capping dredged material
JPS5894596A (en) Apparatus for collecting manganese nodule
Neelissen et al. Multi-Purpose Scrader [R] Concept: New Technology for Seabed Treatment
Kikegawa Sand overlaying for bottom sediment improvement by sand spreader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees