JP4238692B2 - Breathable film for building materials - Google Patents

Breathable film for building materials Download PDF

Info

Publication number
JP4238692B2
JP4238692B2 JP2003351603A JP2003351603A JP4238692B2 JP 4238692 B2 JP4238692 B2 JP 4238692B2 JP 2003351603 A JP2003351603 A JP 2003351603A JP 2003351603 A JP2003351603 A JP 2003351603A JP 4238692 B2 JP4238692 B2 JP 4238692B2
Authority
JP
Japan
Prior art keywords
film
building materials
breathable film
propylene
breathable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003351603A
Other languages
Japanese (ja)
Other versions
JP2005113068A5 (en
JP2005113068A (en
Inventor
秀志 坂本
淳一 山内
隆志 新福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2003351603A priority Critical patent/JP4238692B2/en
Publication of JP2005113068A publication Critical patent/JP2005113068A/en
Publication of JP2005113068A5 publication Critical patent/JP2005113068A5/ja
Application granted granted Critical
Publication of JP4238692B2 publication Critical patent/JP4238692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は建材用通気性フィルムに関する。詳しくは、軽量かつ高強度であって、防水性、通気性及び透湿性に優れた、外壁用下地材や屋根用下地材等に好適な建材用通気性フィルムに関する。尚、本発明においてフィルムとは、フィルムとシートの総称である。   The present invention relates to a breathable film for building materials. More specifically, the present invention relates to a breathable film for building materials, which is lightweight and high in strength and excellent in waterproofness, breathability and moisture permeability, and suitable for an outer wall base material, a roof base material, and the like. In addition, in this invention, a film is a general term for a film and a sheet | seat.

住居等の建物の外壁用下地材(ハウスラッピングシート)や屋根用下地材(アンダールーフィングシート)として、以前にはアスファルトシートが用いられていた。しかし近年は、これら下地材として、通気性フィルムと不織布や織布の補強材とを貼り合わせた、通気性及び透湿性を有し且つ防水性を有する建材用通気性資材が広く使用されている。   Asphalt sheets have been used in the past as base materials for exterior walls (house wrapping sheets) and roof base materials (under roofing sheets) for buildings such as houses. However, in recent years, breathable materials for building materials that have breathability, moisture permeability, and waterproof properties, in which a breathable film is bonded to a nonwoven fabric or a woven fabric reinforcing material, are widely used as the base material. .

住居等の室内で発生した水蒸気は、内装材と外壁の間で冷却されて結露して、保温材、内装材、構造材等を腐食させ、雑菌、害虫を繁殖させ、結果的に建物の寿命を短くする。この短命化を防ぐために、建物においては外壁の壁内の結露を防止する目的で外壁用下地材(ハウスラッピングシート)が用いられる。この外壁用下地材には防風性、防水性、透湿性等の機能が要求されるが、更に、施工時にタッカー等により固定される際の強度が十分高く、軽量性、低コストであることが望まれている。
屋根用下地材は、雨水を通さずに湿気を逃がす機能が要求されるが、屋根用下地材の強度が十分ではない場合、固定のために打ち付けられた釘の孔から雨水が浸入し、水分が屋根野地板に吸収されて残り、屋根野地板が腐敗するという問題がある。
The water vapor generated in the interior of a house is cooled between the interior material and the outer wall, causing condensation, corroding the heat insulating material, interior material, structural material, etc., and causing germs and insects to propagate, resulting in the life of the building. To shorten. In order to prevent this shortening of life, an outer wall base material (house wrapping sheet) is used in buildings for the purpose of preventing condensation in the wall of the outer wall. The base material for the outer wall is required to have functions such as wind resistance, waterproofness, moisture permeability, etc., but further, the strength when fixed by a tucker or the like at the time of construction is sufficiently high, light weight, and low cost. It is desired.
The roof base material is required to have a function of escaping moisture without allowing rainwater to pass through.However, if the roof base material is not strong enough, rainwater will infiltrate through the holes of the nails struck for fixing, and moisture Is absorbed by the roof base plate and remains, and the roof base plate rots.

このように建材用通気性資材には防水性、透湿性等の機能が要求される一方で、高強度、軽量性や低コスト等が望まれており、ポリオレフィン系樹脂からなる通気性フィルムに融点の異なる熱可塑性樹脂からなる多層不織布を熱接着する技術が開示されている(例えば、特許文献1参照)。
また、ポリオレフィン系樹脂からなる通気性フィルムに、縦ヤーン及び横ヤーンの交点で接着または融着により得られたポリオレフィン系織布を積層した建材用通気性資材が開示されている(例えば、特許文献2参照)。
Thus, while breathable materials for building materials are required to have functions such as waterproofness and moisture permeability, high strength, light weight and low cost are desired. A technique for thermally bonding multilayer nonwoven fabrics made of different thermoplastic resins is disclosed (for example, see Patent Document 1).
Further, a breathable material for building materials is disclosed in which a polyolefin woven fabric obtained by adhesion or fusion at the intersection of a vertical yarn and a horizontal yarn is laminated on a breathable film made of a polyolefin resin (for example, patent document) 2).

しかし、これらの技術は、支持体である不織布または織布の改良であって、通気性フィルムの特性にはなんら改良がなされていないのが実情であった。これは、通気性フィルムを得る方法として様々な方法があるにも関わらず、生産性が高く、安価で提供できる通気性フィルムの出現がこれまでなかったことが原因と考えられる。   However, these techniques are improvements in the nonwoven fabric or woven fabric as a support, and the actual situation is that no improvement has been made in the characteristics of the breathable film. This is considered to be because, despite various methods for obtaining a breathable film, there has been no appearance of a breathable film that is highly productive and can be provided at low cost.

一般に、建材用通気性資材に用いられる通気性フィルムは、ポリエチレン系樹脂に炭酸カルシウムや硫酸バリウム等の無機質充填剤を多量に添加し、これらを溶融し混練して膜状成形物とした後、少なくとも一方向に延伸し、マトリックスポリマーと充填剤の界面に空隙(細孔)を生じさせる方法(以下「無機質充填剤添加による延伸法」という)によって製造される(例えば、特許文献1、2参照)。   Generally, a breathable film used for a breathable material for building materials is a film-shaped molded product obtained by adding a large amount of an inorganic filler such as calcium carbonate or barium sulfate to a polyethylene resin, and melting and kneading them to form a film-shaped molded product. It is produced by a method of stretching in at least one direction to form voids (pores) at the interface between the matrix polymer and the filler (hereinafter referred to as “stretching method by adding an inorganic filler”) (for example, see Patent Documents 1 and 2). ).

しかし、この無機質充填剤添加による延伸法の場合、通気性を得るためには無機質充填剤の添加量を多くする必要があり、その添加量は40〜60重量%に達する。この無機質充填剤の添加量が高いことにより、マトリックスポリマーであるポリエチレン本来の物性が低下したり、真比重が大きいため目付け重量が大きく施工時の負担が大きい等の問題がある。   However, in the case of this stretching method by adding an inorganic filler, it is necessary to increase the amount of the inorganic filler added in order to obtain air permeability, and the amount added reaches 40 to 60% by weight. Due to the high amount of the inorganic filler added, there are problems such as deterioration of the original physical properties of polyethylene as a matrix polymer, and large weight per unit area due to large true specific gravity.

一方、エチレン−プロピレンブロックコポリマーからなる成分Aとプロピレンホモポリマーまたはランダムコポリマーからなる成分B及び低分子量ポリプロピレンからなる成分Cに、必要に応じ炭酸カルシウムからなる成分Dやベータ球晶成核剤からなる成分Eを添加した高分子性組成物からなる多孔膜及びその製造方法が開示されている(例えば、特許文献3参照)。この場合、エチレン−プロピレンブロックコポリマーだけでは十分な多孔性及び通気性を示さないため、多成分系によりその改良を図っているが、多成分であるためにそれらの各成分を均一分散させないと均一な通気性フィルムが得られにくく、また、通気性フィルム中に形成された細孔の径が大きいため、連通した細孔が得られにくく通気性フィルムに要求される高空隙率化が難しく通気度や透湿度、更には通気性フィルムの強度の向上が図りにくい等の問題がある。   On the other hand, component A composed of ethylene-propylene block copolymer, component B composed of propylene homopolymer or random copolymer, and component C composed of low molecular weight polypropylene, and optionally composed of component D composed of calcium carbonate and beta spherulite nucleating agent A porous membrane comprising a polymer composition to which component E has been added and a method for producing the same are disclosed (for example, see Patent Document 3). In this case, since the ethylene-propylene block copolymer alone does not exhibit sufficient porosity and air permeability, its improvement is achieved by a multi-component system. However, since it is multi-component, it is uniform unless each of these components is uniformly dispersed. It is difficult to obtain a breathable film, and since the pores formed in the breathable film are large in diameter, it is difficult to obtain continuous pores, and it is difficult to increase the porosity required for the breathable film. There is a problem that it is difficult to improve the air permeability, moisture permeability, and the strength of the breathable film.

特開2001−232706号公報Japanese Patent Laid-Open No. 2001-232706 特開平9−277414号公報JP-A-9-277414 特開平4−309546号公報JP-A-4-309546

本発明は、従来の建材用通気性フィルムに関する前記課題を解決すべくなされたものであり、優れた通気性を有しつつ、無機質フィラーの高含有に起因する強度低下もなく、優れた強度と軽量性を有する建材用通気性フィルムを複雑な工程を必要とすることなく容易に製造し提供することを課題とする。   The present invention has been made to solve the above-described problems related to conventional breathable films for building materials, has excellent breathability, has no strength reduction due to high content of inorganic filler, and has excellent strength and It is an object of the present invention to easily manufacture and provide a breathable film for building materials having lightness without requiring a complicated process.

本発明者らは、鋭意検討した結果、結晶性ポリプロピレン(A)30〜70重量%と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)30〜70重量%とからなるポリオレフィン樹脂(C)を含有する樹脂組成物を溶融混練して膜状溶融物とし、膜状溶融物をドラフト比1〜5の範囲で膜状成形物に成形した後、膜状成形物を少なくとも一方向に延伸することにより形成された通気性フィルムであって、プロピレン−α−オレフィン共重合体(B)領域に連通した細孔を有する建材用通気性フィルムによって本課題が解決されることを見出しこの知見に基づいて本発明を完成した。尚、本発明において連通した細孔とは、プロピレン−α−オレフィン共重合体(B)領域に連続的に形成され、結果的に建材用通気性フィルムの両面をつなぐ経路となる細孔をいう。   As a result of intensive studies, the present inventors have found that 30 to 70% by weight of the crystalline polypropylene (A) and 30 to 70% by weight of the propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). A resin composition containing the polyolefin resin (C) consisting of the following is melt-kneaded to form a film-shaped melt, and the film-shaped melt is molded into a film-shaped molding within a draft ratio of 1 to 5, and then film-shaped molding This problem is solved by a breathable film for building materials formed by stretching an object in at least one direction and having pores communicating with the propylene-α-olefin copolymer (B) region. Based on this finding, the present invention has been completed. In the present invention, the continuous pores refer to pores that are continuously formed in the propylene-α-olefin copolymer (B) region, and as a result connect the both surfaces of the breathable film for building materials. .

本発明は、以下によって構成される。
1.結晶性ポリプロピレン(A)と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)を含有する樹脂組成物を溶融し混練して膜状溶融物とし、該膜状溶融物をドラフト比1〜5の範囲で膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された通気性フィルムであって、ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)30〜70重量%とプロピレン−α−オレフィン共重合体(B)30〜70重量%とからなり、プロピレン−α−オレフィン共重合体(B)領域に連通した細孔を有する建材用通気性フィルム。
The present invention is constituted by the following.
1. A resin composition containing a polyolefin resin (C) composed of crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A) is melted and kneaded to form a film. A breathable film formed by forming a film-shaped melt into a film-shaped molded product in a draft ratio of 1 to 5, and then stretching the film-shaped molded product in at least one direction. The polyolefin resin (C) comprises 30 to 70% by weight of the crystalline polypropylene (A) and 30 to 70% by weight of the propylene-α-olefin copolymer (B), and the propylene-α-olefin copolymer (B ) A breathable film for building materials having pores communicating with the region.

2.プロピレン−α−オレフィン共重合体(B)のプロピレン含量が30〜80重量%である前記1項記載の建材用通気性フィルム。 2. The breathable film for building materials as described in 1 above, wherein the propylene content of the propylene-α-olefin copolymer (B) is 30 to 80% by weight.

3.ポリオレフィン樹脂(C)が、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたことを特徴とする前記1または2項記載の建材用通気性フィルム。 3. The polyolefin resin (C) is obtained by a multistage polymerization method including the steps of producing a crystalline polypropylene (A) in the first stage and continuously producing a propylene-α-olefin copolymer (B) in the second stage. 3. The breathable film for building materials according to 1 or 2 above, wherein

4.結晶性ポリプロピレン(A)のメルトフローレートをMFRPPとし、プロピレン−α−オレフィン共重合体(B)のメルトフローレートをMFRRCとした時、メルトフローレート比MFRPP/MFRRCが10より大きく1,000以下であることを特徴とする前記1〜3項のいずれか1項記載の建材用通気性フィルム。 4). When the melt flow rate of crystalline polypropylene (A) is MFR PP and the melt flow rate of propylene-α-olefin copolymer (B) is MFR RC , the melt flow rate ratio MFR PP / MFR RC is greater than 10. 4. The building material breathable film according to any one of the above items 1 to 3, which is 1,000 or less.

5.ドラフト比が1〜3の範囲であることを特徴とする前記1〜4項のいずれか1項記載の建材用通気性フィルム。 5). 5. The breathable film for building materials according to any one of 1 to 4 above, wherein the draft ratio is in the range of 1 to 3.

6.透気抵抗度(ガーレー)が10〜2,000秒/100ml、透湿度が2,000〜20,000g/m・24hである前記1〜5のいずれか1項記載の建材用通気性フィルム。 6). The breathable film for building materials according to any one of 1 to 5 above, wherein the air permeability resistance (Gurley) is 10 to 2,000 seconds / 100 ml, and the moisture permeability is 2,000 to 20,000 g / m 2 · 24 h. .

本発明の建材用通気性フィルムは、結晶性ポリプロピレン(A)中にプロピレン−α−オレフィン共重合体(B)が微分散した優れた低温時の延伸性を有するポリプロピレン樹脂を用いて、特定の加工方法により、プロピレン−α−オレフィン共重合体(B)領域にプロピレン−α−オレフィン共重合体(B)の開裂による細孔を形成させて得られたものであり、優れた通気性を有しながら、優れた強度と軽量性を有する。更に、プロピレン−α−オレフィン共重合体(B)の存在により、固定のために打ち付けられた釘等の孔から雨水が浸入し難く、外壁内部の建材や屋根野地板の腐敗等を防止する特性を有する。また、本発明の建材用通気性フィルムは、樹脂の組成が単純で生産工程における均一分散が容易であるため、優れた特徴を有するにも関わらず、コスト的に有利な建材用通気性フィルムである。   The breathable film for building materials of the present invention uses a polypropylene resin having excellent low temperature stretchability in which the propylene-α-olefin copolymer (B) is finely dispersed in the crystalline polypropylene (A). It is obtained by forming pores by cleavage of the propylene-α-olefin copolymer (B) in the propylene-α-olefin copolymer (B) region by a processing method, and has excellent air permeability. However, it has excellent strength and light weight. Furthermore, the presence of the propylene-α-olefin copolymer (B) makes it difficult for rainwater to enter through holes such as nails struck for fixing, and prevents the decay of building materials and roof base plates inside the outer wall. Have In addition, the breathable film for building materials of the present invention is a breathable film for building materials that is advantageous in terms of cost despite having excellent characteristics because the resin composition is simple and uniform dispersion in the production process is easy. is there.

以下に、本発明の実施形態を説明する。
(1)ポリオレフィン樹脂
本発明の建材用通気性フィルムには、結晶性ポリプロピレン(A)と、プロピレン−α−オレフィン共重合体(B)(以下、単に「共重合体(B)」ということがある)とからなり、結晶性ポリプロピレン(A)のマトリックス中に共重合体(B)が領域として微分散しているポリオレフィン樹脂(C)が使用される。
Hereinafter, embodiments of the present invention will be described.
(1) Polyolefin resin The breathable film for building materials of the present invention includes crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) (hereinafter simply referred to as “copolymer (B)”). And a polyolefin resin (C) in which the copolymer (B) is finely dispersed as a region in the matrix of the crystalline polypropylene (A).

(i)結晶性ポリプロピレン(A)
結晶性ポリプロピレン(A)は、主としてプロピレン重合単位からなる結晶性の重合体であり、好ましくはプロピレン重合単位が全体の90重量%以上であるポリプロピレンである。具体的には、プロピレンの単独重合体であってもよく、また、プロピレン重合単位90重量%以上とα−オレフィン10重量%以下とのランダムまたはブロック共重合体であってもよい。結晶性ポリプロピレン(A)が共重合体の場合に使用されるα−オレフィンとしては、エチレン(本発明においてはα−オレフィンに含める)、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等を挙げることができる。このうち、プロピレン単独重合体またはプロピレン重合単位の含量が90重量%以上のプロピレン−エチレン共重合体を用いるのが、製造コストの点から好ましい。
(I) Crystalline polypropylene (A)
The crystalline polypropylene (A) is a crystalline polymer mainly composed of propylene polymerized units, preferably polypropylene having 90% by weight or more of propylene polymerized units. Specifically, it may be a propylene homopolymer, or may be a random or block copolymer of 90% by weight or more of propylene polymer units and 10% by weight or less of α-olefin. Examples of the α-olefin used when the crystalline polypropylene (A) is a copolymer include ethylene (included in the α-olefin in the present invention), 1-butene, 1-pentene, 1-hexene and 1-octene. 1-decene, 1-dodecene, 4-methyl-1-pentene, 3-methyl-1-pentene and the like. Among these, it is preferable from the viewpoint of production cost to use a propylene homopolymer or a propylene-ethylene copolymer having a propylene polymer unit content of 90% by weight or more.

また、結晶性ポリプロピレン(A)のメルトフロ−レ−トMFRPPは製膜の安定性から0.1〜50g/10分の範囲が好ましい。 Further, the melt flow rate MFR PP of crystalline polypropylene (A) is preferably in the range of 0.1 to 50 g / 10 min from the stability of film formation.

(ii)プロピレン−α−オレフィン共重合体(B)
共重合体(B)は、プロピレンとプロピレン以外のα−オレフィンとのランダム共重合体である。プロピレン重合単位の含量は、共重合体(B)全体に対し重量基準で30〜80重量%の範囲にあることが好ましく、より好ましくは45〜75重量%、更に好ましくは50〜70重量%である。プロピレン重合単位の含量が上記の範囲内であれば、結晶性ポリプロピレン(A)のマトリックス中に存在する共重合体(B)領域に細孔が形成され易く、結晶性ポリプロピレン(A)と共重合体(B)の界面剥離が生じ難いため低温延伸性が良好で、細孔径の小さな建材用通気性フィルムが得られる。
(ii) Propylene-α-olefin copolymer (B)
The copolymer (B) is a random copolymer of propylene and an α-olefin other than propylene. The content of propylene polymerized units is preferably in the range of 30 to 80% by weight, more preferably 45 to 75% by weight, still more preferably 50 to 70% by weight, based on the weight of the entire copolymer (B). is there. When the content of the propylene polymerized unit is within the above range, pores are easily formed in the copolymer (B) region existing in the matrix of the crystalline polypropylene (A), and the copolymerized with the crystalline polypropylene (A). Since the interfacial peeling of the combined body (B) is unlikely to occur, a breathable film for building materials having good low-temperature stretchability and a small pore diameter can be obtained.

共重合体(B)に使用されるプロピレン以外のα−オレフィンとしては、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等が挙げられる。このうちα−オレフィンとしてエチレンを用いたプロピレン−エチレン共重合体が、製造コストの点から好ましく用いられる。   Examples of the α-olefin other than propylene used in the copolymer (B) include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, and 4-methyl-1. -Pentene, 3-methyl-1-pentene, etc. are mentioned. Among these, a propylene-ethylene copolymer using ethylene as an α-olefin is preferably used from the viewpoint of production cost.

共重合体(B)のメルトフロ−レ−トMFRRCは特に限定されないが、0.1〜20g/10分の範囲が成形加工性に優れるため好適である。 The melt flow rate MFR RC of the copolymer (B) is not particularly limited, but a range of 0.1 to 20 g / 10 min is preferable because of excellent molding processability.

(iii)ポリオレフィン樹脂(C)
ポリオレフィン樹脂(C)は、結晶性ポリプロピレン(A)と共重合体(B)とからなる。結晶性ポリプロピレン(A)のメルトフローレートMFRPPと共重合体(B)のメルトフローレートMFRRCとのメルトフローレート比MFRPP/MFRRC(以下、「MFR比」という)は、特に限定されないが、成形加工性の観点から0.1〜1,000が好ましい。
(iii) Polyolefin resin (C)
The polyolefin resin (C) is composed of crystalline polypropylene (A) and a copolymer (B). The melt flow rate ratio MFR PP / MFR RC (hereinafter referred to as “MFR ratio”) between the melt flow rate MFR PP of the crystalline polypropylene (A) and the melt flow rate MFR RC of the copolymer (B) is not particularly limited. However, 0.1 to 1,000 is preferable from the viewpoint of moldability.

中でも、MFR比が10より大きく1,000以下の場合は、延伸により形成される細孔の孔径は、MFR比が、0.1〜10の場合に比べて大きく、連通した細孔の割合が低下する傾向があるが、樹脂組成物が製膜条件や延伸条件の変動の影響を受け難いため、特性の安定した建材用通気性フィルムが得られ易い。   In particular, when the MFR ratio is greater than 10 and less than or equal to 1,000, the pore diameter of the pores formed by stretching is larger than that when the MFR ratio is 0.1 to 10, and the proportion of pores communicated is Although there is a tendency to decrease, since the resin composition is hardly affected by fluctuations in the film forming conditions and stretching conditions, a breathable film for building materials having stable characteristics is easily obtained.

また、MFR比が10より大きく1,000以下の場合には、通気性を示す透気抵抗度(ガーレー)が10〜2,000秒/100ml、透湿度が2,000〜20,000g/m・24hの建材用通気性フィルムを得ることができる。透気抵抗度と透湿度が上記の範囲内であると、得られる建材用通気性フィルムは好適な通気性を示す。
尚、該建材用通気性フィルムでは、走査型電子顕微鏡(SEM)による断面観察によれば、5μm前後の細孔が多数連なっており、細孔径の長軸の最大値が10μm以下の細孔が認められる。
When the MFR ratio is greater than 10 and 1,000 or less, the air permeability resistance (Gurley) showing air permeability is 10 to 2,000 seconds / 100 ml, and the moisture permeability is 2,000 to 20,000 g / m. A breathable film for building materials of 2 · 24 h can be obtained. When the air permeability resistance and moisture permeability are within the above ranges, the resulting building material breathable film exhibits suitable breathability.
In the breathable film for building materials, according to cross-sectional observation with a scanning electron microscope (SEM), a large number of pores of about 5 μm are continuous, and pores having a maximum major axis of the pore diameter of 10 μm or less. Is recognized.

ポリオレフィン樹脂(C)における、結晶性ポリプロピレン(A)の含量は30〜70重量%、好ましくは40〜60重量%であり、共重合体(B)の含量は30〜70重量%、好ましくは40〜60重量%である。共重合体(B)の含量が30重量%未満の場合には、共重合体(B)領域に形成された細孔の連なりが少なくなることから本発明の連通した細孔が得られにくく、70重量%を超える場合には、結晶性ポリプロピレン(A)中に存在する共重合体(B)の分散構造が得られ難くなる。   In the polyolefin resin (C), the content of the crystalline polypropylene (A) is 30 to 70% by weight, preferably 40 to 60% by weight, and the content of the copolymer (B) is 30 to 70% by weight, preferably 40%. ~ 60% by weight. When the content of the copolymer (B) is less than 30% by weight, it is difficult to obtain the continuous pores of the present invention because the continuous pores formed in the copolymer (B) region is reduced. When it exceeds 70% by weight, it is difficult to obtain a dispersion structure of the copolymer (B) present in the crystalline polypropylene (A).

前記ポリオレフィン樹脂(C)の製造方法は特に限定されず、上記の条件を満足すれば、いかなる製造方法を用いてもよい。例えば、各々別個に重合して得られた結晶性ポリプロピレン(A)と共重合体(B)とを溶融混練等によって混合することによりポリオレフィン樹脂(C)を製造してもよい。具体的には、チタン担持触媒等のチーグラーナッタ触媒を用いて重合した共重合体(B)や共重合体(B)に該当する市販のエチレン−プロピレンゴムと結晶性ポリプロピレン(A)とを溶融混合する方法が例示できる。   The production method of the polyolefin resin (C) is not particularly limited, and any production method may be used as long as the above conditions are satisfied. For example, the polyolefin resin (C) may be produced by mixing the crystalline polypropylene (A) and the copolymer (B) obtained by separately polymerizing by melt kneading or the like. Specifically, a copolymer (B) polymerized using a Ziegler-Natta catalyst such as a titanium-supported catalyst or a commercially available ethylene-propylene rubber corresponding to the copolymer (B) and crystalline polypropylene (A) are melted. The method of mixing can be illustrated.

また、結晶性ポリプロピレン(A)と共重合体(B)とを多段重合により連続的に重合することによってポリオレフィン樹脂(C)を製造してもよい。例えば、複数の重合器を使用し、1段目で結晶性ポリプロピレン(A)を製造し、引続き2段目で結晶性ポリプロピレン(A)の存在下に共重合体(B)を製造し、ポリオレフィン樹脂(C)を連続的に製造する方法が例示できる。この連続重合法は、上記した溶融混合法に比べて製造コストが低く、また、結晶性ポリプロピレン(A)中に共重合体(B)が均一に分散したポリオレフィン樹脂(C)が安定して得られるため好ましい。   Alternatively, the polyolefin resin (C) may be produced by continuously polymerizing the crystalline polypropylene (A) and the copolymer (B) by multistage polymerization. For example, by using a plurality of polymerization vessels, a crystalline polypropylene (A) is produced in the first stage, and then a copolymer (B) is produced in the presence of the crystalline polypropylene (A) in the second stage. A method for continuously producing the resin (C) can be exemplified. This continuous polymerization method is lower in production cost than the melt mixing method described above, and a polyolefin resin (C) in which the copolymer (B) is uniformly dispersed in the crystalline polypropylene (A) can be stably obtained. Therefore, it is preferable.

本発明の建材用通気性フィルムには、結晶性ポリプロピレン(A)中に分散した共重合体(B)領域に微細な開裂が多数認められる。共重合体(B)がプロピレン成分を含有するために結晶性ポリプロピレンと相溶性を有しており、この結晶性ポリプロピレン(A)と相溶性を有する共重合体(B)が、結晶性ポリプロピレン(A)より低強度であるため、延伸により共重合体(B)領域で開裂が発生したと推察される。このメカニズムは従来の無機質フィラーや異種ポリマーを混合及び延伸した多成分延伸法と根本的に異なるところである。その結果、得られた建材用通気性フィルムは、細孔径が小さく防水性に優れ、通気性が大きいものとなる。   In the breathable film for building materials of the present invention, many fine cleavages are observed in the copolymer (B) region dispersed in the crystalline polypropylene (A). Since the copolymer (B) contains a propylene component, the copolymer (B) is compatible with crystalline polypropylene. The copolymer (B) having compatibility with the crystalline polypropylene (A) is a crystalline polypropylene ( Since the strength is lower than A), it is presumed that cleavage occurred in the copolymer (B) region by stretching. This mechanism is fundamentally different from the conventional multicomponent stretching method in which inorganic fillers and different polymers are mixed and stretched. As a result, the obtained breathable film for building materials has a small pore diameter, excellent waterproofness, and large breathability.

尚、本発明において共重合体(B)領域とは、共重合体(B)自体が占める領域、及び共重合体(B)とそれに隣接する物質との境界領域をいう。従って、共重合体(B)領域に生じる細孔には、共重合体(B)自体が占める領域の中で生じる開裂による細孔、及び結晶性ポリプロピレン(A)等と共重合体(B)との境界領域で生じる界面剥離による細孔が含まれる。   In the present invention, the copolymer (B) region means a region occupied by the copolymer (B) itself and a boundary region between the copolymer (B) and a substance adjacent thereto. Therefore, the pores generated in the copolymer (B) region include pores due to cleavage generated in the region occupied by the copolymer (B) itself, and the crystalline polypropylene (A) and the copolymer (B). And pores due to interfacial delamination that occur in the boundary region.

前記のようなMFR比を有するポリオレフィン樹脂(C)は、具体的には国際公開第97/19135号パンフレット、特開平8−27238号公報等に記載されている方法により製造することができる。
尚、ポリオレフィン樹脂(C)は前記の方法で製造することができる他に、市販品の中から所望の仕様のものを選択して用いてもよい。
Specifically, the polyolefin resin (C) having the MFR ratio as described above can be produced by a method described in International Publication No. 97/19135, JP-A-8-27238, and the like.
In addition, the polyolefin resin (C) can be produced by the above-described method, and one having a desired specification may be selected from commercially available products.

尚、前記MFR比は、通常は結晶性ポリプロピレン(A)のMFRPP及び共重合体(B)のMFRRCを各々測定することにより求められる。しかし、ポリプロピレン樹脂を多段重合により連続的に製造した場合(最初に結晶性ポリプロピレン(A)を重合し、次いで共重合体(B)を重合する場合)は、共重合体(B)のMFRRCを直接測定できないため、直接測定可能な結晶性ポリプロピレン(A)のMFRPP、得られるポリオレフィン樹脂(C)のメルトフローレートMFRWHOLE及びポリオレフィン樹脂(C)中の共重合体(B)の含有量WRC(重量%)から、下記式によりMFRRCを算出して、MFR比を求めることができる。
log(MFRRC)={log(MFRWHOLE)−(1−WRC/100)log(MFRPP)}/(WRC/100)
The MFR ratio is usually determined by measuring MFR PP of the crystalline polypropylene (A) and MFR RC of the copolymer (B). However, when the polypropylene resin is continuously produced by multistage polymerization (when the crystalline polypropylene (A) is first polymerized and then the copolymer (B) is polymerized), the MFR RC of the copolymer (B) is used. Of MFR PP of crystalline polypropylene (A) that can be directly measured, melt flow rate MFR WHOLE of the resulting polyolefin resin (C), and content of copolymer (B) in polyolefin resin (C) The MFR ratio can be obtained by calculating MFR RC from W RC (weight%) by the following formula.
log (MFR RC ) = {log (MFR WHOLE ) − (1−W RC / 100) log (MFR PP )} / (W RC / 100)

(2)建材用通気性フィルム形成用樹脂組成物
本発明の建材用通気性フィルムを形成するための膜状成形物の成形材料である樹脂組成物は、ポリオレフィン樹脂(C)の他に、通常のポリオレフィンに使用される酸化防止剤、中和剤、α晶造核剤、β晶造核剤、ヒンダードアミン系耐候剤、紫外線吸収剤、防曇剤や帯電防止剤等の界面活性剤、無機質充填剤、滑剤、アンチブロッキング剤、抗菌剤、防黴剤、顔料等を必要に応じて配合することができる。
(2) Resin composition for forming a breathable film for building materials In addition to the polyolefin resin (C), the resin composition, which is a molding material for the film-shaped molded product for forming the breathable film for building materials of the present invention, is usually used. Antioxidants, neutralizers, α crystal nucleating agents, β crystal nucleating agents, hindered amine weathering agents, UV absorbers, antifogging agents and antistatic agents, and other inorganic fillers used in polyolefins Agents, lubricants, antiblocking agents, antibacterial agents, antifungal agents, pigments and the like can be blended as necessary.

また、本発明の建材用通気性フィルムを形成するための前記樹脂組成物には、本発明の効果を損なわない範囲で、プロピレンの単独重合体、プロピレンを主成分とするプロピレン以外の単量体との二元以上のランダム重合体やポリエチレン樹脂、ポリブテン樹脂、ポリメチルペンテン樹脂等の他のオレフィン樹脂の1種以上を併用しても構わない。   The resin composition for forming a breathable film for building materials of the present invention includes a propylene homopolymer and a monomer other than propylene containing propylene as a main component as long as the effects of the present invention are not impaired. Two or more random polymers, and other olefin resins such as polyethylene resin, polybutene resin, and polymethylpentene resin may be used in combination.

更に、前記樹脂組成物の軟化温度を低下させたり柔軟性を向上させるためにシングルサイト触媒や公知のマルチサイト触媒で重合されたエチレン−ジエン弾性共重合体、エチレンープロピレン弾性共重合体、スチレン−ブタジエン弾性共重合体等の弾性共重合体を添加しても構わない。   Further, an ethylene-diene elastic copolymer, ethylene-propylene elastic copolymer, styrene polymerized with a single site catalyst or a known multi-site catalyst in order to lower the softening temperature of the resin composition or improve flexibility. -An elastic copolymer such as a butadiene elastic copolymer may be added.

前記ポリオレフィン樹脂(C)と上記添加剤を配合する方法は特に限定されず、例えばヘンシェルミキサー(商品名)等の高速撹拌機付混合機及びリボンブレンダー並びにタンブラーミキサー等の通常の配合装置により配合する方法(ドライブレンド)が例示でき、更に通常の単軸押出機または二軸押出機等を用いてペレット化する方法が例示できる。   The method for blending the polyolefin resin (C) and the above additives is not particularly limited, and is blended by a usual blending device such as a mixer with a high-speed stirrer such as a Henschel mixer (trade name), a ribbon blender, and a tumbler mixer. A method (dry blending) can be exemplified, and further a pelletizing method using a normal single screw extruder or twin screw extruder can be exemplified.

(3)建材用通気性フィルムの形成
本発明の建材用通気性フィルムは、ポリオレフィン樹脂(C)を主成分とした前記樹脂組成物を溶融混練し膜状溶融物とし、該膜状溶融物をドラフト比1〜5の範囲で膜状成形物に成形した後、その膜状成形物を100℃以下の温度で少なくとも一方向に延伸することにより形成することができる。その工程は、製膜工程と延伸工程からなる。
尚、主成分とは一番多い成分をいう。
(3) Formation of breathable film for building material The breathable film for building material of the present invention is obtained by melting and kneading the resin composition containing the polyolefin resin (C) as a main component to form a film-like melt. After forming into a film-shaped molded product within a draft ratio of 1 to 5, the film-shaped molded product can be formed by stretching in at least one direction at a temperature of 100 ° C. or lower. The process consists of a film forming process and a stretching process.
The main component is the most abundant component.

(i)製膜工程
前記樹脂組成物から膜状成形物を得るための製膜工程には、公知のインフレーションフィルム成形法、Tダイフィルム成形法、カレンダー成形法等の方法が用いられる。
(i) Film-forming process For the film-forming process for obtaining a film-shaped molded product from the resin composition, a known method such as an inflation film molding method, a T-die film molding method, or a calendar molding method is used.

前記樹脂組成物は、180℃以上の押出成形温度で製膜することができるが、ダイス内圧力を低減させ後述のドラフト比を低減させる目的と、マトリックスポリマーである結晶性ポリプロピレン(A)の剛性を向上させて結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)ドメインに均一な細孔が生じさせやすくするため、220〜300℃の押出成形温度が好適に用いられる。   The resin composition can be formed at an extrusion temperature of 180 ° C. or higher. The purpose is to reduce the pressure inside the die and reduce the draft ratio described later, and the rigidity of the crystalline polypropylene (A) as the matrix polymer. Is preferably used at an extrusion temperature of 220 to 300 ° C. in order to improve the viscosity and facilitate uniform pore formation in the domain of the propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). It is done.

溶融混練された前記樹脂組成物は、ダイリップより押し出されるが、この際、ダイリップを通過する樹脂組成物の流れ方向(MD)の線速度VCLと膜状成形物の流れ方向(MD)の線速度Vの比で定義されるドラフト比(VCL/V)が本願発明を達成するための重要な要因である。一般に熱可塑性樹脂フィルムの成形時にはドラフト比は10〜50程度である。本発明においては、該樹脂組成物を製膜する際のドラフト比は1〜5、好ましくは1〜3であり、これによって得られる膜状成形物は延伸性に優れ、延伸によって微細な連通した細孔が形成され易くなる。 The melt-kneaded resin composition is extruded from the die lip. At this time, the linear velocity V CL in the flow direction (MD) of the resin composition passing through the die lip and the flow direction (MD) line of the film-shaped molded product The draft ratio (V CL / V f ) defined by the ratio of the speed V f is an important factor for achieving the present invention. Generally, the draft ratio is about 10 to 50 when a thermoplastic resin film is formed. In the present invention, the draft ratio at the time of forming the resin composition is 1 to 5, preferably 1 to 3, and the film-shaped product obtained thereby has excellent stretchability and is finely communicated by stretching. Fine pores are easily formed.

上記の方法によって、一般的なドラフト比においては連通した細孔が得られ難いポリオレフィン樹脂(C)においても、連通した細孔の形成が可能であり、ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)とプロピレン−α−オレフィン共重合体(B)のみの二成分系でも、得られる建材用通気性フィルムは十分な通気性を有する。   According to the above method, even in the polyolefin resin (C) in which continuous pores are difficult to be obtained in a general draft ratio, it is possible to form continuous pores, and the polyolefin resin (C) is made of crystalline polypropylene (A ) And propylene-α-olefin copolymer (B) alone, the resulting building material breathable film has sufficient breathability.

また、インフレーションフィルム成形法の場合には、前記ドラフト比に加え、インフレーションフィルムの周長Lと円形リップの周長Lの比で表されるブロー比L/Lにより得られる吸収物品用バックシートの通気性も変化するが、ドラフト比が上記範囲内であれば、ブロー比は1〜10程度の範囲が好適に用いられる。ブロー比が上記範囲内であれば、膜状成形物の安定生産が可能で、得られる膜状成形物の多孔化がし易い。 In the case of an inflation film molding method, in addition to the draft ratio, an absorbent article obtained by a blow ratio L f / L m represented by a ratio of the circumference length L f of the inflation film and the circumference length L m of the circular lip. Although the air permeability of the back sheet for use also changes, if the draft ratio is within the above range, the blow ratio is preferably in the range of about 1 to 10. If the blow ratio is within the above range, stable production of the film-shaped molded product is possible, and the resulting film-shaped molded product can be easily made porous.

マトリックスポリマーである結晶性ポリプロピレン(A)の剛性を向上させて結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)領域に均一な細孔を生じさせやすくするため、ダイリップより押出される膜状成形物の冷却は、徐冷とすることが望ましく、Tダイ成形法では、冷却ロールの温度を60〜120℃、更に好ましくは70〜110℃の範囲で冷却することが望ましい。冷却ロールの温度が上記の範囲内であれば、所期の建材用通気性フィルムが得られ易く、溶融樹脂がロールへ密着して生産性を損なう恐れもない。また、インフレーション成形法では、通常、ダイリップから押し出された溶融した筒状体をエアーにより冷却するが、エアー風量を下げたり、エアーを加温したりして、該筒状体を徐冷することが望ましい。   In order to improve the rigidity of the crystalline polypropylene (A), which is a matrix polymer, and to easily generate uniform pores in the propylene-α-olefin copolymer (B) region dispersed in the crystalline polypropylene (A), The cooling of the film-shaped molded product extruded from the die lip is desirably slow cooling, and in the T-die molding method, the temperature of the cooling roll is cooled in the range of 60 to 120 ° C, more preferably 70 to 110 ° C. Is desirable. If the temperature of the cooling roll is within the above range, the expected building material breathable film can be easily obtained, and there is no possibility that the molten resin adheres to the roll and impairs productivity. Also, in the inflation molding method, the molten cylindrical body extruded from the die lip is usually cooled with air, but the cylindrical body is gradually cooled by lowering the air volume or heating the air. Is desirable.

製膜工程で得られた膜状成形物の厚さは特に限定されるものではないが、次の延伸工程における延伸及び熱処理条件と建材用通気性フィルムの用途の要求特性によって決定され、20μm〜2mm、好ましくは50μm〜500μm程度であって、製膜速度は1〜100m/分の範囲が好適に用いられる。これらの厚さの膜状成形物は、インフレーション成形装置をはじめとし、前記冷却ロールとエアー吹き出し口を有するエアーナイフ、前記冷却ロールと一対の金属ロール、前記冷却ロールとステンレスベルト等の組み合わせからなるTダイフィルム成形装置やカレンダー成形装置等の各種製膜装置により得られる。   The thickness of the film-like molded product obtained in the film-forming process is not particularly limited, but is determined by the required characteristics of the stretching and heat treatment conditions in the next stretching process and the use of the breathable film for building materials, and from 20 μm to The thickness is 2 mm, preferably about 50 μm to 500 μm, and the film forming speed is suitably in the range of 1 to 100 m / min. The film-shaped moldings having these thicknesses include a combination of an inflation molding apparatus, an air knife having the cooling roll and an air outlet, the cooling roll and a pair of metal rolls, the cooling roll and a stainless steel belt, and the like. It can be obtained by various film forming apparatuses such as a T-die film forming apparatus and a calendar forming apparatus.

更に、本発明の建材用通気性フィルムは、公知の無機質充填剤、有機質充填剤等を含有した樹脂組成物を本発明の建材用通気性フィルムを形成するための樹脂組成物と共押出しして膜状成形物としても構わない。この場合、充填剤等を含有した樹脂組成物を構成するポリマーは、ポリプロピレン樹脂やポリエチレン樹脂等のポリオレフィン樹脂が相溶性の観点から望ましい。   Furthermore, the breathable film for building materials of the present invention is obtained by coextruding a resin composition containing a known inorganic filler, organic filler, etc. with the resin composition for forming the breathable film for building materials of the present invention. A film-like molded product may be used. In this case, the polymer constituting the resin composition containing a filler or the like is preferably a polyolefin resin such as a polypropylene resin or a polyethylene resin from the viewpoint of compatibility.

尚、得られた膜状成形物には、次の延伸工程に供する前に、結晶化度を更に向上させるために熱処理を施しても構わない。熱処理は、例えば、加熱空気循環オーブンまたは加熱ロールにより、80〜150℃程度の温度で1〜30分間程度加熱することにより実施される。   In addition, you may heat-process in order to further improve a crystallinity degree before using for the obtained film-form molding to the next extending process. The heat treatment is performed, for example, by heating at a temperature of about 80 to 150 ° C. for about 1 to 30 minutes with a heated air circulation oven or a heating roll.

(ii)延伸工程
前記製膜工程で製膜された膜状成形物は、次いで少なくとも縦(MD)方向また横(TD)方向のいずれか一方向に延伸され、結晶性ポリプロピレン(A)中に微分散したプロピレン−α−オレフィン共重合体(B)領域に連通した細孔が形成される。
(ii) Stretching step The film-like molded product formed in the film-forming step is then stretched in at least one of the longitudinal (MD) direction and the transverse (TD) direction, and into the crystalline polypropylene (A). Fine pores communicating with the finely dispersed propylene-α-olefin copolymer (B) region are formed.

延伸の方法は、一方向に延伸する一軸延伸法の他に、一方向に延伸した後、もう一方の方向に延伸する逐次二軸延伸法、縦横方向に同時に延伸する同時二軸延伸法、更に、一軸方向に多段延伸を行ったり、逐次二軸延伸や同時二軸延伸の後に更に延伸を行う方法が挙げられ、何れの方法を用いても良い。   In addition to the uniaxial stretching method of stretching in one direction, the stretching method includes a sequential biaxial stretching method of stretching in the other direction after stretching in one direction, a simultaneous biaxial stretching method of stretching simultaneously in the longitudinal and transverse directions, and A method of performing multi-stage stretching in a uniaxial direction or a method of further stretching after sequential biaxial stretching or simultaneous biaxial stretching may be used, and any method may be used.

一段目の延伸温度は、プロピレン−α−オレフィン共重合体(B)の融点Tmαより低いことが好ましく、10〜100℃の温度範囲が好適に用いられるが、更に本発明では、ポリオレフィン樹脂(C)を特定の組成とすることによりこれらの低い温度領域における延伸性に優れることを見出した。また、延伸倍率は、特に限定はなく必要に応じ行われる二段目の延伸条件や建材用通気性フィルムの用途の要求特性から決定されるが、通常1.5〜4倍の範囲で、優れた特性を有する建材用通気性フィルムが得られ、延伸切れの多発による生産性低下の恐れもない。 The stretching temperature in the first stage is preferably lower than the melting point T of the propylene-α-olefin copolymer (B), and a temperature range of 10 to 100 ° C. is suitably used. It has been found that by making C) a specific composition, the stretchability in these low temperature regions is excellent. Further, the draw ratio is not particularly limited and is determined from the required properties of the second-stage drawing conditions and the use of the breathable film for building materials, which are performed as necessary. A breathable film for building materials having excellent characteristics can be obtained, and there is no fear of a decrease in productivity due to frequent stretching.

本発明の建材用通気性フィルムは、通気度を更に必要とする場合等には、必要に応じ、一段目とは垂直方向への二段目の延伸を行うが、二段目の延伸温度は、結晶性ポリプロピレン(A)の融点Tmcより10℃以上低いことが好ましい。また、該延伸温度がプロピレン−α−オレフィン共重合体(B)の融点Tmαより高い場合には、空隙率がそれほど増加せず、得られる建材用通気性フィルムの厚さが低減する傾向がある。更に、該延伸温度がTmαより低い場合には、空隙率が増加するが、厚さがあまり低減しない傾向がある。 The breathable film for building materials according to the present invention performs the second-stage stretching in the vertical direction from the first stage, if necessary, when the air permeability is further required. The melting point T mc of the crystalline polypropylene (A) is preferably 10 ° C. or more lower. Moreover, when this extending | stretching temperature is higher than melting | fusing point Tm (alpha) of a propylene-alpha-olefin copolymer (B), the porosity does not increase so much and there exists a tendency for the thickness of the breathable film for building materials obtained to reduce. is there. Furthermore, when the stretching temperature is lower than T , the porosity increases, but the thickness tends not to decrease much.

二段目の延伸倍率は、必要とする通気度等の特性により決定されるが、通常1.5〜4倍の範囲である。延伸倍率が上記の範囲内であれば、延伸効果が十分であり、延伸切れにより生産性が低下する恐れもない。   The draw ratio at the second stage is determined by the required characteristics such as air permeability, but is usually in the range of 1.5 to 4 times. If the draw ratio is within the above range, the drawing effect is sufficient, and there is no possibility that the productivity is lowered due to the drawing being cut.

上記の延伸工程で細孔が形成され多孔質となった膜状成形物は、次いで熱処理されることが好ましい。この熱処理は、形成された細孔を保持するための熱固定を主なる目的とするものであり、通常、加熱ロール上、加熱ロール間または熱風循環炉を通すことによって行なわれる。   It is preferable that the membrane-shaped molded product that has been formed into pores by the above stretching step and then becomes porous is then heat-treated. This heat treatment is mainly intended for heat fixation for maintaining the formed pores, and is usually carried out on heating rolls, between heating rolls or through a hot air circulating furnace.

この熱処理(熱固定)は、延伸状態を保持したまま細孔を有する膜状成形物を結晶性ポリプロピレン(A)の融点Tmcより5〜60℃低い温度に加熱し、緩和率を0〜50%とすることにより実施される。加熱温度が上記の範囲内であれば、形成された細孔が閉塞することもなく、また、熱固定が十分に行われる。 This heat treatment (heat setting) heats the film-shaped molded product having pores while maintaining the stretched state to a temperature lower by 5 to 60 ° C. than the melting point T mc of the crystalline polypropylene (A), and reduces the relaxation rate to 0 to 50. It is carried out by making into%. When the heating temperature is within the above range, the formed pores are not blocked and the heat setting is sufficiently performed.

本発明の建材用通気性フィルムの厚さは、特に限定されるものではないが、生産性及び柔軟性の観点から10〜200μmが好ましく、30〜150μmが更に好ましい。尚、無機質充填剤を多量に含む通気性フィルムは、炭酸カルシウムを60重量%含有した場合の真比重が1.6程度となるのに対し、本発明の建材用通気性フィルムは無機質充填剤を多量に含有しないため真比重が0.9〜1.0程度であり、更に高空隙率化が可能である。本発明の建材用通気性フィルムは、厚さを2〜3割厚くして目付け重量を大きくしても、無機質充填剤を多量に含む通気性フィルムに比べれば軽いため、施工時や運搬時の負担はむしろ軽減される。   The thickness of the breathable film for building materials of the present invention is not particularly limited, but is preferably 10 to 200 μm and more preferably 30 to 150 μm from the viewpoint of productivity and flexibility. The breathable film containing a large amount of the inorganic filler has a true specific gravity of about 1.6 when calcium carbonate is contained at 60% by weight, whereas the breathable film for building materials of the present invention contains the inorganic filler. Since it does not contain a large amount, the true specific gravity is about 0.9 to 1.0, and a higher porosity can be achieved. The breathable film for building materials of the present invention is lighter than a breathable film containing a large amount of inorganic filler, even if the thickness is increased by 20-30% and the weight per unit area is increased. The burden is rather reduced.

本発明の建材用通気性フィルムは、一般の通気性フィルムと同様に公知の不織布または織布を貼り合わせて建材用通気性資材として用いることができるが、高強度で、厚さもある程度厚くすることができるため、状況によっては単独でも使用可能であり、貼り合わせるにしても不織布を貼り合わせるだけで十分な強度が得られ、経済的にも有利である。   The breathable film for building materials of the present invention can be used as a breathable material for building materials by bonding a known non-woven fabric or woven fabric in the same manner as a general breathable film, but it has high strength and a certain thickness. Therefore, depending on the situation, it can be used alone, and even if it is bonded, a sufficient strength can be obtained only by bonding the nonwoven fabric, which is economically advantageous.

前記不織布としては、特に制限はないが、例えば、スパンボンド不織布、スパンレース不織布、熱風ガード不織布、熱エンボスガード不織布、メルトブロー不織布等公知の不織布から1種以上を適宜選択して用いることができる。建材用通気性シートと不織布を貼り合わせる手段としては、公知の熱エンボス、超音波シール、ホットメルト等の方法が用いられる。   Although there is no restriction | limiting in particular as said nonwoven fabric, For example, 1 or more types can be suitably selected and used from well-known nonwoven fabrics, such as a spun bond nonwoven fabric, a spunlace nonwoven fabric, a hot air guard nonwoven fabric, a hot emboss guard nonwoven fabric, a melt blown nonwoven fabric. As a means for bonding the breathable sheet for building material and the nonwoven fabric, known methods such as hot embossing, ultrasonic sealing, and hot melt are used.

以下、実施例及び比較例によって本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。尚、用いられた測定方法及び評価方法は下記の通りである。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these. In addition, the measurement method and evaluation method used are as follows.

(1)メルトフローレート(MFR):JIS K 7210に準拠し、温度230℃、荷重21.18Nの条件にて測定した。 (1) Melt flow rate (MFR): Measured in accordance with JIS K 7210 under conditions of a temperature of 230 ° C. and a load of 21.18N.

(2)空隙率:建材用通気性フィルムから100×100mmのサンプルを切り出し、重量と厚さを測定して嵩比重を求め、延伸前の多孔化されていない膜状成形物100×100mmについて(株)東洋精機製作所製の自動比重計DENSIMETER D−S(商品名)を用いて真比重求め、下記計算式より空隙率求めた。
空隙率(%)=(1−嵩比重/真比重)×100
(2) Porosity: A 100 × 100 mm sample was cut out from a breathable film for building materials, the weight and thickness were measured to determine the bulk specific gravity, and the non-porous film-shaped molded product 100 × 100 mm before stretching ( The true specific gravity was calculated | required using the automatic specific gravity meter DENSIMETER DS (brand name) by Toyo Seiki Seisakusho, and the porosity was calculated | required from the following formula.
Porosity (%) = (1-bulk specific gravity / true specific gravity) × 100

(3)透湿度:JIS L 1099に準じて測定した。 (3) Moisture permeability: Measured according to JIS L 1099 .

(4)透気抵抗度(ガーレー):通気性を示す指標であり、JIS P 8117に準拠し、B型ガーレーデンソメーター(商品名、テスター産業(株)製)により空気100mlが通過する時間を測定した。 (4) Air permeability resistance (Gurley): an index indicating air permeability, and in accordance with JIS P 8117, the time required for 100 ml of air to pass through a B-type Gurley densometer (trade name, manufactured by Tester Sangyo Co., Ltd.) It was measured.

(5)延伸性:縦一軸延伸機を用い、延伸ロール温度40℃、繰り出し速度を10m/minとし、延伸倍率0.5倍ごとに縦方向の一軸延伸を実施した。延伸破断しない延伸倍率を可延伸倍率とし、延伸性を評価した。可延伸倍率が高いほど延伸性が優れる。 (5) Stretchability: Using a longitudinal uniaxial stretching machine, stretching roll temperature was 40 ° C., feeding speed was 10 m / min, and uniaxial stretching in the longitudinal direction was carried out every 0.5 times the stretching ratio. The draw ratio at which the drawing does not break was taken as the draw ratio, and the drawability was evaluated. The higher the draw ratio, the better the stretchability.

(6)建材用通気性フィルムの引張破断強度:ASTM D882に準拠して測定した。 (6) Tensile breaking strength of breathable film for building materials: Measured according to ASTM D882.

(7)建材用通気性資材の引張強さ:JIS L 1094に準拠して測定した。 (7) Tensile strength of breathable materials for building materials: Measured according to JIS L 1094.

(8)釘打ち評価:建材用通気性資材から100mm四方のサンプルを切り出し、縦100mm、横100mm、厚さ30mmの木製平板の100×100mmの面に該建材用通気性資材の不織布積層面を重ね合わせ、該建材用通気性資材の四方を粘着テープを用いて止水処理した後、鉄製の25mm丸釘を通気性資材の各辺から25mm内側の箇所(4ヶ所)に打ち付け、屋外に3ヶ月間放置し、該丸釘のさび発生状況及び釘打ち箇所から平板の通気性資材重ね合わせ面への浸水状況を観察した。 (8) Nail driving evaluation: A 100 mm square sample was cut out from a breathable material for building material, and a nonwoven fabric laminated surface of the breathable material for building material was placed on a 100 × 100 mm surface of a wooden flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 30 mm. After stacking and water-stopping the four sides of the breathable material for building materials using adhesive tape, hit a 25mm round nail made of iron on the inner side (four locations) 25mm from each side of the breathable material. After standing for a month, the rust generation state of the round nail and the flooding state from the nail-punched portion to the flat air-permeable material overlapping surface were observed.

1)建材用通気性フィルム用樹脂組成物の作成
表1の実施例1に示すポリオレフィン樹脂(C)に、フェノール系酸化防止剤としてテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンを0.1重量%、リン系酸化防止剤としてトリス(2,4−ジ−t−ブチルフェニル)フォスファイトを0.1重量%、中和剤としてステアリン酸カルシウムを0.1重量%配合し、ヘンシェルミキサー(商品名)で混合後、2軸押出機(口径50mm)を用いて溶融混練してペレット化し、建材用通気性フィルム用樹脂組成物を得た。尚、ここで用いたポリオレフィン樹脂(C)は、連続重合法により1段目で結晶性ポリプロピレン(A)を重合し、2段目でプロピレン−α−オレフィン共重合体(B)(プロピレン−エチレン共重合体)を重合することによって得た。
1) Creation of resin composition for breathable film for building materials To polyolefin resin (C) shown in Example 1 of Table 1, tetrakis [methylene-3- (3 ′, 5′-di-t] as a phenol-based antioxidant is used. -Butyl-4'-hydroxyphenyl) propionate] 0.1% by weight of methane, 0.1% by weight of tris (2,4-di-t-butylphenyl) phosphite as a phosphorus antioxidant, neutralizing agent 0.1 wt% of calcium stearate is mixed as follows, mixed with a Henschel mixer (trade name), melt-kneaded using a twin screw extruder (caliber 50 mm), and pelletized to obtain a resin composition for a breathable film for building materials. Obtained. The polyolefin resin (C) used here was obtained by polymerizing crystalline polypropylene (A) in the first stage by a continuous polymerization method, and propylene-α-olefin copolymer (B) (propylene-ethylene in the second stage. Copolymer) was obtained by polymerization.

2)建材用通気性フィルムの作成
[製膜工程/未延伸膜状成形物の作成]
前記ペレット状の樹脂組成物を、50mm押出機を用い、押出温度240℃、吐出量10kg/hrで溶融混練し、周長236mm(直径75mmφ)、リップクリアランス0.mmの円形リップより筒状に押出し、風速2m/minのエアーを当てながら冷却し、厚み120μm、周長707mm(折径225mm)の膜状成形物であるインフレーションフィルムを作成した。
2) Creation of breathable film for building materials [Film forming process / Creation of unstretched film-like molded product]
The pellet-shaped resin composition was melt-kneaded using a 50 mm extruder at an extrusion temperature of 240 ° C. and a discharge rate of 10 kg / hr, a circumferential length of 236 mm (diameter: 75 mmφ), a lip clearance of 0. The film was extruded from a 6 mm circular lip and cooled while applying air at a wind speed of 2 m / min to produce an inflation film which was a film-shaped product having a thickness of 120 μm and a peripheral length of 707 mm (folded diameter 225 mm).

3)[延伸工程/建材用通気性フィルムの作成]
前記膜状成形物を、縦一軸延伸機を用い、延伸ロール温度40℃、繰り出し速度10m/min、延伸倍率3倍の条件で、縦方向(MD)に一軸延伸を実施した。更に、延伸温度80℃、変形速度200%の条件で縦方向を拘束しながら横方向(TD)に延伸を実施し建材用通気性フィルムを得た。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表1に示した。
3) [Stretching process / Creating a breathable film for building materials]
The film-shaped product was uniaxially stretched in the machine direction (MD) using a longitudinal uniaxial stretching machine under conditions of a stretching roll temperature of 40 ° C., a feeding speed of 10 m / min, and a stretching ratio of 3 times. Further, the film was stretched in the transverse direction (TD) while restraining the longitudinal direction under the conditions of a stretching temperature of 80 ° C. and a deformation rate of 200% to obtain a breathable film for building materials. The resulting building material breathable film had excellent breathability and strength. Table 1 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials.

表1の実施例2に示すポリオレフィン樹脂(C)を用いた以外は、実施例1に準じて建材用通気性フィルムを得た。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表1に示した。   A breathable film for building materials was obtained according to Example 1 except that the polyolefin resin (C) shown in Example 2 of Table 1 was used. The resulting building material breathable film had excellent breathability and strength. Table 1 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials.

表1の実施例3に示すポリオレフィン樹脂(C)を用いた以外は、実施例1に準じて建材用通気性フィルムを得た。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表1に示した。   A breathable film for building materials was obtained according to Example 1 except that the polyolefin resin (C) shown in Example 3 of Table 1 was used. The resulting building material breathable film had excellent breathability and strength. Table 1 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials.

表1の実施例4に示すポリオレフィン樹脂(C)を用いた以外は、実施例1に準じて建材用通気性フィルムを得た。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表1に示した。   A breathable film for building materials was obtained according to Example 1 except that the polyolefin resin (C) shown in Example 4 of Table 1 was used. The resulting building material breathable film had excellent breathability and strength. Table 1 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials.

(比較例1)
線状低密度ポリエチレン(FS150A(商品名)、東ソー(株)製、密度0.921、MFR1.0g/10min)40重量%と平均粒径1μmの炭酸カルシウム60重量%とをヘンシェルミキサー(商品名)で混合後、2軸押出機(口径50mm)を用いて溶融混練してペレット化し、建材用通気性フィルム用樹脂組成物を得た。該樹脂組成物を、50mm押出機を用い、押出温度220℃、吐出量10kg/hrで溶融混練し、周長236mm(直径75mmφ)、リップクリアランス0.mmの円形リップより筒状に押出し、エアーを当てながら冷却し、厚み80μm、周長472mm(折径150mm)の膜状成形物であるインフレーションフィルムを作成した。次に、前記膜状成形物を、縦一軸延伸機を用い、延伸ロール温度60℃、繰り出し速度10m/min、延伸倍率2倍の条件で、縦方向(MD)に一軸延伸を実施した。更に、延伸温度80℃、変形速度200%の条件で縦方向を拘束しながら横方向(TD)に1.5倍延伸を実施し建材用通気性フィルムを得た。得られた建材用通気性フィルムは透湿度の値の割には透気抵抗度が大きく、強度が低めであった。膜状成形物の延伸性と建材用通気性フィルムの特性を表1に示した。
(Comparative Example 1)
Henschel mixer (trade name) of 40% by weight of linear low density polyethylene (FS150A (trade name), manufactured by Tosoh Corporation, density 0.921, MFR 1.0 g / 10 min) and 60% by weight of calcium carbonate having an average particle diameter of 1 μm ), The mixture was melt-kneaded and pelletized using a twin screw extruder (caliber 50 mm) to obtain a resin composition for a breathable film for building materials . The resin composition was melt-kneaded at an extrusion temperature of 220 ° C. and a discharge rate of 10 kg / hr using a 50 mm extruder, a circumferential length of 236 mm (diameter: 75 mmφ), a lip clearance of 0. The film was extruded from a 6 mm circular lip into a cylindrical shape and cooled while applying air, to prepare an inflation film which was a film-like molded product having a thickness of 80 μm and a peripheral length of 472 mm (folded diameter 150 mm). Next, the film-shaped molded product was uniaxially stretched in the machine direction (MD) using a longitudinal uniaxial stretching machine under the conditions of a stretching roll temperature of 60 ° C., a feeding speed of 10 m / min, and a stretching ratio of 2 times. Further, the film was stretched 1.5 times in the transverse direction (TD) while restraining the longitudinal direction under the conditions of a stretching temperature of 80 ° C. and a deformation rate of 200% to obtain a breathable film for building materials. The obtained breathable film for building materials had a large resistance to air permeability and a low strength for the value of moisture permeability. Table 1 shows the stretchability of the membranous molded product and the characteristics of the breathable film for building materials.

(比較例2)
表1の比較例2に示すポリオレフィン樹脂(C)を用い、実施例1に準じて建材用通気性フィルムを作成した。比較例2では、横方向への延伸時に、延伸倍率2倍未満で延伸切れが発生して延伸性に劣り、建材用通気性フィルムとしての特性は得られなかった。膜状成形物の延伸性と建材用通気性フィルムの特性を表1に示した。
(Comparative Example 2)
A breathable film for building materials was prepared according to Example 1 using the polyolefin resin (C) shown in Comparative Example 2 of Table 1. In Comparative Example 2, when the film was stretched in the transverse direction, the film was stretched at a draw ratio of less than 2 times, resulting in poor stretchability, and the properties as a breathable film for building materials were not obtained. Table 1 shows the stretchability of the membranous molded product and the characteristics of the breathable film for building materials.

(比較例3)
ポリオレフィン樹脂(C)に代えて、プロピレン単独重合体(MFRが2.5g/10minの結晶性ポリプロピレン)50重量%とエチレン単独重合体(MFRが0.75g/min(温度190℃、荷重21.18N)のHDPE)50重量%を用いた以外は、実施例1に準じて建材用通気性フィルムを作成したが、横方向への延伸時に、延伸倍率1.5倍未満で延伸切れが発生し延伸性に劣るものであった。膜状成形物の延伸性と建材用通気性フィルムの特性を表1に示した。
(Comparative Example 3)
Instead of the polyolefin resin (C), 50% by weight of a propylene homopolymer (crystalline polypropylene having an MFR of 2.5 g / 10 min) and an ethylene homopolymer (MFR of 0.75 g / min (temperature 190 ° C., load 21. 18N) HDPE) Except for using 50% by weight, a breathable film for building materials was prepared in accordance with Example 1, but when the film was stretched in the transverse direction, the stretch breakage occurred at a draw ratio of less than 1.5 times. It was inferior to stretchability. Table 1 shows the stretchability of the membranous molded product and the characteristics of the breathable film for building materials.

製膜工程において、ブロー比1.2、ドラフト比1.7とし、膜状成形物の厚さを300μmとする以外は実施例2と同様に実施した。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表2に示した。   In the film forming step, the same procedure as in Example 2 was performed except that the blow ratio was 1.2, the draft ratio was 1.7, and the thickness of the film-shaped molded product was 300 μm. The resulting building material breathable film had excellent breathability and strength. Table 2 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials.

製膜工程において、ブロー比1.2、ドラフト比2.5とし、膜状成形物の厚さを200μmとする以外は実施例2と同様に実施した。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表2に示した。   In the film forming step, the same procedure as in Example 2 was performed except that the blow ratio was 1.2, the draft ratio was 2.5, and the thickness of the film-shaped molded product was 200 μm. The resulting building material breathable film had excellent breathability and strength. Table 2 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials.

製膜工程において、ブロー比1.2、ドラフト比4.2とし、膜状成形物の厚さを120μmとする以外は実施例2と同様に実施した。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表2に示した。   In the film forming step, the same procedure as in Example 2 was performed except that the blow ratio was 1.2, the draft ratio was 4.2, and the thickness of the film-shaped molded product was 120 μm. The resulting building material breathable film had excellent breathability and strength. Table 2 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials.

製膜工程において、ブロー比3.0、ドラフト比2.5、膜状成形物の厚さを80μmとし、横方向(TD)への延伸は行わず縦延伸だけを行った以外は実施例2と同様に実施した。得られた建材用通気性フィルムは優れた通気性と強度とを有していた。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表2に示した。縦方向(MD)の一軸延伸だけであっても建材用通気性フィルムとして十分な特性を有するものであった。   Example 2 except that in the film forming step, the blow ratio was 3.0, the draft ratio was 2.5, the thickness of the film-shaped molded product was 80 μm, and only the longitudinal stretching was performed without stretching in the transverse direction (TD). It carried out like. The resulting building material breathable film had excellent breathability and strength. Table 2 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials. Even if it was only uniaxial stretching in the machine direction (MD), it had sufficient characteristics as a breathable film for building materials.

(比較例4)
製膜工程において、ブロー比1.2、ドラフト比8.3とし、膜状成形物の厚さを120μmとした以外は実施例2と同様に実施した。膜状成形物の延伸性と建材用通気性フィルムの特性の評価結果を表2に示した。通気性を示す透気抵抗度(ガーレー)は測定範囲を超え、建材用通気性フィルムとして実用に耐えないものであった。
(Comparative Example 4)
In the film forming step, the same procedure as in Example 2 was performed except that the blow ratio was 1.2, the draft ratio was 8.3, and the thickness of the film-shaped molded product was 120 μm. Table 2 shows the evaluation results of the stretchability of the film-like molded product and the characteristics of the breathable film for building materials. The air permeability resistance (Gurley) indicating air permeability exceeded the measurement range, and was unpractical as a building material air permeability film.

実施例6で得られた建材用通気性フィルムをプロピレン単独重合体よりなるポリプロピレン系スパンボンド不織布(繊維径18μm、目付け重量30g/m)に重ね合わせ、建材用通気性フィルム面よりドットによる熱エンボス加工を実施し、建材用通気性フィルムとポリプロピレン系スパンボンド不織布を積層一体化し、建材用通気性資材を作製した。得られた建材用通気性資材は、通気性及び透湿性ともに優れ、強度も十分であった。
また、釘打ち評価の結果、浸水の痕も認められず、釘の胴部にさびは認められなかった。建材用通気性フィルムに用いられたポリオレフィン樹脂(C)には、プロピレン−α−オレフィン共重合体(B)(プロピレン−エチレン共重合体)が高濃度で含有されていて、フィルムが弾性回復に優れるため、釘打ち後の釘とフィルムの密着性が優れたことが浸水しにくかった理由と推察される。得られた建材用通気性資材の特性の評価結果を表3に示した。
The breathable film for building materials obtained in Example 6 was superposed on a polypropylene-based spunbonded nonwoven fabric (fiber diameter 18 μm, basis weight 30 g / m 2 ) made of a propylene homopolymer, and heat was generated by dots from the breathable film surface for building materials. Embossing was carried out, and a breathable film for building materials and a polypropylene spunbond nonwoven were laminated and integrated to produce a breathable material for building materials. The obtained breathable material for building materials was excellent in air permeability and moisture permeability, and had sufficient strength.
In addition, as a result of the nail driving evaluation, no trace of water immersion was observed, and no rust was observed on the body of the nail. The polyolefin resin (C) used for the breathable film for building materials contains a high concentration of propylene-α-olefin copolymer (B) (propylene-ethylene copolymer), and the film recovers elastically. It is presumed that the excellent adhesion between the nail and the film after nailing was the reason why it was difficult to flood. Table 3 shows the evaluation results of the characteristics of the obtained breathable materials for building materials.

(比較例5)
比較例1で得られた建材用通気性フィルムを、ポリエチレン系スパンボンド不織布(繊維径20μm、目付け重量30g/m)に重ね合わせ、該フィルム面よりドットによる熱エンボス加工を実施し、該建材用通気性フィルムとポリエチレン系スパンボンド不織布とを積層して一体化し建材用通気性資材を作製した。得られた建材用通気性資材は実施例9の建材用通気性資材に比べて強度が弱く、目付け重量が大きくなった。また、釘打ち評価の結果、木製平板面に浸水の痕が認められ、釘の胴部に根元にさびの発生が認められた。該建材用通気性フィルムは無機質充填剤を高濃度で含有しているため塑性変形しやすく、釘打ち後の釘とフィルムとの密着性が劣ったことが浸水しやすかった原因と推察される。得られた建材用通気性資材の特性の評価結果を表3に示した。
(Comparative Example 5)
The building material breathable film obtained in Comparative Example 1 was overlaid on a polyethylene-based spunbonded nonwoven fabric (fiber diameter 20 μm, basis weight 30 g / m 2 ), and heat embossing with dots was carried out from the film surface. A breathable film for building materials was made by laminating and integrating a breathable film for polyethylene and a polyethylene-based spunbonded nonwoven fabric. The obtained building material breathable material was weaker than the building material breathable material of Example 9, and the weight per unit area was increased. In addition, as a result of nail driving evaluation, traces of water immersion were observed on the wooden flat plate surface, and rust was observed at the root of the trunk of the nail. The breathable film for building materials contains an inorganic filler at a high concentration, so that it easily undergoes plastic deformation, and the poor adhesion between the nail and the film after nailing is presumed to be the cause of easy water immersion. Table 3 shows the evaluation results of the characteristics of the obtained breathable materials for building materials.

(表1)

Figure 0004238692
(Table 1)
Figure 0004238692

(表2)

Figure 0004238692
(Table 2)
Figure 0004238692

(表3)

Figure 0004238692
(Table 3)
Figure 0004238692

本発明の建材用通気性フィルムは、単独でまたは不織布や織布の補強材と積層して、通気性及び透湿性を有し且つ防水性を有する建材用通気性資材として使用される。該建材用通気性資材は外壁用下地材や屋根用下地材を初めとしてコンクリート養生用フィルム、壁材、防腐用木材被覆材等の建材に好適に使用される。   The breathable film for building materials of the present invention is used as a breathable material for building materials having breathability and moisture permeability and waterproofing, either alone or laminated with a nonwoven fabric or woven fabric reinforcing material. The breathable material for building material is suitably used for building materials such as a film for concrete curing, a wall material, and a wood covering material for preserving as well as a base material for an outer wall and a base material for a roof.

Claims (6)

結晶性ポリプロピレン(A)と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)を含有する樹脂組成物を溶融し混練して膜状溶融物とし、該膜状溶融物をドラフト比1〜5の範囲で膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された通気性フィルムであって、ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)30〜70重量%とプロピレン−α−オレフィン共重合体(B)30〜70重量%とからなり、プロピレン−α−オレフィン共重合体(B)領域に連通した細孔を有する建材用通気性フィルム。 A resin composition containing a polyolefin resin (C) composed of crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A) is melted and kneaded to form a film. A breathable film formed by forming a film-shaped melt into a film-shaped molded product in a draft ratio of 1 to 5, and then stretching the film-shaped molded product in at least one direction. The polyolefin resin (C) comprises 30 to 70% by weight of the crystalline polypropylene (A) and 30 to 70% by weight of the propylene-α-olefin copolymer (B), and the propylene-α-olefin copolymer (B ) A breathable film for building materials having pores communicating with the region. プロピレン−α−オレフィン共重合体(B)のプロピレン含量が30〜80重量%である請求項1記載の建材用通気性フィルム。 The breathable film for building materials according to claim 1, wherein the propylene content of the propylene-α-olefin copolymer (B) is 30 to 80% by weight. ポリオレフィン樹脂(C)が、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたことを特徴とする請求項1または2記載の建材用通気性フィルム。 The polyolefin resin (C) is obtained by a multistage polymerization method including the steps of producing a crystalline polypropylene (A) in the first stage and continuously producing a propylene-α-olefin copolymer (B) in the second stage. The breathable film for building materials according to claim 1 or 2, wherein the breathable film is for building materials. 結晶性ポリプロピレン(A)のメルトフローレートをMFRPPとし、プロピレン−α−オレフィン共重合体(B)のメルトフローレートをMFRRCとした時、メルトフローレート比MFRPP/MFRRCが10より大きく1,000以下であることを特徴とする請求項1〜3のいずれか1項記載の建材用通気性フィルム。 When the melt flow rate of crystalline polypropylene (A) is MFR PP and the melt flow rate of propylene-α-olefin copolymer (B) is MFR RC , the melt flow rate ratio MFR PP / MFR RC is greater than 10. The breathable film for building materials according to any one of claims 1 to 3, which is 1,000 or less. ドラフト比が1〜3の範囲であることを特徴とする請求項1〜4のいずれか1項記載の建材用通気性フィルム。 The draft ratio for building materials according to any one of claims 1 to 4, wherein the draft ratio is in the range of 1 to 3. 透気抵抗度(ガーレー)が10〜2,000秒/100ml、透湿度が2,000〜20,000g/m・24hである請求項1〜5のいずれか1項記載の建材用通気性フィルム。 The air permeability for building materials according to any one of claims 1 to 5, wherein the air permeability resistance (Gurley) is 10 to 2,000 seconds / 100 ml, and the moisture permeability is 2,000 to 20,000 g / m 2 · 24 h. the film.
JP2003351603A 2003-10-10 2003-10-10 Breathable film for building materials Expired - Fee Related JP4238692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351603A JP4238692B2 (en) 2003-10-10 2003-10-10 Breathable film for building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351603A JP4238692B2 (en) 2003-10-10 2003-10-10 Breathable film for building materials

Publications (3)

Publication Number Publication Date
JP2005113068A JP2005113068A (en) 2005-04-28
JP2005113068A5 JP2005113068A5 (en) 2006-06-29
JP4238692B2 true JP4238692B2 (en) 2009-03-18

Family

ID=34542792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351603A Expired - Fee Related JP4238692B2 (en) 2003-10-10 2003-10-10 Breathable film for building materials

Country Status (1)

Country Link
JP (1) JP4238692B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832821B2 (en) * 2005-07-19 2011-12-07 セーレン株式会社 Moisture permeable waterproof windproof film having heat retention and breathability, and composite material obtained by laminating this on fabric
CN113265103B (en) * 2021-03-19 2022-12-23 河南联塑实业有限公司 Low-permeability PPR composition and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005113068A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
KR101249180B1 (en) Porous polypropylene film
KR102224562B1 (en) Polymeric material with a multimodal pore size distribution
ES2394710T3 (en) Polypropylene mixture
KR102202850B1 (en) Building insulation
KR102204028B1 (en) Anisotropic polymeric material
KR20160011697A (en) Multi-functional fabric
US20140272357A1 (en) Film materials comprising biodegradable and/or sustainable polymeric components
RU2010120693A (en) MULTILAYER FILMS
JP2001233982A (en) Porous polyolefin film and its manufacturing method
JP2002293973A (en) Porous polypropylene film and method for producing the same
US11738492B2 (en) Methods of producing polyolefin foam sheets and articles made thereof
KR102334602B1 (en) Flexible polymeric material with shape retention properties
JP5600835B2 (en) Method for manufacturing moisture permeable waterproof sheet
US6472445B1 (en) Polypropylene base porous film and production process for the same
JP6337422B2 (en) Composite film
JP4238692B2 (en) Breathable film for building materials
JPWO2009001934A1 (en) Polyolefin resin foam board and method for producing the same
JP2004042330A (en) Moisture-permeable waterproof sheet for building material
JP2013052567A (en) Cover film for decorative sheet, and decorative sheet
JP2002146070A (en) Polypropylene-based porous film and method for producing the same
EP2646246A1 (en) Membranes
KR101949220B1 (en) Gas-permeable composite film and manufacturing method thereof
JP4193658B2 (en) Backsheet material for absorbent articles
JP3821586B2 (en) Floor material using polyolefin resin composition and method for producing the same
JP3461951B2 (en) Polyolefin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees