JP4238535B2 - 音声符号化復号方式間の符号変換方法及び装置とその記憶媒体 - Google Patents

音声符号化復号方式間の符号変換方法及び装置とその記憶媒体 Download PDF

Info

Publication number
JP4238535B2
JP4238535B2 JP2002215766A JP2002215766A JP4238535B2 JP 4238535 B2 JP4238535 B2 JP 4238535B2 JP 2002215766 A JP2002215766 A JP 2002215766A JP 2002215766 A JP2002215766 A JP 2002215766A JP 4238535 B2 JP4238535 B2 JP 4238535B2
Authority
JP
Japan
Prior art keywords
gain
code
acb
fcb
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215766A
Other languages
English (en)
Other versions
JP2004061558A (ja
Inventor
淳 村島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002215766A priority Critical patent/JP4238535B2/ja
Priority to CNB038176750A priority patent/CN1327410C/zh
Priority to PCT/JP2003/008701 priority patent/WO2004010416A1/ja
Publication of JP2004061558A publication Critical patent/JP2004061558A/ja
Priority to US11/039,969 priority patent/US7231345B2/en
Priority to US11/171,387 priority patent/US7319953B2/en
Application granted granted Critical
Publication of JP4238535B2 publication Critical patent/JP4238535B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/083Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being an excitation gain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、音声信号を低ビットレートで伝送あるいは蓄積するための符号化及び復号方法に関し、特に、異なる符号化復号方式を用いて音声通信を行うに際し、音声をある方式により符号化して得た符号を、他の方式により復号可能な符号に高音質かつ低演算量で変換する、符号変換方法及び装置ならびにその記録媒体に関する。
【0002】
【従来の技術】
音声信号を中低ビットレートで高能率に符号化する方法として、音声信号を線形予測(Linear Prediction: LP)フィルタとそれを駆動する励振信号に分離して符号化する方法が広く用いられている。その代表的な方法の一つにCode Excited Linear Prediction(符号励振線形予測:「CELP」という)がある。CELPでは、入力音声の周波数特性を表すLP係数が設定されたLPフィルタを、入力音声のピッチ周期を表す適応コードブック(Adaptive Codebook: 「ACB」という)と、乱数やパルスから成る固定コードブック(Fixed Codebook: 「FCB」という)との和で表される励振信号により駆動することで、合成音声信号が得られる。このとき、前記ACB成分と前記FCB成分には各々ゲイン(「ACBゲイン」と「FCBゲイン」)を乗ずる。なお、CELPに関してはM. SchroederとB.S.Atalによる「Code excited linear prediction: High quality speech at very low bit rates」(Proc. of IEEE Int. Conf.on Acoust., Speech and Signal Processing, pp.937-940, 1985)(「文献1」という)が参照される。
【0003】
ところで、例えば3G移動体網と有線パケット網間の相互接続を想定した場合、各網で用いられる標準音声符号化方式が異なるため、直接接続できないという問題がある。これに対する最も簡単な解法はタンデム接続である。しかしながら、タンデム接続では、一方の標準方式を用いて音声を符号化して得た符号列からその標準方式を用いて音声信号を一旦復号し、この復号された音声信号を他方の標準方式を用いて再度符号化を行う。このため、各音声符号化復号方式で符号化と復号を一度だけ行う場合に比べて、一般に音質の低下、遅延の増加、計算量の増加を招くという問題がある。
【0004】
これに対して、一方の標準方式を用いて音声を符号化して得た符号を他方の標準方式により復号可能な符号に、符号領域又は符号化パラメータ領域で変換する、符号変換方式は前述の問題に対し有効である。符号を変換する方法については、Hong-Goo Kangらによる「Improving Transcoding Capability of Speech Coders in Clean and Frame Erasured Channel Environments」 (Proc. of IEEE Workshop on Speech Coding 2000, pp.78-80, 2000)(「文献2」という)が参照される。
【0005】
図12は、第1の音声符号化方式(「方式A」という)を用いて音声を符号化して得た符号を、第2の方式(「方式B」という)により復号可能な符号に変換する、符号変換装置の構成の一例を示す図である。図12を参照すると、符号変換装置は、入力端子10と、符号分離回路1010と、LP係数符号変換回路100と、ACB符号変換回路200と、FCB符号変換回路300と、ゲイン符号変換回路400と、符号多重回路1020と、出力端子20とを備えている。図12を参照して、従来の符号変換装置の各構成要素について説明する。
【0006】
入力端子10から、方式Aにより音声を符号化して得た第1の符号列を入力する。
【0007】
符号分離回路1010は、入力端子10から入力した第1の符号列から、LP係数、ACB、FCB、ACBゲイン及びFCBゲインに対応する符号、すなわちLP係数符号、ACB符号、FCB符号、ゲイン符号を分離する。ここで、ACBゲインとFCBゲインはまとめて符号化復号されるものとし、簡単のため、これをゲイン、その符号をゲイン符号と呼ぶことにする。また、LP係数符号、ACB符号、FCB符号、ゲイン符号を各々第1のLP係数符号、第1のACB符号、第1のFCB符号、第1のゲイン符号と呼ぶことにする。そして、第1のLP係数符号をLP係数符号変換回路100へ出力し、第1のACB符号をACB符号変換回路200へ出力し、第1のFCB符号をFCB符号変換回路300へ出力し、第1のゲイン符号をゲイン符号変換回路400へ出力する。
【0008】
LP係数符号変換回路100は、符号分離回路1010から出力される第1のLP係数符号を入力し、第1のLP係数符号を方式Bにより復号可能な符号に変換する。この変換されたLP係数符号を、第2のLP係数符号として符号多重回路1020へ出力する。
【0009】
ACB符号変換回路200は、符号分離回路1010から出力される第1のACB符号を入力し、第1のACB符号を方式Bにより復号可能な符号に変換する。この変換されたACB符号を、第2のACB符号として符号多重回路1020へ出力する。
【0010】
FCB符号変換回路300は、符号分離回路1010から出力される第1のFCB符号を入力し、第1のFCB符号を方式Bにより復号可能な符号に変換する。この変換されたFCB符号を、第2のFCB符号として符号多重回路1020へ出力する。
【0011】
ゲイン符号変換回路400は、符号分離回路1010から出力される第1のゲイン符号を入力し、第1のゲイン符号を方式Bにより復号可能な符号に変換する。この変換されたゲイン符号を、第2のゲイン符号として符号多重回路1020へ出力する。
【0012】
各変換回路のより具体的な動作を以下に説明する。
【0013】
LP係数符号変換回路100は、符号分離回路1010から入力した第1のLP係数符号を、方式AにおけるLP係数復号方法により復号して、第1のLP係数を得る。次に、LP係数符号変換回路100は、第1のLP係数を、方式BにおけるLP係数の量子化方法及び符号化方法により量子化及び符号化して第2のLP係数符号を得る。そして、LP係数符号変換回路100は、第2のLP係数符号を方式BにおけるLP係数復号方法により復号可能な符号として符号多重回路1020へ出力する。
【0014】
ACB符号変換回路200は、符号分離回路1010から入力した第1のACB符号を、方式Aにおける符号と方式Bにおける符号との対応関係を用いて読み替えることにより、第2のACB符号を得る。そして、ACB符号変換回路200は、第2のACB符号を方式BにおけるACB復号方法により復号可能な符号として符号多重回路1020へ出力する。
【0015】
FCB符号変換回路300は、符号分離回路1010から入力した第1のFCB符号を、方式Aにおける符号と方式Bにおける符号との対応関係を用いて読み替えることにより、第2のFCB符号を得る。そして、FCB符号変換回路300は、第2のFCB符号を方式BにおけるFCB復号方法により復号可能な符号として符号多重回路1020へ出力する。
【0016】
ゲイン符号変換回路400は、符号分離回路1010から入力した第1のゲイン符号を、方式Aにおけるゲイン復号方法により復号して、第1のゲインを得る。次に、ゲイン符号変換回路400は、第1のゲインを、方式Bにおけるゲインの量子化方法及び符号化方法により量子化及び符号化して、第2のゲインとその符号(第2のゲイン符号)を得る。そして、ゲイン符号変換回路400は、第2のゲイン符号を方式Bにおけるゲイン復号方法により復号可能な符号として符号多重回路1020へ出力する。
【0017】
符号多重回路1020は、LP係数符号変換回路100から出力される第2のLP係数符号と、ACB符号変換回路200から出力される第2のACB符号と、FCB符号変換回路300から出力される第2のFCB符号と、ゲイン符号変換回路400から出力される第2のゲイン符号を入力し、これらを多重化して得られる符号列を第2の符号列として出力端子20を介して出力する。以上により図12の説明を終える。
【0018】
【発明が解決しようとする課題】
しかしながら、図12を参照して説明した従来の符号変換装置は、非音声区間における背景雑音の音質が劣化する、という問題点を有している。
【0019】
その理由は、非音声区間において背景雑音エネルギーの時間変動が大きいためである。これは、第1のゲインを再量子化することによって得られる第2のゲインが、非音声区間において時間的に大きく変動することに起因する。
【0020】
したがって、本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、非音声区間における背景雑音音質の劣化を低減できる装置及び方法ならびにそのプログラムを記録した記録媒体を提供することにある。これ以外の本発明の目的、特徴、利点等は以下の説明から、当業者には直ちに明らかとされるであろう。
【0021】
【課題を解決するための手段】
前記目的を達成する、本発明の第1のアスペクトに係る方法は、第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換方法において、前記第1の符号列から第1の線形予測係数と励振信号の情報を得て、前記第1の線形予測係数をもつフィルタを前記励振信号の情報から得られる励振信号で駆動することによって第1の音声信号を生成するステップと、第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号とに基づき最適ゲインを計算するステップと、前記最適ゲインを修正するステップと、修正された最適ゲイン(修正最適ゲイン)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるステップと、を含む。本発明に係る方法において、最適ゲインは、好ましくは、第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離が最小となるゲインとして求められる。
【0022】
本発明の第2のアスペクトに係る方法は、第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換方法において、前記第1の符号列からゲイン情報を復号するステップと、復号されたゲイン(復号ゲイン)を修正するステップと、修正された復号ゲイン(修正復号ゲイン)と、前記復号ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるステップ、を含む。
【0023】
上記第1のアスペクトに係る発明において、好ましくは、前記修正最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める。
【0024】
上記第2のアスペクトに係る発明において、好ましくは、前記修正復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める。
【0025】
上記第1のアスペクトに係る発明において、好ましくは、前記修正最適ゲインが、前記最適ゲインの長時間平均に基づく。
【0026】
上記第2のアスペクトに係る発明において、好ましくは、前記修正復号ゲインが、前記復号ゲインの長時間平均に基づく。
【0027】
本発明の第3のアスペクトに係る装置は、第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置において、前記第1の符号列から第1の線形予測係数と励振信号の情報を得て、前記第1の線形予測係数をもつフィルタを前記励振信号の情報から得られる励振信号で駆動することによって第1の音声信号を生成する音声復号回路と、第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号とに基づき、最適ゲインを計算する最適ゲイン計算回路と、前記最適ゲインを修正する最適ゲイン修正回路と、修正された最適ゲイン(修正最適ゲイン)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるゲイン符号化回路、を含む。本発明に係る装置において、最適ゲイン計算回路は、好ましくは、第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離が最小となるゲインを最適ゲインとして求める。
【0028】
本発明の第4のアスペクトに係る装置は、第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置において、前記第1の符号列からゲイン情報を復号するゲイン復号回路と、復号されたゲイン(復号ゲイン)を修正する復号ゲイン修正回路と、修正された復号ゲイン(修正復号ゲイン)と、前記復号ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるゲイン符号化回路、を含む。
【0029】
上記第3のアスペクトに係る発明において、ゲイン符号化回路は、好ましくは、前記修正最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める。
【0030】
上記第4のアスペクトに係る発明において、ゲイン符号化回路は、好ましくは、前記修正復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める。
【0031】
上記第3のアスペクトに係る発明の最適ゲイン修正回路において、好ましくは、前記修正最適ゲインが、前記最適ゲインの長時間平均に基づく。
【0032】
上記第4のアスペクトに係る発明の復号ゲイン修正回路において、好ましくは、前記修正復号ゲインが、前記復号ゲインの長時間平均に基づく。
【0033】
本発明の第5のアスペクトに係るプログラムは、第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置を構成するコンピュータに、
(a)前記第1の符号列から第1の線形予測係数と励振信号の情報を得て、前記第1の線形予測係数をもつフィルタを前記励振信号の情報から得られる励振信号で駆動することによって第1の音声信号を生成する処理と、
(b)第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号とに基づきゲイン(最適ゲイン)を計算する処理と、
(c)前記最適ゲインを修正する処理と、
(d)修正された最適ゲイン(修正最適ゲイン)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求める処理、を実行させるためのプログラムを提供する。本発明において、第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離が最小となるゲインを最適ゲインとして求める。
【0034】
本発明の第6のアスペクトに係るプログラムは、第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置を構成するコンピュータに、
(a)前記第1の符号列からゲイン情報を復号する処理と、
(b)復号されたゲイン(復号ゲイン)を修正する処理と、
(c)修正された復号ゲイン(修正復号ゲイン)と、前記復号ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求める処理、を実行させるためのプログラムを提供する。
【0035】
上記第5のアスペクトに係る発明のプログラムにおいて、好ましくは、前記修正最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める。
【0036】
上記第6のアスペクトに係る発明のプログラムにおいて、好ましくは、前記修正復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める。
【0037】
上記第5のアスペクトに係る発明のプログラムにおいて、好ましくは、前記修正最適ゲインが、前記最適ゲインの長時間平均に基づく。
【0038】
上記第6のアスペクトに係る発明のプログラムにおいて、好ましくは、前記修正復号ゲインが、前記復号ゲインの長時間平均に基づく。
【0039】
本願の第7のアスペクトに係る発明は、前記第5及び第6のアスペクトに係る発明の前記プログラムを記録した記録媒体を提供する。
【0040】
【発明の実施の形態】
以下本発明の実施の形態について説明する。まず本発明の装置と方法の概要と原理を説明したあと、実施例について以下に詳細に説明する。
【0041】
本発明に係る符号変換装置において、音声復号回路(1500)は、第1の方式に準拠する第1の符号列から第1の線形予測係数と励振信号の情報を得て、前記第1の線形予測係数をもつフィルタを前記励振信号の情報から得られる励振信号で駆動することによって第1の音声信号を生成し、ゲイン符号生成回路(1400)は、第2の方式に準拠する第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離が最小となるゲイン(最適ゲイン)を計算し、前記最適ゲインを修正し、修正された最適ゲイン(修正最適ゲイン)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求める。
【0042】
本発明に係る方法は以下のステップを有する。
【0043】
ステップa:第1の符号列から第1の線形予測係数を得る。
【0044】
ステップb:第1の符号列から励振信号の情報を得る。
【0045】
ステップc:励振信号の情報から励振信号を得る。
【0046】
ステップd:第1の線形予測係数をもつフィルタを前記励振信号によって駆動することで第1の音声信号を生成する。
【0047】
ステップe:第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離が最小となるゲイン(最適ゲイン)を計算する。
【0048】
ステップf:前記最適ゲインを修正する。
【0049】
ステップg:修正された最適ゲイン(修正最適ゲイン)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求める。
【0050】
本発明では、非音声区間において、第2のゲインの時間変動が小さくなるような評価関数を用いて、前記第2のゲインを求める。
【0051】
このため、前記非音声区間において、得られた第2のゲインの時間変動は小さくなり、同区間での背景雑音エネルギーの時間変動が小さくなる。
【0052】
その結果、前記非音声区間における背景雑音音質の劣化を低減できる。
【0053】
【実施例】
次に、本発明の実施例について図面を参照して詳細に説明する。
【0054】
図1は、本発明による符号変換装置の第1の実施例の構成を示す図である。図1において、図12と同一又は同等の要素には、同一の参照符号が付されている。図1を参照すると、入力端子10と、符号分離回路1010と、LP係数符号変換回路1100と、LSP-LPC変換回路1110と、インパルス応答計算回路1120と、ACB符号変換回路1200と、目標信号計算回路1700と、FCB符号生成回路1800と、ゲイン符号生成回路1400と、音声復号回路1500と、第2の励振信号計算回路1610と、第2の励振信号記憶回路1620と、符号多重回路1020と、出力端子20とを備えている。入力端子10、出力端子20、符号分離回路1010、符号多重回路1020は、結線の一部が分岐する以外は、基本的に、図12に示した要素と同じである。以下では、上述した同一又は同等の要素の説明は省略し、主に、図12に示した構成との相違点について説明する。
【0055】
また、方式Aにおいて、LP係数の符号化は、
Figure 0004238535
msec周期(フレーム)毎に行われ、ACB、FCB及びゲインなど励振信号の構成要素の符号化は、
Figure 0004238535
msec周期(サブフレーム)毎に行われるものとする。
【0056】
一方、方式Bにおいては、LP係数の符号化は、
Figure 0004238535
msec周期(フレーム)毎に行われ、励振信号の構成要素の符号化は、
Figure 0004238535
msec周期(サブフレーム)毎に行われるものとする。
【0057】
また、方式Aのフレーム長、サブフレーム数、及びサブフレーム長を、それぞれ、
Figure 0004238535

Figure 0004238535
及び
Figure 0004238535
とする。
【0058】
方式Bのフレーム長、サブフレーム数、及び、サブフレーム長を、それぞれ、
Figure 0004238535

Figure 0004238535
及び、
Figure 0004238535
とする。
【0059】
以下の説明では、簡単のため、
Figure 0004238535
とする。
【0060】
ここで、例えば、サンプリング周波数を、8000Hzとし、
Figure 0004238535
及び
Figure 0004238535
を10 msecとすれば、
Figure 0004238535
及び
Figure 0004238535
は160サンプル、
Figure 0004238535
及び
Figure 0004238535
は80サンプルとなる。
【0061】
LP係数符号変換回路1100は、符号分離回路1010から第1のLP係数符号を入力する。ここで、「3GPP AMR Speech Codec」(文献3)や、ITU−T勧告G.729など多くの標準方式では、LP係数を線スペクトル対(Line Spectral Pair: LSP)で表現し、LSPを符号化及び復号することが多いため、LP係数の符号化及び復号は、LSP領域で行われるとする。LP係数からLSPへの変換、及びLSPからLP係数への変換については、周知の方法、例えば「文献3」の第5.2.3節及び第5.2.4節の記載が参照される。LP係数符号変換回路1100は、前記第1のLP係数符号を方式AにおけるLSP復号方法により復号して、第1のLSPを得る。
【0062】
次に、LP係数符号変換回路1100は、前記第1のLSPを、方式BにおけるLSP量子化方法及び符号化方法により量子化及び符号化して、第2のLSPとこれに対応する符号(第2のLP係数符号)を得る。そして、LP係数符号変換回路1100は、前記第2のLP係数符号を方式BにおけるLSP復号方法により復号可能な符号として符号多重回路1020へ出力し、前記第1のLSPと第2のLSPをLSP-LPC変換回路1110へ出力する。
【0063】
図2は、LP係数符号変換回路1100の構成を示す図である。図2を参照すると、LP係数符号変換回路1100は、LSP復号回路110と、第1のLSPコードブック111と、LSP係数符号化回路130と、第2のLSPコードブック131とを備えている。図2を参照して、LP係数符号変換回路1100の各構成要素について説明する。
【0064】
LSP復号回路110は、LP係数符号から対応するLSPを復号する。LSP復号回路110は、複数セットのLSPが格納された第1のLSPコードブック111を備えており、符号分離回路1010から出力される第1のLP係数符号を、入力端子31を介して入力し、第1のLP係数符号に対応するLSPを第1のLSPコードブック111より読み出し、読み出されたLSPを第1のLSPとしてLSP符号化回路130へ出力するとともに、出力端子33を介してLSP-LPC変換回路1110へ出力する。ここで、LP係数符号からのLSPの復号は、方式AにおけるLSPの復号方法に従い、方式AのLSPコードブックを用いる。
【0065】
LSP符号化回路130は、LSP復号回路110から出力される第1のLSPを入力し、複数セットのLSPが格納された第2のLSPコードブック131から第2のLSPとそれに対応するLP係数符号の各々を順次読み込み、第1のLSPとの誤差が最小となる第2のLSPを選択し、それに対応するLP係数符号を、第2のLP係数符号として出力端子32を介して符号多重回路1020へ出力し、第2のLSPを出力端子34を介してLSP-LPC変換回路1110へ出力する。ここで、第2のLSPの選択方法、すなわちLSPの量子化及び符号化方法は、方式BにおけるLSPの量子化方法及び符号化方法に従い、方式BのLSPコードブックを用いる。ここで、LSPの量子化及び符号化については、例えば「文献3」の第5.2.5節の記載が参照される。
【0066】
以上により、図2によるLP係数符号変換回路1100の説明を終え、再び図1の説明に戻る。
【0067】
LSP−LPC変換回路1110は、LP係数符号変換回路1100から出力される第1のLSPと第2のLSPとを入力し、第1のLSPを第1のLP係数a1,iに変換し、第2のLSPを第2のLP係数a2,iに変換し、第1のLP係数a1,iを目標信号計算回路1700と、音声復号回路1500と、インパルス応答計算回路1120へ出力し、第2のLP係数a2,iを目標信号計算回路1700とインパルス応答計算回路1120へ出力する。ここで、LSPからLP係数への変換については、「文献3」の第5.2.4節の記載が参照される。
【0068】
ACB符号変換回路1200は、符号分離回路1010から入力した第1のACB符号を、方式Aにおける符号と方式Bにおける符号との対応関係を用いて読み替えることにより、第2のACB符号を得る。そして、ACB符号変換回路1200は、第2のACB符号を方式BにおけるACB復号方法により復号可能な符号として符号多重回路1020へ出力する。また、ACB符号変換回路1200は、第2のACB符号に対応するACB遅延を第2のACB遅延として目標信号計算回路1700へ出力する。
【0069】
ここで、図3を参照して、符号の読み替えについて説明する。例えば、方式AにおけるACB符号
Figure 0004238535
が56のとき、これに対応するACB遅延
Figure 0004238535
が76であるとする。方式Bでは、ACB符号
Figure 0004238535
が53のとき、これに対応するACB遅延
Figure 0004238535
が76であるとすると、ACB遅延の値が同一(この場合では76)となるように、方式Aから方式BへとACB符号を変換するには、方式AにおけるACB符号56を方式BにおけるACB符号53に対応付ければよい。以上により、符号の読み替えについての説明を終え、再び図1の説明に戻る。
【0070】
音声復号回路1500は、符号分離回路1010から出力される第1のACB符号、第1のFCB符号、第1のゲイン符号を入力し、LSP−LPC変換回路1110から第1のLP係数を入力する。次に、音声復号回路1500は、方式Aにおける、ACB信号復号方法、FCB信号復号方法及びゲイン復号方法の各々を用いて、第1のACB符号、第1のFCB符号及び第1のゲイン符号の各々から、ACB遅延、FCB信号及びゲインの各々を復号し、各々を第1のACB遅延、第1のFCB信号及び第1のゲインとする。音声復号回路1500は、第1のACB遅延を用いてACB信号を生成し、これを第1のACB信号とする。そして、音声復号回路1500は、第1のACB信号、第1のFCB信号及び第1のゲインと、第1のLP係数とから、音声を生成し、音声を目標信号計算回路1700へ出力する。
【0071】
図4は、音声復号回路1500の構成を示す図である。図4を参照すると、音声復号回路1500は、ACB復号回路1510と、FCB復号回路1520と、ゲイン復号回路1530とを有する励振信号情報復号回路1600と、励振信号計算回路1540と、励振信号記憶回路1570と、合成フィルタ1580を備えている。図4を参照して、音声復号回路1500の各構成要素について説明する。
【0072】
励振信号情報復号回路1600は、励振信号の情報に対応する符号から励振信号の情報を復号する。符号分離回路1010から出力される第1のACB符号、第1のFCB符号及び第1のゲイン符号を各々入力端子51、52及び53を介して入力し、第1のACB符号、第1のFCB符号及び第1のゲイン符号の各々から、ACB遅延、FCB信号及びゲインの各々を復号し、各々を第1のACB遅延、第1のFCB信号及び第1のゲインとする。ここで、第1のゲインは、ACBゲインとFCBゲインとからなり、各々を第1のACBゲインと第1のFCBゲインとする。また、励振信号情報復号回路1600は、励振信号記憶回路1570から出力される過去の励振信号を入力する。励振信号情報復号回路1600は、過去の励振信号と第1のACB遅延とを用いてACB信号を生成し、これを第1のACB信号とする。そして、励振信号情報復号回路1600は、第1のACB信号、第1のFCB信号、第1のACBゲイン及び第1のFCBゲインを、励振信号計算回路1540へ出力する。
【0073】
次に、励振信号情報復号回路1600の構成要素であるACB復号回路1510、FCB復号回路1520、及びゲイン復号回路1530について詳細に説明する。
【0074】
ACB復号回路1510は、符号分離回路1010から出力される第1のACB符号を、入力端子51を介して入力し、励振信号記憶回路1570から出力される過去の励振信号を入力する。次に、ACB復号回路1510は、上述したACB符号変換回路1200と同様にして、図3に示す方式AにおけるACB 符号とACB遅延の対応関係を用いて、第1のACB 符号に対応する第1のACB遅延
Figure 0004238535
を得る。励振信号において、現サブフレームの始点より
Figure 0004238535
サンプル過去の点から、サブフレーム長に相当する
Figure 0004238535
サンプルの信号を切り出して、第1のACB信号を生成する。ここで、
Figure 0004238535

Figure 0004238535
よりも小さい場合には、
Figure 0004238535
サンプル分のベクトルを切り出し、このベクトルを繰り返し接続して、長さ
Figure 0004238535
サンプルの信号とする。そして、第1のACB信号を励振信号計算回路1540へ出力する。ここで、第1のACB信号を生成する方法の詳細については、「文献3」の第6.1節及び第5.6節の記載が参照される。
【0075】
FCB復号回路1520は、符号分離回路1010から出力される第1のFCB符号を、入力端子52を介して入力し、第1のFCB符号に対応する第1のFCB信号を、励振信号計算回路1540へ出力する。FCB信号は、パルス位置とパルス極性で規定されるマルチパルス信号により表現されており、第1のFCB符号はパルス位置に対応する符号(パルス位置符号)とパルス極性に対応する符号(パルス極性符号)とからなる。ここで、マルチパルス信号により表現されたFCB信号を生成する方法の詳細については、「文献3」の第6.1節及び第5.7節の記載が参照される。
【0076】
ゲイン復号回路1530は、符号分離回路1010から出力される第1のゲイン符号を、入力端子53を介して入力する。ゲイン復号回路1530は、複数のゲインが格納されたテーブルを内蔵しており、第1のゲイン符号に対応するゲインをテーブルから読み出す。そして、ゲイン復号回路1530は、読み出されたゲインのうち、ACBゲインに対応する第1のACBゲインと、FCBゲインに対応する第1のFCBゲインとを励振信号計算回路1540へ出力する。ここで、第1のACBゲインと第1のFCBゲインがまとめて符号化されている場合には、テーブルには第1のACBゲインと第1のFCBゲインとから成る2次元ベクトルが複数格納されている。また、第1のACBゲインと第1のFCBゲインが個別に符号化されている場合には、二つのテーブルが内蔵され、一方のテーブルに第1のACBゲインが複数格納されており、他方のテーブルに第1のFCBゲインが複数格納されている。
【0077】
励振信号計算回路1540は、ACB復号回路1510から出力される第1のACB信号を入力し、FCB復号回路1520から出力される第1のFCB信号を入力し、ゲイン復号回路1530から出力される第1のACBゲインと第1のFCBゲインとを入力する。励振信号計算回路1540は、第1のACB信号に第1のACBゲインを乗じて得た信号と、第1のFCB信号に第1のFCBゲインを乗じて得た信号とを加算して第1の励振信号を得る。そして、励振信号計算回路1540は、第1の励振信号を、合成フィルタ1580と励振信号記憶回路1570とへ出力する。
【0078】
励振信号記憶回路1570は、励振信号計算回路1540から出力される第1の励振信号を入力し、これを記憶保持する。そして、励振信号記憶回路1570は、過去に入力されて記憶保持されている過去の第1の励振信号をACB復号回路1510へ出力する。
【0079】
合成フィルタ1580は、励振信号計算回路1540から出力される第1の励振信号を入力し、LSP−LPC変換回路1110から出力される第1のLP係数を入力端子61を介して入力する。そして、合成フィルタ1580は、第1のLP係数をもつ線形予測フィルタを、第1の励振信号で駆動することにより音声信号を生成する。音声信号を目標信号計算回路1700へ出力端子63を介して出力する。
【0080】
以上で、図4による音声復号回路1500の説明を終え、再び図1の説明に戻る。
【0081】
目標信号計算回路1700は、LSP−LPC変換回路1110から第1のLSPと第2のLSPとを入力し、ACB符号変換回路1200から第2のACB符号に対応する第2のACB遅延を入力し、音声復号回路1500から復号音声を入力し、インパルス応答計算回路1120からインパルス応答信号を入力し、第2の励振信号記憶回路1620に記憶保持される過去の第2の励振信号を入力する。目標信号計算回路1700は、復号音声と第1のLP係数及び第2のLP係数とから第1の目標信号を計算する。次に、目標信号計算回路1700は、過去の第2の励振信号とインパルス応答信号と第1の目標信号と第2のACB遅延とから、第2のACB信号及び最適ACBゲインを求める。そして、目標信号計算回路1700は、第1の目標信号と最適ACBゲインとをゲイン符号生成回路1400へ出力し、第2のACB信号をゲイン符号生成回路1400と第2の励振信号計算回路1610とへ出力する。
【0082】
図5は、目標信号計算回路1700の構成を示す図である。図5を参照すると、目標信号計算回路1700は、重み付け信号計算回路1710と、ACB信号生成回路1720と、最適ACBゲイン計算回路1730とを備えている。図5を参照して、目標信号計算回路1700の各構成要素について説明する。
【0083】
重み付け信号計算回路1710は、音声復号回路1500の合成フィルタ1580から出力される復号音声s(n)を入力端子57を介して入力し、LSP−LPC変換回路1110から出力される第1のLP係数a1,iと第2のLP係数a2,iとを、各々入力端子36と入力端子35とを介して入力する。重み付け信号計算回路1710は、まず、第1のLP係数を用いて、聴感重み付けフィルタW(z)を構成する。
【0084】
そして、重み付け信号計算回路1710は、復号音声により聴感重み付けフィルタを駆動して聴感重み付け音声信号を生成する。次に、重み付け信号計算回路1710は、第1のLP係数と第2のLP係数とを用いて、聴感重み付け合成フィルタW(z)/A2(z)を構成する。
【0085】
そして、重み付け信号計算回路1710は、聴感重み付け合成フィルタの零入力応答を聴感重み付け音声信号から減算して得られる第1の目標信号x(n)を、ACB信号生成回路1720と最適ACBゲイン計算回路1730へ出力するとともに、第2の目標信号計算回路1430へ出力端子78を介して出力する。
【0086】
ACB信号生成回路1720は、重み付け信号計算回路1710から出力される第1の目標信号を入力し、ACB符号変換回路1200から出力される第2のACB遅延T(B) lagを入力端子37を介して入力し、インパルス応答計算回路1120から出力されるインパルス応答信号h(n)を入力端子74を介して入力し、第2の励振信号記憶回路1620から出力される過去の第2の励振信号u(n)を入力端子75を介して入力する。
【0087】
ACB信号生成回路1720は、過去の第2の励振信号から遅延kで切り出された信号とインパルス応答信号との畳み込みにより、フィルタ処理された遅延kの過去の励振信号
Figure 0004238535
を計算する。
【0088】
ここで、遅延kは第2のACB遅延とする。過去の第2の励振信号から遅延kで切り出された信号を第2のACB信号v(n)とする。
【0089】
そして、ACB信号生成回路1720は、第2のACB信号を第2の目標信号計算回路1430と第2の励振信号計算回路1610とへ出力端子76を介して出力し、フィルタ処理された遅延kの過去の励振信号yk(n)を最適ACBゲイン計算回路1730へ出力する。
【0090】
最適ACBゲイン計算回路1730は、重み付け信号計算回路1710から出力される第1の目標信号x(n)を入力し、ACB信号生成回路1720から出力されるフィルタ処理された遅延kの過去の励振信号yk(n)を入力する。
【0091】
次に、最適ACBゲイン計算回路1730は、第1の目標信号x(n)と、フィルタ処理された遅延kの過去の励振信号yk(n)と、から最適ACBゲインgpを次式により計算する。最適ACBゲインgpは、第1の目標信号x(n)と、フィルタ処理された遅延kの過去の励振信号yk(n)との距離を最小とするゲインである。
Figure 0004238535
【0092】
そして、最適ACBゲイン計算回路1730は、最適ACBゲインgpをACBゲイン符号化回路1410へ出力端子77を介して出力する。
【0093】
なお、第2のACB信号を計算する方法及び最適ACBゲインを計算する方法の詳細については、「文献3」の第6.1節及び第5.6節の記載が参照できる。以上で図5による目標信号計算回路1700の説明を終え、再び図1の説明に戻る。
【0094】
インパルス応答計算回路1120は、LSP−LPC変換回路1110から出力される第1のLP係数と第2のLP係数を入力し、第1のLP係数と第2のLP係数を用いて聴感重み付け合成フィルタを構成する。
【0095】
そして、インパルス応答計算回路1120は、聴感重み付け合成フィルタのインパルス応答信号を目標信号計算回路1700とゲイン符号生成回路1400とへ出力する。ここで、聴感重み付け合成フィルタの伝達関数は次式により表される。
Figure 0004238535
【0096】
ただし、
Figure 0004238535
【0097】
は、第2のLP係数
Figure 0004238535
をもつ線形予測フィルタの伝達関数である。
【0098】
Figure 0004238535
【0099】
は、第1のLP係数
Figure 0004238535
をもつ聴感重み付けフィルタの伝達関数である。
【0100】
ここで、Pは、線形予測次数(例えば、10)であり、γ1とγ2は、重み付けを制御する係数(例えば、0.94と0.6)である。
【0101】
FCB符号生成回路1800は、符号分離回路1010から出力される第1のFCB符号を入力し、第1のFCB符号を方式Bにより復号可能な符号に変換する。FCB符号生成回路1800は、変換されたFCB符号を、第2のFCB符号として符号多重回路1020へ出力し、第2のFCB符号に対応する第2のFCB信号をゲイン符号生成回路1400と、第2の励振信号計算回路1610とへ出力する。ここで、FCB信号は、複数のパルスから成り、パルスの位置(パルス位置)と極性(パルス極性)で規定されるマルチパルス信号により表現される。FCB符号は、パルス位置に対応する符号(パルス位置符号)とパルス極性に対応する符号(パルス極性符号)とからなる。マルチパルス信号によるFCB信号の表現方法については、「文献3」の第5.7節の記載が参照される。
【0102】
図6は、図1のFCB符号生成回路1800の構成を示す図である。図6を参照すると、FCB符号生成回路1800は、FCB符号変換回路1300と、FCB信号生成回路1820を備えている。図6を参照して、FCB符号生成回路1800の各構成要素について説明する。
【0103】
FCB符号変換回路1300は、符号分離回路1010から入力端子85を介して入力した第1のFCB符号i(A) を、方式Aにおける符号と方式Bにおける符号との対応関係を用いて読み替えることにより、第2のFCB符号i( ) を得る。そして、FCB符号変換回路1300は、これを方式BにおけるFCB復号方法により復号可能な符号として出力端子55を介して符号多重回路1020へ出力し、第2のFCB符号に対応するパルス位置
Figure 0004238535
及び、パルス極性
Figure 0004238535
をFCB信号生成回路1820へ出力する。
【0104】
図7を参照して、パルス位置符号の読み替えについて説明する。
【0105】
例えば、方式Aにおけるパルス位置符号
Figure 0004238535
が6のとき、これに対応するパルス位置
Figure 0004238535
が30であるとする。方式Bでは、パルス位置符号
Figure 0004238535
が1のとき、これに対応するパルス位置
Figure 0004238535
が30であるとすると、パルス位置の値が同一(この場合では30)となるように、方式Aから方式Bへとパルス位置符号を変換するには、方式Aにおけるパルス位置符号6を方式Bにおけるパルス位置符号1に対応付ければよい。
【0106】
パルス極性符号については、読み替え前の符号に対応する極性(正又は負)と、読み替え後の符号に対応する極性とが等しくなるように、符号を読み替えればよい。
【0107】
以上により、パルス位置符号及びパルス極性符号の読み替えについての説明を終え、再び図6の説明に戻る。
【0108】
FCB信号生成回路1820は、FCB符号変換回路1300から出力されるパルス位置及びパルス極性を入力する。FCB信号生成回路1820は、パルス位置及びパルス極性から規定されるFCB信号を第2のFCB信号c(n)とし、これを最適FCBゲイン計算回路1440と第2の励振信号計算回路1610とへ出力端子86を介して出力する。
【0109】
以上で図6によるFCB符号生成回路1800の説明を終え、再び図1の説明に戻る。
【0110】
ゲイン符号生成回路1400は、目標信号計算回路1700から出力される第1の目標信号と第2のACB信号と最適ACBゲインとを入力し、FCB符号生成回路1800から出力される第2のFCB信号を入力し、インパルス応答計算回路1120から出力されるインパルス応答信号を入力し、LP係数符号変換回路1100から出力される第1のLSPを入力する。
【0111】
ゲイン符号生成回路1400は、まず、第1の目標信号と第2のACB信号と最適ACBゲインとインパルス応答信号とから第2の目標信号を計算し、第2の目標信号と第2のFCB信号とインパルス応答信号とから最適FCBゲインを計算し、最適FCBゲインから修正FCBゲインを計算し、第1のLSPから音声判定値を決定する。
【0112】
次に、ゲイン符号生成回路1400は、ACBゲインコードブックから順次読み込まれるACBゲインと最適ACBゲインとから第1の自乗誤差を計算し、ACBゲインと修正ACBゲインとから第2の自乗誤差を計算する。
【0113】
そして、ゲイン符号生成回路1400は、音声判定値から計算される重み係数と第1の自乗誤差と第2の自乗誤差とから計算される評価関数が最小となるACBゲイン及び対応するACBゲイン符号を選択する。
【0114】
また、ゲイン符号生成回路1400は、FCBゲインコードブックから順次読み込まれるFCBゲインと最適FCBゲインとから第3の自乗誤差を計算し、FCBゲインと修正FCBゲインとから第4の自乗誤差を計算する。
【0115】
そして、ゲイン符号生成回路1400は、音声判定値から計算される重み係数と第3の自乗誤差と第4の自乗誤差とから計算される評価関数が最小となるFCBゲイン及び対応するFCBゲイン符号を選択する。
【0116】
最後に、ゲイン符号生成回路1400は、選択されたACBゲイン符号とFCBゲイン符号とからなる第2のゲイン符号を、方式Bにおけるゲイン復号方法により復号可能な符号として符号多重回路1020へ出力端子56を介して出力する。
【0117】
図8は、ゲイン符号生成回路1400の構成を示す図である。図8を参照すると、ゲイン符号生成回路1400は、ACBゲイン符号化回路1410と、ACBゲインコードブック1411と、FCBゲイン符号化回路1420と、FCBゲインコードブック1421と、第2の目標信号計算回路1430と、最適FCBゲイン計算回路1440と、最適FCBゲイン修正回路1450と、音声/非音声識別回路1460と、を備えている。図8を参照して、ゲイン符号生成回路1400の各構成要素について詳細に説明する。
【0118】
第2の目標信号計算回路1430は、ACB信号生成回路1720から出力される第2のACB信号v(n)を入力端子92を介して入力し、重み付け信号計算回路1710から出力される第1の目標信号x(n)を入力端子93を介して入力し、インパルス応答計算回路1120から出力されるインパルス応答信号h(n)を入力端子94を介して入力し、ACBゲイン符号化回路1410から出力される第2のACBゲインを入力する。
【0119】
第2の目標信号計算回路1430は、第2のACB信号とインパルス応答信号との畳み込みにより、フィルタ処理された第2のACB信号
Figure 0004238535
を計算し、y(n)に第2のACBゲイン
Figure 0004238535
を乗じて得られる信号を、第1の目標信号x(n)から減算して、第2の目標信号x(n)を得る。
Figure 0004238535
Figure 0004238535
【0120】
そして、第2の目標信号計算回路1430は、第2の目標信号x2(n)を最適FCBゲイン計算回路1440へ出力する。
【0121】
最適FCBゲイン計算回路1440は、FCB信号生成回路1820から出力される第2のFCB信号c(n)を入力端子91を介して入力し、インパルス応答計算回路1120から出力されるインパルス応答信号h(n)を入力端子94を介して入力し、第2の目標信号計算回路1430から出力される第2の目標信号x2(n)を入力し、第2のFCB信号とインパルス応答信号との畳み込みによりフィルタ処理された第2のFCB信号
Figure 0004238535
を計算し、第2の目標信号x2(n)とフィルタ処理された第2のFCB信号z(n)から、次の式により最適FCBゲインgcを計算する。最適FCBゲインgcは、第2の目標信号x2(n)とフィルタ処理された第2のFCB信号z(n)との距離を最小とするゲインである。
Figure 0004238535
【0122】
そして、最適FCBゲイン計算回路1440は、最適FCBゲインを最適FCBゲイン修正回路1450とFCBゲイン符号化回路1420とへ出力する。
【0123】
音声/非音声識別回路1460は、LSP復号回路110から出力される第1のLSPを入力端子98を介して入力する。第1のLSPとその長時間平均とからLSP変動量を計算し、LSP変動量から音声判定値を決定する。
【0124】
LSP変動量を求める手順を以下に示す。第nフレームにおいて、LSPの長時間平均
Figure 0004238535
を次式により計算する。
Figure 0004238535
ここで、Npは線形予測次数であり、βは例えば0.9である。
【0125】
第nフレームにおけるLSPの変動量dq(n)を次式により定義する。
Figure 0004238535
ここで、
Figure 0004238535
は、
Figure 0004238535

Figure 0004238535
との誤差として、例えば、
Figure 0004238535
又は、
Figure 0004238535
などが定義できるが、ここでは、後者を用いる。変動量dq(n)が大きい区間を音声区間に、小さい区間を非音声区間に対応させることができる。変動量dq(n)に対する閾値処理により、音声判定値
Figure 0004238535
を決定する。
【0126】
Figure 0004238535
(Vs=1 dq(n)がCVS以上の場合
Vs=0 dq(n)がCVSより小の場合)
【0127】
ここで、Cvsはある定数(例えば、2.2)であり、Vs=1は音声区間に、Vs=0は非音声区間に対応する。音声判定値を最適ACBゲイン修正回路1480とACBゲイン符号化回路1410と最適FCBゲイン修正回路1450とFCBゲイン符号化回路1420とへ出力する。
【0128】
最適ACBゲイン修正回路1480は、ACB信号生成回路1720から出力される最適ACBゲインを入力端子97を介して入力し、音声/非音声識別回路1460から出力される音声判定値を入力する。最適ACBゲイン修正回路1480では、音声判定値Vsが0(非音声区間)のとき、最適ACBゲインの長時間平均を修正ACBゲインとする。非音声区間において、次式により最適ACBゲインの長時間平均を計算する。
Figure 0004238535
【0129】
ここで、
Figure 0004238535
は第nサブフレームにおける最適ACBゲイン、
Figure 0004238535
は第nサブフレームにおける最適ACBゲインの長時間平均であり、αは例えば0.9である。なお、長時間平均には平均値、中央値、最頻値なども適用できる。
【0130】
一方、最適ACBゲイン修正回路1480では、音声判定値Vsが1(音声区間)のとき、最適ACBゲインそのものを修正ACBゲインとする。
【0131】
最適ACBゲイン修正回路1480は、修正ACBゲインを、ACBゲイン符号化回路1410へ出力する。
【0132】
ACBゲイン符号化回路1410は、ACB信号生成回路1720から出力される最適ACBゲインgpを入力端子97を介して入力し、最適ACBゲイン修正回路1480から出力される修正ACBゲインを入力し、音声/非音声識別回路1460から出力される音声判定値を入力する。
【0133】
ACBゲイン符号化回路1410は、ACBゲインコードブック1411から順次読み込まれるACBゲインと入力端子97からの最適ACBゲインとから第1の自乗誤差を計算し、ACBゲインと修正ACBゲインとから第2の自乗誤差を計算し、音声判定値から計算される重み係数と、第1の自乗誤差と、第2の自乗誤差とから次式で定義される評価関数を計算する。
Figure 0004238535
【0134】
ここで、
Figure 0004238535
は最適ACBゲイン、
Figure 0004238535
は修正ACBゲイン、
Figure 0004238535
はACBゲインコードブックから順次読み込まれるACBゲインであり、μは重み係数である。例えば、音声判定値Vsが1(音声区間)のとき、重み係数μは1.0とし、Vsが0(非音声区間)のときはμは0.2とする。
【0135】
そして、ACBゲイン符号化回路1410は、評価関数が最小となるACBゲインを選択し、選択されたACBゲインを第2のACBゲインとして第2の目標信号計算回路1430へ出力するとともに、第2の励振信号計算回路1610へ出力端子95を介して出力し、第2のACBゲインに対応する符号をACBゲイン符号としてゲイン符号多重化回路1470へ出力する。
【0136】
最適FCBゲイン修正回路1450は、最適FCBゲイン計算回路1440から出力される最適FCBゲインを入力し、音声/非音声識別回路1460から出力される音声判定値Vsを入力する。
【0137】
最適FCBゲイン修正回路1450において、音声判定値Vsが0(非音声区間)のとき、最適FCBゲインの長時間平均を修正FCBゲインとする。非音声区間において、次式により最適FCBゲインの長時間平均を計算する。
Figure 0004238535
【0138】
ここで、
Figure 0004238535
は第nサブフレームにおける最適FCBゲイン、
Figure 0004238535
は第nサブフレームにおける最適FCBゲインの長時間平均であり、αは例えば0.9である。なお、長時間平均には、平均値、中央値、最頻値なども適用できる。
【0139】
一方、最適FCBゲイン修正回路1450において、音声判定値Vsが1(音声区間)のとき、最適FCBゲインそのものを修正FCBゲインとする。
【0140】
最適FCBゲイン修正回路1450は、修正FCBゲインをFCBゲイン符号化回路1420へ出力する。
【0141】
FCBゲイン符号化回路1420は、最適FCBゲイン計算回路1440から出力される最適FCBゲインを入力し、最適FCBゲイン修正回路1450から出力される修正FCBゲインを入力し、音声/非音声識別回路1460から出力される音声判定値を入力する。FCBゲイン符号化回路1420は、FCBゲインコードブック1421から順次読み込まれるFCBゲインと、最適FCBゲインとから第1の自乗誤差を計算し、FCBゲインと修正FCBゲインとから第2の自乗誤差を計算し、音声判定値から計算される重み係数と第1の自乗誤差と第2の自乗誤差とから次式で定義される評価関数を計算する。
Figure 0004238535
【0142】
ここで、
Figure 0004238535
は最適FCBゲイン、
Figure 0004238535
は修正FCBゲイン、
Figure 0004238535
はFCBゲインコードブックから順次読み込まれるFCBゲインであり、μは重み係数である。例えば、音声判定値Vsが1(音声区間)のとき、重み係数μは1.0とし、音声判定値Vsが0(非音声区間)のときはμは0.2とする。
【0143】
そして、FCBゲイン符号化回路1420は、評価関数が最小となるFCBゲインを選択し、選択されたFCBゲインを第2のFCBゲインとして第2の励振信号計算回路1610へ出力端子96を介して出力し、第2のFCBゲインに対応する符号をFCBゲイン符号としてゲイン符号多重化回路1470へ出力する。
【0144】
ゲイン符号多重回路1470は、ACBゲイン符号化回路1410から出力されるACBゲイン符号を入力し、FCBゲイン符号化回路1420から出力されるFCBゲイン符号を入力し、ACBゲイン符号とFCBゲイン符号とを多重化して得られる第2のゲイン符号を、方式Bにおけるゲイン復号方法により復号可能な符号として符号多重回路1020へ出力端子56を介して出力する。
【0145】
以上で図8によるゲイン符号生成回路1400の説明を終え、再び図1の説明に戻る。
【0146】
第2の励振信号計算回路1610は、目標信号計算回路1700から出力される第2のACB信号を入力し、FCB符号生成回路1800から出力される第2のFCB信号を入力し、ゲイン符号生成回路1400から出力される第2のACBゲインと第2のFCBゲインとを入力する。第2の励振信号計算回路1610は、第2のACB信号に第2のACBゲインを乗じて得た信号と、第2のFCB信号に第2のFCBゲインを乗じて得た信号と、を加算して第2の励振信号を得る。そして第2の励振信号を第2の励振信号記憶回路1620へ出力する。
【0147】
第2の励振信号記憶回路1620は、第2の励振信号計算回路1610から出力される第2の励振信号を入力し、これを記憶保持する。そして、過去に入力されて記憶保持されている第2の励振信号を目標信号計算回路1700へ出力する。以上により、本発明の第1の実施例の説明を終える。
【0148】
次に、本発明の第2の実施例について説明する。図9は、本発明による符号変換装置の第2の実施例の構成を示す図である。図9においては、図12におけるLP係数符号変換回路100と、ゲイン符号変換回路400とを、それぞれLP係数符号変換回路1100とゲイン符号変換回路2400とで置き換え、LP係数符号変換回路1100とゲイン符号変換回路2400との間に結線が付加されている。以下では、図12に示す要素と同一又は同等の要素の説明は省略し、相違点について説明する。
【0149】
LP係数符号変換回路1100は、図1を用いて説明した第1の実施例におけるそれと同様である。ただし、他回路との結線の仕方が異なっており、第1のLSPをゲイン符号変換回路400へ出力する。
【0150】
ゲイン符号変換回路2400は、符号分離回路1010から出力される第1のゲイン符号を入力し、LP係数符号変換回路1100から出力される第1のLSPを入力する。
【0151】
ゲイン符号変換回路2400は、まず、第1のゲイン符号を、方式Aにおけるゲイン復号方法により復号して得られる第1のゲイン(第1のACBゲイン及び第1のFCBゲイン)から、修正ACBゲイン及び修正FCBゲインを計算し、第1のLSPから音声判定値を決定する。
【0152】
次に、ゲイン符号変換回路2400は、ACBゲインコードブックから順次読み込まれるACBゲインと第1のACBゲインとから第1の自乗誤差を計算し、ACBゲインと修正ACBゲインとから第2の自乗誤差を計算する。
【0153】
そして、ゲイン符号変換回路2400は、音声判定値から計算される重み係数と、第1の自乗誤差と、第2の自乗誤差とから計算される評価関数が最小となるACBゲイン及び対応するACBゲイン符号を選択する。
【0154】
また、ゲイン符号変換回路2400は、FCBゲインコードブックから順次読み込まれるFCBゲインと第1のFCBゲインとから第3の自乗誤差を計算し、FCBゲインと修正FCBゲインとから第4の自乗誤差を計算する。そして、ゲイン符号変換回路2400は、音声判定値から計算される重み係数と第3の自乗誤差と第4の自乗誤差とから計算される評価関数が最小となるFCBゲイン及び対応するFCBゲイン符号を選択する。
【0155】
最後に、ゲイン符号変換回路2400は、選択されたACBゲイン符号とFCBゲイン符号とからなる第2のゲイン符号を、方式Bにおけるゲイン復号方法により復号可能な符号として符号多重回路1020へ出力する。
【0156】
図10は、図9のゲイン符号変換回路2400の構成を示す図である。図10を参照すると、ゲイン符号変換回路2400は、音声/非音声識別回路1460と、ゲイン符号分離回路2490と、ACBゲイン復号回路2470と、ACBゲインコードブック2471と、ACBゲイン修正回路2440と、ACBゲイン符号化回路2410と、ACBゲインコードブック1411と、FCBゲイン復号回路2480と、FCBゲインコードブック2481と、FCBゲイン修正回路2450と、FCBゲイン符号化回路2420と、FCBゲインコードブック1421と、ゲイン符号多重回路1470と、を備えている。図10を参照して、この実施例のゲイン符号変換回路2400の各構成要素について説明する。なお、図10において、音声/非音声識別回路1460及びゲイン符号多重回路1470は、図8に示した要素と基本的に同じであり、以下では、これらの説明は省略する。
【0157】
ゲイン符号分離回路2490は、符号分離回路1010から出力される第1のゲイン符号を入力端子45を介して入力し、第1のゲイン符号からACBゲイン及びFCBゲインに対応する符号、すなわち第1のACBゲイン符号及び第1のFCBゲイン符号を分離し、第1のACBゲイン符号をACBゲイン復号回路2470へ出力し、第1のFCBゲイン符号をFCBゲイン復号回路2480へ出力する。
【0158】
ACBゲイン復号回路2470は、複数セットのACBゲインが格納されたACBゲインコードブック2471を備えており、ゲイン符号分離回路2490から出力される第1のACBゲイン符号を入力し、第1のACBゲイン符号に対応するACBゲインを第1のACBゲインコードブック2471より読み出し、読み出されたACBゲインを第1のACBゲインとしてACBゲイン修正回路2440へ出力するとともに、ACBゲイン符号化回路2410へ出力する。ここで、ACBゲイン符号からのACBゲインの復号は、方式AにおけるACBゲインの復号方法に従い、方式AのACBゲインコードブックを用いる。
【0159】
FCBゲイン復号回路2480は、複数セットのFCBゲインが格納されたFCBゲインコードブック2481を備えており、ゲイン符号分離回路2490から出力される第1のFCBゲイン符号を入力し、第1のFCBゲイン符号に対応するFCBゲインを第1のFCBゲインコードブック2481より読み出し、読み出されたFCBゲインを第1のFCBゲインとしてFCBゲイン修正回路2450へ出力するとともに、FCBゲイン符号化回路2420へ出力する。ここで、FCBゲイン符号からのFCBゲインの復号は、方式AにおけるFCBゲインの復号方法に従い、方式AのFCBゲインコードブックを用いる。
【0160】
ACBゲイン修正回路2440は、ACBゲイン復号回路2470から出力される第1のACBゲインを入力し、音声/非音声識別回路1460から出力される音声判定値を入力する。音声判定値Vsが0(非音声区間)のとき、第1のACBゲインの長時間平均を修正ACBゲインとする。
【0161】
ACBゲイン修正回路2440は、非音声区間において、次式により第1のACBゲインの長時間平均を計算する。
Figure 0004238535
【0162】
ここで、
Figure 0004238535
は第nサブフレームにおける第1のACBゲイン、
Figure 0004238535
は第nサブフレームにおける第1のACBゲインの長時間平均であり、αは例えば0.9である。なお、長時間平均には、平均値、中央値、最頻値なども適用できる。
【0163】
一方、音声判定値Vsが1(音声区間)のとき、ACBゲイン修正回路2440は、第1のACBゲインそのものを修正ACBゲインとする。
【0164】
ACBゲイン修正回路2440は、修正ACBゲインをACBゲイン符号化回路2410へ出力する。
【0165】
FCBゲイン修正回路2450は、FCBゲイン復号回路2480から出力される第1のFCBゲインを入力し、音声/非音声識別回路1460から出力される音声判定値を入力する。
【0166】
FCBゲイン修正回路2450において、音声判定値Vsが0(非音声区間)のとき、第1のFCBゲインの長時間平均を修正FCBゲインとする。非音声区間において、次式により第1のFCBゲインの長時間平均を計算する。
Figure 0004238535
【0167】
ここで、
Figure 0004238535
は第nサブフレームにおける第1のFCBゲイン、
Figure 0004238535
は第nサブフレームにおける第1のFCBゲインの長時間平均であり、αは例えば0.9である。なお、長時間平均には、平均値、中央値、最頻値なども適用できる。
【0168】
一方、音声判定値Vsが1(音声区間)のとき、FCBゲイン修正回路2450は、第1のFCBゲインそのものを修正FCBゲインとする。
【0169】
FCBゲイン修正回路2450は、修正FCBゲインをFCBゲイン符号化回路2420へ出力する。
【0170】
ACBゲイン符号化回路2410は、ACBゲイン復号回路2470から出力される第1のACBゲインを入力し、ACBゲイン修正回路2440から出力される修正ACBゲインを入力し、音声/非音声識別回路1460から出力される音声判定値を入力する。
【0171】
ACBゲイン符号化回路2410は、ACBゲインコードブック1411から順次読み込まれるACBゲインと第1のACBゲインとから第1の自乗誤差を計算し、ACBゲインと修正ACBゲインとから第2の自乗誤差を計算し、音声判定値から計算される重み係数と第1の自乗誤差と第2の自乗誤差とから次式で定義される評価関数を計算する。
【0172】
Figure 0004238535
【0173】
ここで、
Figure 0004238535
は第1のACBゲイン、
Figure 0004238535
は修正ACBゲイン、
Figure 0004238535
はACBゲインコードブック1411から順次読み込まれるACBゲインであり、μは重み係数である。例えば、音声判定値Vsが1(音声区間)のとき、重み係数μは1.0とし、Vsが0(非音声区間)のときはμは0.2とする。
【0174】
そして、ACBゲイン符号化回路2410は、評価関数が最小となるACBゲインを選択し、選択されたACBゲインを第2のACBゲインとし、第2のACBゲインに対応する符号を第2のACBゲイン符号としてゲイン符号多重化回路1470へ出力する。
【0175】
FCBゲイン符号化回路2420は、FCBゲイン復号回路2480から出力される第1のFCBゲインを入力し、FCBゲイン修正回路2450から出力される修正FCBゲインを入力し、音声/非音声識別回路1460から出力される音声判定値を入力する。
【0176】
FCBゲイン符号化回路2420は、FCBゲインコードブック1421から順次読み込まれるFCBゲインと第1のFCBゲインとから第3の自乗誤差を計算し、FCBゲインと修正FCBゲインとから第4の自乗誤差を計算し、音声判定値から計算される重み係数と第3の自乗誤差と第4の自乗誤差とから次式で定義される評価関数を計算する。
Figure 0004238535
【0177】
ここで、
Figure 0004238535
は第1のFCBゲイン、
Figure 0004238535
は修正FCBゲイン、
Figure 0004238535
はFCBゲインコードブック1421から順次読み込まれるFCBゲインであり、μは重み係数である。例えば、音声判定値Vsが1(音声区間)のとき、重み係数μは1.0とし、音声判定値Vsが0(非音声区間)のときはμは0.2とする。
【0178】
そして、FCBゲイン符号化回路2420は、評価関数が最小となるFCBゲインを選択し、選択されたFCBゲインを第2のFCBゲインとし、第2のFCBゲインに対応する符号を第2のFCBゲイン符号としてゲイン符号多重化回路1470へ出力する。
【0179】
上述した本発明の各実施例の符号変換装置は、ディジタル信号処理プロセッサ等のコンピュータ制御で実現するようにしてもよい。図11は本発明の第3の実施例として、上記各実施例の符号変換処理をコンピュータで実現する場合の装置構成を模式的に示す図である。記録媒体6から読み出されたプログラムを実行するコンピュータ1において、第1の符号化復号装置により音声を符号化して得た第1の符号を第2の符号化復号装置により復号可能な第2の符号へ変換する符号変換処理を実行するにあたり、記録媒体6には、
(a) 第1の符号列から第1の線形予測係数を得る処理と、
(b) 第1の符号列から励振信号の情報を得る処理と、
(c) 励振信号の情報から励振信号を得る処理と、
(d) 第1の線形予測係数をもつフィルタを励振信号により駆動することによって音声信号を生成する処理と、
(e) 第2の符号列から得られる情報により生成される第2の音声信号と、第1の音声信号との距離が最小となるゲイン(最適ゲイン)を計算する処理と、
(f) 最適ゲインを修正する処理と、
(g) 修正された最適ゲイン(修正最適ゲイン)と、第2の方式におけるゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、最適ゲインと、ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、第1の自乗誤差と第2の自乗誤差に基づく評価関数が最小となるゲインをゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める処理、
を実行させるためのプログラムが記録されている。記録媒体6から該プログラムを記録媒体読出装置5、インタフェース4を介してメモリ3に読み出して実行する。上記プログラムは、マスクROM等、フラッシュメモリ等の不揮発性メモリに格納してもよく、記録媒体は不揮発性メモリを含むほか、CD-ROM、FD、Digital Versatile Disk (DVD)、磁気テープ(MT)、可搬型HDD等の媒体の他、例えばサーバ装置からコンピュータで該プログラムを通信媒体伝送する場合等、プログラムを担持する有線、無線で通信される通信媒体等も含む。
【0180】
本発明の第4の実施例では、記録媒体6から読み出されたプログラムを実行するコンピュータ1において、第1の符号化復号装置により音声を符号化して得た第1の符号を第2の符号化復号装置により復号可能な第2の符号へ変換する符号変換処理を実行するにあたり、記録媒体6には、
(a) 第1の符号列からゲイン情報を復号する処理と、
(b) 復号されたゲイン(復号ゲイン)を修正する処理と、
(c) 修正された復号ゲイン(修正復号ゲイン)と、第2の方式におけるゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、復号ゲインと、ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、第1の自乗誤差と第2の自乗誤差に基づく評価関数が最小となるゲインをゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める処理、
を実行させるためのプログラムが記録されている。
【0181】
以上本発明を上記実施例に即して説明したが、本発明は、上記実施例の構成にのみ限定されるものでなく、特許請求の範囲の各請求項の発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
【0182】
【発明の効果】
以上説明したように、本発明によれば、非音声区間における背景雑音音質の劣化を低減することができる、という効果を奏する。
【0183】
その理由は、本発明においては、第1の符号列から第1の線形予測係数をもつ合成フィルタを励振信号で駆動して得た第1の音声信号と第2の符号列から得られる情報により生成される第2の音声信号とから最適ゲインを導出し、さらに最適ゲインを修正し、修正した最適ゲインと、最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求め、その際、非音声区間において、第2のゲインの時間変動が小さくなるような評価関数を用いて、第2のゲインを求めるように構成したためである。上記効果は、第1の符号列からゲイン情報を復号し、復号されたゲインを修正し、修正された復号ゲインと、前記復号ゲインと第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求め、非音声区間において、第2のゲインの時間変動が小さくなるような評価関数を用いて、第2のゲインを求めるように構成してなる本発明によっても奏することができる。
【図面の簡単な説明】
【図1】本発明による符号変換装置の第1の実施例の構成を示す図である。
【図2】本発明による符号変換装置におけるLP係数符号変換回路の構成を示す図である。
【図3】ACB符号とACB遅延との対応関係とACB符号の読み替え方法を説明する図である。
【図4】本発明による符号変換装置の音声復号回路の構成を示す図である。
【図5】本発明による符号変換装置における目標信号計算回路の構成を示す図である。
【図6】本発明による符号変換装置におけるFCB符号生成回路の構成を示す図である。
【図7】パルス位置符号とパルス位置との対応関係とACB符号の読み替え方法を説明する図である。
【図8】本発明による符号変換装置におけるゲイン符号生成回路の構成を示す図である。
【図9】本発明による符号変換装置の第2の実施例の構成を示す図である。
【図10】本発明による符号変換装置におけるゲイン符号生成回路の構成を示す図である。
【図11】本発明による符号変換装置の第3から第4の実施例の構成を示す図である。
【図12】従来の符号変換装置の構成を示す図である。
【符号の説明】
1 コンピュータ
2 CPU
3 メモリ
4 記録媒体読出装置インタフェース
5 記録媒体読出装置
6 記録媒体
10,31,35,36,37,51,52,53,57,61,74,75,81,82,83,84,85,91,92,93,94 入力端子
20,32,33,34,55,56,62,63,76,77,78,86,95,96 出力端子
100,1100 LP係数符号変換回路
110 LP係数復号回路
130 LP係数符号化回路
111 第1のLSPコードブック
131 第2のLSPコードブック
200,1200 ACB 符号変換回路
300,1300 FCB 符号変換回路
400,2400 ゲイン符号変換回路
1010 符号分離回路
1020 符号多重回路
1110 LSP−LPC変換回路
1120 インパルス応答計算回路
1400 ゲイン符号生成回路
1410,2410 ACBゲイン符号化回路
1411,2471 ACBゲインコードブック
1420,2420 FCBゲイン符号化回路
1421,2481 FCBゲインコードブック
1430 第2の目標信号計算回路
1440 最適FCBゲイン計算回路
1450 最適FCBゲイン修正回路
1460 音声/非音声識別回路
1470 ゲイン符号多重回路
1480 最適ACBゲイン修正回路
1500 音声復号回路
1510 ACB復号回路
1520 FCB復号回路
1530 ゲイン復号回路
1540 励振信号計算回路
1570 励振信号記憶回路
1580 合成フィルタ
1600 励振信号情報復号回路
1610 第2の励振信号計算回路
1620 第2の励振信号記憶回路
1700 目標信号計算回路
1710 重み付け信号計算回路
1720 ACB信号生成回路
1800 FCB符号生成回路
1820 FCB信号生成回路
2480 FCBゲイン復号回路
2450 FCBゲイン修正回路
2490 ゲイン符号分離回路

Claims (30)

  1. 第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換方法において、
    前記第1の符号列から第1の線形予測係数と励振信号の情報を得て、前記第1の線形予測係数をもつフィルタを前記励振信号の情報から得られる励振信号で駆動することによって第1の音声信号を生成するステップと、
    第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号とに基づき最適ゲインを導出するステップと、
    前記最適ゲインを修正するステップと、
    修正された最適ゲイン(「修正最適ゲイン」という)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるステップと、
    を含む、ことを特徴とする符号変換方法。
  2. 第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換方法において、
    前記第1の符号列からゲイン情報を復号するステップと、
    復号されたゲイン(「復号ゲイン」という)を修正するステップと、
    修正された復号ゲイン(「修正復号ゲイン」という)と、前記復号ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるステップと、
    を含む、ことを特徴とする符号変換方法。
  3. 前記修正最適ゲインと、前記ゲインコードブックから読み出されるゲインとから、第1の自乗誤差を計算するステップと、
    前記最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算するステップと、
    前記第1の自乗誤差と前記第2の自乗誤差とに基づく評価関数を最小とするゲインを、前記ゲインコードブックから選択することによって、第2の符号列におけるゲイン情報を求めるステップと、
    を含む、ことを特徴とする請求項1に記載の符号変換方法。
  4. 前記修正復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算するステップと、
    前記復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算するステップと、
    前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数を最小とするゲインを、前記ゲインコードブックから選択することによって、第2の符号列におけるゲイン情報を求めるステップと、
    を含む、ことを特徴とする請求項2に記載の符号変換方法。
  5. 前記修正最適ゲインが、前記最適ゲインの長時間平均に基づくものである、ことを特徴とする請求項1又は3に記載の符号変換方法。
  6. 前記修正復号ゲインが、前記復号ゲインの長時間平均に基づくものである、ことを特徴とする請求項2又は4に記載の符号変換方法。
  7. 前記第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離を最小とするゲインを、前記最適ゲインとして求める、ことを特徴とする請求項1に記載の符号変換方法。
  8. 前記評価関数が、前記第1の自乗誤差と前記第2の自乗誤差と重み係数とからなる、ことを特徴とする請求項3乃至7のいずれか一に記載の符号変換方法。
  9. 第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置において、
    前記第1の符号列から第1の線形予測係数と励振信号の情報を得て、前記第1の線形予測係数をもつフィルタを前記励振信号の情報から得られる励振信号で駆動することによって第1の音声信号を生成する音声復号回路と、
    第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号とに基づき、最適ゲインを計算する最適ゲイン計算回路と、
    前記最適ゲインを修正する最適ゲイン修正回路と、
    修正された最適ゲイン(「修正最適ゲイン」という)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるゲイン符号化回路と、
    を含む、ことを特徴とする符号変換装置。
  10. 第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置において、
    前記第1の符号列からゲイン情報を復号するゲイン復号回路と、
    復号されたゲイン(「復号ゲイン」という)を修正する復号ゲイン修正回路と、修正された復号ゲイン(「修正復号ゲイン」という)と、前記復号ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求めるゲイン符号化回路、
    を含む、ことを特徴とする符号変換装置。
  11. 前記ゲイン符号化回路が、
    前記修正最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める手段を備えている、
    ことを特徴とする請求項9に記載の符号変換装置。
  12. 前記ゲイン符号化回路が、
    前記修正復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める手段を備えている、ことを特徴とする請求項10に記載の符号変換装置。
  13. 前記修正最適ゲインが、前記最適ゲインの長時間平均に基づくものである、ことを特徴とする請求項9又は11に記載の符号変換装置。
  14. 前記修正復号ゲインが、前記復号ゲインの長時間平均に基づくものである、ことを特徴とする請求項10又は12に記載の符号変換装置。
  15. 前記最適ゲイン計算回路が、前記第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離を最小とするゲインを前記最適ゲインとして出力する、ことを特徴とする請求項9に記載の符号変換装置。
  16. 前記評価関数が、前記第1の自乗誤差と前記第2の自乗誤差と重み係数とからなる、ことを特徴とする請求項10乃至14のいずれか一に記載の符号変換装置。
  17. 第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置を構成するコンピュータに、
    (a)前記第1の符号列から第1の線形予測係数と励振信号の情報を得て、前記第1の線形予測係数をもつフィルタを前記励振信号の情報から得られる励振信号で駆動することによって第1の音声信号を生成する処理と、
    (b)第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号とに基づき最適ゲインを計算する処理と、
    (c)前記最適ゲインを修正する処理と、
    (d)修正された最適ゲイン(「修正最適ゲイン」という)と、前記最適ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求める処理、
    を実行させるためのプログラム。
  18. 第1の方式に準拠する第1の符号列を、第2の方式に準拠する第2の符号列へ変換する符号変換装置を構成するコンピュータに、
    (a)前記第1の符号列からゲイン情報を復号する処理と、
    (b)復号されたゲイン(「復号ゲイン」という)を修正する処理と、
    (c)修正された復号ゲイン(「修正復号ゲイン」という)と、前記復号ゲインと、第2の方式におけるゲインコードブックから読み出されるゲインとに基づき、第2の符号列におけるゲイン情報を求める処理、
    を実行させるためのプログラム。
  19. 請求項17に記載のプログラムにおいて、
    前記修正最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記最適ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める処理、を前記コンピュータに実行させるためのプログラム。
  20. 請求項18に記載のプログラムにおいて、
    前記修正復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第1の自乗誤差を計算し、前記復号ゲインと、前記ゲインコードブックから読み出されるゲインとから第2の自乗誤差を計算し、前記第1の自乗誤差と前記第2の自乗誤差に基づく評価関数が最小となるゲインを前記ゲインコードブックから選択することによって第2の符号列におけるゲイン情報を求める処理、を前記コンピュータに実行させるためのプログラム。
  21. 請求項17又は19に記載のプログラムにおいて、
    前記修正最適ゲインが、前記最適ゲインの長時間平均に基づくものである、ことを特徴とするプログラム。
  22. 請求項18又は20に記載のプログラムにおいて、
    前記修正復号ゲインが、前記復号ゲインの長時間平均に基づくものである、ことを特徴とするプログラム。
  23. 請求項18乃至22のいずれか一に記載のプログラムにおいて、
    前記第2の符号列から得られる情報により生成される第2の音声信号と、前記第1の音声信号との距離を最小とするゲインを前記最適ゲインとして求める処理、を前記コンピュータに実行させるためのプログラム。
  24. 請求項17乃至22のいずれか一に記載のプログラムにおいて、
    前記評価関数が、前記第1の自乗誤差と前記第2の自乗誤差と重み係数とからなる、ことを特徴とするプログラム。
  25. 請求項17乃至請求項23のいずれか一に記載の前記プログラムを記録した記録媒体。
  26. 第1の方式で音声信号を符号化した符号を多重してなる符号列データを符号分離回路に入力し、前記符号分離回路にて分離された符号に基づき、前記第1の方式とは別の第2の方式に準拠する符号に変換し、該変換された符号を符号多重回路に供給し、前記符号多重回路から前記変換された符号を多重してなる符号列データを出力する符号変換装置において、
    前記符号分離回路で分離された線形予測係数符号に基づき、第1の方式と第2の方式で復号してなる第1、第2の線形予測係数を生成する回路と、
    前記符号分離回路から入力した第1の方式の適応コードブック(ACB)符号を、第1の方式における符号と第2の方式における符号との対応関係を用いて読み替えることにより第2の方式のACB符号を得、前記符号多重回路へ出力し、前記第2のACB符号に対応するACB遅延を第2のACB遅延として目標信号計算回路へ出力する手段を含む適応コードブック符号変換回路(「ACB符号変換回路」という)と、
    前記符号分離回路で分離された第1の方式におけるACB符号、固定コードブック(FCB)符号及びゲイン符号を含む励振信号情報を入力として受け取ってそれぞれを復号し、前記符号分離回路で分離された線形予測係数符号に基づき第1の方式で復号してなる第1の線形予測係数をもつ合成フィルタを、前記励振信号情報から得られる励振信号で駆動することで、復号音声信号を合成して出力する音声復号回路と、
    前記符号分離回路から出力される第1の方式のFCB符号を入力し、前記FCB符号を第2の方式により復号可能な符号に変換し、前記変換したFCB符号を、第2のFCB符号として前記符号多重回路へ出力し、前記第2のFCB符号に対応する第2のFCB信号を出力する固定コードブック符号生成回路(「FCB符号生成回路」という)と、
    前記第1の線形予測係数と前記第2の線形予測係数から構成される聴感重み付け合成フィルタのインパルス応答信号を出力するインパルス応答計算回路と、
    前記目標信号計算回路と、
    ゲイン符号生成回路と、
    を備え、
    前記目標信号計算回路は、
    前記音声復号回路の合成フィルタから出力される復号音声を入力し、前記第1の線形予測係数を用いて構成される聴感重み付けフィルタを前記復号音声で駆動して聴感重み付け音声信号を生成するとともに、前記第1及び第2の線形予測係数を用いて構成される聴感重み付け合成フィルタの零入力応答を、前記聴感重み付け音声信号から減算して得られる第1の目標信号を生成する重み付け信号計算回路と、
    前記重み付け信号計算回路から出力される前記第1の目標信号と、前記ACB符号変換回路から出力される前記第2のACB遅延と、前記インパルス応答計算回路から出力される前記インパルス応答信号と、過去の第2の励振信号を記憶保持する第2の励振信号記憶回路から出力される過去の第2の励振信号とを入力し、前記過去の第2の励振信号から、遅延k(ただし、kは前記第2のACB遅延)で切り出された信号と前記インパルス応答信号との畳み込みにより、フィルタ処理された遅延kの過去の励振信号を計算して第2のACB信号として出力するACB信号生成回路と、
    前記重み付け信号計算回路から出力される前記第1の目標信号と、前記ACB信号生成回路から出力される、前記フィルタ処理された遅延kの過去の励振信号とを入力し、前記第1の目標信号と、前記フィルタ処理された遅延kの過去の励振信号とから、最適ACBゲインを導出して出力する最適ACBゲイン計算回路と、
    を備え、
    前記ゲイン符号生成回路は、
    前記目標信号計算回路から出力される、前記第1の目標信号と、前記第2のACB信号と、前記最適ACBゲインと、前記FCB符号生成回路から出力される前記第2のFCB信号と、前記インパルス応答計算回路から出力される前記インパルス応答信号と、前記第1の線形予測係数とを入力し、
    前記第1の目標信号と前記第2のACB信号と前記最適ACBゲインと前記インパルス応答信号とから第2の目標信号を計算し、前記第2の目標信号と、前記第2のFCB信号と前記インパルス応答信号とから最適FCBゲインを計算する手段と、
    前記最適ACBゲインから修正ACBゲインを求める手段と、
    前記計算された最適FCBゲインを入力し、前記最適FCBゲインから修正FCBゲインを計算する手段と、
    前記第1の線形予測係数から音声判定値を決定する手段と、
    ACBゲインコードブックから順次読み込まれるACBゲインと、前記最適ACBゲインとから第1の自乗誤差を計算し、前記ACBゲインと前記修正ACBゲインとから第2の自乗誤差を計算する手段と、
    前記音声判定値から計算される重み係数と、前記第1の自乗誤差と前記第2の自乗誤差とから計算される第1の評価関数を最小とするACBゲイン及び対応するACBゲイン符号を選択する手段と、
    FCBゲインコードブックから順次読み込まれるFCBゲインと前記最適FCBゲインとから第3の自乗誤差を計算し、前記FCBゲインと前記修正FCBゲインとから第4の自乗誤差を計算する手段と、
    前記音声判定値から計算される重み係数と第3の自乗誤差と第4の自乗誤差とから計算される第2の評価関数を最小とするFCBゲイン及び対応するFCBゲイン符号を選択する手段と、
    選択されたACBゲイン符号とFCBゲイン符号とからなる第2のゲイン符号を、第2の方式におけるゲイン復号方法により復号可能な符号として前記符号多重回路出力する手段と、
    を備えている、ことを特徴とする符号変換装置。
  27. 前記目標信号計算回路から出力される第2のACB信号と、前記FCB符号生成回路から出力される第2のFCB信号と、前記ゲイン符号生成回路から出力される第2のACBゲインと第2のFCBゲインとを入力し、前記第2のACB信号に第2のACBゲインを乗じて得た信号と、前記第2のFCB信号に第2のFCBゲインを乗じて得た信号と、を加算して第2の励振信号を得、前記第2の励振信号を前記第2の励振信号記憶回路へ出力する第2の励振信号計算回路を備え、
    前記第2の励振信号記憶回路は、前記第2の励振信号計算回路から出力される第2の励振信号を入力し、これを記憶保持し、過去に入力されて記憶保持されている第2の励振信号を前記目標信号計算回路へ出力する、ことを特徴とする請求項26記載の符号変換装置。
  28. 前記ゲイン符号生成回路は、
    前記ACB信号生成回路から出力される前記第2のACB信号と、前記重み付け信号計算回路から出力される前記第1の目標信号と、前記インパルス応答計算回路から出力される前記インパルス応答信号と、前記ACBゲイン符号化回路から出力される前記第2のACBゲインとを入力し、前記第2のACB信号と前記インパルス応答信号との畳み込みにより、フィルタ処理された第2のACB信号を計算し、前記フィルタ処理された第2のACB信号に前記第2のACBゲインを乗じて得られる信号を、前記第1の目標信号から減算して第2の目標信号を導出し前記第2の目標信号を出力する第2の目標信号計算回路と、
    前記FCB信号生成回路から出力される前記第2のFCB信号と、前記インパルス応答計算回路から出力される前記インパルス応答信号と、前記第2の目標信号計算回路から出力される前記第2の目標信号とを入力し、前記第2のFCB信号とインパルス応答信号との畳み込みにより、フィルタ処理された第2のFCB信号を計算し、前記第2の目標信号と前記第2のFCB信号との距離を最小とする最適FCBゲインを計算する最適FCBゲイン計算回路と、
    前記第1の線形予測係数とその長時間平均とから線形予測係数の変動量を計算し音声判定値を決定する音声/非音声識別回路と、
    前記ACB信号生成回路から出力される前記最適ACBゲインと、前記音声/非音声識別回路から出力される前記音声判定値とを入力し、前記音声判定値が非音声区間のとき、前記最適ACBゲインの長時間平均を修正ACBゲインとして非音声区間において前記最適ACBゲインの長時間平均を計算し、音声区間のとき、前記最適ACBゲインそのものを修正ACBゲインとして出力する、最適ACBゲイン修正回路と、
    前記ACB信号生成回路から出力される前記最適ACBゲインと、前記最適ACBゲイン修正回路から出力される前記修正ACBゲインと、前記音声/非音声識別回路から出力される前記音声判定値とを入力し、前記ACBゲインコードブックから順次読み込まれるACBゲインと、前記最適ACBゲインとから第1の自乗誤差を計算し、前記ACBゲインと前記修正ACBゲインとから第2の自乗誤差を計算し、前記音声判定値から計算される重み係数と、前記第1の自乗誤差と、前記第2の自乗誤差とから評価関数を求め、前記評価関数が最小となるACBゲインを選択し、選択された前記ACBゲインを第2のACBゲインとして前記第2の目標信号計算回路へ出力するとともに、前記第2の励振信号計算回路へ出力し、前記第2のACBゲインに対応する符号をACBゲイン符号としてゲイン符号多重化回路へ出力するACB符号ゲイン符号化回路と、
    前記最適FCBゲイン計算回路から出力される前記最適FCBゲインと、前記音声/非音声識別回路から出力される前記音声判定値とを入力し、前記音声判定値が非音声区間のとき、前記最適FCBゲインの長時間平均を修正FCBゲインとし、前記音声判定値が音声区間のとき、最適FCBゲインそのものを修正FCBゲインとし、前記修正FCBゲインをFCBゲイン符号化回路へ出力する最適FCBゲイン修正回路と、
    前記最適FCBゲイン計算回路から出力される前記最適FCBゲインと、前記最適FCBゲイン修正回路から出力される前記修正FCBゲインと、前記音声/非音声識別回路から出力される前記音声判定値を入力し、前記FCBゲインコードブックから順次読み込まれるFCBゲインと、前記最適FCBゲインとから第3の自乗誤差を計算し、前記FCBゲインと前記修正FCBゲインとから第4の自乗誤差を計算し、前記音声判定値から計算される重み係数と前記第3の自乗誤差と前記第4の自乗誤差とから評価関数を計算し、前記評価関数が最小となるFCBゲインを選択し、選択された前記FCBゲインを第2のFCBゲインとして前記第2の励振信号計算回路へ出力し、第2のFCBゲインに対応する符号をFCBゲイン符号としてゲイン符号多重化回路へ出力するFCBゲイン符号化回路と、
    前記ACBゲイン符号化回路から出力されるACBゲイン符号と、前記FCBゲイン符号化回路から出力されるFCBゲイン符号とを入力し、ACBゲイン符号とFCBゲイン符号とを多重化して得られる第2のゲイン符号を、第2の方式におけるゲイン復号方法により復号可能な符号として前記符号多重回路へ出力するゲイン符号多重回路と、
    を備えている、ことを特徴とする請求項26記載の符号変換装置。
  29. 第1の方式で音声信号を符号化した符号を多重してなる符号列データを符号分離回路に入力し、前記符号分離回路にて分離された符号に基づき、前記第1の方式とは別の第2の方式に準拠する符号に変換し、該変換された符号を符号多重回路に供給し、前記符号多重回路から前記変換された符号を多重してなる符号列データを出力する符号変換装置において、
    前記符号分離回路で分離された線形予測係数符号に基づき、第1の方式と第2の方式で復号してなる第1、第2の線形予測係数を生成する回路と、
    前記符号分離回路から出力される第1のACB符号を入力し、前記第1のACB符号を第2の方式により復号可能な符号に変換し、変換されたACB符号を、第2のACB符号として前記符号多重回路へ出力するACB符号変換回路と、
    前記符号分離回路から出力される第1のFCB符号を入力し、前記第1のFCB符号を第2の方式により復号可能な符号に変換し、変換されたFCB符号を、第2のFCB符号として前記符号多重回路へ出力するFCB符号変換回路と、
    前記符号分離回路から出力される第1のゲイン符号を入力し、前記第1のゲイン符号を第2の方式により復号可能な符号に変換し、変換されたゲイン符号を、第2のゲイン符号として前記符号多重回路へ出力するゲイン符号変換回路と、
    を備え、
    前記ゲイン符号変換回路が、
    前記符号分離回路から出力される第1のゲイン符号と、前記第1の線形予測係数とを入力し、前記第1のゲイン符号を、第1の方式におけるゲイン復号方法により復号して得られる第1の適応コードブック(ACB)ゲイン及び第1の固定コードブック(FCB)ゲインから、修正ACBゲイン及び修正FCBゲインを計算する手段と、
    前記第1の線形予測係数から音声判定値を決定する手段と、
    ACBゲインコードブックから順次読み込まれるACBゲインと、前記第1のACBゲインとから第1の自乗誤差を計算し、前記ACBゲインと前記修正ACBゲインとから第2の自乗誤差を計算し、前記音声判定値から計算される重み係数と、前記第1の自乗誤差と、前記第2の自乗誤差とから計算される第1の評価関数が最小となるACBゲイン及び対応するACBゲイン符号を選択する手段と、
    FCBゲインコードブックから順次読み込まれるFCBゲインと前記第1のFCBゲインとから第3の自乗誤差を計算し、FCBゲインと前記修正FCBゲインとから第4の自乗誤差を計算し、前記音声判定値から計算される重み係数と、前記第3の自乗誤差と、前記第4の自乗誤差とから計算される第2の評価関数を最小とするFCBゲイン及び対応するFCBゲイン符号を選択する手段と、
    選択された前記ACBゲイン符号と前記FCBゲイン符号とからなる第2のゲイン符号を、第2の方式におけるゲイン復号方法により復号可能な符号として符号多重回路へ出力する手段と、
    を備えている、ことを特徴とする符号変換装置。
  30. 前記ゲイン符号変換回路が、
    前記第1の線形予測係数とその長時間平均とから線形予測係数の変動量を計算し音声判定値を決定する音声/非音声識別回路と、
    前記符号分離回路から出力される第1のゲイン符号を入力し、第1のゲイン符号からACBゲイン及びFCBゲインに対応する第1のACBゲイン符号及び第1のFCBゲイン符号を分離し、第1のACBゲイン符号をACBゲイン復号回路へ出力し、第1のFCBゲイン符号をFCBゲイン復号回路へ出力するゲイン符号分離回路と、
    複数セットのACBゲインが格納されたACBゲインコードブックを備えており、前記ゲイン符号分離回路から出力される第1のACBゲイン符号を入力し、前記第1のACBゲイン符号に対応するACBゲインを第1のACBゲインコードブックより読み出し、読み出されたACBゲインを第1のACBゲインとしてACBゲイン修正回路へ出力するとともに、ACBゲイン符号化回路へ出力し、ACBゲイン符号からのACBゲインの復号は、第1の方式におけるACBゲインの復号方法に従い、第1の方式のACBゲインコードブックを用いるACBゲイン復号回路と、
    複数セットのFCBゲインが格納されたFCBゲインコードブックを備えており、前記ゲイン符号分離回路から出力される第1のFCBゲイン符号を入力し、前記第1のFCBゲイン符号に対応するFCBゲインを第1のFCBゲインコードブックより読み出し、読み出されたFCBゲインを第1のFCBゲインとしてFCBゲイン修正回路へ出力するとともに、FCBゲイン符号化回路へ出力し、FCBゲイン符号からのFCBゲインの復号は、第1の方式におけるFCBゲインの復号方法に従い、第1の方式のFCBゲインコードブックを用いるFCBゲイン復号回路と、
    前記ACBゲイン復号回路から出力される前記第1のACBゲインと、前記音声/非音声識別回路から出力される前記音声判定値とを入力し、前記音声判定値が非音声区間のとき、前記第1のACBゲインの長時間平均を修正ACBゲインとし、音声区間のとき、前記第1のACBゲインそのものを修正ACBゲインとし、前記修正ACBゲインをACBゲイン符号化回路へ出力するACBゲイン修正回路と、
    前記FCBゲイン復号回路から出力される前記第1のFCBゲインと、前記音声/非音声識別回路から出力される前記音声判定値とを入力し、前記音声判定値が非音声区間のとき、前記第1のFCBゲインの長時間平均を修正FCBゲインとし、前記音声判定値が音声区間のとき、前記第1のFCBゲインそのものを修正FCBゲインとし、前記修正FCBゲインをFCBゲイン符号化回路へ出力するFCBゲイン修正回路と、
    前記ACBゲイン復号回路から出力される前記第1のACBゲインと、前記ACBゲイン修正回路から出力される前記修正ACBゲインと、前記音声/非音声識別回路から出力される音声判定値とを入力し、前記ACBゲインコードブックから順次読み込まれるACBゲインと第1のACBゲインとから第1の自乗誤差を計算し、前記ACBゲインと前記修正ACBゲインとから第2の自乗誤差を計算し、前記音声判定値から計算される重み係数と、前記第1の自乗誤差と、前記第2の自乗誤差とから第1の評価関数を計算し、前記第1の評価関数が最小となるACBゲインを選択し、選択された前記ACBゲインを第2のACBゲインとし、前記第2のACBゲインに対応する符号を第2のACBゲイン符号としてゲイン符号多重化回路へ出力するACBゲイン符号化回路と、
    前記FCBゲイン復号回路から出力される前記第1のFCBゲインと、前記FCBゲイン修正回路から出力される前記修正FCBゲインと、前記音声/非音声識別回路から出力される前記音声判定値とを入力し、FCBゲインコードブックから順次読み込まれるFCBゲインと前記第1のFCBゲインとから第3の自乗誤差を計算し、前記FCBゲインと前記修正FCBゲインとから第4の自乗誤差を計算し、前記音声判定値から計算される重み係数と、前記第3の自乗誤差と、前記第4の自乗誤差とから第2の評価関数を計算し、前記第2の評価関数が最小となるFCBゲインを選択し、選択された前記FCBゲインを第2のFCBゲインとし、第2のFCBゲインに対応する符号を第2のFCBゲイン符号としてゲイン符号多重化回路へ出力するFCBゲイン符号化回路と、
    前記ACBゲイン符号化回路から出力されるACBゲイン符号と、前記FCBゲイン符号化回路から出力されるFCBゲイン符号とを入力し、ACBゲイン符号とFCBゲイン符号とを多重化して得られる第2のゲイン符号を、第2の方式におけるゲイン復号方法により復号可能な符号として前記符号多重回路へ出力するゲイン符号多重回路と、
    を備えている、ことを特徴とする請求項29記載の符号変換装置。
JP2002215766A 2002-07-24 2002-07-24 音声符号化復号方式間の符号変換方法及び装置とその記憶媒体 Expired - Fee Related JP4238535B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002215766A JP4238535B2 (ja) 2002-07-24 2002-07-24 音声符号化復号方式間の符号変換方法及び装置とその記憶媒体
CNB038176750A CN1327410C (zh) 2002-07-24 2003-07-09 语音编解码方法之间的代码转换方法及装置
PCT/JP2003/008701 WO2004010416A1 (ja) 2002-07-24 2003-07-09 音声符号化復号方式間の符号変換方法及び装置とその記憶媒体
US11/039,969 US7231345B2 (en) 2002-07-24 2005-01-24 Method and apparatus for transcoding between different speech encoding/decoding systems
US11/171,387 US7319953B2 (en) 2002-07-24 2005-07-01 Method and apparatus for transcoding between different speech encoding/decoding systems using gain calculations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215766A JP4238535B2 (ja) 2002-07-24 2002-07-24 音声符号化復号方式間の符号変換方法及び装置とその記憶媒体

Publications (2)

Publication Number Publication Date
JP2004061558A JP2004061558A (ja) 2004-02-26
JP4238535B2 true JP4238535B2 (ja) 2009-03-18

Family

ID=30767940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215766A Expired - Fee Related JP4238535B2 (ja) 2002-07-24 2002-07-24 音声符号化復号方式間の符号変換方法及び装置とその記憶媒体

Country Status (3)

Country Link
JP (1) JP4238535B2 (ja)
CN (1) CN1327410C (ja)
WO (1) WO2004010416A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867648A1 (fr) * 2003-12-10 2005-09-16 France Telecom Transcodage entre indices de dictionnaires multi-impulsionnels utilises en codage en compression de signaux numeriques
DE102006051673A1 (de) * 2006-11-02 2008-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Nachbearbeiten von Spektralwerten und Encodierer und Decodierer für Audiosignale
EP2980797A1 (en) * 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio decoder, method and computer program using a zero-input-response to obtain a smooth transition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146997A (ja) * 1994-11-21 1996-06-07 Hitachi Ltd 符号変換装置および符号変換システム
JP3331297B2 (ja) * 1997-01-23 2002-10-07 株式会社東芝 背景音/音声分類方法及び装置並びに音声符号化方法及び装置
JP2002198870A (ja) * 2000-12-27 2002-07-12 Mitsubishi Electric Corp エコー処理装置

Also Published As

Publication number Publication date
JP2004061558A (ja) 2004-02-26
WO2004010416A1 (ja) 2004-01-29
CN1672192A (zh) 2005-09-21
CN1327410C (zh) 2007-07-18

Similar Documents

Publication Publication Date Title
JPH0353300A (ja) 音声符号化装置
JP4304360B2 (ja) 音声符号化復号方式間の符号変換方法および装置とその記憶媒体
JP3628268B2 (ja) 音響信号符号化方法、復号化方法及び装置並びにプログラム及び記録媒体
JP4108317B2 (ja) 符号変換方法及び装置とプログラム並びに記憶媒体
JP3582589B2 (ja) 音声符号化装置及び音声復号化装置
JP4231987B2 (ja) 音声符号化復号方式間の符号変換方法、その装置、そのプログラム及び記憶媒体
JP4793539B2 (ja) 符号変換方法及び装置とプログラム並びにその記憶媒体
JPWO2014034697A1 (ja) 復号方法、復号装置、プログラム、及びその記録媒体
JP4238535B2 (ja) 音声符号化復号方式間の符号変換方法及び装置とその記憶媒体
US7319953B2 (en) Method and apparatus for transcoding between different speech encoding/decoding systems using gain calculations
JP4396524B2 (ja) 符号変換方法及び装置
JPS6238500A (ja) 高能率音声符号化方式とその装置
EP1536413B1 (en) Method and device for voice code conversion
EP1560201B1 (en) Code conversion method and device for code conversion
JP3845316B2 (ja) 音声符号化装置及び音声復号装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees