JP4238292B2 - Damping alloy material, manufacturing method thereof, and tool member using the same - Google Patents

Damping alloy material, manufacturing method thereof, and tool member using the same Download PDF

Info

Publication number
JP4238292B2
JP4238292B2 JP23122099A JP23122099A JP4238292B2 JP 4238292 B2 JP4238292 B2 JP 4238292B2 JP 23122099 A JP23122099 A JP 23122099A JP 23122099 A JP23122099 A JP 23122099A JP 4238292 B2 JP4238292 B2 JP 4238292B2
Authority
JP
Japan
Prior art keywords
alloy
alloy material
damping
damping alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23122099A
Other languages
Japanese (ja)
Other versions
JP2001059139A (en
Inventor
佳平 大神田
真男 福角
正美 杉岡
Original Assignee
地方独立行政法人 大阪市立工業研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人 大阪市立工業研究所 filed Critical 地方独立行政法人 大阪市立工業研究所
Priority to JP23122099A priority Critical patent/JP4238292B2/en
Publication of JP2001059139A publication Critical patent/JP2001059139A/en
Application granted granted Critical
Publication of JP4238292B2 publication Critical patent/JP4238292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制振ないし防振合金材料、その製造方法およびそれを用いた工具部材に関する。
【0002】
【従来の技術】
制振用材料としては、現在2枚の炭素鋼板の間に樹脂層をサンドイッチした制振鋼板が最も多く利用されている。しかしながら、このサンドイッチ型制振鋼板は、その構成上、加工性(溶接性、成形性など)に劣ること、100℃以上での使用が困難であること、一般の機械構造用炭素鋼に比して強度がかなり低いことなどの理由により、その用途は著しく限定されている。このため、金属単体で構成された汎用性の高い制振合金(防振合金)の開発が要望されている。
これまでに開発された制振合金材料は、その振動減衰機構の相違に基づいて、(1) 鋳鉄に代表される複合型、(2)鉄に他の合金元素を配合した強磁性型、(3)転位型および(4)双晶型の4種類に大別されている。
強磁性型制振合金の代表的なものとしては、12Cr-2Al鋼(サイレンタロイ)、12Cr-2Al-3Mo鋼(ジェンタロイ)などが古くから知られている。これらの合金は、構造材としては十分な強度を有しているものの、いずれも高価なクロム元素を多く含むので材料コストが高くなるという実用上の問題点がある。従って、サンドイッチ型制振鋼板の登場以降は、ほとんど使用されていない。
【0003】
【発明が解決しようとする課題】
従って、本発明は、安価な合金成分を使用し、振動減衰能に優れ、一般の機械構造用炭素鋼に匹敵する機械的性質を備えた制振合金を提供することを主な目的とする。
【0004】
【課題を解決するための手段】
本発明者は、上記の様な従来技術の問題点に留意しつつ研究を進めた結果、特定の組成比と結晶粒径とを有するAl-Fe合金が制振材料として優れた効果を発揮することを見出し、本発明を完成するにいたった。
【0005】
すなわち、本発明は、下記の制振合金、その製造方法およびそれを用いた工具部材を提供するものである:
1.Al含有量6〜10重量%、残部Feおよび不可避的不純物からなる合金材料であって、
前記組成の合金を塑性加工した後、磁気変態点以上の温度で30分〜2時間保持し、次いで同保持温度から600℃までの温度域において5〜20℃/分の速度で徐冷することより得られ、
平均結晶粒径が300〜700μmの範囲内にあること
を特徴とする制振合金材料。
2.Al含有量6〜10重量%、残部Feおよび不可避的不純物からなる合金を塑性加工した後、磁気変態点以上の温度で30分〜2時間保持し、次いで同保持温度から600℃までの温度域において5〜20℃/分の速度で徐冷することを特徴とする制振合金材料の製造方法。
3.上記項2に記載の製造方法により得られる制振合金材料。
.上記項1またはに記載の制振合金材料からなる切削工具シャンク。
.項1またはに記載の制振合金材料からなるボーリングバー。
【0006】
【発明の実施の形態】
本発明によるAl-Fe制振合金は、強磁性材料であるので、その主な振動減衰機構は、磁壁の非可逆移動に伴う磁気・機械的履歴損失によるものと推測される。一般に、多結晶材料の金属組織中に存在する結晶粒界は、磁壁が移動する際の妨げになると考えられることから、結晶粒径が大きいほど磁歪も大きくなり、内部摩擦が増大するものと推測される。
【0007】
本発明によるAl-Fe制振合金は、Al含有率が6〜10重量%であり、残余がFeおよび不可避的不純物(Si0.1重量%以下;Mn0.1重量%以下、;その他C、N、S、Oなど併せて0.1重量%以下)からなる。また、その結晶の平均粒径が300〜700μmの範囲内にあることを必須とする。
【0008】
Al含有量が6〜10重量%の範囲外となる場合には、内部摩擦が低くなる。内部摩擦を十分に高めるために、Al含有量を7〜9重量%とすることが、より好ましい。
【0009】
Al-Fe制振合金中の結晶の平均粒径が300μm未満の金属組織の状態では、上記の理由により、制振合金としての十分な内部摩擦が得られない。従って、合金素材に対し圧延加工などの塑性加工を行った後、700℃以上の温度での焼きなまし熱処理により、結晶の平均粒径を300μm以上に調整する必要がある。しかしながら、高温での長時間の熱処理により、結晶の平均粒径が700μmを上回ると、強度が著しく低下するため、構造材料として必要な機械的性質が確保できなくなる。本発明によるAl-Fe制振合金においては、制振性能をさらに一層向上させるためには、結晶の平均粒径を500〜700μmとすることがより好ましい。
【0010】
本発明によるAl-Fe合金材料は、以下のようにして製造することができる。
【0011】
まず、所望の合金中のAl含有量が所定値となる割合に予め調整したAlとFe素材とを、窒素および酸素の侵入を防止するために、0.1〜0.01Pa程度の減圧下で溶融した後、鋳型に流し込んで、Al-Fe合金鋳塊を得る。次いで、得られた合金鋳塊を圧延、鍛造などの塑性加工と機械加工により、所定の製品形状に仕上げる。
【0012】
次いで、得られた塑性加工材を700〜1000℃程度の温度に30分〜2時間程度保持して、焼き鈍し処理する。焼き鈍し処理時の温度および時間は、合金の組成、製品形状と関連する塑性加工条件などを考慮して、上記の範囲から適宜選択すればよい。
【0013】
次いで、得られた焼き鈍し材を所定の保持温度から600℃までの温度域における冷却速度を通常20℃/分以下(好ましくは10℃/分以下、さらに好ましくは1〜5℃/分程度)として、徐冷する。600℃未満の温度域では、自然冷却(放冷)を行えば良い。
【0014】
上記の様にして、塑性加工による内部歪みが除去され、結晶の平均粒径が300〜700μmであるAl-Fe合金材料が得られる。結晶の平均粒径は、合金組成に応じて、焼き鈍し処理時の温度および時間、徐冷速度などにより、制御することができる。例えば後記実施例に示す様に、本発明による合金材料を850℃で1時間保持した後、850〜600℃の温度域での冷却速度を5℃/分として徐冷することにより、結晶粒径500〜700μm程度の材料が得られる。この様な材料は、内部摩擦が大きいので、その制振性能はより一層改善される。
本発明による制振材料は、切削工具用シャンク、ボーリングバーなどの工具材料として特に有用である。
【0015】
金属製品の機械的加工として代表的な切削加工において、特に工作物の穴加工に用いられるボーリングバー(中ぐりバイト)は、その形状が細長いので、切削加工時の“びびり”振動の発生は避けられない。このびびり振動は、切削面の精度を低下させるとともに、工具の切削部材(スローアウェイチップ)の摩耗を促進させる。一般にボーリングバーの突き出し長さは、直径の約5倍が限度とされており、突き出し長さをそれ以上とする場合には、大きなびびり振動が発生する。この対策の一つとして、超硬製のボーリングバーが使用されているが、その価格は、鋼製のボーリングバーの約3倍にも達する。
【0016】
しかるに、本発明によるAl-Fe合金材料をボーリングバーなどの切削工具用シャンクとして使用する場合には、その優れた制振特性の故に、高価な超硬製シャンクにも優って、被加工品の切削仕上げ面の精度を著しく向上させるるとともに、工具の摩耗をも減少させる。
本発明による制振合金材料は、さらに、階段、ドアなどの建築部材用材料;振動あるいは騒音が問題となる精密機器の構成材料などとしても有用である。
【0017】
【発明の効果】
本発明によれば、安価なAlを合金成分とする鉄系合金であって、振動減衰能に優れ、一般の機械構造用炭素鋼に匹敵する機械的性質を備えた制振合金材料を得ることができる。
【0018】
【実施例】
以下に実施例を示し、本発明の特徴とするところをより一層明確にする。
実施例1
FeとAl素材とを減圧条件下(0.01Pa)で溶解した後、鋳型に流し込んでAl含有率の異なる3種のFe-Al合金鋳塊を調製した。得られた鋳塊を圧延した後、機械加工により、2mm×10mm×60mmの短冊状板材を作製した。次いで、この短冊状板材を以下の条件下に焼き鈍し処理した後、冷却して、試験片を得た。
*冷却条件1:700℃で1時間保持した後、大気中自然冷却(冷却速度=200〜30 0℃/分)。
*冷却条件2:700℃で1時間保持した後、炉中冷却(冷却速度=20℃/分)。
*冷却条件3:850℃で1時間保持した後、炉中徐冷(冷却速度=5℃/分)。
【0019】
各試験片について、合金組成と焼き鈍し後の冷却条件とが結晶粒径に及ぼす影響を表1に示す。
【0020】
【表1】

Figure 0004238292
【0021】
また、上記の短冊状試験片の一端を片持ち式固有振動試験機に固定保持し、振動を与えた試験片の自然減衰から、その内部摩擦(振動減衰能)を求めた。合金組成と空冷条件とが内部摩擦に及ぼす影響を表2、3および4に示す。
【0022】
【表2】
Figure 0004238292
【0023】
【表3】
Figure 0004238292
【0024】
【表4】
Figure 0004238292
【0025】
実施例2
図1に示す様に、難加工性材料であるSUS304製のパイプ状被加工物を旋盤のチャックにより固定し、ボーリングバーの先端に取り付けた市販のスローアウェイチップ(K10種)により、パイプ表面を切削した。切削条件は、切り込み=0.1mm、送り=0.15mm/rev、切削速度=55m/分であった。なお、本発明の効果を確認するために、ボーリングバーの突き出し長さを100mm(直径の10倍)という過酷な条件に設定した。
【0026】
市販鋼製ボーリングバー、市販超硬製ボーリングバーおよび本発明によるボーリングバー(実施例1において、冷却条件3により徐冷したAl含有率8重量%の材料から調製した)をそれぞれ用いた場合の被加工物切削仕上げ面粗さを表5に示す。
【0027】
なお、ボーリングバーは、本来穴加工に用いられるものであるが、本実施例では、仕上げ面の粗さ測定を容易とするために、パイプ表面の切削工具のシャンクとして使用した。
【0028】
【表5】
Figure 0004238292
【0029】
また、上記3種のボーリングバーを使用して形成された被加工物切削仕上げ面の断面曲線をそれぞれ図2、3および4として示す。
【0030】
表5ならびに図2、3および4に示す結果から、本発明合金材料の優れた制振特性が明らかである。
実施例3
実施例1において、冷却条件3により徐冷した本発明Al-Fe合金材料3種の機械的特性を表6に示す。なお、参考のため、SS400材およびS45C材の機械的特性(JIS規格値)を併せて示す。
【0031】
【表6】
Figure 0004238292
【0032】
表6に示す結果から、本発明合金材料は、機械的特性においても優れていることが明らかである。
【図面の簡単な説明】
【図1】実施例2で行った切削試験を模式的に示す側面図である。
【図2】実施例2による切削試験において、市販の鋼製シャンクを使用して得られた被加工物切削仕上げ面の断面曲線である。
【図3】実施例2による切削試験において、市販の超硬製シャンクを使用して得られた被加工物切削仕上げ面の断面曲線である。
【図4】実施例2による切削試験において、本発明によるAl-Fe合金製製シャンクを使用して得られた被加工物切削仕上げ面の断面曲線である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration-damping or vibration-proof alloy material, a manufacturing method thereof, and a tool member using the same.
[0002]
[Prior art]
As a material for damping, a damping steel plate in which a resin layer is sandwiched between two carbon steel plates is most often used. However, this sandwich-type damping steel sheet is inferior in workability (weldability, formability, etc.) due to its structure, difficult to use at 100 ° C or higher, and compared with carbon steel for general mechanical structures. The use is remarkably limited due to the reason that the strength is considerably low. For this reason, there is a demand for the development of a vibration-damping alloy (vibration-proof alloy) that is composed of a single metal and has high versatility.
The vibration-damping alloy materials developed so far are based on the difference in vibration damping mechanism. (1) Composite type typified by cast iron, (2) Ferromagnetic type in which other alloy elements are blended with iron, ( There are four main types: 3) dislocation type and (4) twin type.
As typical examples of the ferromagnetic type damping alloy, 12Cr-2Al steel (Silentalo), 12Cr-2Al-3Mo steel (Gentaroy) and the like have been known for a long time. Although these alloys have a sufficient strength as a structural material, all of them contain a large amount of expensive chromium element, so that there is a practical problem that the material cost becomes high. Therefore, it has hardly been used since the advent of sandwich-type damping steel plates.
[0003]
[Problems to be solved by the invention]
Therefore, the main object of the present invention is to provide a damping alloy that uses an inexpensive alloy component, is excellent in vibration damping capability, and has mechanical properties comparable to general carbon steel for mechanical structures.
[0004]
[Means for Solving the Problems]
As a result of conducting research while paying attention to the problems of the prior art as described above, the present inventors have demonstrated that an Al-Fe alloy having a specific composition ratio and crystal grain size has an excellent effect as a vibration damping material. As a result, the present invention has been completed.
[0005]
That is, the present invention provides the following vibration damping alloy, a method for producing the same, and a tool member using the same:
1. An alloy material comprising an Al content of 6 to 10% by weight, the balance Fe and inevitable impurities ,
After the alloy having the above composition is plastically processed, the alloy is held at a temperature equal to or higher than the magnetic transformation point for 30 minutes to 2 hours, and then gradually cooled at a rate of 5 to 20 ° C./minute in the temperature range from the holding temperature to 600 ° C. And more
A damping alloy material having an average crystal grain size in the range of 300 to 700 μm.
2. An alloy composed of Al content of 6 to 10% by weight, the balance Fe and unavoidable impurities is plastically processed and then held at a temperature equal to or higher than the magnetic transformation point for 30 minutes to 2 hours, and then the temperature range from the holding temperature to 600 ° C. The method for producing a vibration damping alloy material, wherein the material is slowly cooled at a rate of 5 to 20 ° C./min .
3. A damping alloy material obtained by the manufacturing method according to Item 2.
4 . A cutting tool shank made of the vibration-damping alloy material according to Item 1 or 3 .
5 . A boring bar made of the vibration-damping alloy material according to Item 1 or 3 .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Since the Al—Fe damping alloy according to the present invention is a ferromagnetic material, it is presumed that the main vibration damping mechanism is due to the magnetic / mechanical hysteresis loss accompanying the irreversible movement of the domain wall. In general, the grain boundaries present in the metallographic structure of a polycrystalline material are considered to hinder the movement of the domain wall, so it is assumed that the larger the crystal grain size, the larger the magnetostriction and the higher the internal friction. Is done.
[0007]
The Al—Fe damping alloy according to the present invention has an Al content of 6 to 10% by weight, the balance being Fe and inevitable impurities (Si 0.1% by weight or less; Mn 0.1% by weight or less; other C, N , S, O, etc. 0.1% by weight or less). In addition, it is essential that the average grain size of the crystal is in the range of 300 to 700 μm.
[0008]
When the Al content is outside the range of 6 to 10% by weight, the internal friction becomes low. In order to sufficiently increase the internal friction, the Al content is more preferably 7 to 9% by weight.
[0009]
In the state of a metal structure in which the average grain size of crystals in the Al—Fe damping alloy is less than 300 μm, sufficient internal friction as a damping alloy cannot be obtained for the above reasons. Therefore, it is necessary to adjust the average grain size of the crystal to 300 μm or more by performing an annealing heat treatment at a temperature of 700 ° C. or higher after performing plastic working such as rolling on the alloy material. However, if the average grain size of the crystals exceeds 700 μm due to long-time heat treatment at a high temperature, the strength is remarkably lowered, so that the mechanical properties necessary as a structural material cannot be ensured. In the Al—Fe damping alloy according to the present invention, in order to further improve the damping performance, the average grain size of the crystal is more preferably 500 to 700 μm.
[0010]
The Al—Fe alloy material according to the present invention can be manufactured as follows.
[0011]
First, after melting Al and Fe materials, which have been adjusted in advance to a predetermined ratio of Al content in the desired alloy, under a reduced pressure of about 0.1 to 0.01 Pa in order to prevent intrusion of nitrogen and oxygen And poured into a mold to obtain an Al-Fe alloy ingot. Next, the obtained alloy ingot is finished into a predetermined product shape by plastic working such as rolling and forging and machining.
[0012]
Next, the obtained plastic working material is kept at a temperature of about 700 to 1000 ° C. for about 30 minutes to 2 hours, and then annealed. The temperature and time during the annealing treatment may be appropriately selected from the above range in consideration of the alloy composition, the plastic working conditions related to the product shape, and the like.
[0013]
Next, the cooling rate of the obtained annealed material in a temperature range from a predetermined holding temperature to 600 ° C. is usually 20 ° C./min or less (preferably 10 ° C./min or less, more preferably about 1 to 5 ° C./min). Slowly cool. In a temperature range below 600 ° C., natural cooling (cooling) may be performed.
[0014]
As described above, an internal strain caused by plastic working is removed, and an Al—Fe alloy material having an average crystal grain size of 300 to 700 μm is obtained. The average grain size of the crystal can be controlled by the temperature and time during annealing treatment, the slow cooling rate, etc., according to the alloy composition. For example, as shown in the examples below, the alloy material according to the present invention is held at 850 ° C. for 1 hour, and then gradually cooled at a cooling rate of 5 ° C./min in the temperature range of 850 to 600 ° C. A material of about 500 to 700 μm can be obtained. Since such a material has a large internal friction, its damping performance is further improved.
The vibration damping material according to the present invention is particularly useful as a tool material for cutting tool shanks, boring bars and the like.
[0015]
In typical cutting of metal products, boring bars (boring tools) used for drilling holes in workpieces are particularly narrow, so avoid chatter vibrations during cutting. I can't. This chatter vibration reduces the accuracy of the cutting surface and promotes wear of the cutting member (slow away tip) of the tool. Generally, the protruding length of the boring bar is limited to about 5 times the diameter, and when the protruding length is longer than that, a large chatter vibration occurs. As one of the countermeasures, cemented carbide boring bars are used, but the price is about three times that of steel boring bars.
[0016]
However, when the Al-Fe alloy material according to the present invention is used as a shank for a cutting tool such as a boring bar, it is superior to an expensive cemented carbide shank because of its excellent vibration damping characteristics. It significantly improves the accuracy of the finished surface and reduces tool wear.
The damping alloy material according to the present invention is further useful as a material for building members such as stairs and doors; a component material for precision equipment in which vibration or noise is a problem.
[0017]
【The invention's effect】
According to the present invention, a damping alloy material is obtained which is an iron-based alloy containing inexpensive Al as an alloy component, excellent in vibration damping capability, and having mechanical properties comparable to general carbon steel for mechanical structures. Can do.
[0018]
【Example】
Examples are shown below to further clarify the features of the present invention.
Example 1
Fe and Al materials were dissolved under reduced pressure conditions (0.01 Pa) and then poured into a mold to prepare three types of Fe-Al alloy ingots with different Al contents. After rolling the obtained ingot, a 2 mm × 10 mm × 60 mm strip-shaped plate was produced by machining. Next, the strip-shaped plate material was annealed under the following conditions, and then cooled to obtain a test piece.
* Cooling condition 1: After holding at 700 ° C. for 1 hour, natural cooling in the air (cooling rate = 200 to 300 ° C./min).
* Cooling condition 2: After holding at 700 ° C for 1 hour, cooling in the furnace (cooling rate = 20 ° C / min).
* Cooling condition 3: After holding at 850 ° C for 1 hour, gradually cool in furnace (cooling rate = 5 ° C / min).
[0019]
Table 1 shows the influence of the alloy composition and the cooling conditions after annealing on the crystal grain size for each test piece.
[0020]
[Table 1]
Figure 0004238292
[0021]
In addition, one end of the strip-shaped test piece was fixed and held in a cantilever type natural vibration tester, and the internal friction (vibration damping ability) was obtained from the natural damping of the test piece subjected to vibration. Tables 2, 3 and 4 show the effects of alloy composition and air cooling conditions on internal friction.
[0022]
[Table 2]
Figure 0004238292
[0023]
[Table 3]
Figure 0004238292
[0024]
[Table 4]
Figure 0004238292
[0025]
Example 2
As shown in Fig. 1, a pipe-like workpiece made of SUS304, which is a difficult-to-work material, is fixed by a lathe chuck, and the pipe surface is fixed by a commercially available throw-away tip (K10 type) attached to the tip of a boring bar. Cut. Cutting conditions were cutting = 0.1 mm, feed = 0.15 mm / rev, cutting speed = 55 m / min. In order to confirm the effect of the present invention, the projecting length of the boring bar was set to a severe condition of 100 mm (10 times the diameter).
[0026]
A commercial steel boring bar, a commercial carbide boring bar, and a boring bar according to the present invention (prepared from a material having an Al content of 8% by weight which was cooled slowly under cooling condition 3 in Example 1) were used. Table 5 shows the cut surface roughness of the workpiece.
[0027]
The boring bar is originally used for drilling, but in this example, it was used as a shank for a cutting tool on the pipe surface in order to facilitate the roughness measurement of the finished surface.
[0028]
[Table 5]
Figure 0004238292
[0029]
Moreover, the cross-sectional curves of the workpiece cutting finish surface formed using the three types of boring bars are shown in FIGS.
[0030]
From the results shown in Table 5 and FIGS. 2, 3 and 4, the excellent vibration damping characteristics of the alloy material of the present invention are apparent.
Example 3
Table 6 shows the mechanical characteristics of the three types of the Al—Fe alloy material of the present invention that were gradually cooled under the cooling condition 3 in Example 1. For reference, the mechanical properties (JIS standard values) of SS400 material and S45C material are also shown.
[0031]
[Table 6]
Figure 0004238292
[0032]
From the results shown in Table 6, it is clear that the alloy material of the present invention is also excellent in mechanical properties.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing a cutting test performed in Example 2. FIG.
2 is a cross-sectional curve of a workpiece cut finish surface obtained using a commercially available steel shank in a cutting test according to Example 2. FIG.
FIG. 3 is a cross-sectional curve of a workpiece cut finish surface obtained using a commercially available carbide shank in the cutting test according to Example 2.
4 is a cross-sectional curve of a workpiece cut finish surface obtained by using an Al—Fe alloy shank according to the present invention in a cutting test according to Example 2. FIG.

Claims (5)

Al含有量6〜10重量%、残部Feおよび不可避的不純物からなる合金材料であって、
前記組成の合金を塑性加工した後、磁気変態点以上の温度で30分〜2時間保持し、次いで同保持温度から600℃までの温度域において5〜20℃/分の速度で徐冷することより得られ、
平均結晶粒径が300〜700μmの範囲内にあること
を特徴とする制振合金材料。
An alloy material comprising an Al content of 6 to 10% by weight, the balance Fe and inevitable impurities ,
After the alloy having the above composition is plastically processed, the alloy is held at a temperature equal to or higher than the magnetic transformation point for 30 minutes to 2 hours, and then gradually cooled at a rate of 5 to 20 ° C./minute in the temperature range from the holding temperature to 600 ° C. And more
A damping alloy material having an average crystal grain size in the range of 300 to 700 μm.
Al含有量6〜10重量%、残部Feおよび不可避的不純物からなる合金を塑性加工した後、磁気変態点以上の温度で30分〜2時間保持し、次いで同保持温度から600℃までの温度域において5〜20℃/分の速度で徐冷することを特徴とする制振合金材料の製造方法。An alloy composed of Al content of 6 to 10% by weight, the balance Fe and unavoidable impurities is plastically processed and then held at a temperature equal to or higher than the magnetic transformation point for 30 minutes to 2 hours, and then the temperature range from the holding temperature to 600 ° C. The method for producing a vibration damping alloy material, wherein the material is slowly cooled at a rate of 5 to 20 ° C./min . 請求項2に記載の製造方法により得られる制振合金材料。A damping alloy material obtained by the manufacturing method according to claim 2. 請求項1またはに記載の制振合金材料からなる切削工具シャンク。Cutting tool shank made of damping alloy material according to claim 1 or 3. 請求項1またはに記載の制振合金材料からなるボーリングバー。Boring bar comprising a damping alloy material according to claim 1 or 3.
JP23122099A 1999-08-18 1999-08-18 Damping alloy material, manufacturing method thereof, and tool member using the same Expired - Lifetime JP4238292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23122099A JP4238292B2 (en) 1999-08-18 1999-08-18 Damping alloy material, manufacturing method thereof, and tool member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23122099A JP4238292B2 (en) 1999-08-18 1999-08-18 Damping alloy material, manufacturing method thereof, and tool member using the same

Publications (2)

Publication Number Publication Date
JP2001059139A JP2001059139A (en) 2001-03-06
JP4238292B2 true JP4238292B2 (en) 2009-03-18

Family

ID=16920212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23122099A Expired - Lifetime JP4238292B2 (en) 1999-08-18 1999-08-18 Damping alloy material, manufacturing method thereof, and tool member using the same

Country Status (1)

Country Link
JP (1) JP4238292B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212220A (en) * 2004-01-28 2005-08-11 Sanwa Packing Kogyo Co Ltd Damping material
KR20070106630A (en) * 2005-02-10 2007-11-02 요시히라 오칸다 Novel fe-al alloy and method for producing same
EP2336377B1 (en) * 2008-10-10 2015-12-16 Kabushiki Kaisha Toyota Jidoshokki Iron alloy, iron alloy member and manufacturing method therefor
JP2010014278A (en) * 2009-09-16 2010-01-21 Sanwa Packing Kogyo Co Ltd Shock absorber and metal cover
US11913097B2 (en) 2019-05-31 2024-02-27 Proterial, Ltd. Fe—Al-based alloy vibration-damping component and method for manufacturing same

Also Published As

Publication number Publication date
JP2001059139A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP5185613B2 (en) Novel Fe-Al alloy and method for producing the same
JPS61213348A (en) Alloy tool steel
JP5368885B2 (en) Machine structural steel with excellent hot workability and machinability
CA2936549A1 (en) Stainless steel and a cutting tool body made of the stainless steel
JP4238292B2 (en) Damping alloy material, manufacturing method thereof, and tool member using the same
JP2636816B2 (en) Alloy tool steel
US3663213A (en) Nickel-chromium-iron alloy
JP5618466B2 (en) High rigidity high damping capacity cast iron
JPH0555585B2 (en)
JP3730360B2 (en) High strength low thermal expansion alloy
JP2000336454A (en) BISMUTH (Bi)-SULFUR (S) FREE-CUTTING STEEL EXCELLENT IN HIGH TEMPERATURE DUCTILITY AND ITS PRODUCTION
JP5212847B2 (en) Damping cutting tool and manufacturing method thereof
JP3749922B2 (en) High strength and high damping capacity Fe-Cr-Mn-Co alloy and method for producing the same
Kishore Al 7075 Reinforced with WC metal matrix composites
JP6504807B2 (en) High Young's modulus low thermal expansion alloy for plastic working or casting and method for producing the same
JP2000063989A (en) Manufacture of super free cutting steel bar wire rod and super free cutting steel bar wire rod thereby
WO2024014484A1 (en) Low thermal expansion alloy
JP2590079B2 (en) Low expansion cast iron with excellent machinability
EP2896713B1 (en) Stainless steel and a cutting tool body made of the stainless steel
JP4512677B2 (en) Damping composite
JP4253101B2 (en) High vibration damping cast steel with excellent machinability and manufacturing method thereof
JP2007321243A (en) HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF
JP3017785B2 (en) Vibration-proof cast iron
BR112018076330B1 (en) STEEL FOR A TOOL HOLDER
RU2219252C2 (en) Method of manufacturing article from ferrite-class damping alloy and article manufactured by this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080808

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term