JP2007321243A - HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF - Google Patents

HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF Download PDF

Info

Publication number
JP2007321243A
JP2007321243A JP2006180399A JP2006180399A JP2007321243A JP 2007321243 A JP2007321243 A JP 2007321243A JP 2006180399 A JP2006180399 A JP 2006180399A JP 2006180399 A JP2006180399 A JP 2006180399A JP 2007321243 A JP2007321243 A JP 2007321243A
Authority
JP
Japan
Prior art keywords
less
alloy
weight
vibration
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006180399A
Other languages
Japanese (ja)
Inventor
Tadanobu Komai
忠信 小舞
Naohiro Igata
直弘 井形
Kazuya Miyahara
一哉 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TK TECHNO CONSULTING KK
Original Assignee
TK TECHNO CONSULTING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TK TECHNO CONSULTING KK filed Critical TK TECHNO CONSULTING KK
Priority to JP2006180399A priority Critical patent/JP2007321243A/en
Publication of JP2007321243A publication Critical patent/JP2007321243A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide alloy which has low manufacturing costs, assurable quality, high strength and high damping property, a manufacturing method therefor and a formed body thereof. <P>SOLUTION: The alloy which has composition consisting of, by weight, ≤0.05% carbon, 15 to <18% manganese, 9 to <15% chromium, 0.01 to <4% nickel, 0.01 to <0.05% aluminum, ≤0.01% nitrogen and the balance iron with inevitable impurities, is melted and cast. The resultant cast alloy is heated uniformly, hot worked, and further cold worked if necessary to be formed into a stock. Subsequently, solution heat treatment is applied at 800 to <1,000°C and further working is applied at 10 to 60% draft at ordinary temperature or at 50 to 200°C to allow an epsilon martensite phase of ≥10% to occur. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度高減衰能Fe−Mn−Cr−Ni合金、その製造方法及びその成形体に関するものである。  The present invention relates to a high-strength, high-damping capacity Fe—Mn—Cr—Ni alloy, a method for producing the same, and a molded body thereof.

従来から、自動車、精密機器、電子機器、医療機器の分野で、振動や騒音を軽減する機能をもつ材料の提供が求められている。これに応えるものとして振動減衰能のある材料として、鉛、鋳鉄、Mn−Cu合金、Mg−Zr合金、Mg−Ni合金、Al−Zn合金、Fe−Cr−Al合金、Ni−Ti合金、Cu−Al−Ni合金等が知られている。このような材料は、振動減衰能は優れているが、機械的性質が不良で特殊用途以外には使用が不可能であり、また高価な元素を多く含んでいるため合金材料の価格上昇となり工業的用途が極めて制限されていた。  Conventionally, in the fields of automobiles, precision equipment, electronic equipment, and medical equipment, provision of materials having a function of reducing vibration and noise has been demanded. In response to this, materials having vibration damping ability include lead, cast iron, Mn—Cu alloy, Mg—Zr alloy, Mg—Ni alloy, Al—Zn alloy, Fe—Cr—Al alloy, Ni—Ti alloy, Cu -Al-Ni alloys and the like are known. Such a material has excellent vibration damping capability, but its mechanical properties are poor and cannot be used for anything other than special applications, and it contains a lot of expensive elements, which increases the price of alloy materials. Application was extremely limited.

このような問題を解決するために、機械的強度が高く、振動減衰能を有する材料として、高強度高減衰能Fe−Cr−Mn合金及びその製造方法が開示されている。この特許には、Cr:9〜15重量%、Mn:18〜26重量%、Fe:残部鉄からなる素材を1000〜1150℃の温度で溶体化熱処理した後に冷却し、15〜80%の冷間加工を加えることによって40%以上のεマルテンサイト相を発現させることを特徴とする高強度高減衰能Fe−Cr−Mn合金及びその製造方法が開示されている。上記Fe−Cr−Mn合金は、組成的にステンレス鋼をベースとしたものであり、従って、その機械的性質はステンレス鋼とほぼ同等であり、かつ、その振動減衰能は鉛や鋳鉄並という、上記の問題点を解決する画期的な発明である(例えば、特許文献1参照)。  In order to solve such problems, a high-strength and high-damping capacity Fe—Cr—Mn alloy and a method for producing the same have been disclosed as materials having high mechanical strength and vibration damping capacity. In this patent, a material composed of Cr: 9 to 15% by weight, Mn: 18 to 26% by weight, Fe: balance iron is subjected to solution heat treatment at a temperature of 1000 to 1150 ° C. and then cooled to 15 to 80%. A high-strength, high-damping capacity Fe—Cr—Mn alloy and a method for producing the same have been disclosed, characterized in that an ε-martensite phase of 40% or more is developed by performing inter-working. The Fe—Cr—Mn alloy is compositionally based on stainless steel, and therefore its mechanical properties are almost the same as stainless steel, and its vibration damping capacity is comparable to lead or cast iron. This is an epoch-making invention that solves the above problems (see, for example, Patent Document 1).

また、マンガン10〜24重量%、不純物として、炭素0.2重量%以下、珪素0.4重量%以下、硫黄0.05重量%以下及びリン0.05重量%以下を含み、残りがFeから組成された溶湯を鋳造してインゴットをつくり、これを1000〜1300℃において12〜40時間均質化処理して熱間圧延を行い、900〜1100℃において30〜60分間さらに加熱して常温で空冷或いは水冷し、これを常温付近(25±50℃)において30%以下の圧延率で冷間加工することを特徴とするFe−Mn系振動減衰合金の製造方法が開示されている(例えば、特許文献2参照)。  Further, it contains 10 to 24% by weight of manganese, carbon as an impurity of 0.2% by weight or less, silicon of 0.4% by weight or less, sulfur of 0.05% by weight or less and phosphorus of 0.05% by weight or less, with the remainder being Fe. An ingot is produced by casting the molten metal composition, which is homogenized at 1000-1300 ° C. for 12-40 hours and hot-rolled, further heated at 900-1100 ° C. for 30-60 minutes, and air-cooled at room temperature. Alternatively, a method for producing an Fe—Mn vibration damping alloy is disclosed, which is water-cooled and cold-worked at a rolling rate of 30% or less near room temperature (25 ± 50 ° C.) (for example, a patent) Reference 2).

特許第3378565号公報Japanese Patent No. 3378565 特許第2637371号公報Japanese Patent No. 2637371

しかしながら、特許文献1によって開示された技術によれば、振動減衰能を発現する機構は、γ相内に生成したイプシロン・マルテンサイト相との間のγ/ε相間の相互作用によるものであるが、この作用に大きく影響を及ぼす不純物元素、特に、炭素及び窒素の規制方法が上記特許においては示されていないので、振動減衰能を表す損失係数(η)が製造毎或いは部位によって変動するという技術上及び品質保証上の問題が発生し、実用化のためにこの解決が求められている。  However, according to the technique disclosed in Patent Document 1, the mechanism for expressing the vibration damping ability is due to the interaction between the γ / ε phase with the epsilon-martensite phase generated in the γ phase. Since the method for regulating impurity elements, particularly carbon and nitrogen, which have a large effect on this action is not shown in the above-mentioned patent, the loss coefficient (η) representing the vibration damping ability varies depending on the production or part. The above and quality assurance problems occur, and this solution is required for practical use.

また、特許文献1によって開示された技術によれば、マンガン組成を18〜26重量%と主張しているが、この材料を溶製する場合、マンガン成分が蒸発し易いため添加するマンガン合金の歩留まりが悪く、かつマンガンは溶製時に用いられる耐火物の溶損を著しく増大させるという難点があるので、溶製コストが高くなるので上記の工業的用途が極めて制限せれている。また、本発明の高強度高減衰能Fe−Mn−Cr−Ni合金の主要な用途である電子機器、精密機器及び及び医療用機器としての材料は、従来のステンレス鋼並の耐錆性と非磁性が要請されているが、特許文献1の発明になるFe−Cr−Mn合金はこの点で不十分である。  Further, according to the technique disclosed in Patent Document 1, the manganese composition is claimed to be 18 to 26% by weight. However, when this material is melted, the manganese component is easily evaporated, so the yield of the manganese alloy to be added. However, manganese has the drawback of significantly increasing the melting loss of the refractory used at the time of smelting, which increases the cost of smelting, so that the industrial uses are extremely limited. In addition, the materials for electronic equipment, precision equipment, and medical equipment, which are the main applications of the high-strength, high-damping capacity Fe-Mn-Cr-Ni alloy of the present invention, have the same rust resistance and non-resistance as conventional stainless steel. Although magnetism is required, the Fe—Cr—Mn alloy according to the invention of Patent Document 1 is insufficient in this respect.

また、特許文献2によって開示されているFe−Mn系振動減衰合金は、原理的には特許文献1と同等であるが、耐錆性が著しく劣るので上記の何れの用途にも使用出来ない。  The Fe—Mn vibration damping alloy disclosed in Patent Document 2 is theoretically equivalent to that of Patent Document 1, but cannot be used for any of the above applications because of its extremely poor rust resistance.

更に、従来のボルト・ナット、切削工具支持体、ボールねじ、除振台、ハードディスクドライブ用サスペンション、ハニカム構造体、ばね、鋼球、自動車のオイル・タンク、エンジン・ガスケット及び排ガス浄化装置部材その他制振性部品等の成形体は、通常の鋼或いはステンレス鋼を加工して作られているので、材料自体の振動減衰能が極めて小さいので、対振動、対騒音及び制振に関わる機能の観点からは不十分である。  In addition, conventional bolts and nuts, cutting tool supports, ball screws, vibration isolation tables, hard disk drive suspensions, honeycomb structures, springs, steel balls, automobile oil tanks, engine gaskets, exhaust gas purification device components, and other controls Since molded bodies such as vibration parts are made by processing normal steel or stainless steel, the vibration damping capacity of the material itself is extremely small, so from the viewpoint of functions related to vibration, noise and vibration control. Is insufficient.

本発明が提供する高強度高減衰能Fe−Mn−Cr−Ni合金は、炭素0.05重量%以下、マンガン13重量%以上、18重量%未満、クロム9重量%以上、15重量%未満、ニッケル0.01重量%以上、6重量%未満、アルミニウム0.01重量%以上、0.05重量%未満、窒素0.01重量%以下、残部鉄及び不可避不純物からなり、イプシロン・マルテンサイト相が10%以上であることを特徴とするものである(以下、第1の発明という)。  The high-strength and high-damping capacity Fe-Mn-Cr-Ni alloy provided by the present invention is carbon 0.05 wt% or less, manganese 13 wt% or more, less than 18 wt%, chromium 9 wt% or more, less than 15 wt%, It consists of nickel 0.01 wt% or more, less than 6 wt%, aluminum 0.01 wt% or more, less than 0.05 wt%, nitrogen 0.01 wt% or less, the balance iron and inevitable impurities, and the epsilon martensite phase is It is characterized by being 10% or more (hereinafter referred to as the first invention).

更に、本発明が提供する高強度高減衰能Fe−Mn−Cr−Ni合金は、引張強度が700MPa以上、1200MPa以下、更に、JISG0602に定められた試験方法によって測定した損失係数(η)(以下、損失係数(η)という。)が0.005以上、0.10以下であることを特徴とするものである(以下、第2の発明という)。  Furthermore, the high-strength and high-damping capacity Fe—Mn—Cr—Ni alloy provided by the present invention has a tensile strength of 700 MPa or more and 1200 MPa or less, and a loss coefficient (η) (hereinafter referred to as “measured by the test method defined in JIS G0602”). The loss coefficient (η) is 0.005 or more and 0.10 or less (hereinafter referred to as the second invention).

また、本発明が提供する高強度高減衰能Fe−Mn−Cr−Ni合金の製造方法は、炭素0.05重量%以下、マンガン13重量%以上、18重量%未満、クロム9重量%以上、15重量%未満、ニッケル0.01重量%以上、6重量%未満、アルミニウム0.01重量%以上、0.05重量%未満、窒素0.01重量%以下、残部鉄及び不可避不純物からなる組成になるように溶製し、鋳造した素材を均質化熱処理した後、熱間加工を施し、さらに必要に応じ冷間加工を施し、これを800℃以上1000℃未満で加熱した後に水冷或いは空冷する溶体化熱処理を行い必要に応じて更に冷間加工を施すことを特徴とするものである(以下、第3の発明という)。  Further, the method for producing a high-strength and high-damping capacity Fe—Mn—Cr—Ni alloy provided by the present invention includes carbon 0.05 wt% or less, manganese 13 wt% or more, less than 18 wt%, chromium 9 wt% or more, Less than 15 wt%, nickel 0.01 wt% or more, less than 6 wt%, aluminum 0.01 wt% or more, less than 0.05 wt%, nitrogen 0.01 wt% or less, balance iron and inevitable impurities The melted and cast material is subjected to homogenization heat treatment, then subjected to hot working, further subjected to cold working as necessary, heated at 800 ° C. or more and less than 1000 ° C., and then cooled with water or air. The heat treatment is performed, and if necessary, further cold working is performed (hereinafter referred to as the third invention).

さらに、本発明が提供する高強度高減衰能Fe−Mn−Cr−Ni合金の製造方法は、前記溶体化熱処理後のFe−Mn−Cr−Ni素材を常温又は50℃以上200℃以下の温度で加工率10%以上、60%以下で加工を行うことを特徴とするものである(以下、第4の発明という)。  Furthermore, the method for producing a high-strength, high-damping capacity Fe—Mn—Cr—Ni alloy provided by the present invention is a method in which the Fe—Mn—Cr—Ni material after the solution heat treatment is treated at room temperature or a temperature of 50 ° C. or more and 200 ° C. or less. The processing is performed at a processing rate of 10% or more and 60% or less (hereinafter referred to as a fourth invention).

そして、本発明が提供する高強度高減衰能Fe−Mn−Cr−Ni合金の成形体は、第1又は第2の発明の高強度高減衰能Fe−Mn−Cr−Ni合金を、該合金の引張試験における0.2%耐力の10%以上、50%以下の振動応力下で使用するように加工してなるボルト・ナット、切削工具支持体、ボールねじ、除振台、ハードディスクドライブ用サスペンション、ハニカム構造体、ばね、鋼球、自動車のオイル・タンク、エンジン・ガスケット及び排ガス浄化装置部材や制振性部品等の成形体である(以下、第5の発明という)。  And the compact | molding | casting of the high intensity | strength high damping ability Fe-Mn-Cr-Ni alloy which this invention provides is made from the high strength, high damping ability Fe-Mn-Cr-Ni alloy of 1st or 2nd invention. Bolts and nuts, cutting tool supports, ball screws, vibration isolation tables, hard disk drive suspensions that are processed to be used under vibration stresses of 10% or more and 50% or less of 0.2% proof stress in tensile tests , Honeycomb structures, springs, steel balls, automobile oil tanks, engine gaskets, exhaust gas purification device members, vibration-damping parts, and the like (hereinafter referred to as fifth invention).

本発明が提供する第1又は第2の発明に係る高強度高減衰能Fe−Mn−Cr−Ni合金は、炭素0.05重量%以下、マンガン13重量%以上、18重量%未満、クロム9重量%以上、15重量%未満、ニッケル0.01重量%以上、6重量%未満、アルミニウム0.01重量%以上、0.05重量%未満、窒素0.01重量%以下、残部鉄及び不可避不純物からなり、イプシロン・マルテンサイト相が10%以上であることを特徴とする高強度高減衰能Fe−Mn−Cr−Ni合金であり、更に、引張強度が700MPa以上、1200MPa以下、損失係数(η)が0.005以上、0.10以下であるので、製造コストが安くかつ技術上及び品質保証上の問題が解決されており、かつ、ニッケル添加によって良好な耐錆性を有しかつ非磁性化されている。  The high-strength, high-damping capacity Fe—Mn—Cr—Ni alloy according to the first or second invention provided by the present invention is 0.05% by weight or less of carbon, 13% by weight or more of manganese and less than 18% by weight, chromium 9 % By weight or more, less than 15% by weight, nickel 0.01% by weight or more, less than 6% by weight, aluminum 0.01% by weight or more, less than 0.05% by weight, nitrogen 0.01% by weight or less, remaining iron and inevitable impurities A high-strength, high-damping capacity Fe-Mn-Cr-Ni alloy characterized by having an epsilon-martensite phase of 10% or more, and a tensile strength of 700 MPa or more and 1200 MPa or less, a loss factor (η ) Is 0.005 or more and 0.10 or less, the manufacturing cost is low, the technical and quality assurance problems are solved, and the nickel addition has good rust resistance and It is magnetized.

また、本発明が提供するの第3又は第4の発明に係るFe−Mn−Cr−Ni合金の製造方法では、マンガンが低く抑えられているので、溶製時に耐火物の溶損が少ないので製造コストが安くかつ炭素及び窒素の対策が取られているので損失係数(η)の製造毎の変動が少ないので技術上及び品質保証上の問題が解決されている。  Moreover, in the manufacturing method of the Fe-Mn-Cr-Ni alloy according to the third or fourth invention provided by the present invention, since manganese is kept low, there is little refractory refractory loss during melting. Since the manufacturing cost is low and measures against carbon and nitrogen are taken, the variation in loss factor (η) from manufacturing to manufacturing is small, so that technical and quality assurance problems are solved.

また、本発明が提供する第5の発明に係る該合金の引張試験における0.2%耐力の10%以上、50%以下の振動応力下で使用するように加工したボルト・ナット、切削工具支持体、ボールねじ、除振台、ハードディスクドライブ用サスペンション、ハニカム構造体、ばね、鋼球、自動車のオイル・タンク、エンジン・ガスケット及び排ガス浄化装置部材その他制振性部品等の成形体は、材料自体が高強度でかつ高い振動減衰能を有するので、対振動、対騒音、制振の観点から高機能である。  Also, a bolt / nut and cutting tool support machined to be used under a vibration stress of 10% to 50% of the 0.2% proof stress in the tensile test of the alloy according to the fifth invention provided by the present invention Bodies, ball screws, vibration isolation tables, hard disk drive suspensions, honeycomb structures, springs, steel balls, automobile oil tanks, engine gaskets, exhaust gas purification devices, and other vibration-damping parts Since it has high strength and high vibration damping capability, it is highly functional from the viewpoint of vibration resistance, noise resistance, and vibration control.

ここで、本発明の第1の発明において、炭素含有量を0.05重量%以下とするのは、振動減衰能を発現するγ/ε相間の相互作用に悪影響を及ぼす不純物元素、特に、炭素の上限を定めることによって振動減衰能の向上及び安定を計るためであり、炭素含有量が0.05重量%を越えると振動減衰能を示す損失係数(η)が低下しかつ不安定になるためである。また、炭素と同様の影響を及ぼす窒素については、鋼中の窒素量を0.01重量%以下にして、かつ、アルミニウム含有量を0.01重量%以上、0.05重量%以下とすることによって鋼中の窒素をAlNの大きい介在物の形にすることによって、溶解製造時に大気中より不可避的に混入する固溶窒素による振動減衰能を低下させる害を無くすためである。即ち、アルミニウム含有量が0.01重量%未満であると上記の鋼中窒素と結合するに必要なアルミニウム含有量が不足する場合がり、0.05重量%を越えると過剰のアルミニウムによって合金の表面や内部にAl系の欠陥が発生しやすくなるためである。また、鋼中の窒素が0.01重量%を越えると、これと結合するアルミニウム含有量が多く必要となるため、アルミニウムによるAl系の欠陥が増大するためである。Here, in the first invention of the present invention, the carbon content is set to 0.05% by weight or less because the impurity element that adversely affects the interaction between the γ / ε phases expressing the vibration damping ability, particularly carbon In order to improve and stabilize the vibration damping capacity by setting the upper limit of the value, if the carbon content exceeds 0.05% by weight, the loss coefficient (η) indicating the vibration damping capacity is lowered and becomes unstable. It is. For nitrogen, which has the same effect as carbon, the amount of nitrogen in steel is 0.01% by weight or less, and the aluminum content is 0.01% by weight or more and 0.05% by weight or less. This is to eliminate the harm of reducing the vibration damping ability due to solid solution nitrogen inevitably mixed in the atmosphere during melting production by making the nitrogen in the steel into the form of inclusions with a large AlN. That is, if the aluminum content is less than 0.01% by weight, the aluminum content necessary for bonding with nitrogen in the steel may be insufficient. If the aluminum content exceeds 0.05% by weight, the surface of the alloy is caused by excess aluminum. This is because Al 2 O 3 -based defects are likely to occur inside. Further, if the nitrogen content in the steel exceeds 0.01% by weight, a large amount of aluminum combined with this is required, so that Al 2 O 3 -based defects due to aluminum increase.

更に、本発明の第1の発明において、ニッケル含有量を0.01重量%以上、6重量%以下とすることによってマンガン含有量を13重量%以上、18重量%未満とすることにしたのは、これによって振動減衰能を発現するγ/ε相間の相互作用効果を維持しつつ、且つ、合金の溶製を容易にすることによって製造コストを低減することを目的にしている。即ち、本発明者らは鋼のオーステナイト安定させかつ制振性発現の効果作用をするニッケル成分とマンガン成分との相互関係を検討した結果、その指標としてA値=Mn(%)+Ni(%)の関係を見出し、このA値を用いて、耐火物の溶損による溶製コストを上げるマンガン成分の一部をニッケル成分に置換することを試みた。ニッケル含有量を0.01量%以上、6.00重量%以下とすることによってマンガン含有量を13重量%以上、18重量%未満とすることが出来ることを見出した。ここで、ニッケル含有量が0.01重量%未満の場合は上記の制振性発現の効果が不十分であり、また、6.0重量%を越えると製造コストを不必要に上げるので得策ではない。これによってマンガン含有量を13重量%以上、18重量%未満に低く限定することができる。  Furthermore, in the first invention of the present invention, the manganese content is set to 13 wt% or more and less than 18 wt% by setting the nickel content to 0.01 wt% or more and 6 wt% or less. Thus, it is intended to reduce the manufacturing cost by facilitating the melting of the alloy while maintaining the interaction effect between the γ / ε phases that express the vibration damping capability. That is, the present inventors have studied the interrelationship between the nickel component and the manganese component that stabilize the austenite of the steel and have the effect of exhibiting damping properties. As a result, A value = Mn (%) + Ni (%) Using this A value, an attempt was made to substitute a nickel component for a part of the manganese component that raises the melting cost due to the refractory melt. It has been found that the manganese content can be made 13 wt% or more and less than 18 wt% by setting the nickel content to 0.01 wt% or more and 6.00 wt% or less. Here, when the nickel content is less than 0.01% by weight, the above-mentioned effect of the vibration damping performance is insufficient, and when it exceeds 6.0% by weight, the production cost is unnecessarily increased. Absent. Accordingly, the manganese content can be limited to 13% by weight or more and less than 18% by weight.

さらに、本発明の第2の発明において、該高強度高減衰能Fe−Mn−Cr−Ni合金の引張強度が700MPa以上1200MPa以下及び損失係数(η)が0.005以上010以下としたのは、引張強度が700MPa未満、損失係数(η)が0.005未満であると、対振動、対騒音及び制振の観点から高機能な成形体を製造できないためであり、また、引張強度が1200MPa以下又は損失係数(η)が0.10以下としたのは、これ以上になると機械的性質が劣化するためである。  Furthermore, in the second invention of the present invention, the tensile strength of the high-strength, high-damping ability Fe—Mn—Cr—Ni alloy is 700 MPa to 1200 MPa and the loss factor (η) is 0.005 to 010. When the tensile strength is less than 700 MPa and the loss factor (η) is less than 0.005, a high-performance molded product cannot be produced from the viewpoint of vibration resistance, noise resistance and vibration suppression, and the tensile strength is 1200 MPa. The reason why the loss factor (η) is 0.10 or less is that the mechanical properties deteriorate when the loss coefficient (η) is 0.10 or less.

また、本発明の第3の発明において、溶体化熱処理温度を800℃以上1000℃未満にするのは、1000℃を越える溶体化熱処理を施すと結晶粒が異常に大きくなり、その後の冷間加工で表面割れが発生するので、熱処理温度を1000℃以下にすることが必須である。また、800℃未満であると固溶状態にならず溶体化熱処理が不十分となるためである。  Further, in the third invention of the present invention, the solution heat treatment temperature is set to 800 ° C. or more and less than 1000 ° C., when the solution heat treatment exceeding 1000 ° C. is performed, the crystal grains become abnormally large, and the subsequent cold working Therefore, it is essential to set the heat treatment temperature to 1000 ° C. or lower. Moreover, it is because it will not be in a solid solution state, but solution heat treatment will become inadequate when it is less than 800 degreeC.

さらに、本発明の第4の発明において、前記溶体化熱処理後のFe−Mn−Cr−Ni素材を常温又は50℃以上200℃以下の温度で加工率10%以上、60%以下で加工を行うのは、加工率10%未満では必要とする損失係数(η)が得られないためであり、また、60%を越えると機械的性質が劣化するためである。  Furthermore, in the fourth invention of the present invention, the Fe—Mn—Cr—Ni material after the solution heat treatment is processed at a processing rate of 10% or more and 60% or less at room temperature or a temperature of 50 ° C. or more and 200 ° C. or less. This is because the required loss factor (η) cannot be obtained if the processing rate is less than 10%, and the mechanical properties deteriorate if it exceeds 60%.

さらにまた、本発明の第5の発明において、該高強度高減衰能Fe−Mn−Cr−Ni合金を、ボルト・ナット、切削工具支持体、ボールねじ、除振台、ハードディスクドライブ用サスペンション、ハニカム構造体、ばね、鋼球、自動車のオイル・タンク、エンジン・ガスケット及び排ガス浄化装置部材その他制振性部品等の成形体に応用する時、該合金の引張試験における0.2%耐力の10%以上、50%以下の振動応力下で使用するようにしたのは、該合金の金属結晶組織のε/γ相界面が付与される振動応力に対して振動エネルギーの吸収を効率良く行わせるためである。即ち、10%以下では振動吸収が不十分であり、また、50%を超えると振動によって永久歪、所謂「へたり」となる恐れがあるためである。  Furthermore, in the fifth invention of the present invention, the high-strength, high-damping capacity Fe—Mn—Cr—Ni alloy is used as a bolt / nut, cutting tool support, ball screw, vibration isolation table, hard disk drive suspension, honeycomb. 10% of 0.2% proof stress in tensile test of the alloy when applied to molded bodies such as structures, springs, steel balls, automobile oil tanks, engine gaskets, exhaust gas purifying devices and other damping parts As mentioned above, the reason for using it under a vibration stress of 50% or less is to efficiently absorb vibration energy with respect to the vibration stress imparted with the ε / γ phase interface of the metal crystal structure of the alloy. is there. That is, if it is 10% or less, vibration absorption is insufficient, and if it exceeds 50%, there is a risk of permanent set, that is, so-called “sagging” due to vibration.

以下、本発明を実施例によって説明する。  Hereinafter, the present invention will be described by way of examples.

実施例1は、第1の発明の実施例である。
組成が本発明の範囲内である、炭素0.02重量%、マンガン17重量%、クロム12重量%、ニッケル3重量%、アルミニウム0.03重量%、窒素0.005重量%、残部鉄及び不可避不純物からなる組成を高周波溶解炉で溶解・鋳造し、5kgのインゴットを得た。得られたインゴットを表面切削加工した後、1100℃x1時間加熱処理した後、熱間圧延によって板厚5.0mmの板にした後に、酸洗によって表面の酸化層を除去した後に冷間圧延を行い1.0mmの板を得て後、900℃にて溶体化熱処理を行ったのち30%の冷間加工の振動減衰能を付与する処理を行い、これを本発明の実施例1−(1)とした。
Example 1 is an example of the first invention.
Composition is within the scope of the present invention 0.02% carbon, 17% manganese, 12% chromium, 3% nickel, 0.03% aluminum, 0.005% nitrogen, balance iron and inevitable The composition comprising impurities was melted and cast in a high frequency melting furnace to obtain a 5 kg ingot. After surface cutting of the obtained ingot, heat treatment at 1100 ° C. for 1 hour, forming a plate with a thickness of 5.0 mm by hot rolling, removing the oxide layer on the surface by pickling, and then cold rolling After obtaining a 1.0 mm plate, a solution heat treatment was performed at 900 ° C., and then a treatment for imparting 30% cold work vibration damping capability was performed, and this was treated as Example 1- (1) of the present invention. ).

更に、組成が本発明の範囲内である、炭素0.02重量%、マンガン13.5重量%、クロム12重量%、ニッケル5.5重量%、アルミニウム0.03重量%、窒素0.005重量%、残部鉄残部鉄及び不可避不純物からなる組成を高周波溶解炉で溶解・鋳造し、5kgのインゴットを得た。得られたインゴットを表面切削加工した後、1100℃x1時間加熱処理した後、熱間圧延によって板厚5.0mmの板にした後に、酸洗によって表面の酸化層を除去した後に冷間圧延を行い1.0mmの板を得て後、900℃にて溶体化熱処理を行ったのち30%の冷間加工の振動減衰能を付与する処理を行い、これを本発明の実施例1−(2)とした。  Further, the composition is within the scope of the present invention, 0.02% carbon, 13.5% manganese, 12% chromium, 5.5% nickel, 0.03% aluminum, 0.005% nitrogen. %, The remaining iron and the composition consisting of the remaining iron and inevitable impurities were melted and cast in a high-frequency melting furnace to obtain a 5 kg ingot. After surface cutting of the obtained ingot, heat treatment at 1100 ° C. for 1 hour, forming a plate with a thickness of 5.0 mm by hot rolling, removing the oxide layer on the surface by pickling, and then cold rolling After obtaining a 1.0 mm plate, solution heat treatment was performed at 900 ° C., and then a treatment for imparting 30% cold work vibration damping capability was performed, and this was performed as Example 1- (2) of the present invention. ).

比較例1Comparative Example 1

比較例1として、炭素0.06重量%、マンガン17重量%、クロム12重量%、ニッケル3重量%、アルミニウム0.03重量%、窒素0.005重量%、残部鉄残部鉄及び不可避不純物からなる合金を高周波溶解炉で溶解・鋳造し、5kgのインゴットを得た。得られたインゴットを表面切削加工した後、1100℃x1時間加熱処理し熱間圧延によって板厚5.0mmにした後に、酸洗によって表面の酸化層を除去した後に冷間圧延を行い1.0mmの板を得て後、900℃にて溶体化熱処理を行った後、30%の冷間加工の振動減衰能を付与する処理を行い、これを比較例1とした。  As Comparative Example 1, it is composed of carbon 0.06% by weight, manganese 17% by weight, chromium 12% by weight, nickel 3% by weight, aluminum 0.03% by weight, nitrogen 0.005% by weight, the remaining iron, iron and inevitable impurities. The alloy was melted and cast in a high-frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was subjected to surface cutting and then heat-treated at 1100 ° C. for 1 hour to obtain a plate thickness of 5.0 mm by hot rolling, and then the surface oxide layer was removed by pickling, followed by cold rolling and 1.0 mm. After obtaining the plate, solution heat treatment was performed at 900 ° C., and then a treatment for imparting 30% cold work vibration damping capability was performed.

比較例2Comparative Example 2

比較例2として、炭素0.02重量%、マンガン17重量%、クロム12重量%、ニッケル3重量%、アルミニウム0.005重量%、窒素0.010重量%、残部鉄残部鉄及び不可避不純物からなる合金を高周波溶解炉で溶解・製造し、5kgのインゴットを得た。得られたインゴットを表面切削加工した後、1100℃x1時間加熱処理し熱間圧延によって板厚5.0mmにした後に、酸洗によって表面の酸化層を除去した後に冷間圧延を行い1.0mmの板を得て後、900℃にて溶体化熱処理を行った後、30%の冷間加工の振動減衰能を付与する処理を行い、これを比較例2とした。  As Comparative Example 2, 0.02 wt% carbon, 17 wt% manganese, 12 wt% chromium, 3 wt% nickel, 0.005 wt% aluminum, 0.010 wt% nitrogen, the remaining iron balance iron, and inevitable impurities. The alloy was melted and manufactured in a high-frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was subjected to surface cutting and then heat-treated at 1100 ° C. for 1 hour to obtain a plate thickness of 5.0 mm by hot rolling, and then the surface oxide layer was removed by pickling, followed by cold rolling and 1.0 mm. After obtaining the plate, solution heat treatment was performed at 900 ° C., and then a treatment for imparting 30% cold work vibration damping capability was performed.

比較例3Comparative Example 3

比較例3として、炭素0.06重量%、マンガン22重量%、クロム12重量%、ニッケル0.01重量%、アルミニウム0.005重量%、窒素0.010重量%、残部鉄残部鉄及び不可避不純物からなる合金を高周波溶解炉で溶解製造し、5kgのインゴットを得た。得られたインゴットを表面切削加工した後、1100℃x1時間加熱処理し熱間圧延によって板厚5.0mmにした後に、酸洗によって表面の酸化層を除去した後に冷間圧延を行い1.0mmの板を得て後、1050℃にて溶体化熱処理を行った後、30%の冷間加工の振動減衰能を付与する処理を行い、これを比較例3とした。  As Comparative Example 3, 0.06% by weight of carbon, 22% by weight of manganese, 12% by weight of chromium, 0.01% by weight of nickel, 0.005% by weight of aluminum, 0.010% by weight of nitrogen, the remaining iron, iron and inevitable impurities An alloy consisting of the above was melted and produced in a high frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was subjected to surface cutting and then heat-treated at 1100 ° C. for 1 hour to obtain a plate thickness of 5.0 mm by hot rolling, and then the surface oxide layer was removed by pickling, followed by cold rolling and 1.0 mm. Thereafter, a solution heat treatment was performed at 1050 ° C., and then a treatment for imparting 30% cold work vibration damping capability was performed.

比較例4Comparative Example 4

比較例4として、炭素0.02重量%、マンガン17重量%、クロム0.01重量%、ニッケル0.01量%、アルミニウム0.001重量%、窒素0.010重量%、残部鉄残部鉄及び不可避不純物からなる合金を高周波溶解炉で溶解製造し、5kgのインゴットを得た。得られたインゴットを表面切削加工した後、1100℃x1時間加熱処理し熱間圧延によって板厚5.0mmにした後に、酸洗によって表面の酸化層を除去した後に冷間圧延を行い1.0mmの板を得て後、1050℃にて溶体化熱処理を行った後、15%の冷間加工の振動減衰能を付与する処理を行い、これを比較例4とした。  As Comparative Example 4, carbon 0.02 wt%, manganese 17 wt%, chromium 0.01 wt%, nickel 0.01 wt%, aluminum 0.001 wt%, nitrogen 0.010 wt%, balance iron balance iron and An alloy composed of inevitable impurities was melted and manufactured in a high-frequency melting furnace to obtain a 5 kg ingot. The obtained ingot was subjected to surface cutting and then heat-treated at 1100 ° C. for 1 hour to obtain a plate thickness of 5.0 mm by hot rolling, and then the surface oxide layer was removed by pickling, followed by cold rolling and 1.0 mm. Thereafter, a solution heat treatment was performed at 1050 ° C., and then a treatment for imparting a vibration damping capacity of 15% cold work was performed.

比較例5Comparative Example 5

また、比較例5として、実施例と同板厚である市販のSUS304の板を用いた。As Comparative Example 5, a commercially available SUS304 plate having the same thickness as that of the example was used.

表1.に各々の供試材の組成を示す。
さらに、本発明例1−(1)及び1−(2)、比較材1、2、3、4及び5より試験片を採取して、振動減衰能を示す損失係数(η)を測定した結果を表2に示す。本発明材は良好な損失係数(η)を示す。これに対して、比較材1、2、3及び4は、圧延及び冷間加工のプロセスは同じであるが、損失係数(η)は大幅に低く、かつ、部位によりバラツキがある。比較材5は、当然のことながら市販品SUS304なので振動減衰能は極めて低い。これは、比較材1の場合、炭素含有量が0.06%と過大なためによるものである。また、比較材2の場合は、鋼の精錬過程で不可避的に混入溶解した固溶N(0.010重量%)がアルミニウムによって固定されていない為にγ/ε相間の振動減衰能効果を阻害しているものと考えられる。これに対して、本発明材は、全ての窒素(0.010重量%)はアルミニウムによってAlNの大型の介在物となっているために、固溶窒素の害は無くなっている。また、比較材3の場合は、比較材2と同様に、固溶窒素がγ/ε相間の振動減衰能を阻害しているものと考えられる。以上の実施例は、本発明が、振動減衰能の安定に効果を発揮していることを示している。

Figure 2007321243
Figure 2007321243
Table 1. Shows the composition of each specimen.
Furthermore, the result of having measured the loss coefficient ((eta)) which shows a vibration damping ability, extract | collecting a test piece from this invention example 1- (1) and 1- (2), comparative materials 1, 2, 3, 4 and 5 Is shown in Table 2. The material of the present invention exhibits a good loss factor (η). On the other hand, the comparative materials 1, 2, 3 and 4 have the same rolling and cold working processes, but the loss factor (η) is significantly low and varies depending on the part. Since the comparative material 5 is a commercial product SUS304 as a matter of course, the vibration damping capability is extremely low. This is because, in the case of the comparative material 1, the carbon content is excessively 0.06%. Moreover, in the case of the comparative material 2, since the solid solution N (0.010 wt%) inevitably mixed and dissolved in the steel refining process is not fixed by aluminum, the vibration damping effect between the γ / ε phases is hindered. It is thought that. On the other hand, since all the nitrogen (0.010% by weight) of the material of the present invention is a large inclusion of AlN due to aluminum, the damage of solute nitrogen is eliminated. Further, in the case of the comparative material 3, similarly to the comparative material 2, it is considered that solute nitrogen inhibits the vibration damping ability between the γ / ε phases. The above examples show that the present invention is effective in stabilizing the vibration damping capability.
Figure 2007321243
Figure 2007321243

実施例2は、第2の発明の実施例である。  Example 2 is an example of the second invention.

次に、実施例1で作成した材料から試験片を採取して、損失係数(η)以外の材料特性、即ち、引張り試験値、硬さ、耐錆性(塩水噴霧試験)、磁性を測定した結果を、表3.に示す。比較材3(特許文献1)は、高強度であるが、耐錆性で劣っている。また、比較材4(特許文献2)は塩水噴霧試験が極めて劣悪なので、上記の応用部品の何れにも使用出来ない。これらと比較して、本発明材は、良好なSUS304並の耐錆性を有しかつ非磁性であり、上記産業分野に好適に受け入れられ易い。

Figure 2007321243
Next, a test piece was collected from the material prepared in Example 1, and material properties other than the loss factor (η), that is, tensile test value, hardness, rust resistance (salt spray test), and magnetism were measured. The results are shown in Table 3. Shown in Although the comparative material 3 (patent document 1) is high intensity | strength, it is inferior in rust resistance. Moreover, since the comparative material 4 (patent document 2) is extremely inferior in the salt spray test, it cannot be used for any of the above application parts. Compared with these, the material of the present invention has good SUS304-like rust resistance and is nonmagnetic, and is easily accepted in the industrial field.
Figure 2007321243

実施例3は、第3の発明の実施例である。  Example 3 is an example of the third invention.

組成が本発明の範囲内である、炭素0.02重量%、マンガン17重量%、クロム12重量%、ニッケル3重量%、アルミニウム0.03重量%、窒素0.005重量%、残部鉄残部鉄及び不可避不純物からなる組成を高周波溶解炉で溶解・鋳造し、5kgのインゴットを得た。得られたインゴットを表面切削加工した後、1100℃x1時間加熱処理した後、熱間圧延によって板厚5.0mmの板にした後に、酸洗によって表面の酸化層を除去した後に冷間圧延を行い1.0mmの板を得て後、700℃、800℃、900℃、1000℃及び1100℃にて溶体化熱処理を行ったのち30%の冷間加工の振動減衰能を付与する処理を行いこれを本発明の実施例3とした。  Composition within the scope of the present invention: carbon 0.02 wt%, manganese 17 wt%, chromium 12 wt%, nickel 3 wt%, aluminum 0.03% wt, nitrogen 0.005 wt%, balance iron balance iron And the composition which consists of an unavoidable impurity was melt | dissolved and casted with the high frequency melting furnace, and 5 kg of ingots were obtained. After surface cutting of the obtained ingot, heat treatment at 1100 ° C. for 1 hour, forming a plate with a thickness of 5.0 mm by hot rolling, removing the oxide layer on the surface by pickling, and then cold rolling After obtaining a 1.0 mm plate, solution heat treatment is performed at 700 ° C., 800 ° C., 900 ° C., 1000 ° C., and 1100 ° C., and then a treatment for imparting 30% cold work vibration damping capability is performed. This was designated as Example 3 of the present invention.

表4、に溶体化熱処理温度別に処理後の結晶粒径及び30%の冷間加工後の表面状況を示す。溶体化熱処理温度が、1000℃以上の場合、処理後の結晶粒径が10μm以上と異常に大きくなり、その結果として、冷間加工後に表面に割れが発生してその後の使用に耐えない状態になる。

Figure 2007321243
Table 4 shows the crystal grain size after treatment and the surface condition after 30% cold working according to the solution heat treatment temperature. When the solution heat treatment temperature is 1000 ° C. or higher, the crystal grain size after the treatment is abnormally large as 10 μm or more, and as a result, the surface is cracked after cold working and cannot be used thereafter. Become.
Figure 2007321243

実施例4は、第4の発明の実施例である。  Example 4 is an example of the fourth invention.

更に、本発明になるFe−Mn−Cr−Ni合金について、冷間加工率と損失係数(η)、引張強さ及び伸び値との関係を実験によって求めた。即ち、本発明になるFe−Mn−Cr−Ni合金に5、10、20、30、50、60及び70%の冷間加工を施し、損失係数(η)、引張強さ及び伸び値を測定した。その結果を表5に示す。これによると、5%の冷間加工率では、損失係数(η)及び引張強さともに不十分である。10〜60%の冷間加工率では、損失係数(η)、引張強さ及び伸び値ともに良好である。70%の冷間加工率では、伸び値が極めて悪くもはや材料としての延性を失っている。即ち、本発明になるFe−Mn−Cr−Ni合金は、冷間加工率とともに損失係数(η)、引張強さが共に向上するという優れた材料特性を有することが明らかである。そして、用途に応じて最適の冷間加工率を選択することができる。

Figure 2007321243
Furthermore, regarding the Fe—Mn—Cr—Ni alloy according to the present invention, the relationship between the cold work rate, the loss factor (η), the tensile strength, and the elongation value was obtained by experiments. That is, the Fe—Mn—Cr—Ni alloy according to the present invention was subjected to cold working of 5, 10, 20, 30, 50, 60 and 70%, and the loss factor (η), tensile strength and elongation value were measured. did. The results are shown in Table 5. According to this, at a cold work rate of 5%, both the loss factor (η) and the tensile strength are insufficient. At a cold work rate of 10 to 60%, the loss factor (η), tensile strength and elongation value are all good. At a cold working rate of 70%, the elongation value is extremely poor and the ductility as a material is lost. That is, it is clear that the Fe—Mn—Cr—Ni alloy according to the present invention has excellent material properties that both the loss factor (η) and the tensile strength are improved together with the cold work rate. And the optimal cold work rate can be selected according to a use.
Figure 2007321243

実施例5は、第5の発明の実施例である。  Example 5 is an example of the fifth invention.

本発明になるFe−Mn−Cr−Ni合金を、その高強度高減衰能の材料特性を生かして、該合金の引張試験における0.2%耐力の10%以上、50%以下の振動応力下で使用するように加工してなる応用例を表5.に示す。即ち、ボルト・ナットに適用した結果、ボルト・ナット自体が振動を吸収するので、緩みにくいという特徴が確認された。また、バイト・シャンクに適用した場合、それ自体が切削加工に起因する振動を吸収して刃先がびびらないので、切削効率が向上することが確認された。更に、ボールねじの振動を吸収する部分に適用することによって、従来品より優れた高速静音ボールねじが実現した。更に、精密機器の除振台やハニカム定盤に適用した場合には、広域振動周波数を吸収する精密機器の除振用として有効であることが確認された。更にまた、HDD用サスペンションに適用した場合、材料自体が振動を吸収するので軽量にすることができ、読取・書込み精度が向上し、HDDの回転速度が揚げられ、ユニットとしての容量が大幅に向上した。ばねに適用した場合、材料自体が振動を吸収するので、速く振動が納まるので、機能が向上することが分かった。また、鋼球に適用した場合、材料自体が振動を吸収するので低騒音のベアリング用鋼球が製造できることが分かった。また、自動車のオイル・タンクに適用すると発生する振動音を大幅に軽減できることが判明した。さらに、自動車エンジン・ガスケットに適用すると高温でのガス・シール性が飛躍的に向上した。また、排ガス浄化装置部材すると排ガス浄化装置の振動が著しく緩和された。
以上のように、本発明によるFe−Mn−Cr−Ni合金は、様々な分野に好適に応用されることが確認できた.

Figure 2007321243
The Fe—Mn—Cr—Ni alloy according to the present invention is subjected to vibration stress of 10% or more and 50% or less of 0.2% proof stress in the tensile test of the alloy by taking advantage of the material properties of high strength and high damping capacity. Table 5 shows an example of application that is processed to be used in Table 5. Shown in That is, as a result of application to bolts and nuts, it was confirmed that the bolts and nuts themselves absorb vibrations, so that they are difficult to loosen. In addition, when applied to a bite shank, it has been confirmed that the cutting efficiency is improved because the cutting edge itself absorbs vibration caused by cutting and the blade edge does not sway. Furthermore, by applying it to the part that absorbs the vibration of the ball screw, a high-speed silent ball screw superior to the conventional product has been realized. Furthermore, when applied to a vibration isolator for a precision instrument or a honeycomb surface plate, it was confirmed that the instrument is effective for vibration isolation of a precision instrument that absorbs a wide range of vibration frequencies. Furthermore, when applied to HDD suspensions, the material itself absorbs vibration, making it lighter, improving read / write accuracy, increasing the rotational speed of the HDD, and greatly improving the unit capacity. did. It was found that when applied to a spring, the material itself absorbs vibration, so that the vibration is quickly settled and the function is improved. In addition, when applied to steel balls, the material itself absorbs vibration, and it was found that low-noise steel balls for bearings can be manufactured. It was also found that the vibration noise generated when applied to an automobile oil tank can be greatly reduced. Furthermore, when applied to automobile engine gaskets, the gas sealing performance at high temperatures has been dramatically improved. Further, when the exhaust gas purification device member is used, the vibration of the exhaust gas purification device is remarkably reduced.
As described above, it was confirmed that the Fe—Mn—Cr—Ni alloy according to the present invention was suitably applied to various fields.
Figure 2007321243

以上の記述より明らかなように、本発明によるFe−Mn−Cr−Ni合金は、高強度、高い振動減衰能を有しているだけでなく、製造プロセスが安定しているので材料の品質保証が容易であり、更に、材料強度、耐錆性、磁性の点で良好な特性を有している。従って、本発明によるFe−Mn−Cr−Ni合金の具体的用途としては、良好な振動減衰能を有するという特性を生かして、緩みにくいボルト・ナット、切削効率の上がるびびらないバイト・シャンク、高速静音ボールねじ、広域周波数の振動を吸収する精密機器用除振台、シーク精度の良いハードディスクドライブ用サスペンション、振動吸収効率のよいハニカム定盤、速く振動が納まるばね及び低騒音のベアリング用鋼球及び自動車のオイルパン、エンジン・ガスケット、排ガス浄化装置部材その他制振性部品等に好適に利用される。  As is clear from the above description, the Fe—Mn—Cr—Ni alloy according to the present invention not only has high strength and high vibration damping capability, but also has a stable manufacturing process, so that the quality of the material is guaranteed. In addition, it has good characteristics in terms of material strength, rust resistance, and magnetism. Therefore, specific applications of the Fe-Mn-Cr-Ni alloy according to the present invention include bolts and nuts that are less likely to loosen due to the characteristics of having good vibration damping ability, bites and shanks that do not flicker, and high speed. Silent ball screw, anti-vibration table for precision equipment that absorbs vibrations in a wide frequency range, hard disk drive suspension with good seek accuracy, honeycomb surface plate with good vibration absorption efficiency, springs that can quickly absorb vibrations, and steel balls for low noise bearings and It is suitably used for automobile oil pans, engines / gaskets, exhaust gas purification device members, and other damping parts.

高強度高振動減衰能のあるFe−Mn−Cr−Ni合金の製造プロセスを示す。The manufacturing process of the Fe-Mn-Cr-Ni alloy with high strength and high vibration damping ability is shown.

Claims (5)

炭素0.05重量%以下、マンガン13重量%以上、18重量%未満、クロム9重量%以上、15重量%未満、ニッケル0.01重量%以上、6重量%未満、アルミニウム0.01重量%以上、0.05重量%未満、窒素0.01重量%以下、残部鉄及び不可避不純物からなり、イプシロン・マルテンサイト相が10%以上であることを特徴とする高強度高減衰能Fe−Mn−Cr−Ni合金。  Carbon 0.05 wt% or less, manganese 13 wt% or more, less than 18 wt%, chromium 9 wt% or more, less than 15 wt%, nickel 0.01 wt% or more, less than 6 wt%, aluminum 0.01 wt% or more Fe-Mn-Cr with high strength and high damping capacity, comprising less than 0.05% by weight, 0.01% by weight or less of nitrogen, balance iron and inevitable impurities, and having an epsilon-martensite phase of 10% or more -Ni alloy. 引張強度が700MPa以上、1200MPa以下、損失係数(η)が0.005以上、0.10以下であることを特徴とする請求項1記載の高強度高減衰能Fe−Mn−Cr−Ni合金。  The high strength and high damping capacity Fe-Mn-Cr-Ni alloy according to claim 1, wherein the tensile strength is 700 MPa or more and 1200 MPa or less, and the loss coefficient (η) is 0.005 or more and 0.10 or less. 炭素0.05重量%以下、マンガン13重量%以上、18重量%未満、クロム9重量%以上、15重量%未満、ニッケル0.01重量%以上、6重量%未満、アルミニウム0.01重量%以上、0.05重量%未満、窒素0.01重量%以下、残部鉄及び不可避不純物からなる組成になるように溶製し、鋳造した素材を均質化熱処理した後、熱間加工を施し、さらに必要に応じ冷間加工を施し、これを800℃以上1000℃未満で加熱した後に水冷或いは空冷して溶体化熱処理を行い、必要に応じて更に冷間加工を施すことを特徴とする請求項1又は2記載の高強度高減衰能Fe−Mn−Cr−Ni合金の製造方法。  Carbon 0.05 wt% or less, manganese 13 wt% or more, less than 18 wt%, chromium 9 wt% or more, less than 15 wt%, nickel 0.01 wt% or more, less than 6 wt%, aluminum 0.01 wt% or more , Less than 0.05% by weight, nitrogen 0.01% by weight or less, melted to a composition consisting of the balance iron and unavoidable impurities, homogenized heat treatment of the cast material, followed by hot working, and further required Or cold-working according to the above, heated at 800 ° C. or more and less than 1000 ° C., then water-cooled or air-cooled to perform solution heat treatment, and further cold-worked as necessary. 2. A method for producing a high-strength, high-damping capacity Fe—Mn—Cr—Ni alloy according to 2. 前記溶体化熱処理後のFe−Mn−Cr−Ni素材を常温又は50℃以上200℃以下の温度で加工率10%以上、60%以下で加工を行うことを特徴とする請求項3記載の高強度高減衰能Fe−Mn−Cr−Ni合金の製造方法。  4. The high processing according to claim 3, wherein the Fe—Mn—Cr—Ni material after the solution heat treatment is processed at a processing rate of 10% or more and 60% or less at a normal temperature or a temperature of 50 ° C. or more and 200 ° C. or less. A method for producing a high-damping capacity Fe-Mn-Cr-Ni alloy. 請求項1または2記載の高強度高減衰能Fe−Mn−Cr−Ni合金を、該合金の引張試験における0.2%耐力の10%以上、50%以下の振動応力下で使用するように加工してなるボルト・ナット、切削工具支持体、ボールねじ、除振台、ハードディスクドライブ用サスペンション、ハニカム構造体、ばね、鋼球、自動車のオイル・タンク、エンジン・ガスケット及び排ガス浄化装置部材その他制振部品等の高強度高減衰能Fe−Mn−Cr−Ni合金の成形体。  The high strength and high damping capacity Fe-Mn-Cr-Ni alloy according to claim 1 or 2 is used under a vibration stress of 10% or more and 50% or less of 0.2% proof stress in a tensile test of the alloy. Processed bolts and nuts, cutting tool supports, ball screws, vibration isolation tables, hard disk drive suspensions, honeycomb structures, springs, steel balls, automobile oil tanks, engine gaskets, exhaust gas purification device components, etc. High strength and high damping capacity Fe-Mn-Cr-Ni alloy compacts such as vibration parts.
JP2006180399A 2006-06-05 2006-06-05 HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF Pending JP2007321243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180399A JP2007321243A (en) 2006-06-05 2006-06-05 HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180399A JP2007321243A (en) 2006-06-05 2006-06-05 HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF

Publications (1)

Publication Number Publication Date
JP2007321243A true JP2007321243A (en) 2007-12-13

Family

ID=38854311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180399A Pending JP2007321243A (en) 2006-06-05 2006-06-05 HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF

Country Status (1)

Country Link
JP (1) JP2007321243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418577A (en) * 2022-08-30 2022-12-02 鞍钢集团北京研究院有限公司 Seawater corrosion resistant high-strength high-toughness damping alloy and preparation method thereof
JP7388337B2 (en) 2020-10-28 2023-11-29 Jfeスチール株式会社 Damping alloy and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388337B2 (en) 2020-10-28 2023-11-29 Jfeスチール株式会社 Damping alloy and its manufacturing method
CN115418577A (en) * 2022-08-30 2022-12-02 鞍钢集团北京研究院有限公司 Seawater corrosion resistant high-strength high-toughness damping alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2009151031A1 (en) α-β TYPE TITANIUM ALLOY
JP4187018B2 (en) Cast aluminum alloy with excellent relaxation resistance and heat treatment method
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
KR20090043555A (en) Steel plate for producing light structures and method for producing said plate
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP2005320570A (en) alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY
JP4714801B2 (en) Low specific gravity forging steel with excellent machinability
JP4185247B2 (en) Aluminum-based alloy and heat treatment method thereof
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
CN112941414A (en) High-strength and high-toughness stainless steel for clockwork spring and preparation method thereof
CN110218917B (en) Alloy aluminum bar containing rare earth elements and preparation process thereof
JP2012184505A (en) Aluminum alloy hollow shaped member excellent in fatigue strength and method for manufacturing the same, and swing arm for motorcycle
JP4687983B2 (en) Method for producing Mn-Cu vibration damping alloy
JP2010090472A (en) Vibration-damping stainless steel, method for producing the same and molded product thereof
JP2007321243A (en) HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF
JP5210874B2 (en) Cold workable titanium alloy
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP3749922B2 (en) High strength and high damping capacity Fe-Cr-Mn-Co alloy and method for producing the same
JP6587533B2 (en) Aluminum alloy extruded material for cutting with excellent fatigue strength characteristics and method for producing the same
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP3274175B2 (en) Copper base alloy for heat exchanger and method for producing the same
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP2005154850A (en) High strength beta-type titanium alloy