JP4238119B2 - Method for manufacturing fiber assembly and apparatus for manufacturing the same - Google Patents

Method for manufacturing fiber assembly and apparatus for manufacturing the same Download PDF

Info

Publication number
JP4238119B2
JP4238119B2 JP2003393437A JP2003393437A JP4238119B2 JP 4238119 B2 JP4238119 B2 JP 4238119B2 JP 2003393437 A JP2003393437 A JP 2003393437A JP 2003393437 A JP2003393437 A JP 2003393437A JP 4238119 B2 JP4238119 B2 JP 4238119B2
Authority
JP
Japan
Prior art keywords
polymer
fiber
fiber assembly
laser
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003393437A
Other languages
Japanese (ja)
Other versions
JP2005154927A (en
Inventor
隆明 天笠
修一 村田
弘 手塚
豊 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2003393437A priority Critical patent/JP4238119B2/en
Publication of JP2005154927A publication Critical patent/JP2005154927A/en
Application granted granted Critical
Publication of JP4238119B2 publication Critical patent/JP4238119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)

Description

本発明は繊維集合体の製造方法及びその製造装置に関する。   The present invention relates to a method for manufacturing a fiber assembly and a manufacturing apparatus therefor.

従来、静電紡糸方法による繊維集合体の製造方法としては、原料となる高分子の状態によって、溶液静電紡糸法と溶融静電紡糸法とに区別される(例えば、特許文献1、特許文献2)。しかしながら、前者の溶液静電紡糸法においては、高分子を溶媒に溶解させた紡糸原液を使用し、紡糸後の繊維集合体においては、溶媒が揮発した状態にあるため、繊維集合体の製造効率の悪い方法であった。また、溶媒は紡出時に紡糸雰囲気中に蒸発するため、雰囲気中の溶媒濃度を適切に調節する必要があり、適切に調節されない場合には、紡糸状態が悪化するという問題点があった。   Conventionally, as a method for producing a fiber assembly by an electrospinning method, there is a distinction between a solution electrospinning method and a melt electrospinning method depending on the state of a polymer as a raw material (for example, Patent Literature 1, Patent Literature 1). 2). However, in the former solution electrostatic spinning method, a spinning stock solution in which a polymer is dissolved in a solvent is used, and in the fiber assembly after spinning, the solvent is in a volatile state. It was a bad way. Further, since the solvent evaporates in the spinning atmosphere at the time of spinning, it is necessary to appropriately adjust the solvent concentration in the atmosphere. If the solvent is not properly adjusted, the spinning state deteriorates.

他方、後者の溶融静電紡糸法においては、高分子を静電紡糸可能な粘度まで下げるために熱を加えるが、長時間の滞留によって熱分解して、高分子の物性低下を招く場合があった。また、紡糸ノズルへ溶融させた高分子を供給するための押し出し機が必要となるなど、設備が大掛かりになるという問題もあった。   On the other hand, in the latter melt electrospinning method, heat is applied to reduce the polymer to a viscosity capable of electrospinning, but thermal degradation may occur due to long-term residence, leading to deterioration of the physical properties of the polymer. It was. In addition, there is a problem that the facility becomes large, for example, an extruder for supplying the molten polymer to the spinning nozzle is required.

国際公開第01/89022号パンフレット(アブストラクトなど)International Publication No. 01/89022 Pamphlet (Abstract etc.) 特開昭59−204957号公報(実施例など)JP-A-59-204957 (Examples)

本発明は従来の静電紡糸法による繊維集合体の製造方法を改良したもので、溶媒を使用することなく製造することができ、しかも熱による物性低下を招くことがない繊維集合体の製造方法を提供することを目的とする。また、前記繊維集合体の製造方法を実施でき、しかも押し出し機などを必要としない、比較的簡単な繊維集合体の製造装置を提供することも目的とする。   INDUSTRIAL APPLICABILITY The present invention is an improved method of manufacturing a fiber assembly by a conventional electrospinning method, and can be manufactured without using a solvent, and the method of manufacturing a fiber assembly that does not cause deterioration of physical properties due to heat The purpose is to provide. Another object of the present invention is to provide a relatively simple fiber assembly manufacturing apparatus that can carry out the fiber assembly manufacturing method and that does not require an extruder.

本発明の請求項1にかかる発明は、「(1)ポリマーを非溶融状態のまま供給する供給工程、(2)前記供給したポリマーに対してレーザーを照射してポリマーが変形可能な状態にする照射工程、(3)前記変形可能なポリマーを電気的に牽引し、細径化するとともに引き伸ばして繊維化する繊維化工程、及び(4)前記繊維を集積して繊維集合体を形成する繊維集合体形成工程、とを備えていることを特徴とする、繊維集合体の製造方法」である。請求項1にかかる発明によれば、非溶融状態のまま供給されたポリマーにレーザーを照射して熱を与え、変形可能(静電紡糸可能)な状態としているため、溶液静電紡糸法と異なり溶媒を必要としない。また、レーザーを照射して加熱し、瞬時にポリマーを変形可能(静電紡糸可能)な状態にすることができるため、ポリマーを長時間、高温状態にさらす必要がなく、その結果、ポリマーの熱分解を抑制でき、物性の低下を防ぐことができる。更にこの効果に加えて、ポリマーを非溶融状態のまま供給するため、押し出し機などの大掛かりな装置を必要とせず比較的簡単な装置で紡糸が可能である。また、繊維集合体形成時に幅方向(繊維集合体の生産方向に対して直交する方向)へのポリマーの供給量を容易に制御可能なため、目付分布が均一な繊維集合体を製造しやすい。
The invention according to claim 1 of the present invention is as follows: “(1) Supplying a polymer in an unmelted state , (2) Irradiating a laser to the supplied polymer to make the polymer deformable. An irradiation step, (3) a fiberizing step in which the deformable polymer is electrically pulled, reduced in diameter and stretched to form a fiber, and (4) a fiber assembly in which the fibers are accumulated to form a fiber assembly. A method for producing a fiber assembly, comprising: a body forming step. According to the first aspect of the invention, the polymer supplied in the non-molten state is irradiated with laser to give heat, and is in a deformable (electrostatic spinning) state. No solvent is required. In addition, since the polymer can be instantly deformed (electrospinable) by heating with laser irradiation, it is not necessary to expose the polymer to a high temperature state for a long time. Decomposition can be suppressed and deterioration of physical properties can be prevented. In addition to this effect, since the polymer is supplied in a non-molten state, spinning is possible with a relatively simple apparatus without requiring a large apparatus such as an extruder. Further, since the amount of polymer supplied in the width direction (direction perpendicular to the production direction of the fiber assembly) can be easily controlled when the fiber assembly is formed, it is easy to manufacture a fiber assembly having a uniform basis weight distribution.

本発明の請求項にかかる発明は、「(1)ポリマーを非溶融状態のまま供給できる供給手段、(2)前記供給したポリマーが変形可能な状態にできるレーザー照射手段、(3)前記変形可能なポリマーを電気的に牽引し、細径化するとともに引き伸ばして繊維化できる繊維化手段、及び(4)前記繊維を集積して繊維集合体を形成できる集積手段、とを備えていることを特徴とする、繊維集合体の製造装置」である。請求項にかかる発明によれば、請求項1にかかる発明の繊維集合体の製造を実施できる。また、押し出し機を必要としないため、設備が比較的簡単で、安く繊維集合体を製造することができる。
The invention according to claim 2 of the present invention is as follows: "(1) Supply means capable of supplying the polymer in an unmelted state , (2) Laser irradiation means capable of allowing the supplied polymer to be deformable, (3) The deformation And a fiberizing means capable of electrically pulling a possible polymer, reducing the diameter and stretching it to obtain a fiber, and (4) an accumulation means capable of accumulating the fibers to form a fiber assembly. This is a characteristic feature of a “fiber assembly manufacturing apparatus”. According to the invention concerning Claim 2 , manufacture of the fiber assembly of the invention concerning Claim 1 can be implemented. Moreover, since an extruder is not required, the facility is relatively simple and a fiber assembly can be manufactured at a low cost.

本発明の繊維集合体の製造方法によれば、溶媒を使用することなく製造することができ、しかも熱による物性低下を招くことがない。   According to the method for producing a fiber assembly of the present invention, it can be produced without using a solvent, and physical properties are not deteriorated by heat.

また、本発明の繊維集合体の製造装置は前記繊維集合体の製造方法を実施でき、しかも押し出し機などを必要としない、比較的簡単な繊維集合体の製造装置である。   In addition, the fiber assembly production apparatus of the present invention is a relatively simple fiber assembly production apparatus that can carry out the fiber assembly production method and that does not require an extruder or the like.

本発明の繊維集合体の製造方法及び製造装置について、繊維集合体の製造装置の概念的模式断面図である図1を参照しながら説明する。図1の製造装置は、ボビン10に巻かれた繊維11を印加部31へ供給できる一対の送り出しロール20からなる供給手段、前記供給された繊維11に対して電圧を印加できる高電圧電源30からなる印加手段、前記印加手段によって電圧が印加された繊維12が変形可能な状態となるまでレーザーを照射できる、レーザー発振器40からなるレーザー照射手段、前記電圧が印加された変形可能な繊維を電気的に牽引し、細径化するとともに引き伸ばして細繊維化できるように、捕集体と接続された接地手段、及び前記細繊維13を集積して繊維集合体70を形成できるコンベア60からなる集積手段とを備えている。なお、図1の製造装置においては、印加手段と接地手段とによって、電位差が形成され、電圧が印加された変形可能な繊維は電気的に牽引されて、細径化するとともに引き伸ばされるため、印加手段と接地手段とで繊維化手段を構成する。   The fiber assembly manufacturing method and manufacturing apparatus of the present invention will be described with reference to FIG. 1, which is a conceptual schematic cross-sectional view of a fiber assembly manufacturing apparatus. The manufacturing apparatus of FIG. 1 includes a supply unit including a pair of delivery rolls 20 that can supply the fiber 11 wound around the bobbin 10 to the application unit 31, and a high-voltage power supply 30 that can apply a voltage to the supplied fiber 11. A laser irradiation means comprising a laser oscillator 40 capable of irradiating a laser until the fiber 12 to which a voltage is applied by the application means is in a deformable state, and electrically applying the deformable fiber to which the voltage is applied. And a collecting means comprising a grounding means connected to a collecting body and a conveyor 60 capable of forming the fiber assembly 70 by accumulating the fine fibers 13 so that the fiber can be drawn to be thinned and stretched into fine fibers. It has. In the manufacturing apparatus of FIG. 1, a potential difference is formed by the applying means and the grounding means, and the deformable fiber to which the voltage is applied is electrically pulled to reduce the diameter and stretch it. The means and the grounding means constitute a fiberizing means.

より具体的には、まず、一対の送り出しロール20によって、ボビン10に巻かれた繊維11を印加部31へ供給する供給工程、を実施する。本発明の繊維11を構成するポリマーはレーザーの照射によって変形可能なものであれば良く、一般的な汎用樹脂からエンジニアプラスチックで構成することができる。より具体的には、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミドなどを挙げることができる。   More specifically, first, a supply step of supplying the fiber 11 wound around the bobbin 10 to the application unit 31 by the pair of delivery rolls 20 is performed. The polymer constituting the fiber 11 of the present invention is not particularly limited as long as it can be deformed by laser irradiation, and can be composed of general-purpose resin and engineer plastic. More specifically, polypropylene, polyethylene, polyester, polyamide and the like can be mentioned.

この印加部31へ供給する繊維11は非溶融状態にあるため、繊維11の供給量を一定としやすく、目付分布が均一な繊維集合体70を製造しやすいため好適である。また、ボビン10から直接繊維11を供給することができ、押し出し機が必要ないという点からも好適である。   Since the fiber 11 supplied to the application unit 31 is in a non-molten state, the supply amount of the fiber 11 is easy to be constant, and a fiber aggregate 70 having a uniform basis weight distribution is easy to manufacture. Moreover, the fiber 11 can be directly supplied from the bobbin 10, and it is also suitable from the point that an extruder is not required.

なお、図1においては、繊維11を一対の送り出しロール20によって供給しているが、繊維11を印加部31へ供給できる限り、これに限定されるものではない。   In FIG. 1, the fibers 11 are supplied by the pair of delivery rolls 20. However, the fibers 11 are not limited to this as long as the fibers 11 can be supplied to the application unit 31.

図1の繊維集合体70の製造方法においては、次いで、供給された繊維11に高電圧電源30を用いて電圧を印加している。これは後述の接地手段との組合せによって、電位差を設けて、繊維が電気的に牽引され、引き伸ばされて細径化するようにするためである。このように電位差を設けることによって、繊維に静電荷が蓄積され、接地50されたコンベア60によって電気的に牽引され、細径化するとともに引き伸ばされて細繊維化する。電気的に牽引しているため、繊維がコンベア60に近づくにしたがって、電界の作用が強くなり、繊維の速度が加速されて、繊維径の小さい細繊維を製造することができる。   In the manufacturing method of the fiber assembly 70 in FIG. 1, a voltage is then applied to the supplied fiber 11 using the high voltage power supply 30. This is because a potential difference is provided in combination with a grounding means described later so that the fiber is electrically pulled and stretched to reduce the diameter. By providing the potential difference in this way, static charges are accumulated in the fibers, and are electrically pulled by the conveyor 60 that is grounded 50, thereby reducing the diameter and stretching the fibers. Since the fibers are electrically pulled, the action of the electric field becomes stronger as the fibers approach the conveyor 60, the speed of the fibers is accelerated, and fine fibers with a small fiber diameter can be manufactured.

高電圧電源30による印加電圧は、印加部31とコンベア60との距離、繊維構成ポリマーの種類、レーザー照射の程度などによって変化するため、特に限定するものではない。   The voltage applied by the high-voltage power supply 30 is not particularly limited because it varies depending on the distance between the application unit 31 and the conveyor 60, the type of fiber constituent polymer, the degree of laser irradiation, and the like.

なお、図1においては、複数本の繊維11を印加部31へ供給しているため、高電圧電源30による印加によって、互いの繊維が静電気的に反発して、個々の繊維に分離した状態(電圧が印加された繊維12)となる。そのため、次のレーザー照射による繊維同士の融着は生じない。   In addition, in FIG. 1, since the several fiber 11 is supplied to the application part 31, by the application by the high voltage power supply 30, the mutual fiber repels electrostatically and is isolate | separated into each fiber ( A fiber 12) to which a voltage is applied is obtained. Therefore, the fusion of fibers by the next laser irradiation does not occur.

次いで、前記印加手段によって電圧が印加された繊維12が変形可能な状態となるまで、レーザー発振器40を用いてレーザーを照射する。この照射するレーザーは電圧が印加された繊維12を変形可能な状態とすることのできるものであれば良く、特に限定するものではないが、例えば、気体レーザー(主に炭酸ガスレーザー、He−Neレーザー、Arイオンレーザー)や固体レーザー(主にルビーレーザー、Nd:YAGレーザー、Nd:ガラスレーザー)や液体レーザー(主に色素レーザー)を使用することができる。   Next, the laser is radiated using the laser oscillator 40 until the fiber 12 to which the voltage is applied by the applying means becomes deformable. The laser to be irradiated is not particularly limited as long as the fiber 12 to which the voltage is applied can be deformed. For example, a gas laser (mainly carbon dioxide laser, He-Ne) is used. Lasers, Ar ion lasers), solid lasers (mainly ruby lasers, Nd: YAG lasers, Nd: glass lasers) and liquid lasers (mainly dye lasers) can be used.

このようなレーザーは繊維12を細径化しやすいように、印加部31近傍でレーザーを照射するのが好ましい。なお、図1のように、複数本の繊維12に対してレーザーを照射するには、例えば、レーザーを光ファイバーで分岐させて、個々の繊維12にレーザーを照射することができるし、レンズにより幅を広げたレーザーを照射することもできる。   Such a laser is preferably irradiated in the vicinity of the application unit 31 so that the fiber 12 can be easily reduced in diameter. As shown in FIG. 1, in order to irradiate a plurality of fibers 12 with a laser, for example, the laser can be branched by an optical fiber, and each fiber 12 can be irradiated with a laser. It is also possible to irradiate a laser with widening.

このようなレーザーは繊維12を構成するポリマーが変形可能な状態にまで照射して加熱するが、別の言い方をすると、電気的に牽引して細径化可能な状態にまで照射して加熱する。   Such a laser irradiates and heats the polymer constituting the fiber 12 to a state where it can be deformed. In other words, it irradiates and heats the polymer 12 to a state where the diameter can be reduced by electrical pulling. .

なお、図1における製造装置においては、余剰のレーザーを吸収し、作業環境を悪化させないように、レーザー発振器40と対向した位置に、レーザー吸収体42としてレンガを配置している。   In the manufacturing apparatus shown in FIG. 1, bricks are arranged as laser absorbers 42 at positions facing the laser oscillator 40 so as to absorb excess laser and not deteriorate the working environment.

次いで、図1においては、電圧が印加された変形可能な繊維12を電気的に牽引し、細径化するとともに引き伸ばして細繊維化する。この細繊維化は前述の通り、高電圧電源30と接地50されたコンベア60との間の電位差によって実施される。なお、図1においてはコンベア60を接地50しているが、高電圧電源30により印加される電圧との間に電位差が形成されれば、コンベア60に電圧を印加しても良い。また、図1とは反対に、コンベアに高電圧を印加し、図1の印加部31に相当する領域を接地して電位差を設けても良い。更には、コンベア60とは別に接地又は印加できる電極を設置しても良い。   Next, in FIG. 1, the deformable fiber 12 to which a voltage is applied is electrically pulled to reduce the diameter and stretch the fiber 12 to obtain a fine fiber. As described above, this fine fiber formation is performed by a potential difference between the high voltage power supply 30 and the grounded conveyor 60. In FIG. 1, the conveyor 60 is grounded 50, but a voltage may be applied to the conveyor 60 as long as a potential difference is formed with the voltage applied by the high voltage power supply 30. In contrast to FIG. 1, a high voltage may be applied to the conveyor, and a potential difference may be provided by grounding a region corresponding to the application unit 31 in FIG. Furthermore, you may install the electrode which can be earth | grounded or applied separately from the conveyor 60. FIG.

そして、細径化された繊維13はコンベア60上に捕集されて繊維集合体70が形成される。図1においてはコンベア60を捕集体として使用しているため、連続的に繊維集合体70を製造することができる。しかしながら、細径化した繊維13を捕集できれば、コンベアである必要はなく、特に限定するものではない。例えば、ドラム、ネットなどを捕集体として使用することもできる。   The thinned fibers 13 are collected on the conveyor 60 to form a fiber assembly 70. In FIG. 1, since the conveyor 60 is used as a collection body, the fiber assembly 70 can be manufactured continuously. However, as long as the thin fibers 13 can be collected, there is no need to be a conveyor and there is no particular limitation. For example, a drum, a net, etc. can also be used as a collector.

なお、図1の製造装置においては、1つのボビンを用いているが、図1と同様の製造装置を繊維集合体の生産方向又は生産方向と直交する方向に複数台設置して、繊維集合体の生産性を高めることができる。   1 uses one bobbin, but a plurality of manufacturing apparatuses similar to those in FIG. 1 are installed in the production direction of the fiber assembly or in a direction perpendicular to the production direction, and the fiber assembly is provided. Can increase productivity.

図2は本発明の製造装置の別の態様を示す概念的模式断面図である。図2の製造装置においては、図1におけるボビン10から巻き出した繊維11を供給するのに替えて、棒状のポリマー14を供給していること以外は、図1と全く同様である。このように、本発明の製造方法及び製造装置はポリマーの形態に左右されず、繊維集合体70を製造することができる。   FIG. 2 is a conceptual schematic cross-sectional view showing another aspect of the production apparatus of the present invention. 2 is exactly the same as FIG. 1 except that the rod-like polymer 14 is supplied instead of supplying the fiber 11 unwound from the bobbin 10 in FIG. Thus, the manufacturing method and manufacturing apparatus of this invention can manufacture the fiber assembly 70 irrespective of the form of a polymer.

図3は本発明の製造装置の更に別の態様を示す概念的模式断面図である。図3の製造装置においては、図1におけるボビン10から巻き出した繊維11を供給するのに替えて、溶融したポリマーを押し出し機15から供給し、紡糸ノズル21から溶融したポリマー16を吐出していること以外は、図1と全く同様である。図3においては、溶融したポリマーを押し出し機15から供給し、紡糸ノズル21から溶融したポリマー16を吐出しているが、繊維化に必要な熱はレーザー照射で賄うことができ、押し出し機15及び紡糸ノズル21中における加熱温度を従来の溶融静電紡糸装置よりも低く抑えることができるため、ポリマーの熱分解を抑えて繊維化できる。なお、図3とは異なり、高電圧電源30からの印加を紡糸ノズル21に対して行っても良い。   FIG. 3 is a conceptual schematic cross-sectional view showing still another aspect of the production apparatus of the present invention. In the manufacturing apparatus of FIG. 3, instead of supplying the fiber 11 unwound from the bobbin 10 in FIG. 1, the molten polymer is supplied from the extruder 15, and the molten polymer 16 is discharged from the spinning nozzle 21. Except for this, it is exactly the same as FIG. In FIG. 3, the molten polymer is supplied from the extruder 15 and the molten polymer 16 is discharged from the spinning nozzle 21, but the heat necessary for fiberization can be provided by laser irradiation. Since the heating temperature in the spinning nozzle 21 can be kept lower than that of a conventional melt electrostatic spinning apparatus, the polymer can be made into a fiber while suppressing thermal decomposition of the polymer. Unlike FIG. 3, application from the high voltage power supply 30 may be performed on the spinning nozzle 21.

繊維集合体の製造装置の概念的模式断面図Conceptual schematic cross-sectional view of a fiber assembly manufacturing apparatus 繊維集合体の別の製造装置の概念的模式断面図Conceptual schematic cross-sectional view of another manufacturing apparatus for fiber assemblies 繊維集合体の更に別の製造装置の概念的模式断面図Conceptual schematic cross-sectional view of still another manufacturing apparatus for fiber assemblies

符号の説明Explanation of symbols

10 ボビン
11 繊維
12 電圧が印加された繊維
13 細繊維(細径化した繊維)
14 棒状のポリマー
15 押し出し機
16 溶融したポリマー
20 送り出しロール
21 紡糸ノズル
30 高電圧電源
31 印加部
40 レーザー発振器
41 レーザー照射部
42 レーザー吸収体
50 接地
60 コンベア
70 繊維集合体
10 Bobbin 11 Fiber 12 Voltage-applied fiber 13 Fine fiber (fine fiber)
DESCRIPTION OF SYMBOLS 14 Bar-shaped polymer 15 Extruder 16 Molten polymer 20 Feed roll 21 Spinning nozzle 30 High voltage power supply 31 Application part 40 Laser oscillator 41 Laser irradiation part 42 Laser absorber 50 Grounding 60 Conveyor 70 Fiber assembly

Claims (2)

(1)ポリマーを非溶融状態のまま供給する供給工程、
(2)前記供給したポリマーに対してレーザーを照射してポリマーが変形可能な状態にする照射工程、
(3)前記変形可能なポリマーを電気的に牽引し、細径化するとともに引き伸ばして繊維化する繊維化工程、及び
(4)前記繊維を集積して繊維集合体を形成する繊維集合体形成工程、
とを備えていることを特徴とする、繊維集合体の製造方法。
(1) Supply process for supplying the polymer in an unmelted state ,
(2) An irradiation process in which the supplied polymer is irradiated with a laser so that the polymer can be deformed.
(3) a fiberizing step of electrically pulling the deformable polymer to reduce the diameter and stretching the polymer;
(4) A fiber assembly forming step for collecting the fibers to form a fiber assembly;
And a method for producing a fiber assembly.
(1)ポリマーを非溶融状態のまま供給できる供給手段、
(2)前記供給したポリマーが変形可能な状態にできるレーザー照射手段、
(3)前記変形可能なポリマーを電気的に牽引し、細径化するとともに引き伸ばして繊維化できる繊維化手段、及び
(4)前記繊維を集積して繊維集合体を形成できる集積手段、
とを備えていることを特徴とする、繊維集合体の製造装置。
(1) Supply means capable of supplying the polymer in an unmelted state ,
(2) Laser irradiation means capable of making the supplied polymer deformable,
(3) A fiberizing means for electrically pulling the deformable polymer to reduce the diameter and to stretch and fiberize the polymer; and
(4) An accumulation means capable of accumulating the fibers to form a fiber assembly,
An apparatus for producing a fiber assembly, comprising:
JP2003393437A 2003-11-25 2003-11-25 Method for manufacturing fiber assembly and apparatus for manufacturing the same Expired - Fee Related JP4238119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393437A JP4238119B2 (en) 2003-11-25 2003-11-25 Method for manufacturing fiber assembly and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393437A JP4238119B2 (en) 2003-11-25 2003-11-25 Method for manufacturing fiber assembly and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005154927A JP2005154927A (en) 2005-06-16
JP4238119B2 true JP4238119B2 (en) 2009-03-11

Family

ID=34719796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393437A Expired - Fee Related JP4238119B2 (en) 2003-11-25 2003-11-25 Method for manufacturing fiber assembly and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4238119B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876252B2 (en) * 2006-02-28 2012-02-15 国立大学法人信州大学 Method for producing extra fine fibers
JP2007239114A (en) * 2006-03-06 2007-09-20 Univ Of Fukui Melt electrostatic spinning method and ultrafine fiber
JP4619991B2 (en) * 2006-05-30 2011-01-26 カトーテック株式会社 Method for producing fine thermoplastic resin fiber and apparatus for producing the same
JP4558826B2 (en) * 2007-11-30 2010-10-06 ダイワボウホールディングス株式会社 Extra fine composite fiber, extra fine fiber, method for producing the same, and fiber structure
JP5004774B2 (en) * 2007-11-30 2012-08-22 ダイワボウホールディングス株式会社 Extra fine composite fiber, method for producing the same, and fiber structure
WO2009069759A1 (en) 2007-11-30 2009-06-04 Daiwabo Co., Ltd. Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure
JP2009256835A (en) * 2008-04-18 2009-11-05 Jfe Chemical Corp Method for producing carbon-based fibers
JP5311455B2 (en) * 2008-06-11 2013-10-09 国立大学法人福井大学 Spinning method and fiber manufacturing method and apparatus using the same
CN102144058B (en) 2008-09-04 2012-07-11 大和纺控股株式会社 Fibrous mass, composite of conductive substrate with fibrous mass, and processes for producing same
JP6924320B2 (en) * 2019-12-02 2021-08-25 花王株式会社 Resin composition for melt spinning, its manufacturing equipment and its manufacturing method, fiber manufacturing method, and melt spinning equipment
WO2021111804A1 (en) * 2019-12-02 2021-06-10 花王株式会社 Melt spinning resin composition, manufacturing method for same, and fiber manufacturing method

Also Published As

Publication number Publication date
JP2005154927A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4238119B2 (en) Method for manufacturing fiber assembly and apparatus for manufacturing the same
US20080284050A1 (en) Method and Device for Production of Nanofibres Through Electrostatic Spinning of Solutions or Melts of Polymers
JP4876252B2 (en) Method for producing extra fine fibers
KR101260529B1 (en) Improved electroblowing web formation process
JP4047739B2 (en) Electrostatic spinning method and electrostatic spinning apparatus
KR101816733B1 (en) Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
US4486365A (en) Process and apparatus for the preparation of electret filaments, textile fibers and similar articles
KR20110077915A (en) Method for controlling electrospinning conditions of a electrospinning device
KR20100011603A (en) Spinning pack for electrospinning and electrospinning device using the same
JP5004774B2 (en) Extra fine composite fiber, method for producing the same, and fiber structure
KR20120008230A (en) Apparatus for production of ultrafine fiber with a nozzle having an electric insulating plate
JP2013064203A (en) Method for manufacturing continuous sheet formed of nanofiber
KR101069493B1 (en) Collector with multiple roller for electrospinning and electrospinning device comprising the same
KR102282247B1 (en) Apparatus and Method for Manufacturing Polyester Yarn of High Strength
Dabirian et al. Production of uniaxially aligned nanofibers using a modified electrospinning method: rotating jet
KR20120077998A (en) Collector for melting type electrospinning equipment
JP5662281B2 (en) Glass nonwoven fabric manufacturing apparatus and method, and glass nonwoven fabric
CN1063805C (en) Method for making multi-microporous hollow fibre by using laser processing technology
KR101635024B1 (en) Nano fiber and nano fiber manufacture method of low solvent remaing amount
FI990109A (en) A method for making polymeric fibers and an apparatus for doing so
CN110359103B (en) Method for preparing polymer micro-nanofiber based on stepping stretching method
JP4238120B2 (en) Method for manufacturing fiber assembly and apparatus for manufacturing the same
Huang et al. Needleless electrospinning of multiple nanofibers
JP2007092257A (en) Method for producing fiber aggregate and apparatus for producing the same
CN111197184A (en) Electrostatic spinning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees