JP4235760B2 - Silicon wafer manufacturing method - Google Patents

Silicon wafer manufacturing method Download PDF

Info

Publication number
JP4235760B2
JP4235760B2 JP23741598A JP23741598A JP4235760B2 JP 4235760 B2 JP4235760 B2 JP 4235760B2 JP 23741598 A JP23741598 A JP 23741598A JP 23741598 A JP23741598 A JP 23741598A JP 4235760 B2 JP4235760 B2 JP 4235760B2
Authority
JP
Japan
Prior art keywords
heat treatment
oxygen precipitation
silicon wafer
wafer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23741598A
Other languages
Japanese (ja)
Other versions
JP2000068279A (en
Inventor
克彦 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP23741598A priority Critical patent/JP4235760B2/en
Publication of JP2000068279A publication Critical patent/JP2000068279A/en
Application granted granted Critical
Publication of JP4235760B2 publication Critical patent/JP4235760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重金属を捕獲するゲッタリングサイトとしての結晶欠陥をウェーハ内部に有するシリコンウェーハの製造方法に関し、より詳しくは内部欠陥としての酸素析出核の成長熱処理の短縮に関する。
【0002】
【関連技術】
半導体素子を製造する場合に鉄や銅等の重金属不純物が存在すると、半導体素子の特性に悪影響を及ぼすので、半導体素子が形成されるウェーハ表面及びその近傍に上記重金属不純物を存在させないようにする方法としてゲッタリング技術がある。ゲッタリング技術としては、ウェーハ外部に重金属不純物のゲッターサイトを形成するエキストリンシック又はエキスターナルゲッタリングと、ウェーハ内部に重金属不純物のゲッターサイトを形成するイントリンシックゲッタリング又はインターナルゲッタリング(以下IGと言うことがある。)とが知られている。
【0003】
特にシリコンウェーハのIGとしては、ウェーハ内に過飽和に存在する格子間酸素を熱処理により部分的に析出させて析出核を形成し、その周囲に発生する歪場を重金属不純物のゲッターサイトとする方法がある。この方法では、ウェーハ表面付近に無欠陥層を形成させるためシリコンウェーハに過飽和に存在する格子間酸素を外方拡散させる外方拡散熱処理、シリコンウェーハ内部に酸素析出核を形成する酸素析出核形成熱処理、酸素析出核を成長させるための酸素析出核成長熱処理の三段階の熱処理が行われる。
【0004】
外方拡散熱処理は、1100℃以上の高温で2時間から5時間程度行われ、酸素析出核形成熱処理は、500℃〜700℃の比較的低温で数時間〜50時間程度行われ、酸素析出核成長熱処理は、900℃〜1050℃の中温で3時間〜10時間程度行われ、これらの熱処理は、窒素やアルゴン等の不活性ガス雰囲気で行われる。なお、IG処理に続いてエピタキシャル成長を行う場合には、エピタキシャル成長工程でウェーハが1100℃以上の高温に加熱されることより、外方拡散層がエピタキシャル層の下部に形成されるので、外方拡散熱処理を省略することもある。
【0005】
【発明が解決しようとする課題】
IGの熱処理は、シリコンウェーハの初期酸素濃度や所望の無欠陥層深さ内部欠陥密度によって熱処理時間が決定されるが、ウェーハの入出炉時間や炉内での昇降温時間を含めると、最低でも半日程度は必要であり、熱処理時間の短縮が望まれている。
【0006】
本発明は上記問題を解決するためになされたものであり、より短い時間での内部欠陥形成が可能なIG処理を含むシリコンウェーハの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的達成のため本願の請求項1に記載の発明は、引き上げ法により成長した単結晶シリコンインゴットから切り出したシリコンウェーハに酸素析出核形成熱処理と塩素を含むガスを用いる酸素析出核成長熱処理により内部欠陥を形成するシリコンウェーハの製造方法において、前記酸素析出核成長熱処理塩素を含むガスとして、塩化水素ガスの雰囲気中で行うことを特徴とするシリコンウェーハの製造方法、である。
【0008】
また、本願の請求項2に記載の発明は、引き上げ法により成長した単結晶シリコンインゴットから切り出したシリコンウェーハに、酸素の外方拡散熱処理と酸素析出核形成熱処理と塩素を含むガスを用いる酸素析出核成長熱処理により内部欠陥を形成するシリコンウェーハの製造方法において、前記酸素析出核成長熱処理塩素を含むガスとして、塩化水素ガスの雰囲気中で行うことを特徴とするシリコンウェーハの製造方法、である。
【0009】
前記塩素を含むガスとして、塩化水素ガスを用いる場合は、塩化水素を0.5%〜5%含む水素ガスであることが好ましい
【0010】
また、前記酸素析出核成長熱処理は、急速加熱及び急速冷却を含む熱処理であるのが好ましい。さらに、前記酸素析出核成長熱処理は、エピタキシャル成長工程であってもよい。
【0011】
さらに、本発明に用いるシリコンウェーハとしては、導電型がp型で抵抗率が0.005Ω・cm〜0.02Ω・cmのものが好適である。
【0012】
【発明の実施の形態】
本発明者らは、IG熱処理時間の短縮について検討した結果、塩素を含む雰囲気中で酸素析出核成長熱処理を行うことによって酸素析出核成長の速度が極めて速くなることを発見し、IG熱処理時間の短縮が可能なことを確認して本発明を完成させた。
【0013】
本発明では、従来のIG熱処理と同様に、酸化炉のようなバッチ式の熱処理炉を用い、初段の外方拡散熱処理を1100℃以上、好ましくは1100℃〜1200℃で2〜5時間程度行い、次いで500℃〜700℃で数時間〜50時間の酸素析出核形成熱処理を行う。外方拡散熱処理は比較的高温であるので、シリコン窒化膜の形成を防止するために薄い酸化膜を形成する必要があり、外方拡散熱処理の入炉から昇温工程を経て所定の熱処理温度になってから10分程度まで酸素雰囲気とし、その後窒素雰囲気とするか、外方拡散熱処理工程の入炉から出炉若しくは所定温度の熱処理完了までを、酸素を1%〜5%程度含む窒素雰囲気として行う。酸素析出核形成熱処理は窒素雰囲気で行うが、外方拡散熱処理に引き続いて炉内に挿入したまま行ってもよいし、別の炉を用いてもよい。
【0014】
次いで、外方拡散熱処理と酸素析出核形成熱処理の終了したウェーハに酸素析出核成長熱処理を行うが、本発明では従来の窒素やアルゴン等のガス雰囲気に替えて、塩素を含む雰囲気で行う。塩素を含む雰囲気としては、塩化水素ガス、塩化シリコンガス等が挙げられる。
【0015】
前記塩化水素ガスや塩化シリコンガスは、水素との混合ガスとして用いることが好ましい。塩化水素ガスの場合には、水素ガスに対して0.5%〜5%の濃度であることが好ましい。塩化水素ガスの濃度が下限より少ないと酸素析出核の成長が不十分となることがある。一方、上限より多いとシリコン表面のエッチオフ量が大となり、表面に微小な凹凸が形成されることがある。また、塩化シリコンガスとしては、トリクロルシランやジクロルシランを用いることができ、いずれも水素ガスに対して0.1%〜10%の濃度であることが好ましい。塩化シリコンガスの濃度が下限より少ないと酸素析出核の成長が不十分となることがある。一方、上限より多いとシリコン表面のエッチオフ量が大となり、表面に微小な凹凸が形成されるとともに、エピタキシャル成長したエピタキシャル層にマウンドや積層欠陥等の欠陥が発生し、質の低下が生じる恐れがある。
【0016】
なお、酸素析出核成長熱処理は、従来と同様にバッチ式の処理を行うことも可能であるが、ウェーハの受ける熱履歴の個体差を小さくするためには、急速加熱及び急速冷却を含む熱処理により行うことが好ましい。具体的には、昇降温速度を30℃/分〜100℃/分で行うのが好ましい。また、急速加熱及び急速冷却を含む熱処理を行う装置の方式としては、赤外線ランプによる加熱方式、抵抗加熱方式、高周波加熱方式のいずれの方式のものでも使用することができる。塩素を含むガスが供給可能になっていれば、シリコンのエピタキシャル成長装置を熱処理に用いてもかまわない。
【0017】
酸素析出核成長熱処理は、エピタキシャル成長工程によっても行うことができる。この場合、通常のランプ加熱方式又は高周波加熱の方式のエピタキシャル成長装置を用いて行う。なお、IG処理に続いてエピタキシャル成長を行う場合には、外方拡散熱処理を省略することも可能である。
【0018】
本発明の酸素析出核成長熱処理の温度は900℃〜1200℃で行うことが好ましく、熱処理時間は1分〜60分程度行うことが好ましい。
【0019】
本発明においては、上述のように塩素を含むガスが熱処理雰囲気に存在したときに、酸素析出核の成長が増速される。例えば、従来のように酸素又は窒素の雰囲気下酸化炉を用いて酸素析出核成長熱処理を行った場合には5時間程度を要していたものが、急速加熱及び急速冷却を含む熱処理により塩化水素ガス或いは塩化シリコンガスを含む雰囲気で酸素析出核成長熱処理を行う場合は、例えば5分程度の熱処理で同等の内部欠陥密度を得ることができる。
【0020】
【実施例】
(酸素析出核が形成されたウェーハの作製)
結晶方位が<100>で、酸素濃度が15ppma(JEIDA)、抵抗率が0.01Ω・cm〜0.02Ω・cmのボロンドープp型シリコンウェーハ(直径150mm)を用い、バッチ式の熱処理炉を用いて1100℃2時間の外方拡散熱処理を行い、次いで炉内を降温して650℃20時間の酸素析出核形成熱処理を行った。外方拡散熱処理の入炉温度を900℃とし、入炉から1100℃到達後10分までは酸素雰囲気とし、以後酸素析出核形成熱処理の終了までは窒素雰囲気とした。
【0021】
(実施例1)
上記熱処理により内部に酸素析出核が形成されたウェーハを、1%のフッ酸により上記熱処理で表面に形成された酸化膜を除去した後、赤外線ランプ加熱炉(バレル型サセプタを使用したバッチ式のエピタキシャル成長装置)に入れ、3%の塩化水素ガスを含む水素ガスを流しながら1150℃で5分間熱処理した後、ウェーハを取り出した。昇温速度は70℃/分、降温速度は50℃/分とした。この熱処理に要した時間は30分であり、1回の熱処理で15枚の処理が可能であった。
取り出したウェーハをへき開してWright液にて選択エッチングを行い、内部欠陥をエッチピットとして顕在化させた。エッチング量はウェーハ両面で5μmとした。へき開面を光学顕微鏡で観察して、ウェーハ中心、R/2、周辺から10mmの面内3点のウェーハの厚さ方向中心部のエッチピットの密度を測定したところ、7×108個/cm2〜9×108個/cm2であった。なお、ウェーハの表面から深さ20μmまではエッチピットがほとんど観察されず、無欠陥層が形成されていた。
【0022】
(実施例2)
実施例1と同様に、上記熱処理により内部に酸素析出核が形成されたウェーハを、1%のフッ酸により上記熱処理で表面に形成された酸化膜を除去した後、高周波加熱型のエピタキシャル成長炉を用いて厚さ10μmのエピタキシャル層を成長した。原料ガスとしてトリクロルシランを0.3%含む水素ガスを用い、1150℃でエピタキシャル成長を行った。昇温速度は30℃/分、降温速度は40℃/分とした。なお、エピタキシャル層の抵抗率が10Ω・cmとなるようジボランガスを原料ガスに混合した。エピタキシャル成長に要した時間は50分であり、1回のエピタキシャル成長で15枚の処理が可能であった。
エピタキシャル成長が終了したウェーハを成長炉から取り出し、取り出したウェーハをへき開してWright液にて選択エッチングを行い、内部欠陥をエッチピットとして顕在化させた。エッチング量はウェーハ両面で5μmとした。へき開面を光学顕微鏡で観察して、ウェーハ中心、R/2、周辺から10mmの面内3点のウェーハの厚さ方向中心部のエッチピットの密度を測定したところ、8×108個/cm2〜1×109個/cm2であった。エピタキシャル層中にはエッチピットは観察されなかった。
【0023】
(実施例3)
結晶方位が<100>で、酸素濃度が15ppma(JEIDA)、抵抗率が0.01Ω・cm〜0.02Ω・cmのボロンドープp型シリコンウェーハ(直径150mm)を用い、バッチ式の熱処理炉を用いて650℃、20時間の酸素析出核形成熱処理のみを窒素雰囲気で行った。上記熱処理により内部に酸素析出核が形成されたウェーハをバレル型サセプタを使用したバッチ式のエピタキシャル成長炉を用いて厚さ10μmのエピタキシャル層を成長した。原料ガスとしてトリクロルシランを0.3%含むガスを用い、1150℃でエピタキシャル成長を行った。昇温速度は70℃/分、降温速度は50℃/分とした。なお、エピタキシャル層の抵抗率が10Ω・cmとなるようにジボランガスを原料ガスに混合した。エピタキシャル成長に要した時間は40分間であり、1回のエピタキシャル成長で15枚の処理が可能であった。
取り出したウェーハをへき開してWright液にて選択エッチングを行い、内部欠陥をエッチピットとして顕在化させた。エッチング量はウェーハ両面で5μmとした。へき開面を光学顕微鏡で観察して、ウェーハ中心、R/2、周辺から10mmの面内3点のウェーハの厚さ方向中心部のエッチピットの密度を測定したところ、5×108個/cm2〜8×109個/cm2であった。エピタキシャル層中にはエッチピットは観察されなかった。
【0024】
(比較例)
上記熱処理により内部に酸素析出核が形成されたウェーハを、フッ酸処理を行わずに酸化膜を残したまま用いて、バッチ式の熱処理炉を用いて窒素雰囲気下1000℃10時間の熱処理を行った。入出炉時間も含め、熱処理に要した時間は13時間であった。1バッチの熱処理で処理したウェーハの枚数は120枚であった。
熱処理の終了したウェーハの酸化膜を1%フッ酸で除去し、ウェーハをへき開してWright液にて選択エッチングを行い、内部欠陥をエッチピットとして顕在化させた。エッチング量はウェーハ両面で5μmとした。へき開面を光学顕微鏡で観察して、ウェーハ中心、R/2、周辺から10mmの面内3点のウェーハの厚さ方向中心部のエッチピットの密度を測定したところ、8×108個/cm2〜1×109個/cm2であった。なお、ウェーハの表面から深さ15μmまではエッチピットがほとんど観察されず、無欠陥層が形成されていた。
【0025】
(酸素析出核成長熱処理に要する時間の検討)
実施例と比較例とで同一枚数のウェーハの酸素析出核成長熱処理をするのに要する時間を比較すると、まず比較例は120枚のウェーハを処理するのに13時間を要していたのに対し、実施例1では15枚のウェーハを処理するのに30分を要していたので、比較例と同様の120枚の処理を行うのに必要な時間は4時間となる。また、実施例2では15枚のウェーハを処理するのに50分を要していたので、比較例と同様の120枚のウェーハを処理するのに必要な時間は6.7時間となる。したがって、同一枚数のウェーハの酸素析出核成長熱処理をする場合は、実施例は比較例に比べて1/2から1/3の処理時間で済むことになり、大幅な時間短縮が可能となる。また、上記各実施例では1度に処理する枚数が15枚と比較的少ないが、これを増加させれば時間短縮効果が更に大きくなる。
【0026】
【発明の効果】
以上説明した通り本発明によれば、IG熱処理の時間を大幅に短縮することが可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a silicon wafer having crystal defects inside the wafer as gettering sites for capturing heavy metals, and more particularly to shortening the growth heat treatment of oxygen precipitation nuclei as internal defects.
[0002]
[Related technologies]
When a semiconductor element is manufactured, if heavy metal impurities such as iron and copper are present, the characteristics of the semiconductor element are adversely affected. There is gettering technology. The gettering technology includes extrinsic or external gettering that forms a heavy metal impurity getter site outside the wafer, and intrinsic gettering or internal gettering that forms a heavy metal impurity getter site inside the wafer (hereinafter referred to as IG). Is known).
[0003]
Particularly for IG of silicon wafers, there is a method in which supersaturated interstitial oxygen existing in the wafer is partially precipitated by heat treatment to form precipitation nuclei, and the strain field generated around it is used as a getter site for heavy metal impurities. is there. In this method, in order to form a defect-free layer near the wafer surface, an outward diffusion heat treatment for outward diffusion of supersaturated interstitial oxygen in the silicon wafer, an oxygen precipitation nucleus formation heat treatment for forming oxygen precipitation nuclei inside the silicon wafer Then, a three-step heat treatment of an oxygen precipitation nucleus growth heat treatment for growing oxygen precipitation nuclei is performed.
[0004]
The outward diffusion heat treatment is performed at a high temperature of 1100 ° C. or higher for about 2 hours to 5 hours, and the oxygen precipitation nucleation heat treatment is performed at a relatively low temperature of 500 ° C. to 700 ° C. for about several hours to 50 hours. The growth heat treatment is performed at an intermediate temperature of 900 ° C. to 1050 ° C. for about 3 hours to 10 hours, and these heat treatments are performed in an inert gas atmosphere such as nitrogen or argon. When epitaxial growth is performed following the IG treatment, the outer diffusion layer is formed below the epitaxial layer by heating the wafer to a high temperature of 1100 ° C. or higher in the epitaxial growth step. May be omitted.
[0005]
[Problems to be solved by the invention]
The heat treatment time for IG is determined by the initial oxygen concentration of the silicon wafer and the desired internal defect density of the defect-free layer depth. However, including the wafer entry / exit furnace time and the temperature rise / fall time in the furnace, at least About half a day is necessary, and shortening of the heat treatment time is desired.
[0006]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a silicon wafer including an IG process capable of forming an internal defect in a shorter time.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 of the present application is based on an internal structure of an oxygen precipitation nucleus growth heat treatment using a gas containing chlorine and a gas containing chlorine on a silicon wafer cut out from a single crystal silicon ingot grown by a pulling method. the manufacturing method of a silicon wafer to form defects, a gas containing chlorine of the oxygen precipitate nucleation heat treatment, a method of manufacturing a silicon wafer and performing in an atmosphere of hydrogen chloride gas is.
[0008]
Moreover, the invention according to claim 2 of the present application is directed to oxygen precipitation using a silicon wafer cut out from a single crystal silicon ingot grown by a pulling method and using oxygen-diffusion heat treatment, oxygen precipitation nucleation heat treatment, and chlorine-containing gas. in the manufacturing method of a silicon wafer to form an internal defect by nucleus growth heat treatment, as a gas containing chlorine of the oxygen precipitate nucleation heat treatment, a method for producing a silicon wafer, which comprises carrying out in an atmosphere of hydrogen chloride gas .
[0009]
When hydrogen chloride gas is used as the gas containing chlorine, hydrogen gas containing 0.5% to 5% hydrogen chloride is preferable .
[0010]
The oxygen precipitation nucleus growth heat treatment is preferably a heat treatment including rapid heating and rapid cooling. Furthermore, the oxygen precipitation nucleus growth heat treatment may be an epitaxial growth step.
[0011]
Further, the silicon wafer used in the present invention is preferably a p-type conductivity type and a resistivity of 0.005 Ω · cm to 0.02 Ω · cm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As a result of examining the shortening of the IG heat treatment time, the present inventors have found that the oxygen precipitation nucleus growth heat treatment is performed in an atmosphere containing chlorine, so that the rate of oxygen precipitation nucleus growth is extremely high. The present invention was completed by confirming that shortening was possible.
[0013]
In the present invention, similarly to the conventional IG heat treatment, a batch type heat treatment furnace such as an oxidation furnace is used, and the first-stage outward diffusion heat treatment is performed at 1100 ° C. or higher, preferably 1100 ° C. to 1200 ° C. for about 2 to 5 hours. Subsequently, oxygen precipitation nucleation heat treatment is performed at 500 ° C. to 700 ° C. for several hours to 50 hours. Since the outward diffusion heat treatment is a relatively high temperature, it is necessary to form a thin oxide film in order to prevent the formation of the silicon nitride film. After that, the oxygen atmosphere is maintained for about 10 minutes, and then the nitrogen atmosphere is used, or the furnace from the entrance of the outward diffusion heat treatment step to the exit or completion of the heat treatment at a predetermined temperature is performed as a nitrogen atmosphere containing about 1% to 5% oxygen. . The heat treatment for forming oxygen precipitation nuclei is performed in a nitrogen atmosphere, but may be performed while being inserted in the furnace following the outward diffusion heat treatment, or another furnace may be used.
[0014]
Next, an oxygen precipitation nucleus growth heat treatment is performed on the wafer after the outer diffusion heat treatment and the oxygen precipitation nucleus formation heat treatment, but in the present invention, it is performed in an atmosphere containing chlorine instead of the conventional gas atmosphere such as nitrogen or argon. Examples of the atmosphere containing chlorine include hydrogen chloride gas and silicon chloride gas.
[0015]
The hydrogen chloride gas or silicon chloride gas is preferably used as a mixed gas with hydrogen. In the case of hydrogen chloride gas, the concentration is preferably 0.5% to 5% with respect to hydrogen gas. If the concentration of hydrogen chloride gas is less than the lower limit, the growth of oxygen precipitation nuclei may be insufficient. On the other hand, if the amount is larger than the upper limit, the amount of etch-off on the silicon surface becomes large, and minute irregularities may be formed on the surface. As the silicon chloride gas, trichlorosilane or dichlorosilane can be used, and it is preferable that both have a concentration of 0.1% to 10% with respect to hydrogen gas. If the concentration of the silicon chloride gas is less than the lower limit, the growth of oxygen precipitation nuclei may be insufficient. On the other hand, if the amount is larger than the upper limit, the amount of etch-off on the silicon surface becomes large, and fine irregularities are formed on the surface, and defects such as mounds and stacking faults may occur in the epitaxially grown epitaxial layer, which may cause deterioration in quality. is there.
[0016]
In addition, the oxygen precipitation nucleus growth heat treatment can be performed in a batch-type manner as in the past, but in order to reduce the individual difference of the thermal history received by the wafer, the heat treatment including rapid heating and rapid cooling is performed. Preferably it is done. Specifically, it is preferable to perform the temperature raising / lowering rate at 30 ° C./min to 100 ° C./min. In addition, as a system for performing heat treatment including rapid heating and rapid cooling, any of a heating system using an infrared lamp, a resistance heating system, and a high-frequency heating system can be used. If a gas containing chlorine can be supplied, a silicon epitaxial growth apparatus may be used for the heat treatment.
[0017]
The oxygen precipitation nucleus growth heat treatment can also be performed by an epitaxial growth process. In this case, an epitaxial growth apparatus of a normal lamp heating method or high frequency heating method is used. In addition, when performing epitaxial growth following IG processing, it is also possible to omit outward diffusion heat treatment.
[0018]
The temperature of the oxygen precipitation nucleus growth heat treatment of the present invention is preferably performed at 900 ° C. to 1200 ° C., and the heat treatment time is preferably about 1 to 60 minutes.
[0019]
In the present invention, as described above, when a gas containing chlorine is present in the heat treatment atmosphere, the growth of oxygen precipitation nuclei is accelerated. For example, when oxygen precipitation nucleus growth heat treatment is performed using an oxidation furnace in an oxygen or nitrogen atmosphere as in the prior art, it takes about 5 hours, but hydrogen chloride by rapid heat treatment and rapid heat treatment includes hydrogen chloride. When the oxygen precipitation nucleus growth heat treatment is performed in an atmosphere containing a gas or a silicon chloride gas, an equivalent internal defect density can be obtained by a heat treatment for about 5 minutes, for example.
[0020]
【Example】
(Production of wafers with oxygen precipitation nuclei)
A boron-doped p-type silicon wafer (diameter 150 mm) having a crystal orientation of <100>, an oxygen concentration of 15 ppma (JEIDA), and a resistivity of 0.01 Ω · cm to 0.02 Ω · cm is used. Then, an outward diffusion heat treatment was performed at 1100 ° C. for 2 hours, and then the temperature inside the furnace was lowered and an oxygen precipitation nucleus formation heat treatment was performed at 650 ° C. for 20 hours. The furnace temperature of the outward diffusion heat treatment was set to 900 ° C., and after reaching 1100 ° C. from the furnace, an oxygen atmosphere was used for 10 minutes, and thereafter a nitrogen atmosphere was used until the oxygen precipitation nucleation heat treatment was completed.
[0021]
Example 1
After removing the oxide film formed on the surface by 1% hydrofluoric acid from the wafer having oxygen precipitate nuclei formed inside by the heat treatment, an infrared lamp heating furnace (batch type using a barrel susceptor) is used. The wafer was taken out after being heat treated at 1150 ° C. for 5 minutes while flowing hydrogen gas containing 3% hydrogen chloride gas. The temperature raising rate was 70 ° C./min, and the temperature lowering rate was 50 ° C./min. The time required for this heat treatment was 30 minutes, and 15 sheets could be processed by one heat treatment.
The taken-out wafer was cleaved, and selective etching was performed with a Wright solution to reveal internal defects as etch pits. The etching amount was 5 μm on both sides of the wafer. The cleavage plane was observed with an optical microscope, the wafer center, R / 2, was measured the density of etch pits in the thickness direction center portion of the wafer in-plane three points 10mm from the peripheral, 7 × 10 8 pieces / cm It was 2 to 9 × 10 8 pieces / cm 2 . Note that almost no etch pits were observed from the wafer surface to a depth of 20 μm, and a defect-free layer was formed.
[0022]
(Example 2)
As in Example 1, after removing the oxide film formed on the surface by the above heat treatment with 1% hydrofluoric acid from the wafer in which the oxygen precipitation nuclei were formed by the heat treatment, a high frequency heating type epitaxial growth furnace was prepared. An epitaxial layer having a thickness of 10 μm was grown by using it. Epitaxial growth was performed at 1150 ° C. using hydrogen gas containing 0.3% of trichlorosilane as a source gas. The rate of temperature increase was 30 ° C./min, and the rate of temperature decrease was 40 ° C./min. Note that diborane gas was mixed with the source gas so that the resistivity of the epitaxial layer was 10 Ω · cm. The time required for the epitaxial growth was 50 minutes, and 15 sheets could be processed by one epitaxial growth.
The wafer after the epitaxial growth was taken out from the growth furnace, the taken-out wafer was cleaved, and selective etching was performed with the Wright solution, so that the internal defects became apparent as etch pits. The etching amount was 5 μm on both sides of the wafer. The cleaved surface was observed with an optical microscope, and the density of etch pits at the center in the thickness direction of the wafer at three points in the plane 10 mm from the wafer center, R / 2, and the periphery was measured to be 8 × 10 8 pieces / cm 3. It was 2 to 1 × 10 9 pieces / cm 2 . Etch pits were not observed in the epitaxial layer.
[0023]
(Example 3)
A boron-doped p-type silicon wafer (diameter 150 mm) having a crystal orientation of <100>, an oxygen concentration of 15 ppma (JEIDA), and a resistivity of 0.01 Ω · cm to 0.02 Ω · cm is used. Only the heat treatment for forming oxygen precipitation nuclei at 650 ° C. for 20 hours was performed in a nitrogen atmosphere. An epitaxial layer having a thickness of 10 μm was grown on the wafer having oxygen precipitation nuclei formed therein by the heat treatment using a batch type epitaxial growth furnace using a barrel type susceptor. Epitaxial growth was performed at 1150 ° C. using a gas containing 0.3% of trichlorosilane as a source gas. The temperature raising rate was 70 ° C./min, and the temperature lowering rate was 50 ° C./min. In addition, diborane gas was mixed with the source gas so that the resistivity of the epitaxial layer was 10 Ω · cm. The time required for the epitaxial growth was 40 minutes, and 15 sheets could be processed by one epitaxial growth.
The taken-out wafer was cleaved, and selective etching was performed with a Wright solution to reveal internal defects as etch pits. The etching amount was 5 μm on both sides of the wafer. The cleaved surface was observed with an optical microscope, and the density of etch pits at the center of the wafer in the thickness direction at 3 points in the plane 10 mm from the wafer center, R / 2, and the periphery was measured to be 5 × 10 8 pieces / cm 3. 2 to 8 × 10 9 pieces / cm 2 . Etch pits were not observed in the epitaxial layer.
[0024]
(Comparative example)
The wafer with oxygen precipitation nuclei formed by the above heat treatment is used without leaving the hydrofluoric acid treatment, leaving the oxide film, and heat-treating at 1000 ° C. for 10 hours in a nitrogen atmosphere using a batch-type heat treatment furnace. It was. The time required for the heat treatment including the charging / discharging furnace time was 13 hours. The number of wafers processed by one batch of heat treatment was 120.
After the heat treatment, the oxide film of the wafer was removed with 1% hydrofluoric acid, the wafer was cleaved, and selective etching was performed with the Wright solution to reveal internal defects as etch pits. The etching amount was 5 μm on both sides of the wafer. The cleaved surface was observed with an optical microscope, and the density of etch pits at the center in the thickness direction of the wafer at three points in the plane 10 mm from the wafer center, R / 2, and the periphery was measured to be 8 × 10 8 pieces / cm 3. It was 2 to 1 × 10 9 pieces / cm 2 . Note that almost no etch pits were observed from the wafer surface to a depth of 15 μm, and a defect-free layer was formed.
[0025]
(Examination of time required for heat treatment for oxygen precipitation nucleus growth)
Comparing the time required for the oxygen precipitation nucleus growth heat treatment of the same number of wafers in the example and the comparative example, the comparative example first took 13 hours to process 120 wafers. In Example 1, it took 30 minutes to process 15 wafers, so the time required to process 120 wafers as in the comparative example is 4 hours. In Example 2, it took 50 minutes to process 15 wafers. Therefore, the time required to process 120 wafers similar to the comparative example is 6.7 hours. Therefore, when the oxygen precipitation nucleus growth heat treatment of the same number of wafers is performed, the processing time of the embodiment is 1/2 to 1/3 as compared with the comparative example, and the time can be greatly shortened. In each of the above embodiments, the number of sheets to be processed at a time is relatively small, 15 sheets. However, if this number is increased, the time shortening effect is further increased.
[0026]
【The invention's effect】
As described above, according to the present invention, the time for the IG heat treatment can be greatly reduced.

Claims (5)

引き上げ法により成長した単結晶シリコンインゴットから切り出したシリコンウェーハに酸素析出核形成熱処理と塩素を含むガスを用いる酸素析出核成長熱処理により内部欠陥を形成するシリコンウェーハの製造方法において、
前記酸素析出核成長熱処理の塩素を含むガスとして、塩化水素ガスの雰囲気中で行うことを特徴とするシリコンウェーハの製造方法。
In a method for producing a silicon wafer, in which internal defects are formed by a heat treatment of oxygen precipitation nucleation and a heat treatment of oxygen precipitation nucleation using a gas containing chlorine on a silicon wafer cut out from a single crystal silicon ingot grown by a pulling method,
A method for producing a silicon wafer, which is performed in an atmosphere of hydrogen chloride gas as a gas containing chlorine in the oxygen precipitation nucleus growth heat treatment.
引き上げ法により成長した単結晶シリコンインゴットから切り出したシリコンウェーハに、酸素の外方拡散熱処理と酸素析出核形成熱処理と塩素を含むガスを用いる酸素析出核成長熱処理により内部欠陥を形成するシリコンウェーハの製造方法において、
前記酸素析出核成長熱処理の塩素を含むガスとして、塩化水素ガスの雰囲気中で行うことを特徴とするシリコンウェーハの製造方法。
Production of silicon wafers in which internal defects are formed in silicon wafers cut from single crystal silicon ingots grown by the pulling method by oxygen outward diffusion heat treatment, oxygen precipitation nucleation heat treatment, and oxygen precipitation nucleation growth heat treatment using a gas containing chlorine In the method
A method for producing a silicon wafer, which is performed in an atmosphere of hydrogen chloride gas as a gas containing chlorine in the oxygen precipitation nucleus growth heat treatment.
前記塩化水素ガスを含む雰囲気は塩化水素を0.5%〜5%含む水素ガスである請求項1又は2に記載のシリコンウェーハの製造方法。  3. The method for producing a silicon wafer according to claim 1, wherein the atmosphere containing hydrogen chloride gas is hydrogen gas containing 0.5% to 5% hydrogen chloride. 前記酸素析出核成長熱処理が急速加熱及び急速冷却を含む熱処理であることを特徴とする請求項1ないし3のいずれか1項に記載のシリコンウェーハの製造方法。  4. The method for producing a silicon wafer according to claim 1, wherein the oxygen precipitation nucleus growth heat treatment is a heat treatment including rapid heating and rapid cooling. 前記シリコンウェーハの導電型がp型であり、抵抗率が0.005Ω・cm〜0.02Ω・cmの範囲にあることを特徴とする請求項1ないしのいずれか1項に記載のシリコンウェーハの製造方法。A conductivity type is p-type of the silicon wafer, the silicon wafer according to any one of claims 1 to 4 resistivity is characterized in that the range of 0.005Ω · cm~0.02Ω · cm Manufacturing method.
JP23741598A 1998-08-24 1998-08-24 Silicon wafer manufacturing method Expired - Lifetime JP4235760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23741598A JP4235760B2 (en) 1998-08-24 1998-08-24 Silicon wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23741598A JP4235760B2 (en) 1998-08-24 1998-08-24 Silicon wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2000068279A JP2000068279A (en) 2000-03-03
JP4235760B2 true JP4235760B2 (en) 2009-03-11

Family

ID=17015033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23741598A Expired - Lifetime JP4235760B2 (en) 1998-08-24 1998-08-24 Silicon wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4235760B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390909B1 (en) * 2001-06-12 2003-07-12 주식회사 하이닉스반도체 Method for gettering semiconductor device
KR20040007025A (en) * 2002-07-16 2004-01-24 주식회사 하이닉스반도체 Method for manufacturing a semiconductor wafer

Also Published As

Publication number Publication date
JP2000068279A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
US8197594B2 (en) Silicon wafer for semiconductor and manufacturing method thereof
US8476149B2 (en) Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
JPH1167781A (en) Heat treatment of silicon semiconductor substrate
JPH11150119A (en) Method and device for heat-treating silicon semiconductor substance
JP4646440B2 (en) Method for manufacturing nitrogen-doped annealed wafer
KR20170117418A (en) Manufacturing Method of Silicon Wafer
US7211141B2 (en) Method for producing a wafer
JP5217245B2 (en) Silicon single crystal wafer and manufacturing method thereof
JP2002043318A (en) Method for manufacturing silicon single crystal wafer
JP4615161B2 (en) Epitaxial wafer manufacturing method
KR100847925B1 (en) Anneal wafer manufacturing method and anneal wafer
WO2010131412A1 (en) Silicon wafer and method for producing the same
JP2003086597A (en) Silicon semiconductor substrate and method for manufacturing the same
JP2005060168A (en) Method for producing wafer
JP4235760B2 (en) Silicon wafer manufacturing method
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JP5211550B2 (en) Manufacturing method of silicon single crystal wafer
JP2005064254A (en) Method of manufacturing annealed wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
JP2001270796A (en) Silicon semiconductor substrate and method for producing the same
WO2021166895A1 (en) Semiconductor silicon wafer manufacturing method
JP4947445B2 (en) Method for manufacturing silicon semiconductor substrate
JPH0897221A (en) Manufacture of silicon wafer, and silicon wafer
JP2005064256A (en) Method of manufacturing epitaxial wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term