JP4232927B2 - Medium carbon steel cold-rolled steel sheet excellent in press workability and method for producing the same - Google Patents

Medium carbon steel cold-rolled steel sheet excellent in press workability and method for producing the same Download PDF

Info

Publication number
JP4232927B2
JP4232927B2 JP21690999A JP21690999A JP4232927B2 JP 4232927 B2 JP4232927 B2 JP 4232927B2 JP 21690999 A JP21690999 A JP 21690999A JP 21690999 A JP21690999 A JP 21690999A JP 4232927 B2 JP4232927 B2 JP 4232927B2
Authority
JP
Japan
Prior art keywords
weight
less
cold
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21690999A
Other languages
Japanese (ja)
Other versions
JP2001040448A (en
Inventor
謙二郎 泉谷
恭和 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP21690999A priority Critical patent/JP4232927B2/en
Publication of JP2001040448A publication Critical patent/JP2001040448A/en
Application granted granted Critical
Publication of JP4232927B2 publication Critical patent/JP4232927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、中炭素鋼冷延鋼板の改良に係り、例えば自動車のオートマチック・トランスミッションに組み込まれるフリクションプレート等の構成材料として有用な、高い硬度と良好なプレス加工性を備えた中炭素鋼冷延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
自動車のオートマチック・トランスミッションに組み込まれるフリクションプレート、セパレートプレート等は、炭素鋼冷延鋼板を素材とし、プレスによるプレート形状への加工、形状の修正、表面のショット処理等を経て製造される。
これらのプレートは、硬質・耐摩耗性を有することを要する。近時は、その機能の安定性・耐久性向上のために、プレート強度を高めることが望まれ、例えばHv硬さ約260ないしそれ以上の高硬質・耐摩耗性を有する材料が要請されている。
【0003】
【発明が解決しようとする課題】
上記プレート材の硬度・耐摩耗性の強化は、素材鋼の化学組成あるいは金属組織の調整等により対処することは可能である。
しかし、硬度を高めた冷延鋼板(例えばHv約260以上)では、プレスによるプレート形状の成形(打ち抜き加工)において、図3に示すように、プレートの周側面(剪断面)に割れが発生し易いという問題がある。
本発明者等は、フリクションプレート等の高硬度を要求されるプレス加工用冷延鋼板について、所要の硬度を確保しつつ、プレス加工性を高め剪断割れを防止することを目的として種々検討を重ねた結果、鋼中の非金属介在物、特にA系非金属介在物量およびその形態を制御すると共に、金属組織を特定の組織に調整することにより、硬度とプレス加工性の両面の要請に応え得ることを見出し本発明を完成するに到った。
【0004】
【課題を解決するための手段】
本発明の冷延鋼板(請求項1)は、
C:0.2〜0.8重量%,Si:0.35重量%以下,Mn:0.90重量%以下,P:0.03重量%以下,S:0.02重量%以下,Cr:0.2重量%以下,Ca:0.001〜0.02重量%、残部Fe及び不可避不純物からなる化学組成を有する中炭素鋼からなり、
鋼の清浄度(JIS G0555)は、dA(60×400):0.015%以下、dT(60×400):0.030%以下であり、
フェライト−パーライト混合組織を有している。
本発明の冷延鋼板の製造方法(請求項2)は
上記の化学組成を有する中炭素鋼材を熱間圧延し、熱延鋼板の巻取りをA r3 点−50℃〜A r3 点−200℃(板温)の温度域で行い、ついで冷延率1〜25%の冷間圧延を行うことからなる
本発明の冷延鋼板(請求項3)は、
上記の化学組成を有する中炭素鋼材を熱間圧延し、熱延鋼板の巻き取りをA r3 点−50℃〜A r3 点−200℃(板温)で行った後、熱延鋼板にセメンタイトの球状化焼鈍処理を施し、ついで冷延率30〜70%の冷間圧延を行うことにより製造される、所定の清浄度 (JIS G0555) 及びフェライト−球状セメンタイト混合組織を有する冷延鋼板である。
【0005】
プレス加工における冷延鋼板の剪断割れは、剪断の外力の作用で鋼中に生じる微細亀裂(ミクロクボイド)が起点となり、微細亀裂が伝播・連結することにより進展して剪断面に発現する割れである。鋼中に介在する非金属化合物、殊に圧延過程の粘性変形で延伸した形態を有するA系非金属介在物(ここでは主としてMnSである)は、その形態的特徴の故に、剪断力が加わるプレス加工において、微細亀裂の起点となり易く、また金属組織が延性に乏しいものである場合は、発生した微細亀裂の伝播・連結が助長され、剪断割れに進展し易くなる。
【0006】
本発明は、剪断割れ発生機構に関する上記知見の基に、鋼の化学組成について、鋼中のS量を規制すると共にCaを含有する組成とし、その成分調整によるA系介在物量および形態制御の効果として、剪断割れの起点となる微細亀裂の発生を抑制防止し、また金属組織を、フェライト−パーライト混合組織又はフェライト−球状化セメンタイト混合組織とすることにより、微細亀裂が発生しても、その進展を抑制阻止し得る適度の延性を保持しつつ、フリクションプレート等の用途に応じた高硬度を確保することを可能にしている。
【0007】
[化学組成]
まず、素材鋼の化学組成について説明する。元素含有量を示す%はすべて重量基準である。
C:0.2〜0.8%
Cは、硬度を高めるのに必要な元素である。フリクションプレート等の耐摩耗用途に要求される硬度を確保するには、0.2%以上であることを要する。0.8%を超えると、延靭性の不足をきたし、耐剪断割れ性の改善効果を得ることが困難となる。
【0008】
S:0.02%以下
SはMnと結合してMnSを形成する。MnSは熱間圧延過程で粘性変形してA系介在物となり、鋼板のプレス加工において、剪断割れの発生起点となる。このため、S量はできるだけ少ないことが望ましく、0.02%以下に制限することを要する。
【0009】
Ca:0.001〜0.02%
Caは、MnよりSとの反応性が高く、優先的にSと反応しCaSを生成することにより、MnSの生成を抑制低減する。CaSは、MnSに比し著しく高融点の化合物であり、MnSと異なって、熱間圧延における粘性変形はなく、球形状を保持したまま鋼中に存在する。従って、SをCaSとして固定することにより、剪断割れの起点となるA系介在物の生成を抑制低減することができる。
この効果を得るために、Ca量は、S量の上限規定との関係から、0.001%以上であることを要する。しかし、0.02%を超えて多量に添加する利益はなく、コスト的に無駄であるので、これを上限とする。
【0010】
Si,Mn,P等の元素量は一般の中炭素鋼におけるそれと同様に規定される。Siは、鋼の溶製・鋳造における脱酸元素、溶湯の湯流れ性の確保等のために、0.35%以下、Mnは脱酸・脱硫元素として、0.90%以下の範囲で添加される。また、焼き入れ性改善元素として0.2%以下のCrが添加される。Pは延性に有害な不純分として、0.03%以下に規制される。
【0012】
[dA(60×400):0.015%以下]
[dT(60×400):0.03%以下 ]
A系介在物は、前記のように剪断外力が作用する鋼板のプレス加工において、微細亀裂(ミクロボイド)の発生起点となる。改良された耐剪断割れ性を得るには、A系介在物清浄度dA(測定視野数:60,倍率:400倍)[JIS G0555]を0.015%以下に規制しなければならない。この清浄度を得るために、S量を制限すると共にCaを含有する前記化学組成に調整することが必要である。また、dAの規定と併せて、A系,B系,C系介在物のトータルの清浄度を高めることは、微細亀裂の伝播・連結を抑制するのに有効であり、このためdT(60×400)は0.03%以下であることが望ましい。
【0013】
[金属組織]
本発明の冷延鋼板は、フェライト−パーライト混合組織、またはフェライト−球状化セメンタイト混合組織を有する。
図1はフェライト−パーライト混合組織、図2はフェライト−球状化セメンタイト混合組織をそれぞれ示している。図中、fはフェライト,pはパーライト,cは球状化セメンタイトである(図1の供試材:実施例欄のNo.2,図2の供試材:実施例欄のNo.3)。
【0014】
フェライト−パーライト混合組織(図1)は、熱延鋼板のフェライト−パーライト混合組織がほぼそのまま冷延鋼板に持ち越されたものであり、フェライト−球状セメンタイト混合組織(図2)は、熱延鋼板を冷間圧延に先だって焼鈍処理(球状化焼鈍処理)することにより形成された組織である。
冷延鋼板にこのような金属組織を付与することにより、プレス加工で微細亀裂を生じても、その伝播・連結(剪断割れへの進展)が抑制防止され、かつフリクションプレート等の用途に応じた高硬度が与えられる。
【0015】
本発明の冷延鋼板は、全伸び(El)と穴拡げ率(λ)とを指標として、耐剪断割れ性を評価することができる。全伸び(El)4%以上、穴拡げ率(λ)15%以上の特性値を有する鋼板は優れた耐剪断割れ性を有する。この特性値は、前述の化学組成に基づくA系介在物の制御と金属組織の調整効果として保証される。
【0016】
本発明の冷延鋼板は、化学組成を調整された中炭素鋼スラブを、熱間圧延した後、セメンタイトの球状化焼鈍処理を実施もしくは省略して、冷間圧延する工程を経て製造される。
先ず、フェライト−パーライト混合組織を有する冷延鋼板について説明すると、
熱間圧延は、常法に従ってA変態点以上のオーステナイト単相温度域で行われる。熱延鋼板の巻き取り温度は重要であり、Ar3 点−50℃〜Ar3 点−200℃(板温)のやや低い温度域に調節するのがよい。Ar3 点−50℃を越えると、パーライトが粗大化することにより組織の均質性が損なわれ、他方Ar3 点−200℃を下回る低温域では、割れを発生するおそれがある。
【0017】
冷間圧延は、冷延率を1〜25%の低い範囲に設定して行うことを要する。冷延率が25%を超えると、フェライトが過度に硬化し、鋼板のプレス加工性が損なわれ、他方1%に満たない冷延率では、鋼板の硬度不足をきたすからである。具体的な冷延率は、板厚,所要の硬度等に応じて個々に設定される。得られる冷延鋼板は、熱延鋼板の金属組織がほぼそのまま保持されたフェライト−パーライト混合組織を有する。
【0018】
次に、フェライト−球状セメンタイト混合組織を有する冷延鋼板の製造について述べると、熱間圧延は、前記の場合と同じように、オーステナイト単相温度域で行われ、熱延鋼板の巻き取りも、前記と同じ理由により、Ar3 点−50℃〜Ar3 点−200℃(板温)の温度域で行うこと要する。
ついで、熱延鋼板を焼鈍処理(セメンタイトの球状化処理)し、焼鈍処理後、冷間圧延を行う。冷間圧延は、冷延率30〜70%の範囲において行うことを要する。冷延率を30%以上とするのは、焼鈍処理で軟質化した鋼板に加工歪を導入して硬度を高めるためである。しかし、70%を越える冷延率では、過度に硬化が進み、プレス加工性を損なうので、これを超えてはならない。具体的な冷延率は、板厚,所要の硬度等に応じて個々に設定される。得られる冷延鋼板は、フェライト地中に球状化セメンタイトが分散した混合組織を有している。
【0019】
上記工程で実施される球状化焼鈍の処理法は特に限定されないが、好ましくは3段処理が適用される。これは、A変態点近傍の温度域での加熱を組み合わせたものであり、具体的には例えば、Ac1点−50℃〜Ac1点未満の温度域で0.5Hr以上保持する第1段の処理を行った後、Ac1点〜Ac1点+100℃の温度域で0.5〜20Hr加熱保持する第2段の処理を行い、ついでAr1点−80℃〜Ar1点の温度域で2〜60Hr加熱保持する処理を連続的に施すものであり、均質性の良好なフェライト−球状セメンタイト混合組織を好適に形成することができる。
【0020】
【実施例】
化学組成を調整された中炭素鋼のスラブを、熱間圧延して熱延板(板厚2.0〜5.5mm)を得、球状化焼鈍処理し又は同処理を省略して冷間圧延し、所定板厚の冷延板(板厚1.0〜2.5mm)を得る。各供試鋼板について、諸特性の測定およびフリクションプレートの打ち抜き加工試験を行った。
【0021】
なお、発明例No.3,5及び比較例No.13,14における熱延鋼板の焼鈍処理条件は次のとおりである。
No.3 :700℃×20hr→745℃×7hr→690℃×7hr
No.5 :710℃×15hr
No.13:700℃×20hr→745℃×7hr→690℃×7hr
No.14:720℃×20hr
【0022】
表1に供試材の製造条件、表2に諸特性および打ち抜き加工試験結果を示す。
表中の剪断割れ発生率は、同一ロットから採取された板材800枚における剪断割れ発生枚数の比率(%)である。
比較例のNo.11および12(フェライト−パーライト混合組織)を見ると、
No.11は、A系介在物清浄度が悪いため、穴拡げ率(λ)も低く、剪断割れが発生し、No.12は、A系介在物清浄度が悪く、また熱延温度が高過ぎることによる組織の粗大化をきたし、穴拡げ率(λ)が低く、剪断割れを発生している。
【0023】
また、比較例のNo.13および14(フェライト−球状セメンタイト混合組織)において、No.13は、高硬度を有してはいるが、A系介在物清浄度が悪く、穴拡げ率(λ)も低くいため、剪断割れが発生し、No.14は、A系介在物清浄度は良好であるものの、トータルの介在物清浄度(dT)が、0.03%を大きく越えているため、剪断割れの発生が顕著である。
【0024】
これに対し、発明例は、A系介在物清浄度が良好であり、熱間および冷間の各圧延が適切に行われていることにより、剪断割れは皆無であり、しかもフリクションプレート等の用途に要求される高い硬度を備えている。
【0025】
【表1】

Figure 0004232927
【0026】
【表2】
Figure 0004232927
【0027】
【発明の効果】
本発明の中炭素鋼冷延鋼板は、高硬度を要求されるプレス成形品の素材として有用であり、例えば自動車のオートマチック・トランスミッションに組み込まれるフリクションプレート,セパレートプレート等の構成材料として好適に使用でき、製造歩留まり、品質の安定化、コスト低減等に効果をもたらすものである。
【図面の簡単な説明】
【図1】本発明の冷延鋼板の金属組織(フェライト−パーライト混合組織)を示す図面代用顕微鏡写真である。
【図2】本発明の冷延鋼板の金属組織(フェライト−球状化セメンタイト混合組織)を示す図面代用顕微鏡写真である。
【図3】リング形状を有する打ち抜き成形品の剪断割れの発生状況を模式的に示す図である。
【符号の説明】
1:打ち抜き成形品
2:剪断割れ
f:フェライト
p:パーライト
c:球状化セメンタイト[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a medium-carbon steel cold-rolled steel sheet. For example, the medium-carbon steel cold-rolled steel having high hardness and good press workability, which is useful as a constituent material of a friction plate incorporated in an automatic transmission of an automobile, for example. It is related with a steel plate and its manufacturing method.
[0002]
[Prior art]
Friction plates, separate plates, and the like incorporated in automobile automatic transmissions are manufactured from carbon steel cold-rolled steel sheets, processed into a plate shape by pressing, shape correction, surface shot processing, and the like.
These plates need to be hard and wear resistant. Recently, in order to improve the stability and durability of the function, it is desired to increase the strength of the plate. For example, a material having high hardness and wear resistance of about 260 Hv hardness or higher is required. .
[0003]
[Problems to be solved by the invention]
The enhancement of the hardness and wear resistance of the plate material can be dealt with by adjusting the chemical composition of the material steel or the metal structure.
However, in a cold-rolled steel sheet with increased hardness (for example, Hv of about 260 or more), cracks occur on the peripheral side surface (shear surface) of the plate as shown in FIG. There is a problem that it is easy.
The present inventors have made various studies on the cold-rolled steel sheet for press working that requires high hardness, such as a friction plate, for the purpose of improving press workability and preventing shear cracking while ensuring the required hardness. As a result, the amount of non-metallic inclusions in steel, particularly the amount of A-type non-metallic inclusions and the form thereof can be controlled, and the metal structure can be adjusted to a specific structure to meet both requirements of hardness and press workability. As a result, the present invention has been completed.
[0004]
[Means for Solving the Problems]
The cold-rolled steel sheet of the present invention (Claim 1)
C: 0.2 to 0.8% by weight, Si: 0.35% by weight or less, Mn: 0.90% by weight or less, P: 0.03% by weight or less , S: 0.02% by weight or less , Cr: 0.2% by weight or less , Ca: 0.001 to 0.02% by weight , consisting of a medium carbon steel having a chemical composition consisting of the balance Fe and inevitable impurities ,
The cleanliness of steel (JIS G0555) is dA (60 × 400): 0.015% or less, dT (60 × 400): 0.030% or less,
Ferrite - and a woven perlite mix sets.
The method for producing a cold-rolled steel sheet according to the present invention (Claim 2)
Carbon steel in having the aforementioned chemical composition and hot rolling, carried out the winding of the hot rolled steel sheet in a temperature range of A r3 point -50 ° C. to A r3 point -200 ° C. (sheet temperature), followed by cold rolling ratio 1 ~ 25% cold rolling .
The cold-rolled steel sheet of the present invention (Claim 3)
The medium carbon steel material having the above chemical composition is hot-rolled, and the hot rolled steel sheet is wound at Ar 3 point−50 ° C. to A r3 point−200 ° C. (sheet temperature). A cold-rolled steel sheet having a predetermined cleanliness (JIS G0555) and a ferrite-spherical cementite mixed structure, which is produced by performing spheroidizing annealing and then performing cold rolling with a cold rolling rate of 30 to 70% .
[0005]
Shear cracks in cold-rolled steel sheets in press work are cracks that develop on the shearing surface as a result of the propagation and connection of microcracks that originate from microcracks that occur in steel due to the action of external forces of shear. . Non-metallic compounds present in steel, especially A-based non-metallic inclusions (in this case, mainly MnS) having a stretched shape due to viscous deformation during rolling, presses to which shear force is applied due to their morphological characteristics. In processing, when it is easy to become a starting point of a fine crack and the metal structure is poor in ductility, the propagation and connection of the generated fine crack is promoted, and it tends to progress to a shear crack.
[0006]
The present invention is based on the above knowledge regarding the mechanism of shear crack generation, and the chemical composition of the steel is controlled to contain S in the steel and contains Ca. As described above, it is possible to suppress and prevent the occurrence of fine cracks as the starting point of shear cracks, and even if fine cracks are generated by making the metal structure a ferrite-pearlite mixed structure or a ferrite-spheroidized cementite mixed structure, the progress It is possible to ensure a high hardness according to the application such as a friction plate while maintaining an appropriate ductility that can suppress and prevent the above.
[0007]
[Chemical composition]
First, the chemical composition of the material steel will be described. All percentages indicating element content are based on weight.
C: 0.2 to 0.8%
C is an element necessary for increasing the hardness. In order to ensure the hardness required for wear-resistant applications such as friction plates, it is necessary to be 0.2% or more. If it exceeds 0.8%, the ductility becomes insufficient, and it becomes difficult to obtain the effect of improving the shear crack resistance.
[0008]
S: 0.02% or less S combines with Mn to form MnS. MnS undergoes viscous deformation during the hot rolling process to become A-based inclusions, and becomes a starting point of shear cracking in the press working of steel sheets. For this reason, it is desirable that the amount of S is as small as possible, and it is necessary to limit it to 0.02% or less.
[0009]
Ca: 0.001 to 0.02%
Ca has a higher reactivity with S than Mn and preferentially reacts with S to produce CaS, thereby suppressing and reducing the production of MnS. CaS is a compound having a remarkably higher melting point than MnS, and unlike MnS, there is no viscous deformation in hot rolling, and it exists in steel while maintaining a spherical shape. Therefore, by fixing S as CaS, it is possible to suppress and reduce the formation of A-based inclusions that are the origin of shear cracking.
In order to obtain this effect, the Ca content needs to be 0.001% or more from the relationship with the upper limit of the S content. However, there is no benefit of adding a large amount exceeding 0.02%, and this is wasteful in cost, so this is the upper limit.
[0010]
The amount of elements such as Si, Mn, and P is defined in the same manner as that in general medium carbon steel. Si is added in the range of 0.35% or less, and Mn is added in the range of 0.90 % or less as a deoxidation / desulfurization element, in order to ensure the deoxidation element in the melting and casting of steel and the flow of molten metal. Ru is. Further, 0.2% or less of Cr is added as a hardenability improving element. P is regulated to 0.03% or less as an impurity harmful to ductility.
[0012]
[dA (60 × 400): 0.015% or less]
[dT (60 × 400): 0.03% or less]
In the press working of the steel sheet to which the shear external force acts as described above, the A-based inclusion becomes a starting point of occurrence of fine cracks (micro voids). In order to obtain improved shear crack resistance, the A-system inclusion cleanliness dA (number of fields of view: 60, magnification: 400 times) [JIS G0555] must be regulated to 0.015% or less. In order to obtain this cleanliness, it is necessary to limit the amount of S and adjust to the chemical composition containing Ca. In addition to the definition of dA, increasing the total cleanliness of the A-type, B-type, and C-type inclusions is effective in suppressing the propagation and connection of microcracks, and for this reason, dT (60 × 400) is preferably 0.03% or less.
[0013]
[Metal structure]
The cold-rolled steel sheet of the present invention has a ferrite-pearlite mixed structure or a ferrite-spheroidized cementite mixed structure.
FIG. 1 shows a ferrite-pearlite mixed structure, and FIG. 2 shows a ferrite-spheroidized cementite mixed structure. In the figure, f is ferrite, p is pearlite, and c is spheroidized cementite (test material in FIG. 1: No. 2 in the example column, sample material in FIG. 2: No. 3 in the example column).
[0014]
The ferrite-pearlite mixed structure (FIG. 1) is a structure in which the ferrite-pearlite mixed structure of the hot-rolled steel sheet is almost carried over to the cold-rolled steel sheet, and the ferrite-spherical cementite mixed structure (FIG. 2) This is a structure formed by annealing (spheroidizing annealing) prior to cold rolling.
By imparting such a metal structure to a cold-rolled steel sheet, even if a microcrack is generated by press working, its propagation and connection (progress to shear cracking) are prevented and prevented, and it is suitable for applications such as friction plates. High hardness is given.
[0015]
The cold-rolled steel sheet of the present invention can be evaluated for shear crack resistance using the total elongation (El) and the hole expansion ratio (λ) as indices. Steel sheets having characteristic values of total elongation (El) of 4% or more and hole expansion ratio (λ) of 15% or more have excellent shear crack resistance. This characteristic value is guaranteed as the effect of controlling the A-based inclusions based on the chemical composition and adjusting the metal structure.
[0016]
The cold-rolled steel sheet of the present invention is manufactured through a step of cold rolling after hot rolling a medium carbon steel slab whose chemical composition is adjusted, and then performing or omitting cementite spheroidizing annealing.
First, a cold rolled steel sheet having a ferrite-pearlite mixed structure will be described.
Hot rolling is performed at A 3 transformation point or more single-phase austenite temperature region in a conventional manner. The coiling temperature of the hot-rolled steel sheet is important, and it is preferable to adjust it to a slightly low temperature range of Ar3 point−50 ° C. to Ar3 point−200 ° C. (plate temperature). If it exceeds Ar 3 point −50 ° C., the pearlite becomes coarse and the homogeneity of the structure is impaired. On the other hand, cracking may occur in a low temperature range below Ar 3 point −200 ° C.
[0017]
Cold rolling requires that the cold rolling rate be set to a low range of 1 to 25%. This is because if the cold rolling rate exceeds 25%, the ferrite is excessively hardened and the press workability of the steel plate is impaired, and if the cold rolling rate is less than 1%, the hardness of the steel plate is insufficient. The specific cold rolling rate is individually set according to the plate thickness, required hardness, and the like. The resulting cold-rolled steel sheet has a ferrite-pearlite mixed structure in which the metal structure of the hot-rolled steel sheet is substantially maintained as it is.
[0018]
Next, to describe the production of a cold rolled steel sheet having a ferrite-spherical cementite mixed structure, hot rolling is performed in the austenite single-phase temperature range as described above, and winding of the hot rolled steel sheet is also performed. For the same reason as described above, it is necessary to carry out in the temperature range of Ar 3 point −50 ° C. to Ar 3 point −200 ° C. (plate temperature).
Next, the hot-rolled steel sheet is annealed (cementite spheroidizing process), and after the annealing process, cold rolling is performed. Cold rolling needs to be performed in the range of a cold rolling rate of 30 to 70%. The reason why the cold rolling rate is 30% or more is to increase the hardness by introducing processing strain into the steel sheet softened by the annealing treatment. However, if the cold rolling rate exceeds 70%, the curing proceeds excessively and impairs press workability, so this should not be exceeded. The specific cold rolling rate is individually set according to the plate thickness, required hardness, and the like. The obtained cold-rolled steel sheet has a mixed structure in which spheroidized cementite is dispersed in the ferrite ground.
[0019]
Although the processing method of the spheroidizing annealing performed at the said process is not specifically limited, Preferably a three-stage process is applied. This is a combination of heating in the temperature range in the vicinity of A 1 transformation point, specifically, for example, first holding more 0.5Hr in a temperature range of less than A c1 point -50 ° C. to A c1 point After performing the stage treatment, the second stage treatment is carried out by heating for 0.5 to 20 hours in the temperature range of A c1 point to A c1 point + 100 ° C., and then the A r1 point −80 ° C. to A r1 point A treatment of heating and holding for 2 to 60 hours in the temperature range is continuously performed, and a ferrite-spherical cementite mixed structure with good homogeneity can be suitably formed.
[0020]
【Example】
Hot-rolled medium carbon steel slabs with adjusted chemical composition to obtain hot-rolled sheets (thickness 2.0-5.5 mm), spheroidizing annealing or cold rolling with the same treatment omitted Then, a cold-rolled plate (plate thickness of 1.0 to 2.5 mm) having a predetermined plate thickness is obtained. Each test steel sheet was measured for various properties and subjected to a punching test of the friction plate.
[0021]
Inventive Example No. 3 and 5 and Comparative Example No. The annealing conditions for hot-rolled steel sheets 13 and 14 are as follows.
No. 3: 700 ° C. × 20 hr → 745 ° C. × 7 hr → 690 ° C. × 7 hr
No. 5: 710 ° C. × 15 hr
No. 13: 700 ° C. × 20 hr → 745 ° C. × 7 hr → 690 ° C. × 7 hr
No. 14: 720 ° C. × 20 hr
[0022]
Table 1 shows the manufacturing conditions of the test materials, and Table 2 shows the characteristics and the punching test results.
The shear crack occurrence rate in the table is the ratio (%) of the number of shear cracks generated in 800 sheets of plate material collected from the same lot.
Comparative Example No. Looking at 11 and 12 (ferrite-pearlite mixed structure),
No. No. 11 has poor cleanliness of the A-based inclusions, so the hole expansion rate (λ) is low, shear cracking occurs, No. 12 has poor cleanliness of the A-based inclusions, and the structure becomes coarse due to the hot rolling temperature being too high, the hole expansion rate (λ) is low, and shear cracks are generated.
[0023]
Moreover, No. of the comparative example. Nos. 13 and 14 (ferrite-spherical cementite mixed structure) No. 13 has high hardness, but the cleanliness of the A-based inclusions is poor and the hole expansion rate (λ) is low. No. 14, although the cleanliness of the A-based inclusions is good, the total inclusion cleanliness (dT) greatly exceeds 0.03%, so the occurrence of shear cracks is remarkable.
[0024]
On the other hand, the invention examples have good cleanliness of the A-based inclusions, and there is no shear cracking due to appropriate hot and cold rolling, and the use of friction plates and the like. It has the high hardness required.
[0025]
[Table 1]
Figure 0004232927
[0026]
[Table 2]
Figure 0004232927
[0027]
【The invention's effect】
The medium-carbon steel cold-rolled steel sheet of the present invention is useful as a material for press-molded products that require high hardness, and can be suitably used as a constituent material for friction plates, separate plates, etc. incorporated in automatic transmissions of automobiles, for example. This is effective for manufacturing yield, quality stabilization, cost reduction, and the like.
[Brief description of the drawings]
FIG. 1 is a drawing-substituting micrograph showing a metal structure (ferrite-pearlite mixed structure) of a cold-rolled steel sheet of the present invention.
FIG. 2 is a drawing-substituting micrograph showing the metal structure (ferrite-spheroidized cementite mixed structure) of the cold-rolled steel sheet of the present invention.
FIG. 3 is a diagram schematically showing the occurrence of shear cracks in a punched molded product having a ring shape.
[Explanation of symbols]
1: Punched molded product 2: Shear crack f: Ferrite p: Pearlite c: Spheroidized cementite

Claims (3)

C:0.2〜0.8重量%,Si:0.35重量%以下,Mn:0.90重量%以下,P:0.03重量%以下,S:0.02重量%以下,Cr:0.2重量%以下,Ca:0.001〜0.02重量%、残部Fe及び不可避不純物からなる化学組成を有する中炭素鋼からなり、鋼の清浄度(JIS G0555)は、dA(60×400):0.015%以下、dT(60×400):0.030%以下であり、フェライト−パーライト混合組織を有するプレス加工性に優れた中炭素鋼冷延鋼板。C: 0.2 to 0.8% by weight, Si: 0.35% by weight or less, Mn: 0.90% by weight or less, P: 0.03% by weight or less, S: 0.02% by weight or less , Cr: 0.2% by weight or less , Ca: 0.001 to 0.02% by weight , made of medium carbon steel having a chemical composition consisting of the balance Fe and inevitable impurities, and the cleanliness of the steel (JIS G0555) is dA (60 × 400): 0.015% or less, dT (60 × 400) is 0.030% or less, ferritic - carbon steel cold-rolled steel sheet in which excellent press formability having woven perlite mix sets. C:0.2〜0.8重量%,Si:0.35重量%以下,Mn:0.90重量%以下,P:0.03重量%以下,S:0.02重量%以下,Cr:0.2重量%以下,Ca:0.001〜0.02重量%、残部Fe及び不可避不純物からなる化学組成を有する中炭素鋼材を熱間圧延し、熱延鋼板の巻取りをAr3 点−50℃〜Ar3 点−200℃(板温)の温度域で行い、ついで冷延率1〜25%の冷間圧延を行うことからなる、フェライト−パーライト混合組織を有するプレス加工性に優れたプレス加工用中炭素鋼冷延鋼板の製造方法。C: 0.2 to 0.8% by weight, Si: 0.35% by weight or less, Mn: 0.90% by weight or less, P: 0.03% by weight or less, S: 0.02% by weight or less , Cr: 0.2% by weight or less , Ca: 0.001 to 0.02% by weight , a medium carbon steel material having a chemical composition composed of the balance Fe and inevitable impurities is hot-rolled, and winding of the hot-rolled steel sheet is performed at Ar 3 carried out in the temperature range of 50 ° C. to a r3 point -200 ° C. (sheet temperature), followed by a rolling cold rolling ratio 1% to 25% of the cold, ferrite - excellent press formability having pearlite mixed structure Manufacturing method of medium carbon steel cold-rolled steel sheet for press working. C:0.2〜0.8重量%,Si:0.35重量%以下,Mn:0.90重量%以下,P:0.03重量%以下,S:0.02重量%以下,Cr:0.2重量%以下,Ca:0.001〜0.02重量%、残部Fe及び不可避不純物からなる化学組成を有する中炭素鋼材を熱間圧延し、熱延鋼板の巻き取りをAr3 点−50℃〜Ar3 点−200℃(板温)で行った後、熱延鋼板にセメンタイトの球状化焼鈍処理を施し、ついで冷延率30〜70%の冷間圧延を行うことにより製造される、dA(60×400):0.015%以下、dT(60×400):0.030%以下の清浄度(JIS G0555)を有し、フェライト−球状セメンタイト混合組織を有するプレス加工性に優れた中炭素鋼冷延鋼板。 C: 0.2 to 0.8% by weight, Si: 0.35% by weight or less, Mn: 0.90% by weight or less, P: 0.03% by weight or less, S: 0.02% by weight or less, Cr: 0.2% by weight or less, Ca: 0.001 to 0.02% by weight , a medium carbon steel material having a chemical composition consisting of the balance Fe and unavoidable impurities is hot-rolled, and winding of the hot-rolled steel sheet is performed at Ar 3 points − after at 50 ° C. to a r3 point -200 ° C. (sheet temperature) is produced by subjecting a spheroidizing annealing treatment of cementite hot-rolled steel sheet, followed by a rolling cold rolling ratio 30% to 70% of the cold DA (60 × 400): 0.015% or less, dT (60 × 400): 0.030% or less cleanliness (JIS G0555), and excellent workability in press working with a ferrite-spherical cementite mixed structure carbon steel cold-rolled steel sheet in the.
JP21690999A 1999-07-30 1999-07-30 Medium carbon steel cold-rolled steel sheet excellent in press workability and method for producing the same Expired - Fee Related JP4232927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21690999A JP4232927B2 (en) 1999-07-30 1999-07-30 Medium carbon steel cold-rolled steel sheet excellent in press workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21690999A JP4232927B2 (en) 1999-07-30 1999-07-30 Medium carbon steel cold-rolled steel sheet excellent in press workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001040448A JP2001040448A (en) 2001-02-13
JP4232927B2 true JP4232927B2 (en) 2009-03-04

Family

ID=16695829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21690999A Expired - Fee Related JP4232927B2 (en) 1999-07-30 1999-07-30 Medium carbon steel cold-rolled steel sheet excellent in press workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4232927B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177433A (en) * 2015-08-27 2015-12-23 韩功篑 Hot-rolled steel suitable for manufacturing car friction plate and preparation method thereof

Also Published As

Publication number Publication date
JP2001040448A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
KR101050698B1 (en) Ultra-thin high carbon hot rolled steel sheet and manufacturing method thereof
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
KR100974737B1 (en) Manufacturing method of ultra soft high carbon hot-rolled steel sheets
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
EP2615191B1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
WO2011115279A1 (en) Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
WO2015060223A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent cold workability
JP2023538680A (en) Gigapascal grade bainite steel with ultra-high yield ratio and its manufacturing method
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
WO2015060311A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
KR102570145B1 (en) High-carbon hot-rolled steel sheet and manufacturing method thereof
JP2011052295A (en) High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
WO2015159965A1 (en) Hot-rolled steel sheet having good cold workability and excellent hardness after working
JP2007119849A (en) Cold rolled ferritic stainless steel sheet having excellent press formability and its production method
KR20130035276A (en) Steel sheets and process for manufacturing the same
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP5549450B2 (en) High carbon hot-rolled steel sheet excellent in fine blanking property and manufacturing method thereof
KR20200097806A (en) High carbon hot-rolled steel sheet and its manufacturing method
JP3752118B2 (en) High carbon steel sheet with excellent formability
JPS58734B2 (en) Manufacturing method of low alloy steel plate (strip) for precision punching
JP4622609B2 (en) Method for producing soft high workability high carbon hot rolled steel sheet with excellent stretch flangeability
JP4232927B2 (en) Medium carbon steel cold-rolled steel sheet excellent in press workability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees