JP4230894B2 - Image forming apparatus - Google Patents
Image forming apparatus Download PDFInfo
- Publication number
- JP4230894B2 JP4230894B2 JP2003406565A JP2003406565A JP4230894B2 JP 4230894 B2 JP4230894 B2 JP 4230894B2 JP 2003406565 A JP2003406565 A JP 2003406565A JP 2003406565 A JP2003406565 A JP 2003406565A JP 4230894 B2 JP4230894 B2 JP 4230894B2
- Authority
- JP
- Japan
- Prior art keywords
- image forming
- crystal
- titanyl phthalocyanine
- peak
- forming apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は、スコロトロン帯電方式により30V/μm以上の電界強度が感光体に印加され、600 dpi以上の解像度を有する書き込みが行われ、少なくとも特定結晶型および特定の粒子サイズを有するチタニルフタロシアニン結晶を含有する電荷発生層と電荷輸送層を順に積層してなる電子写真感光体を用い、感光体線速が300mm/sec以上で動作される画像形成装置に関する。 The present invention includes a titanyl phthalocyanine crystal having at least a specific crystal type and a specific particle size, in which an electric field strength of 30 V / μm or more is applied to the photoconductor by a scorotron charging method, writing having a resolution of 600 dpi or more is performed. The present invention relates to an image forming apparatus using an electrophotographic photosensitive member in which a charge generating layer and a charge transporting layer are sequentially laminated, and operated at a photosensitive member linear velocity of 300 mm / sec or more.
近年、電子写真方式を用いた情報処理システム機の発展は目覚ましいものがある。特に情報をデジタル信号に変換して光によって情報記録を行う光プリンターは、そのプリント品質、信頼性において向上が著しい。このデジタル記録技術はプリンターのみならず通常の複写機にも応用され、所謂デジタル複写機が開発されている。また、従来からあるアナログ複写にこのデジタル記録技術を搭載した複写機は、種々様々な情報処理機能が付加されるため今後その需要性が益々高まっていくと予想される。さらに、パーソナルコンピュータの普及、及び性能の向上にともない、画像及びドキュメントのカラー出力を行なうためのデジタルカラープリンタの進歩も急激に進んでいる。 In recent years, there has been a remarkable development of information processing system machines using electrophotography. In particular, an optical printer that converts information into a digital signal and records information by light is markedly improved in print quality and reliability. This digital recording technique is applied not only to printers but also to ordinary copying machines, and so-called digital copying machines have been developed. In addition, since a variety of information processing functions are added to a conventional copying machine equipped with this digital recording technology for analog copying, it is expected that its demand will increase further in the future. In addition, with the spread of personal computers and the improvement in performance, the progress of digital color printers for performing color output of images and documents is rapidly progressing.
近年、上記プリンターや複写機は装置の高速化、高画質化が要望されているが、大きな2つの流れがある。一方は小型化を推し進めながら可能な範囲で高速化する方法であり、他方は大口径の感光体を用い感光体線速(プロセス線速)を非常に大きなものにする方法である。
前者は感光体口径をそれほど大きなものにしないで、装置の小型化を優先的に設計するため、高速化には限界があり、また感光体の寿命にも限界がある。後者は、プリント速度で100枚/分程度の高速化を実現するために、大口径な感光体を使用し、かつ感光体線速を可能な限り大きくし、感光体の寿命もプリント1枚あたりの感光体回転数を実質的に少なくすることにより、高耐久化を図っている。
In recent years, printers and copiers have been required to have higher speeds and higher image quality, but there are two major flows. One is a method of speeding up as much as possible while proceeding with downsizing, and the other is a method of using a large-diameter photosensitive member to increase the photosensitive member linear velocity (process linear velocity).
Since the former does not make the diameter of the photosensitive member so large and the apparatus is preferentially designed to reduce the size of the apparatus, there is a limit to speeding up and the life of the photosensitive member is also limited. The latter uses a large-diameter photoconductor and increases the linear velocity of the photoconductor as much as possible in order to achieve a printing speed of about 100 sheets / min. High durability is achieved by substantially reducing the rotational speed of the photosensitive member.
このような高線速でかつ大口径の感光体を使用するシステムにおける帯電方式としては、金属製のワイヤーを使用したコロトロンあるいはスコロトロン方式と呼ばれる方式が使用される。特に、有機感光体(OPC)を用いた装置においては、通常負帯電が施されるため、帯電安定性の点からグリッドを有するスコロトロン方式が用いられる。このようなワイヤー方式の帯電部材は、帯電部材と感光体間の距離が大きいため、印加バイアスを大きくしなければならず、ローラー形状であり感光体と接触する形態を有する接触方式の帯電部材に比べて使用電力が大きく、またオゾンやNOxといった酸化性ガスの発生量が大きいといった問題点を有していることは事実である。しかしながら、ローラー方式の帯電部材では高速帯電を行った際に帯電性が追従出来ない、またローラーの寿命が短くシステムとしての信頼性を確保出来ないなどの問題がある。このため、感光体(プロセス)線速が300mm/sec以上の高速で動作させる画像形成装置においては、スコロトロン方式の帯電部材を使いこなす必要がある。 As a charging method in such a system using a photoconductor having a high linear velocity and a large diameter, a method called a corotron using a metal wire or a scorotron method is used. In particular, in an apparatus using an organic photoreceptor (OPC), since negative charging is usually performed, a scorotron system having a grid is used from the viewpoint of charging stability. Since such a wire-type charging member has a large distance between the charging member and the photosensitive member, it is necessary to increase the applied bias, and it is a contact-type charging member having a roller shape and a form in contact with the photosensitive member. Compared to this, there is a problem that the electric power used is large and the generation amount of oxidizing gases such as ozone and NOx is large. However, the roller-type charging member has problems such that charging performance cannot be followed when high-speed charging is performed, and the reliability of the system cannot be ensured because the roller life is short. Therefore, in an image forming apparatus that operates at a photosensitive member (process) linear velocity of 300 mm / sec or more, it is necessary to make full use of a scorotron charging member.
高速化の課題に対しては、高感度・高速応答性を有する感光体の使用が行われている。通常、780nmLDや760nm近傍のLEDが光源として用いられ、これに対応した感光体(電荷発生材料)としては、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶を用いることが知られている。 For the problem of speeding up, a photoconductor having high sensitivity and high speed response has been used. Usually, an LED of 780 nm LD or near 760 nm is used as a light source, and a corresponding photoconductor (charge generation material) has a diffraction peak (± 0. 0) with respect to a characteristic X-ray (wavelength 1.542Å) of CuKα. 2 °), it is known to use a titanyl phthalocyanine crystal having a maximum diffraction peak at least 27.2 °.
この特定結晶型は、非常に高いキャリア発生機能を有しており、高速画像形成装置用感光体の電荷発生材料として有効に使用できる。しかしながら、この結晶型は、結晶としての安定性が低く、分散等の機械的ストレス、熱的なストレスに対して結晶転移し易いという問題を抱えており、結晶転移後の結晶型はこの結晶型に比べて非常に低感度であり、結晶の一部が結晶転移した場合には充分な光キャリア発生機能を発現することができない。また、感光体の繰り返し使用において、特にネガ・ポジ現像固有の問題点である地汚れ画像と呼ばれる異常画像が起こりやすいという問題点も有している。 This specific crystal type has a very high carrier generation function and can be effectively used as a charge generation material for a photoreceptor for a high-speed image forming apparatus. However, this crystal type has a problem that its stability as a crystal is low, and it is easy to undergo a crystal transition against mechanical stress such as dispersion, and thermal stress. Compared to the above, the sensitivity is very low, and when a part of the crystal undergoes crystal transition, a sufficient photocarrier generation function cannot be exhibited. In addition, there is also a problem that abnormal images called “dirt images” that are problems inherent to negative / positive development are likely to occur during repeated use of the photoreceptor.
また、画像を出力する頻度が大幅に増加していることから、装置の高画質化も重要な課題となっている。高画質化を達成するためには、(i)帯電手段、露光手段によって形成される感光体上の静電潜像を高密度な画像で形成すること、(ii)それに続く現像手段にて静電潜像に忠実にトナー像を形成すること、(iii)最後に感光体上のトナー像を正確に転写紙に転写することの3つの課題が挙げられる。 In addition, since the frequency of outputting images has increased significantly, it has become an important issue to improve the image quality of the apparatus. In order to achieve high image quality, (i) an electrostatic latent image on the photosensitive member formed by the charging unit and exposure unit is formed as a high-density image, and (ii) a subsequent developing unit There are three problems: to form a toner image faithfully to the electrostatic latent image, and (iii) to accurately transfer the toner image on the photoconductor to the transfer paper.
これらの課題解決のための手段としてはそれぞれ、(i)露光手段に小径ビームを用いた高密度書き込みにより静電潜像を形成する方法が挙げられるが、感光体にかかる電界強度が小さいと感光層中で発生した光キャリアがクーロン反発により広がってしまい、ビーム径に対応した大きさのドットが形成されなくなってしまう。(ii)現像手段においてトナー粒径を小粒径化することによって静電潜像に忠実なトナー像を感光体上に形成する方法が挙げられるが、感光体表面電位が低いと現像効率の低下や集約化が行われず、静電潜像のドットに対して散ったドットが形成されてしまう。(iii)転写手段において空隙電界強度を高くすることで転写効率を上げ感光体上のトナー像を忠実に転写紙に転写する方法が挙げられるが、転写電界強度を大きくすると逆に放電を生じて転写チリを生じたり、感光体の電気特性の疲労を促進してしまう場合がある。 As means for solving these problems, (i) a method of forming an electrostatic latent image by high-density writing using a small-diameter beam as an exposure means can be cited. Optical carriers generated in the layer spread due to Coulomb repulsion, and dots having a size corresponding to the beam diameter cannot be formed. (Ii) There is a method of forming a toner image faithful to the electrostatic latent image on the photosensitive member by reducing the toner particle size in the developing means. However, if the surface potential of the photosensitive member is low, the developing efficiency decreases. In other words, the dots are scattered and dots scattered with respect to the dots of the electrostatic latent image are formed. (Iii) Increasing the gap electric field strength in the transfer means can increase the transfer efficiency and faithfully transfer the toner image on the photoconductor to the transfer paper. However, if the transfer electric field strength is increased, a discharge occurs. In some cases, transfer dust may occur and fatigue of the electrical characteristics of the photoreceptor may be promoted.
これらのうち、特に(i)や(ii)における感光体表面電位(電界強度)の増加は、上記CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶を用いた感光体を繰り返し用いた際、地汚れと呼ばれる異常画像の原因となっている。 Among these, the increase in the photoreceptor surface potential (electric field strength) particularly in (i) and (ii) is caused by the diffraction peak (± 0.2 °) at the Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of the CuKα. ), When a photoreceptor using a titanyl phthalocyanine crystal having a maximum diffraction peak of at least 27.2 ° is repeatedly used, it causes an abnormal image called “dirt”.
図1には、感光体に印加される電界強度(感光体表面電位/感光層膜厚)に対するドット形成の様子を示す(書き込みは1200dpiで行っている)。図1に示されるように、小径ドットを忠実に再現するためには電界強度を高めに設定する必要がある。図2には、電界強度に対する地汚れランクの変化を示す。ここで言う地汚れランクとは、地汚れの程度を示すものであり、数値が大きいほど地汚れの程度が良好(地汚れ発生頻度が低い)であることを表すものである。図1と図2から分かるように両者の間には電界強度に関してトレード・オフの関係がある。
地汚れを回避するためには、通常、感光体の電界強度を30V/μm以下で使用し、小径ドットの再現を多少犠牲にしているシステムが使用されていた。例えば、特開2001−154379号公報(特許文献1)では、地汚れと細線の再現性を両立させるために、感光体の電界強度を12〜40V/μmで使用する旨の記載がある。しかしながら、書き込み光の解像度を高くしていった場合には、この下限値をより高めに設定しない限り、書き込みドットを再現良く現像することが出来ない。
FIG. 1 shows how dots are formed with respect to the electric field strength (photoconductor surface potential / photosensitive layer film thickness) applied to the photoconductor (writing is performed at 1200 dpi). As shown in FIG. 1, in order to faithfully reproduce small-diameter dots, the electric field strength needs to be set higher. FIG. 2 shows the change in the soiling rank with respect to the electric field intensity. The background dirt rank referred to here indicates the degree of background dirt, and the greater the numerical value, the better the degree of background dirt (the less frequently the background dirt is generated). As can be seen from FIGS. 1 and 2, there is a trade-off relationship between the two in terms of electric field strength.
In order to avoid scumming, a system is generally used in which the electric field strength of the photosensitive member is used at 30 V / μm or less and the reproduction of small-diameter dots is somewhat sacrificed. For example, Japanese Patent Laid-Open No. 2001-154379 (Patent Document 1) describes that the electric field strength of a photoreceptor is used at 12 to 40 V / μm in order to achieve both reproducibility of background stains and fine lines. However, when the resolution of the writing light is increased, the writing dots cannot be developed with good reproducibility unless this lower limit is set higher.
また、感光体の地汚れに関しても感光体を構成する材料(主に電荷発生材料)により、電界強度の上限値が異なってくる。前記CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、非常に高感度ではあるものの、地汚れに対して弱いという欠点を有しており、実際には前述の如く30V/μm以下程度の電界強度でしか使用されていない。
また、前記チタニルフタロシアニン結晶の光キャリア発生効率(能力)は、電界強度に依存し、低電界になるにつれキャリア発生効率が極端に低下する。このため、実際のシステムにおいては、前記チタニルフタロシアニン結晶における特異的な高感度という長所を生かしきれないことになっている。
このような問題は、低い解像度(400dpi以下)の書き込み光では、それほど問題にならない現象であったが、昨今の高解像度書き込み(600dpi以上、より精細な書き込みは1200dpi以上)において顕著に現れる問題である。
In addition, the upper limit value of the electric field strength varies depending on the material (mainly charge generation material) constituting the photoconductor as to the soiling of the photoconductor. A titanyl phthalocyanine crystal having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 mm) of the CuKα is very sensitive. However, it has a disadvantage that it is weak against soiling and is actually used only at an electric field strength of about 30 V / μm or less as described above.
The photocarrier generation efficiency (capability) of the titanyl phthalocyanine crystal depends on the electric field strength, and the carrier generation efficiency is extremely lowered as the electric field is lowered. For this reason, in an actual system, the advantage of the specific high sensitivity in the said titanyl phthalocyanine crystal cannot be fully utilized.
Such a problem is a phenomenon that does not cause much problem with low-resolution (400 dpi or less) writing light, but is a problem that appears prominently in recent high-resolution writing (600 dpi or more, finer writing is 1200 dpi or more). is there.
従って、本発明の目的は、高速で繰り返し使用した際に、異常画像の発生がなく、安定で解像度の高い画像を出力する画像形成装置を提供することにある。
具体的には、感光体線速が300mm/sec以上の高速で高画質な画像を形成するため、スコロトロン方式の帯電部材により30V/μm以上の電界強度が形成されるように感光体に帯電を行い、更に600dpi以上の書き込み光源による書き込みを行うことにより静電潜像を形成する画像形成装置において、特定結晶型のチタニルフタロシアニン結晶を含有する感光体を使用することにより、チタニルフタロシアニン固有の高感度を維持し、高耐久で高速画像出力が可能な画像形成装置を提供することにある。
Therefore, an object of the present invention is to provide an image forming apparatus that outputs a stable and high-resolution image without occurrence of abnormal images when repeatedly used at high speed.
Specifically, in order to form a high-quality image at a photoconductor linear speed of 300 mm / sec or higher, the photoconductor is charged so that an electric field strength of 30 V / μm or more is formed by a scorotron charging member. In addition, in an image forming apparatus that forms an electrostatic latent image by performing writing with a writing light source of 600 dpi or more, by using a photoconductor containing a titanyl phthalocyanine crystal of a specific crystal type, high sensitivity inherent to titanyl phthalocyanine It is an object of the present invention to provide an image forming apparatus capable of maintaining high-speed and high-speed image output.
本発明者らは、小型高速デジタル電子写真装置において、繰り返し使用時においても高精細の画像を出力するため数々の検討を行なったところ、感光体線速が300mm/sec以上であり、スコロトロン方式の帯電部材によりにより感光体に印加される電界強度が30V/μm以上になるように帯電を施し、600dpi以上の解像度を有する書き込みを行い、かつ電子写真感光体が導電性支持体上に少なくとも電荷発生層と電荷輸送層を順に積層してなる電子写真感光体であり、該電荷発生層中にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有する1次粒子の平均粒子サイズが0.25μm未満のチタニルフタロシアニン結晶を含むことによって、上記問題点を解決できることを見出した。 The inventors of the present invention have made various studies in order to output a high-definition image even in repeated use in a small high-speed digital electrophotographic apparatus. As a result, the photosensitive member linear velocity is 300 mm / sec or more, and the scorotron type Charging is performed by the charging member so that the electric field strength applied to the photosensitive member is 30 V / μm or more, writing with a resolution of 600 dpi or more is performed, and the electrophotographic photosensitive member generates at least charge on the conductive support. An electrophotographic photosensitive member in which a charge transport layer and a charge transport layer are sequentially laminated, and a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to a characteristic X-ray (wavelength 1.542 mm) of CuKα in the charge generation layer Having a maximum diffraction peak at least 27.2 °, and further having main peaks at 9.4 °, 9.6 °, and 24.0 °, and the lowest diffraction peak. Of the primary particles having a peak at 7.3 ° and having no peak between the 7.3 ° peak and the 9.4 ° peak, and further having a peak at 26.3 °. It has been found that the above problems can be solved by including titanyl phthalocyanine crystals having an average particle size of less than 0.25 μm.
このような感光体に印加する電荷強度30V/μm以上は、電子写真における一般的な電界強度よりも大きいものであり、高解像度の書き込みを行う高速デジタル電子写真装置において、より効果を得られるものである。本発明の効果の詳細な理由は不明であるが、我々の検討結果では、ここまでに知られている27.2゜に最大回折ピークを他のチタニルフタロシアニン結晶に比べ、本発明に用いられるチタニルフタロシアニン結晶の化学的な安定性が高いことに由来し、地汚れの発生を低減化できることに起因しているものと推定される。 Such a charge intensity of 30 V / μm or more applied to the photoconductor is larger than a general electric field intensity in electrophotography, and can be more effective in a high-speed digital electrophotographic apparatus that performs high-resolution writing. It is. Although the detailed reason for the effect of the present invention is not clear, as a result of our investigation, the titanyl used in the present invention has a maximum diffraction peak at 27.2 ° as compared with other titanyl phthalocyanine crystals known so far. It is presumed that it originates from the high chemical stability of phthalocyanine crystals and is due to the reduction in the occurrence of soiling.
ところで、書き込み光のビームを小さくして、形成されるドットを小さくすることにより解像度を向上することは既に知られている。また、感光体への印加電圧を高くして、感光体にかかる電界強度を大きくすることにより、感光体内部で生成した光キャリアの移動の直線性を増し、静電潜像におけるドットの拡散を押さえることも既に知られている。これらを組み合わせることが出来れば、感光体内部で小さい径のドット(光キャリアの群)を形成し、電極(支持体)と感光体表面の間の電気力線を強めることにより、光キャリアの持つクーロン反発を抑え、光キャリアを電気力線に沿って移動させることにより、小径ビームで書き込んだドットの形状そのものが感光体表面電位プロフィール(静電潜像のドット)として形成できることになる。
しかしながら、感光体に印加する電界強度の上昇は、支持体から感光層への電荷注入、感光層内部での熱キャリア発生の促進を促し、結果として地汚れの発生を促進させてしまう。
By the way, it is already known that the resolution is improved by reducing the beam of writing light and reducing the dots formed. In addition, by increasing the voltage applied to the photoconductor to increase the electric field strength applied to the photoconductor, the linearity of movement of the photocarrier generated inside the photoconductor is increased, and the diffusion of dots in the electrostatic latent image is reduced. It is already known to hold down. If these can be combined, a small-diameter dot (a group of photocarriers) is formed inside the photoconductor, and the electric lines of force between the electrode (support) and the photoconductor surface are strengthened, thereby holding the photocarrier. By suppressing the Coulomb repulsion and moving the optical carrier along the lines of electric force, the shape of the dot written by the small-diameter beam itself can be formed as a photoconductor surface potential profile (dot of electrostatic latent image).
However, an increase in the electric field strength applied to the photosensitive member promotes charge injection from the support to the photosensitive layer and promotion of generation of heat carriers in the photosensitive layer, and as a result promotes the occurrence of soiling.
これらの現象は、一般的には光キャリア発生効率の高い電荷発生物質を用いた場合には顕著であり、前述のCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶を用いた場合には、電界強度として高々30V/μm程度以下の領域で使用されているのが実情であった。 These phenomena are generally remarkable when a charge generation material having high photocarrier generation efficiency is used, and the diffraction peak (±±) of the Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542Å) of CuKα described above. In the case of using a titanyl phthalocyanine crystal having a maximum diffraction peak of at least 27.2 °, it is actually used in a region where the electric field strength is about 30 V / μm or less. .
このように、プロセスを制御する有効な手段が開発されていながら、その特長を生かす有効な感光体が開発されてないため、高画質化のために高い電界強度を印加することができずに、感光体上への書き込みドットに忠実な静電潜像の形成、静電潜像に忠実なトナー現像ができないといった問題点が残存しているのが現状であるが、本発明ではこれを解決している。本発明によれば、上記課題は下記(1)〜(14)によって達成される。 As described above, an effective means for controlling the process has been developed, but an effective photoconductor that takes advantage of the feature has not been developed. Therefore, a high electric field strength cannot be applied to improve the image quality. The current problem is that the electrostatic latent image that is faithful to the writing dots on the photoconductor and the toner development that is faithful to the electrostatic latent image remain, but the present invention solves this problem. ing. According to this invention, the said subject is achieved by following (1)-(14).
(1)少なくともスコロトロン方式の帯電手段、600dpi以上の解像度を有する露光手段、現像手段、転写手段、及び電子写真感光体を具備してなり、感光体線速が300mm/sec以上で動作される画像形成装置において、下記のように定義される該帯電手段から該電子写真感光体に印加される電界強度の絶対値が30(V/μm)以上であり、かつ電子写真感光体が導電性支持体上に少なくとも電荷発生層と電荷輸送層を順に積層してなる電子写真感光体であり、該電荷発生層中にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3゜にピークを有する一次粒子の平均サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有し、前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒により結晶変換を行ない、結晶変換後の一次粒子の平均サイズが0.3μmよりも大きく成長する前に、有機溶媒より結晶変換後のチタニルフタロシアニンを分別、濾過されたものであることを特徴とする画像形成装置。
電界強度(V/μm)=現像位置における感光体未露光部表面電位(V)/感光層膜厚(μm)
(1) An image comprising at least a scorotron charging means, an exposure means having a resolution of 600 dpi or higher, a developing means, a transfer means, and an electrophotographic photosensitive member, and operated at a photosensitive member linear velocity of 300 mm / sec or higher. In the forming apparatus, the absolute value of the electric field strength applied to the electrophotographic photosensitive member from the charging means defined as follows is 30 (V / μm) or more, and the electrophotographic photosensitive member is a conductive support. An electrophotographic photosensitive member in which at least a charge generation layer and a charge transport layer are sequentially laminated thereon, and a diffraction peak (± 0) with a Bragg angle 2θ with respect to a characteristic X-ray (wavelength 1.542Å) of CuKα in the charge generation layer. .2 °) has a maximum diffraction peak at least 27.2 °, and further has major peaks at 9.4 °, 9.6 °, and 24.0 °, and the lowest diffraction peak. As An average size of primary particles having a peak at .3 °, no peak between the peak at 7.3 ° and the peak at 9.4 °, and further having a peak at 26.3 ° is 0.25 μm or less. The titanyl phthalocyanine crystal is at least 7.0 to 7.5 as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray of CuKα (wavelength 1.542 mm). In the presence of water, amorphous titanyl phthalocyanine or low crystalline titanyl phthalocyanine having a maximum diffraction peak at 0 ° and a half-width of the diffraction peak of 1 ° or more and an average primary particle size of 0.1 μm or less in the presence of water The titanyl phthalocyanine after crystal conversion from an organic solvent before the average size of primary particles after crystal conversion grows larger than 0.3 μm. Fractionation, an image forming apparatus which is characterized in that which has been filtered.
Electric field strength (V / μm) = surface potential of unexposed portion of photoreceptor at development position (V) / photosensitive layer thickness (μm)
(2)前記チタニルフタロシアニン結晶は、26.3゜のピーク強度が、最大回折ピーク27.2゜のピーク強度に対して0.1〜5%の範囲であるチタニルフタロシアニン結晶であることを特徴とする前記第(1)項に記載の画像形成装置。 (2) The titanyl phthalocyanine crystal is a titanyl phthalocyanine crystal having a peak intensity of 26.3 ° in a range of 0.1 to 5% with respect to a peak intensity of a maximum diffraction peak of 27.2 °. The image forming apparatus according to item (1).
(3)前記電荷輸送層が、少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを含有することを特徴とする前記第(1)項又は第(2)項に記載の画像形成装置。
(3) The image formation according to item (1) or ( 2) , wherein the charge transport layer contains a polycarbonate having at least a triarylamine structure in the main chain and / or side chain. apparatus.
(4)前記電荷輸送層上に保護層を有することを特徴とする前記第(1)項〜第(3)項のいずれかに記載の画像形成装置。
(4) The image forming apparatus according to any one of (1) to (3), wherein a protective layer is provided on the charge transport layer.
(5)前記保護層が比抵抗1010Ω・cm以上の金属酸化物を含有することを特徴とする前記第(4)項に記載の画像形成装置。
(5) The image forming apparatus as described in (4) above, wherein the protective layer contains a metal oxide having a specific resistance of 10 10 Ω · cm or more.
(6)前記保護層が高分子電荷輸送物質を含有することを特徴とする前記第(4)項又は第(5)項に記載の画像形成装置。
(6) said first (4) the protective layer is characterized by containing a polymeric charge transport material section or the image forming apparatus according to the item (5).
(7)前記保護層のバインダー樹脂が、架橋構造を有することを特徴とする前記第(4)項〜第(6)項のいずれかに記載の画像形成装置。
(7) The image forming apparatus according to any one of (4) to (6), wherein the binder resin of the protective layer has a crosslinked structure.
(8)前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することを特徴とする前記第(7)項に記載の画像形成装置。
(8) The image forming apparatus as described in (7) above, wherein the structure of the binder resin having the crosslinked structure has a charge transport site.
(9)前記電子写真感光体の導電性支持体表面が陽極酸化皮膜処理されたものであることを特徴とする前記第(1)項〜第(8)項のいずれかに記載の画像形成装置。
(9) The image forming apparatus as described in any one of (1) to (8) above, wherein the electroconductive support surface of the electrophotographic photosensitive member is anodized. .
(10)少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素を複数配列したことを特徴とする前記第(1)項〜第(9)項のいずれかに記載の画像形成装置。
(10) Any one of (1) to (9) above, wherein a plurality of image forming elements comprising at least charging means, exposure means, developing means, transfer means, and electrophotographic photosensitive member are arranged. The image forming apparatus described in 1.
(11)前記帯電手段に、交流重畳電圧印加を行うことを特徴とする前記第(1)項〜第(10)項のいずれかに記載の画像形成装置。
(11) The image forming apparatus according to any one of (1) to (10), wherein an AC superimposed voltage is applied to the charging unit.
(12)感光体と少なくとも帯電手段、露光手段、現像手段、クリーニング手段から選ばれる1つの手段とが一体となった装置本体と着脱自在なカートリッジを搭載していることを特徴とする前記第(1)項〜第(11)項のいずれかに記載の画像形成装置。
(12) The apparatus main body in which the photosensitive member and at least one means selected from charging means, exposure means, developing means, and cleaning means are integrated, and a detachable cartridge are mounted . The image forming apparatus according to any one of items 1) to (11) .
本発明によれば、非常に高速な画像出力を行う画像形成装置であり、高速で繰り返し使用した際に、異常画像の発生がなく、安定で解像度の高い画像を出力する画像形成装置が提供される。
具体的には、高画質な画像を形成するため、スコロトロン方式の帯電部材により30V/μm以上の電界強度が形成されるように感光体に帯電を行い、更に600dpi以上の書き込み光源による書き込みを行うことにより静電潜像を形成する画像形成装置において、特定結晶型で特定粒子サイズのチタニルフタロシアニン結晶を含有する感光体を使用し、感光体線速が300mm/sec以上で動作させることにより、チタニルフタロシアニン固有の高感度を維持し、高耐久で高速画像出力が可能な画像形成装置が提供される。
According to the present invention, there is provided an image forming apparatus that outputs an image at a very high speed and that outputs a stable and high-resolution image without occurrence of an abnormal image when repeatedly used at a high speed. The
Specifically, in order to form a high-quality image, the photoconductor is charged so that an electric field strength of 30 V / μm or more is formed by a scorotron charging member, and writing is performed with a writing light source of 600 dpi or more. In an image forming apparatus for forming an electrostatic latent image, a titanyl phthalocyanine crystal having a specific crystal type and a specific particle size is used and operated at a photosensitive member linear velocity of 300 mm / sec or more. Provided is an image forming apparatus that maintains the high sensitivity inherent in phthalocyanine, is highly durable and capable of high-speed image output.
初めに図面を用いて本発明の画像形成装置を詳しく説明する。
図3は、本発明の画像形成装置を説明するための概略図であり、下記に示すような変形例も本発明の範疇に属するものである。
図3において、感光体(1)は導電性支持体上に少なくとも電荷発生層、電荷輸送層を含む感光層が設けられてなり、電荷発生層にはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に
主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有する一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有してなる。感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
First, the image forming apparatus of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a schematic diagram for explaining the image forming apparatus of the present invention, and the following modifications also belong to the category of the present invention.
In FIG. 3, the photosensitive member (1) is provided with a photosensitive layer including at least a charge generation layer and a charge transport layer on a conductive support, and the charge generation layer has a characteristic X-ray of CuKα (wavelength 1.542Å). As a diffraction peak (± 0.2 °) with a Bragg angle of 2θ, the maximum diffraction peak is at least 27.2 °, and the main peaks are at 9.4 °, 9.6 °, and 24.0 °. In addition, the diffraction peak on the lowest angle side has a peak at 7.3 °, and there is no peak between the peak at 7.3 ° and the peak at 9.4 °. It contains titanyl phthalocyanine crystals having an average particle size of primary particles having a peak at 3 ° of 0.25 μm or less. The photosensitive member (1) has a drum shape, but may be a sheet or an endless belt.
図3に示される装置の感光体線速(システム線速)は、高速の画像出力に対応して、300mm/sec以上で動作される。
帯電部材(3)には、感光体にスコロトロン方式の帯電部材が良好に使用される。この帯電部材により、感光体には30V/μm以上の電界強度が印加される。感光体に印加される電界強度は高いほどドット再現性が良好になるものの、感光体の絶縁破壊や現像時のキャリア付着の問題を生み出す可能性があり、上限値は概ね60V/μm以下、より好ましくは50V/μm以下である。
The photosensitive member linear velocity (system linear velocity) of the apparatus shown in FIG. 3 is operated at 300 mm / sec or more in correspondence with high-speed image output.
As the charging member (3), a scorotron charging member is preferably used for the photoreceptor. By this charging member, an electric field strength of 30 V / μm or more is applied to the photoreceptor. The higher the electric field strength applied to the photoconductor, the better the dot reproducibility. However, there is a possibility of causing problems of dielectric breakdown of the photoconductor and carrier adhesion at the time of development, and the upper limit is about 60 V / μm or less. Preferably, it is 50 V / μm or less.
また、転写チャージャー(10)は転写ベルト、転写ローラを用いることも可能であるが、オゾン発生量の少ない転写ベルトや転写ローラ等の接触型を用いることが望ましい。なお、転写時の電圧/電流印加方式としては、定電圧方式、定電流方式のいずれの方式も用いることが可能であるが、転写電荷量を一定に保つことができ、安定性に優れた定電流方式がより望ましい。 The transfer charger (10) may be a transfer belt or a transfer roller, but it is desirable to use a contact type such as a transfer belt or transfer roller that generates less ozone. As a voltage / current application method at the time of transfer, either a constant voltage method or a constant current method can be used, but the transfer charge amount can be kept constant, and a constant voltage with excellent stability can be used. The current method is more desirable.
また、帯電方式のうち、少なくとも感光体への主帯電に用いられる帯電部材(図3には帯電チャージャー(3)として表記されている)には、スコロトロン帯電方式が望ましい。 Of the charging methods, a scorotron charging method is desirable for at least a charging member (indicated as the charging charger (3) in FIG. 3) used for main charging to the photosensitive member.
また、画像露光部(5)には、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの高輝度が確保でき、600dpi以上の解像度で書き込むことの出来る光源が使用される。光源(書き込み光)の解像度により、形成される静電潜像ひいてはトナー像の解像度が決定され、解像度が高いほど鮮明な画像が得られる。しかしながら、解像度を高くして書き込みを行うとそれだけ書き込みに時間がかかることになるため、書き込み光源が1つであると書き込みがドラム線速(プロセス速度)の律速になってしまう。 The image exposure unit (5) uses a light source capable of ensuring high brightness and capable of writing at a resolution of 600 dpi or more, such as a light emitting diode (LED), a semiconductor laser (LD), and electroluminescence (EL). . Depending on the resolution of the light source (writing light), the resolution of the formed electrostatic latent image, and thus the toner image, is determined. The higher the resolution, the clearer the image. However, if writing is performed at a higher resolution, writing takes longer, so writing with one writing light source is limited by the drum linear speed (process speed).
従って、書き込み光源が1つの場合には1200 dpi程度の解像度が上限となる。書き込み光源が複数の場合には、それぞれが書き込み領域を負担すれば良く、実質的には「1200dpi×書き込み光源個数」が上限となる。これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、本発明で用いられる電荷発生材料である特定結晶型のフタロシアニン顔料が高感度を示すことから良好に使用される。 Therefore, when there is one writing light source, a resolution of about 1200 dpi is the upper limit. When there are a plurality of write light sources, each of them only has to bear a write area, and the upper limit is substantially “1200 dpi × number of write light sources”. Among these light sources, light emitting diodes and semiconductor lasers have high irradiation energy and long wavelength light of 600 to 800 nm. Therefore, the specific crystal type phthalocyanine pigment which is a charge generation material used in the present invention has high sensitivity. Used well from showing.
現像ユニット(6)は、使用するトナーの帯電極性により、正規現像にも反転現像にも対応可能である。感光体の帯電極性と逆極性のトナーを使用した場合には正規現像が使用され、同極性のトナーを用いた場合には反転現像によって、静電潜像が現像される。先の画像露光部に使用する光源によっても異なるが、近年使用するデジタル光源の場合には、一般的に画像面積率が低いことに対応して、書込部分にトナー現像を行なう反転現像方式が光源の寿命等を考慮すると有利である。また、トナーのみで現像を行なう1成分方式と、トナーおよびキャリアからなる2成分現像剤を使用した2成分方式の2通りの方法があるが、いずれの場合にも良好に使用できる。 The developing unit (6) can handle both normal development and reversal development depending on the charging polarity of the toner used. When toner having a polarity opposite to the charged polarity of the photoreceptor is used, normal development is used. When toner having the same polarity is used, the electrostatic latent image is developed by reversal development. Depending on the light source used in the previous image exposure unit, in the case of a digital light source used in recent years, there is generally a reversal development method in which toner development is performed on the writing portion in response to a low image area ratio. This is advantageous in view of the life of the light source. There are two methods, a one-component method in which development is performed using only toner and a two-component method in which a two-component developer composed of toner and carrier is used.
また、感光体上の形成されたトナー像は、転写紙に転写されることで転写紙上の画像となるものであるが、この際、2つの方法がある。1つは図3に示すような感光体表面に現像されたトナー像を転写紙に直接転写する方法と、もう1つはいったん感光体から中間転写体にトナー像が転写され、これを転写紙に転写する方法である。いずれの場合にも本発明において用いることができる。
転写部材としては、転写ベルトが使用できるが、このほかに図3に記載される転写チャージャー(10)、転写ローラを用いることも可能である。中でも、オゾン発生量の少ない転写ベルトや転写ローラ等の接触型を用いることが望ましい。このような転写部材は、構成上、本発明の構成を満足できるものであれば、公知のものを使用することができる。
Further, the toner image formed on the photosensitive member is transferred to the transfer paper and becomes an image on the transfer paper. At this time, there are two methods. One is a method of directly transferring a toner image developed on the surface of the photosensitive member as shown in FIG. 3 to the transfer paper, and the other is that the toner image is once transferred from the photosensitive member to the intermediate transfer member, and this is transferred to the transfer paper. It is the method of transferring to. Either case can be used in the present invention.
As the transfer member, a transfer belt can be used, but in addition, a transfer charger (10) and a transfer roller shown in FIG. 3 can also be used. Among them, it is desirable to use a contact type such as a transfer belt or a transfer roller that generates less ozone. As such a transfer member, a known member can be used as long as the structure of the present invention can be satisfied.
除電ランプ(2)等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。 Use light sources such as fluorescent lamps, tungsten lamps, halogen lamps, mercury lamps, sodium lamps, light-emitting diodes (LEDs), semiconductor lasers (LDs), and electroluminescence (ELs) as light sources such as static elimination lamps (2). Can do. Various types of filters such as a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, and a color temperature conversion filter can be used to irradiate only light in a desired wavelength range.
かかる光源等は、図3に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。
先の帯電方式においてAC成分を重畳して使用する場合や、感光体の残留電位が小さい場合等は、この除電機構を省略することもできる。また、光学的な除電ではなく静電的な除電機構(例えば、逆バイアスを印加したあるいはアース接地した除電ブラシなど)を用いることもできる。
Such a light source or the like irradiates the photosensitive member with light by providing a process such as a transfer process, a charge eliminating process, a cleaning process, or a pre-exposure using light irradiation in addition to the process shown in FIG.
This neutralization mechanism can be omitted when the AC component is superposed and used in the previous charging method, or when the residual potential of the photoreceptor is small. Further, instead of optical static elimination, an electrostatic static elimination mechanism (for example, a static elimination brush with a reverse bias applied or grounded) can be used.
また、現像ユニット(6)により感光体(1)上に現像されたトナーは、転写紙(7)に転写されるが、感光体(1)上に残存するトナーが生じた場合、ファーブラシ(14)およびブレード(15)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。 Further, the toner developed on the photosensitive member (1) by the developing unit (6) is transferred to the transfer paper (7). If toner remaining on the photosensitive member (1) is generated, a fur brush ( 14) and the blade (15) to remove from the photoreceptor. Cleaning may be performed only with a cleaning brush, and a known brush such as a fur brush or a mag fur brush is used as the cleaning brush.
図4は、本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
図4において、符号(16Y)、(16M)、(16C)、(16K)はドラム状の感光体であり、感光体(1)は導電性支持体上に少なくとも電荷発生層、電荷輸送層を含む感光層が設けられてなり、電荷発生層にはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有する一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有してなる。
FIG. 4 is a schematic diagram for explaining the tandem-type full-color image forming apparatus of the present invention, and the following modifications also belong to the category of the present invention.
In FIG. 4, reference numerals (16Y), (16M), (16C), and (16K) are drum-shaped photoconductors, and the photoconductor (1) has at least a charge generation layer and a charge transport layer on a conductive support. The charge generation layer has a maximum diffraction peak at least 27.2 ° as a Bragg angle 2θ diffraction peak (± 0.2 °) with respect to CuKα characteristic X-rays (wavelength 1.542 mm). And the main peaks at 9.4 °, 9.6 °, and 24.0 °, and the peak at 7.3 ° as the lowest diffraction peak, It has no peak between the peak at 3 ° and the peak at 9.4 °, and further contains titanyl phthalocyanine crystals having an average particle size of 0.25 μm or less of primary particles having a peak at 26.3 °. Become.
この感光体(16Y)、(16M)、(16C)、(16K)は図中の矢印方向に300mm/sec以上の速度で回転し、その周りに少なくとも回転順にスコロトロン方式の帯電部材(17Y)、(17M)、(17C)、(17K)、現像部材(19Y)、(19M)、(19C)、(19K)、クリーニング部材(20Y)、(20M)、(20C)、(20K)が配置されている。帯電部材(17Y)、(17M)、(17C)、(17K)は、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。この帯電部材(17Y)、(17M)、(17C)、(17K)と現像部材(19Y)、(19M)、(19C)、(19K)の間の感光体裏面側より、図示しない露光部材からのレーザー光(18Y)、(18M)、(18C)、(18K)が照射され、感光体(16Y)、(16M)、(16C)、(16K)に静電潜像が形成されるようになっている。
そして、このような感光体(16Y)、(16M)、(16C)、(16K)を中心とした4つの画像形成要素(25Y)、(25M)、(25C)、(25K)が、転写材搬送手段である転写搬送ベルト(22)に沿って並置されている。転写搬送ベルト(22)は各画像形成ユニット(25Y)、(25M)、(25C)、(25K)の現像部材(19Y)、(19M)、(19C)、(19K)とクリーニング部材(20Y)、(20M)、(20C)、(20K)の間で感光体(16Y)、(16M)、(16C)、(16K)に当接しており、転写搬送ベルト(22)の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ(21Y)、(21M)、(21C)、(21K)が配置されている。各画像形成要素(25Y)、(25M)、(25C)、(25K)は現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
The photoconductors (16Y), (16M), (16C), and (16K) rotate at a speed of 300 mm / sec or more in the direction of the arrow in the drawing, and around them, at least in the order of rotation, a scorotron charging member (17Y), (17M), (17C), (17K), developing members (19Y), (19M), (19C), (19K), cleaning members (20Y), (20M), (20C), (20K) are arranged. ing. The charging members (17Y), (17M), (17C), and (17K) are charging members that constitute a charging device for uniformly charging the surface of the photoreceptor. From an exposure member (not shown) from the back side of the photoreceptor between the charging members (17Y), (17M), (17C), (17K) and the developing members (19Y), (19M), (19C), (19K). Laser beams (18Y), (18M), (18C), and (18K) are irradiated so that an electrostatic latent image is formed on the photoconductors (16Y), (16M), (16C), and (16K). It has become.
Then, the four image forming elements (25Y), (25M), (25C), and (25K) centering on such photoconductors (16Y), (16M), (16C), and (16K) serve as transfer materials. They are juxtaposed along the transfer conveyance belt (22) which is a conveyance means. The transfer / conveying belt (22) includes developing members (19Y), (19M), (19C), (19K) and cleaning members (20Y) of the image forming units (25Y), (25M), (25C), (25K). , (20M), (20C), and (20K) are in contact with the photosensitive member (16Y), (16M), (16C), and (16K), and contact the back side of the photosensitive member side of the transfer conveyance belt (22). Transfer brushes (21Y), (21M), (21C), and (21K) for applying a transfer bias are arranged on the surface (back surface). Each of the image forming elements (25Y), (25M), (25C), and (25K) is different in the color of the toner inside the developing device, and the others are the same in configuration.
図4に示す構成のフルカラー画像形成装置において、画像形成動作は次のようにして行なわれる。まず、各画像形成要素(25Y)、(25M)、(25C)、(25K)において、感光体(16Y)、(16M)、(16C)、(16K)に静電潜像が形成されるようになっている。そして、このような感光体(16Y)、(16M)、(16C)、(16K)が300mm/sec以上の速度で回転し、スコロトロン方式の帯電部材(17Y)、(17M)、(17C)、(17K)により、感光体の電界強度が30V/μm以上(60Vμm以下、好ましくは50V/μm以下)になるように帯電される。 In the full-color image forming apparatus having the configuration shown in FIG. 4, the image forming operation is performed as follows. First, in each of the image forming elements (25Y), (25M), (25C), and (25K), an electrostatic latent image is formed on the photoconductors (16Y), (16M), (16C), and (16K). It has become. Then, such photoconductors (16Y), (16M), (16C), and (16K) rotate at a speed of 300 mm / sec or more, and scorotron charging members (17Y), (17M), (17C), By (17K), the photosensitive member is charged so that the electric field strength is 30 V / μm or more (60 V μm or less, preferably 50 V / μm or less).
次に感光体の内側に配置された露光部(図示しない)でレーザー光(18Y)、(18M)、(18C)、(18K)により、600dpi以上の解像度で書き込みが行われ、作成する各色の画像に対応した静電潜像が形成される。この場合にも書き込み光源1つに対して1200dpiの書き込みが概ね上限となる。 Next, writing is performed at a resolution of 600 dpi or more by laser light (18Y), (18M), (18C), and (18K) at an exposure unit (not shown) arranged inside the photoconductor, and each color to be created is written. An electrostatic latent image corresponding to the image is formed. Also in this case, 1200 dpi writing is generally the upper limit for one writing light source.
次に現像部材(19Y)、(19M)、(19C)、(19K)により潜像を現像してトナー像が形成される。現像部材(19Y)、(19M)、(19C)、(19K)は、それぞれY(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)のトナーで現像を行なう現像部材で、4つの感光体(16Y)、(16M)、(16C)、(16K)上で作られた各色のトナー像は転写紙上で重ねられる。 Next, the latent image is developed by the developing members (19Y), (19M), (19C), and (19K) to form a toner image. Development members (19Y), (19M), (19C), and (19K) are development members that perform development with toners of Y (yellow), M (magenta), C (cyan), and K (black), respectively. The toner images of the respective colors formed on the two photoconductors (16Y), (16M), (16C), and (16K) are superimposed on the transfer paper.
転写紙(26)は給紙コロ(図示せず)によりトレイから送り出され、一対のレジストローラ(23)で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト(22)に送られる。転写搬送ベルト(22)上に保持された転写紙(26)は搬送されて、各感光体(16Y)、(16M)、(16C)、(16K)との当接位置(転写部)で各色トナー像の転写が行なわれる。感光体上のトナー像は、転写ブラシ(21Y)、(21M)、(21C)、(21K)に印加された転写バイアスと感光体(16Y)、(16M)、(16C)、(16K)との電位差から形成される電界により、転写紙(26)上に転写される。 The transfer paper (26) is fed out from the tray by a paper feeding roller (not shown), temporarily stopped by a pair of registration rollers (23), and transferred and conveyed (22) in synchronization with the image formation on the photosensitive member. ). The transfer paper (26) held on the transfer conveyance belt (22) is conveyed, and each color is in contact with each photoconductor (16Y), (16M), (16C), (16K) (transfer section). The toner image is transferred. The toner image on the photoconductor includes transfer bias applied to the transfer brushes (21Y), (21M), (21C), and (21K) and the photoconductors (16Y), (16M), (16C), and (16K). The image is transferred onto the transfer paper (26) by an electric field formed from the potential difference.
そして4つの転写部を通過して4色のトナー像が重ねられた記録紙(26)は定着装置(24)に搬送され、トナーが定着されて、図示しない排紙部に排紙される。 Then, the recording paper (26) on which the four color toner images are passed through the four transfer sections is conveyed to the fixing device (24), where the toner is fixed, and is discharged to a paper discharge section (not shown).
また、転写部で転写されずに各感光体(16Y)、(16M)、(16C)、(16K)上に残った残留トナーは、クリーニング装置(20Y)、(20M)、(20C)、(20K)で回収される。 Further, residual toner remaining on each of the photoconductors (16Y), (16M), (16C), and (16K) without being transferred by the transfer unit is removed from the cleaning devices (20Y), (20M), (20C), ( 20K).
なお、図4の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素((25Y)、(25M)、(25C))が停止するような機構を設けることは本発明に特に有効に利用できる。 In the example of FIG. 4, the image forming elements are arranged in the order of Y (yellow), M (magenta), C (cyan), and K (black) from the upstream side to the downstream side in the transfer sheet conveyance direction. However, it is not limited to this order, and the color order is arbitrarily set. Further, when creating a black-only document, it is particularly effective to use the present invention to provide a mechanism that stops image forming elements other than black ((25Y), (25M), (25C)). .
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、各々の電子写真要素はプロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。 The image forming means as described above may be fixedly incorporated in a copying apparatus, facsimile, or printer, but each electrophotographic element may be incorporated in the apparatus in the form of a process cartridge. A process cartridge is a single device (part) that contains a photoconductor and further includes a charging unit, an exposure unit, a developing unit, a transfer unit, a cleaning unit, a neutralizing unit, and the like.
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図5に示すものが挙げられる。感光体(101)は導電性支持体上に少なくとも電荷発生層、電荷輸送層を含む感光層が設けられてなり、電荷発生層にはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有する一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有してなる。 The image forming means as described above may be fixedly incorporated in a copying apparatus, a facsimile, or a printer, but may be incorporated in these apparatuses in the form of a process cartridge. A process cartridge is a single device (part) that contains a photoconductor and further includes a charging unit, an exposure unit, a developing unit, a transfer unit, a cleaning unit, a neutralizing unit, and the like. There are many shapes and the like of the process cartridge, but a general example is shown in FIG. The photoreceptor (101) is provided with a photosensitive layer including at least a charge generation layer and a charge transport layer on a conductive support. The charge generation layer has a Bragg angle 2θ with respect to a characteristic X-ray of CuKα (wavelength 1.542Å). Diffraction peak (± 0.2 °) having a maximum diffraction peak at least 27.2 °, and further having major peaks at 9.4 °, 9.6 °, 24.0 °, and most The diffraction peak on the low angle side has a peak at 7.3 °, and there is no peak between the peak at 7.3 ° and the peak at 9.4 °, and a peak at 26.3 °. Primary particles having a mean particle size of 0.25 μm or less containing titanyl phthalocyanine crystals.
画像露光部(103)には、前述のように600dpi以上の解像度で書き込みが行うことの出来る光源が用いられ、帯電部材(102)には、前述のようにスコロトロン方式の帯電部材が用いられ、感光体に対して30V/μm以上(60V/μm以下、好ましくは50V/μm以下)の電界強度を印加するものである。図5中、104は現像手段、105は転写体、106は転写手段、107はクリ−ニング手段である。 As described above, a light source capable of writing with a resolution of 600 dpi or higher is used for the image exposure unit (103), and a scorotron charging member is used for the charging member (102) as described above. An electric field strength of 30 V / μm or more (60 V / μm or less, preferably 50 V / μm or less) is applied to the photoreceptor. In FIG. 5, 104 is a developing means, 105 is a transfer member, 106 is a transfer means, and 107 is a cleaning means.
以下、本発明の画像形成装置に用いられる電子写真感光体について詳しく説明する。
本発明に用いられる電子写真感光体は、導電性支持体上に少なくとも電荷発生層と電荷輸送層を形成してなる電子写真感光体であって、該電荷発生層中にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、 9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有する一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有するものである。
The electrophotographic photoreceptor used in the image forming apparatus of the present invention will be described in detail below.
The electrophotographic photosensitive member used in the present invention is an electrophotographic photosensitive member in which at least a charge generation layer and a charge transport layer are formed on a conductive support, and a characteristic X-ray of CuKα ( As a diffraction peak (± 0.2 °) with a Bragg angle 2θ for a wavelength of 1.542 mm, it has a maximum diffraction peak of at least 27.2 °, and further at 9.4 °, 9.6 °, and 24.0 °. It has a main peak, and has a peak at 7.3 ° as the lowest diffraction peak, and has a peak between the 7.3 ° peak and the 9.4 ° peak. Furthermore, it contains a titanyl phthalocyanine crystal having an average particle size of primary particles having a peak at 26.3 ° and an average particle size of 0.25 μm or less.
この結晶型は、特開2001−187794号公報に記載されているものであるが、このチタニルフタロシアニン結晶を用いることで、高感度を失うことなく繰り返し使用によっても帯電性の低下を生じない安定な電子写真感光体を得ることができる。
特開2001−187794号公報には、本発明で使用される電荷発生物質およびこれを用いた感光体、電子写真装置などが開示されている。しかしながら、600dpi以上あるいは1200dpi以上の解像度で使用される様な状況下においては、書き込み解像度を生かすためには感光体に印加される電界強度を高くする必要があった。しかしながら、電界強度が高いと地汚れを発生させてしまうという問題点を発生していた。このような現象は、同公報に記載された画像形成装置よりも高解像度な書き込みを実施する画像形成装置での使用の場合に、顕著に発現する。このように、過去のプロセス(装置)では、必ずしも同公報に記載された材料の実力を充分に引き出していないだけでなく、プロセス条件を適正化してやらないと逆に副作用を生み出すものであった。
また、特開2001−19871号公報には粒子サイズに関する記載およびそれをコントロールする技術の記載が無く、粒子サイズの適正化がなされていないものであった。本発明においては、粒子サイズをコントロールした特定結晶型のチタニルフタロシアニンを含有した感光体を用い、画像形成装置のプロセス条件を適正化することで、より最適な画像形成装置を構築するものである。
This crystal type is described in JP-A No. 2001-187794. By using this titanyl phthalocyanine crystal, it is stable without causing a decrease in chargeability even after repeated use without losing high sensitivity. An electrophotographic photoreceptor can be obtained.
Japanese Patent Application Laid-Open No. 2001-187794 discloses a charge generating material used in the present invention, a photoreceptor using the same, an electrophotographic apparatus, and the like. However, in a situation where the resolution is 600 dpi or higher or 1200 dpi or higher, it is necessary to increase the intensity of the electric field applied to the photosensitive member in order to make use of the writing resolution. However, when the electric field strength is high, there is a problem that soiling occurs. Such a phenomenon remarkably appears when used in an image forming apparatus that performs writing with higher resolution than the image forming apparatus described in the publication. Thus, in the past process (apparatus), not only the ability of the material described in the same publication is not sufficiently drawn out, but if the process conditions are not optimized, a side effect is produced.
Japanese Patent Laid-Open No. 2001-19871 does not have a description of particle size and a technique for controlling the particle size, and the particle size has not been optimized. In the present invention, a more optimal image forming apparatus is constructed by using a photoconductor containing a specific crystal type titanyl phthalocyanine having a controlled particle size and optimizing the process conditions of the image forming apparatus.
また、チタニルフタロシアニン結晶の合成方法として、特開平6−293769号公報に記載されているように、ハロゲン化チタンを原料に用いない方法が良好に用いられるものである。この方法の最大のメリットは、合成されたチタニルフタロシアニン結晶がハロゲン化フリーであることである。チタニルフタロシアニン結晶は不純物としてのハロゲン化チタニルフタロシアニン結晶を含むと、これを用いた感光体の静電特性において光感度の低下や、帯電性の低下といった悪影響を及ぼす場合が多い(Japan Hardcopy ‘89論文集 p.103 1989年)。本発明においても、特開2001−187794号公報に記載されているようなハロゲン化フリーチタニルフタロシアニン結晶をメインに対象にしているものであり、これらの材料が有効に使用される。 Further, as a method for synthesizing titanyl phthalocyanine crystals, a method using no titanium halide as a raw material can be favorably used as described in JP-A-6-293769. The biggest merit of this method is that the synthesized titanyl phthalocyanine crystal is free of halogenation. When a titanyl phthalocyanine crystal contains a halogenated titanyl phthalocyanine crystal as an impurity, it often has adverse effects such as a decrease in photosensitivity and a decrease in chargeability in the electrostatic characteristics of a photoconductor using the crystal (Japan Hardcopy '89 paper). Collection p.103 1989). Also in the present invention, the halogenated free titanyl phthalocyanine crystal as described in JP-A-2001-187794 is mainly used, and these materials are effectively used.
ここでまず、本発明で用いられる特定の結晶型を有するチタニルフタロシアニン結晶の合成方法について述べる。
初めにチタニルフタロシアニン結晶の合成粗品の合成法について述べる。 フタロシアニン類の合成方法は古くから知られており、Moser等による「Phthalocyanine Compounds」(1963年)、「The Phthalocyanines」(1983年)、特開平6−293769号公報等に記載されている。
First, a method for synthesizing a titanyl phthalocyanine crystal having a specific crystal type used in the present invention will be described.
First, a method for synthesizing a crude product of titanyl phthalocyanine crystal will be described. Methods for synthesizing phthalocyanines have been known for a long time, and are described in “Phthalogyneines Compounds” (1963), “The Phthalogianines” (1983), and Japanese Patent Application Laid-Open No. Hei 6-293769 by Moser et al.
例えば、第1の方法として、無水フタル酸類、金属あるいはハロゲン化金属及び尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この場合、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。
第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。
第3の方法は、無水フタル酸あるいはフタロニトリル類とアンモニアを先ず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。
第4の方法は、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。特に、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法であり、本発明においては極めて有効に使用される。
For example, as a first method, a mixture of phthalic anhydrides, metal or metal halide and urea is heated in the presence or absence of a high boiling point solvent. In this case, a catalyst such as ammonium molybdate is used in combination as necessary.
As a second method, phthalonitriles and metal halides are heated in the presence or absence of a high boiling point solvent. This method is used for phthalocyanines that cannot be produced by the first method, such as aluminum phthalocyanines, indium phthalocyanines, oxovanadium phthalocyanines, oxotitanium phthalocyanines, zirconium phthalocyanines, and the like.
The third method is to first react phthalic anhydride or phthalonitrile with ammonia to produce an intermediate such as 1,3-diiminoisoindoline, and then react with a metal halide in a high boiling solvent. It is a method to make it.
The fourth method is a method in which phthalonitriles and a metal alkoxide are reacted in the presence of urea or the like. In particular, the fourth method does not cause chlorination (halogenation) to the benzene ring, and is a very useful method as a method for synthesizing an electrophotographic material, and is used extremely effectively in the present invention.
次に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の合成法について述べる。この方法は、フタロシアニン類を硫酸に溶解した後、水で希釈し、再析出させる方法であり、アシッド・ペースト法あるいはアシッド・スラリー法と呼ばれるものが使用できる。 Next, a method for synthesizing amorphous titanyl phthalocyanine (low crystalline titanyl phthalocyanine) will be described. In this method, phthalocyanines are dissolved in sulfuric acid, diluted with water and reprecipitated, and an acid paste method or an acid slurry method can be used.
具体的な方法としては、上記の合成粗品を10〜50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10〜50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄・濾過を行ない、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、綺麗なイオン交換水で洗浄した後、濾過を行ない、固形分濃度で5〜15wt%程度の水ペーストを得る。このように作製したものが本発明に用いる不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)である。この際、この不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有するものであることが好ましい。特に、その回折ピークの半値巾が1゜以上であることがより好ましい。更に、一次粒子の平均粒子サイズが0.1μm以下であることが好ましい。 As a specific method, the above synthetic crude product is dissolved in 10-50 times the amount of concentrated sulfuric acid, and if necessary, insoluble matter is removed by filtration or the like, and this is sufficiently cooled to 10-50 times the amount of sulfuric acid. Slowly throw it into water or ice water to reprecipitate titanyl phthalocyanine. The precipitated titanyl phthalocyanine is filtered, washed with ion-exchanged water and filtered, and this operation is sufficiently repeated until the filtrate becomes neutral. Finally, after washing with clean ion-exchanged water, filtration is performed to obtain a water paste having a solid content concentration of about 5 to 15 wt%. What was produced in this way was the amorphous titanyl phthalocyanine (low crystalline titanyl phthalocyanine) used in the present invention. In this case, the amorphous titanyl phthalocyanine (low crystalline titanyl phthalocyanine) is at least 7.0 to 7 as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542Å) of CuKα. It is preferable to have a maximum diffraction peak at 5 °. In particular, the half width of the diffraction peak is more preferably 1 ° or more. Further, the average particle size of the primary particles is preferably 0.1 μm or less.
次に、結晶変換方法について述べる。本発明においては、少なくとも2回の結晶変換工程よりチタニルフタロシアニン結晶が合成される。
先ず、1回目の結晶変換方法について述べる。1回目の結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないチタニルフタロシアニン結晶に変換する工程である。
Next, a crystal conversion method will be described. In the present invention, titanyl phthalocyanine crystals are synthesized from at least two crystal conversion steps.
First, the first crystal conversion method will be described. In the first crystal conversion, the amorphous titanyl phthalocyanine (low crystalline titanyl phthalocyanine) is used as a diffraction peak (± 0.2 °) of Bragg angle 2θ with respect to the characteristic X-ray of CuKα (wavelength 1.542 mm). It has a maximum diffraction peak at 2 °, a major peak at 9.4 °, 9.6 ° and 24.0 °, and a peak at 7.3 ° as the lowest diffraction peak. And a titanyl phthalocyanine crystal having no peak between the peak at 7.3 ° and the peak at 9.4 ° and having no peak at 26.3 °.
具体的な方法としては、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を乾燥せずに、水の存在下の元で有機溶媒と共に混合・撹拌することにより、前記結晶型を得るものである。
この際、使用される有機溶媒は、所望の結晶型を得られるものであれば、いかなる有機溶媒も使用できるが、特にテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタンの中から選ばれる1種を選択すると、良好な結果が得られる。これら有機溶媒は単独で用いることが好ましいが、これらの有機溶媒を2種以上混合する、あるいは他の溶媒と混合して用いることも可能である。結晶変換に使用される前記有機溶媒の量は、不定形チタニルフタロシアニンの重量の10倍以上、好ましくは30倍以上の重量であることが望ましい。これは、結晶変換を素早く十分に起こさせると共に、不定形チタニルフタロシアニンに含まれる不純物を十分に取り除く効果が発現されるからである。
As a specific method, the crystalline form is obtained by mixing and stirring together with an organic solvent in the presence of water without drying the amorphous titanyl phthalocyanine (low crystalline titanyl phthalocyanine). .
In this case, any organic solvent can be used as long as the desired crystal form can be obtained, but tetrahydrofuran, toluene, methylene chloride, carbon disulfide, orthodichlorobenzene, 1,1, Good results are obtained when one selected from 2-trichloroethane is selected. These organic solvents are preferably used alone, but two or more of these organic solvents may be mixed or used in combination with other solvents. It is desirable that the amount of the organic solvent used for crystal conversion is 10 times or more, preferably 30 times or more the weight of amorphous titanyl phthalocyanine. This is because crystal conversion is caused quickly and sufficiently, and an effect of sufficiently removing impurities contained in amorphous titanyl phthalocyanine is exhibited.
尚、ここで使用する不定形チタニルフタロシアニンは、アシッド・ペースト法により作製するものであるが、上述のように硫酸を十分に洗浄したものを使用することが望ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、出来上がった結晶を水洗処理のような操作をしても完全には取り除くことが出来ない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特開平8−110649号公報(比較例)には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し結晶変換を行う方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることが出来るが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。 The amorphous titanyl phthalocyanine used here is prepared by the acid paste method, but it is desirable to use one obtained by sufficiently washing sulfuric acid as described above. When crystal conversion is performed under conditions where sulfuric acid remains, sulfate ions remain in the crystal particles, and the completed crystals cannot be completely removed even by an operation such as washing with water. When sulfate ions remain, preferable results cannot be obtained, such as a decrease in sensitivity and a decrease in chargeability of the photoreceptor. For example, JP-A-8-110649 (comparative example) describes a method of performing crystal conversion by adding titanyl phthalocyanine dissolved in sulfuric acid into an organic solvent together with ion-exchanged water. At this time, a crystal similar to the X-ray diffraction spectrum of the titanyl phthalocyanine crystal obtained in the present invention can be obtained, but the sulfate ion concentration in titanyl phthalocyanine is high and the light attenuation characteristic (photosensitivity) is poor. However, the method for producing titanyl phthalocyanine of the present invention is not good.
以上の結晶変換方法は特開2001−187794号公報に準じた結晶変換方法である。一方、本発明の電子写真装置に用いる感光体に含有される電荷発生物質においては、チタニルフタロシアニン結晶の粒子サイズをより細かく(0.25μm以下)することにより、その効果が達成されるものである。以下には、チタニルフタロシアニン粒子サイズを合成段階より小さく合成する手法について記載する。 The above crystal conversion method is a crystal conversion method according to Japanese Patent Laid-Open No. 2001-187794. On the other hand, in the charge generation material contained in the photoreceptor used in the electrophotographic apparatus of the present invention, the effect is achieved by making the particle size of the titanyl phthalocyanine crystal finer (0.25 μm or less). . The following describes a method for synthesizing titanyl phthalocyanine particle size smaller than the synthesis step.
チタニルフタロシアニン結晶の粒子サイズをより細かくするために、本発明者らが観察したところによれば、前述の不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01〜0.05μm程度)であるが(図6参照)、結晶変換の際に際しては、結晶成長と共に結晶が変換されることが分かった。通常、この種の結晶変換においては、原料の残存をおそれて充分な結晶変換時間を確保し、結晶変換が十二分に行なわれた後に、濾過を行ない、所望の結晶型を有するチタニルフタロシアニン結晶を得るものである。このため、原料として充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後の結晶としては一次粒子の大きな結晶(概ね0.3〜0.5μm)を得ているものである(図7参照)。
図中のスケール・バーは、いずれも0.2μmである。
In order to make the particle size of the titanyl phthalocyanine crystal finer, the present inventors have observed that the above-mentioned amorphous titanyl phthalocyanine (low crystalline titanyl phthalocyanine) has a primary particle size of 0.1 μm or less (its Although most of them are about 0.01 to 0.05 μm) (see FIG. 6), it has been found that the crystals are converted with crystal growth during the crystal conversion. Usually, in this type of crystal conversion, a sufficient crystal conversion time is ensured due to fear of remaining of the raw material, and after the crystal conversion is sufficiently performed, filtration is performed to obtain a titanyl phthalocyanine crystal having a desired crystal type. Is what you get. For this reason, even though a raw material having sufficiently small primary particles is used as a raw material, a crystal having a large primary particle (approximately 0.3 to 0.5 μm) is obtained as a crystal after crystal conversion. Yes (see FIG. 7).
The scale bars in the figure are all 0.2 μm.
図7に示されるように作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下)にするため、強いシェアを与えることで分散を行ない、更には必要に応じて一次粒子を粉砕する強いエネルギーを与えて分散を行なっている。この結果、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移してしまう可能性を有しているものである。 When dispersing the titanyl phthalocyanine crystal produced as shown in FIG. 7, in order to make the particle size after dispersion small (0.25 μm or less), dispersion is performed by giving a strong share, and further necessary. In response to this, dispersion is performed by giving strong energy to pulverize the primary particles. As a result, as described above, there is a possibility that a part of the particles may be transferred to a crystal type which is not a desired crystal type.
この点に関して、合成段階からチタニルフタロシアニン結晶の一次粒子サイズをコントロールすることにより、小さいサイズの結晶を得ることにより、この問題を解決する方法が可能であり、本発明には有効に使用される。具体的には、結晶変換に際して結晶成長がほとんど起こらない範囲(図6に観察される不定形チタニルフタロシアニン粒子のサイズが、結晶変換後において遜色ない小ささ、概ね0.25μm以下に保たれる範囲)で、結晶変換が完了した時点を見極めることで、可能な限り一次粒子サイズの小さなチタニルフタロシアニン結晶を得ようというものである。結晶変換後の粒子サイズは、結晶変換時間に比例して大きくなる。このため前述のように、結晶変換の効率を高くし、短時間で完了させることが重要である。このためには、いくつかの重要なポイントが挙げられる。 In this regard, by controlling the primary particle size of the titanyl phthalocyanine crystal from the synthesis stage to obtain a crystal having a small size, a method for solving this problem is possible and it is effectively used in the present invention. Specifically, the range in which crystal growth hardly occurs during crystal conversion (the range in which the size of the amorphous titanyl phthalocyanine particles observed in FIG. 6 is insignificantly small after crystal conversion, approximately 0.25 μm or less. ) Is to obtain a titanyl phthalocyanine crystal having a primary particle size as small as possible by determining when the crystal conversion is completed. The particle size after crystal conversion increases in proportion to the crystal conversion time. For this reason, as described above, it is important to increase the efficiency of crystal conversion and complete it in a short time. There are several important points for this.
1つは、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めること。もう1つは、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料)を充分に接触させるために強い撹拌を用いるものである。具体的には、撹拌力の非常に強いプロペラを用いた撹拌、ホモジナイザー(ホモミキサー)のような強烈な撹拌(分散)手段を用いるなどの手法により、短時間での結晶変換を実現させるものである。これらの条件により、原料が残存することなく、結晶変換が充分に行なわれ、かつ結晶成長が起こらない状態のチタニルフタロシアニン結晶を得ることができる。 One is to select an appropriate crystal conversion solvent as described above to increase the crystal conversion efficiency. The other is to use strong agitation to bring the solvent into contact with the titanyl phthalocyanine aqueous paste (raw material prepared as described above) in order to complete the crystal conversion in a short time. Specifically, it is possible to achieve crystal conversion in a short time by using a propeller with a very strong stirring force or using a strong stirring (dispersing) means such as a homogenizer (homomixer). is there. Under these conditions, it is possible to obtain a titanyl phthalocyanine crystal in a state in which crystal conversion is sufficiently performed and crystal growth does not occur without remaining raw materials.
また、上述のように結晶粒子サイズと結晶変換時間は比例関係にあるため、所定の反応(結晶変換)が完了したら、反応を直ちに停止させる方法も有効な手段である。上述のように結晶変換を行なった後、直ちに結晶変換の起こりにくい溶媒を大量に添加することが前記手段として挙げられる。結晶変換の起こりにくい溶媒としては、アルコール系、エステル系などの溶媒が挙げられる。これらの溶媒を結晶変換溶媒に対して、10倍程度加えることにより、結晶変換を停止することができる。 In addition, since the crystal grain size and the crystal conversion time are in a proportional relationship as described above, a method of immediately stopping the reaction when a predetermined reaction (crystal conversion) is completed is also an effective means. As the above-mentioned means, it is possible to immediately add a large amount of a solvent in which crystal conversion hardly occurs after crystal conversion as described above. Examples of the solvent that hardly causes crystal transformation include alcohol-based and ester-based solvents. Crystal conversion can be stopped by adding about 10 times these solvents to the crystal conversion solvent.
このようにして作製される一次粒子サイズは、細かいほど感光体の課題に対しては良好な結果を示すものであるが、顔料作製にかかる次工程(顔料の濾過工程)、分散液での分散安定性を考慮すると、あまり小さすぎても副作用がでる場合がある。即ち、一次粒子が非常に細かい場合には、これを濾過する工程において濾過時間が非常に長くなってしまうという問題が発生する。また、一次粒子が細かすぎる場合には、分散液中での顔料粒子の表面積が大きくなるため、粒子の再凝集の可能性が高くなる。したがって、適切な顔料粒子の粒子サイズは、およそ0.05μm〜0.2μm程度の範囲である。 The smaller the primary particle size produced in this way, the better the results for the problem of the photoreceptor, but the next step for pigment preparation (pigment filtration step), dispersion in dispersion In consideration of stability, side effects may occur even if it is too small. That is, when the primary particles are very fine, there arises a problem that the filtration time becomes very long in the step of filtering the primary particles. In addition, when the primary particles are too fine, the surface area of the pigment particles in the dispersion increases, and the possibility of reaggregation of the particles increases. Therefore, the suitable particle size of the pigment particles is in the range of about 0.05 μm to 0.2 μm.
図8には、短時間で結晶変換を行った場合のチタニルフタロシアニン結晶のTEM像を示す。図中のスケール・バーは0.2μmである。図7の場合とは異なり、粒子サイズが小さくほぼ均一であり、図7に観察されるような粗大粒子は全く認められない。 FIG. 8 shows a TEM image of a titanyl phthalocyanine crystal when crystal conversion is performed in a short time. The scale bar in the figure is 0.2 μm. Unlike the case of FIG. 7, the particle size is small and almost uniform, and the coarse particles observed in FIG. 7 are not recognized at all.
図8に示されるように1次粒子が小さい状態で作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下、より好ましくは0.2μm以下)にするためには、1次粒子が凝集(集合)して集まって形成する2次粒子をほぐすだけのシェアを与えることで分散が可能である。この結果、必要以上のエネルギーを与えないため、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移し易い結果は生み出さずに、粒度分布の細かい分散液を容易に作製することが可能である。 As shown in FIG. 8, when dispersing the titanyl phthalocyanine crystal produced in a state where the primary particles are small, the particle size after dispersion is made small (0.25 μm or less, more preferably 0.2 μm or less). For this purpose, it is possible to disperse by giving a share sufficient to loosen the secondary particles formed by aggregation of the primary particles. As a result, since the energy more than necessary is not given, a dispersion liquid with a fine particle size distribution can be easily produced without producing the result that a part of the particles are easily transferred to a crystal form other than the desired crystal form as described above. It is possible.
ここでいう粒子サイズとは、体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median系)として算出されたものである。しかしながら、この方法では微量の粗大粒子を検出できない場合があるため、より詳細に求めるには、チタニルフタロシアニン結晶粉末、あるいは分散液を直接、電子顕微鏡にて観察し、その大きさを求めることが重要である。 The particle size referred to here is a volume average particle size and is determined by an ultracentrifugal automatic particle size distribution analyzer: CAPA-700 (manufactured by Horiba, Ltd.). At this time, the particle size (Median system) corresponding to 50% of the cumulative distribution was calculated. However, this method may not be able to detect a very small amount of coarse particles. Therefore, in order to obtain more details, it is important to observe the titanyl phthalocyanine crystal powder or dispersion directly with an electron microscope and determine its size. It is.
分散液の更なる観察により、微小欠陥に関して検討した結果、上記現象は次のように理解された。通常、平均粒子サイズを測定するような方法においては、極端に大きな粒子が数%以上も存在するような場合には、その存在が検出できるものであるが、全体の1%以下程度のような微量になってくると、その測定は検出限界以下になってしまうものである。その結果として、平均粒子サイズの測定だけでは粗大粒子の存在が検出されずに、上述のような微小欠陥に関する解釈を困難にしていた。 As a result of further observation of the dispersion and examination of micro defects, the above phenomenon was understood as follows. Usually, in the method of measuring the average particle size, when an extremely large particle is present in several% or more, the presence can be detected, but it is about 1% or less of the whole. When the amount is too small, the measurement is below the detection limit. As a result, the presence of coarse particles is not detected only by measuring the average particle size, making it difficult to interpret the above minute defects.
図9及び図10に、分散条件を固定して分散時間だけを変更した2種類の分散液の状態を観察した写真を示す。同一条件における分散時間の短い分散液の写真を図9に示すが、分散時間の長い図10と比較して、粗大粒子が残っている様子が観測される。図9中の黒い粒が粗大粒子である。 FIG. 9 and FIG. 10 show photographs observing the states of two types of dispersions in which only the dispersion time is changed while fixing the dispersion conditions. A photograph of a dispersion liquid having a short dispersion time under the same conditions is shown in FIG. 9, and it is observed that coarse particles remain as compared with FIG. 10 having a long dispersion time. The black particles in FIG. 9 are coarse particles.
この2種類の分散液の平均粒径並びに粒度分布を公知の方法に従って、市販の粒度分布測定装置(堀場製作所製:超遠心式自動粒度分布測定装置、CAPA700)により測定した。その結果を図11に示す。図11における「A」が図9に示す分散液に対応し、「B」が図10に示す分散液に対応する。両者を比較すると、粒度分布に関してはほとんど差が認められない。また、両者の平均粒径値は、「A」が0.29μm、「B」が0.28μmと求められ、測定誤差を加味した上では、両者に全くの差異が認められない。
したがって、公知の平均粒径(粒子サイズ)の規定だけでは、微量な粗大粒子の残存を検出できずに、昨今の高解像度のネガ・ポジ現像には対応できていないことが理解される。この微量な粗大粒子の存在は、塗工液を顕微鏡レベルで観察することにより、初めて認識できたものである。
The average particle size and particle size distribution of these two types of dispersions were measured by a commercially available particle size distribution measuring device (manufactured by Horiba: Ultracentrifugal automatic particle size distribution measuring device, CAPA700). The result is shown in FIG. “A” in FIG. 11 corresponds to the dispersion shown in FIG. 9, and “B” corresponds to the dispersion shown in FIG. When both are compared, there is almost no difference in the particle size distribution. In addition, the average particle diameter values of the two are “A” of 0.29 μm and “B” of 0.28 μm, and taking into account measurement errors, no difference is recognized between the two.
Therefore, it is understood that the remaining of a very small amount of coarse particles cannot be detected only by the definition of the known average particle size (particle size), and it is not possible to cope with the recent high-resolution negative / positive development. The presence of such a minute amount of coarse particles can be recognized for the first time by observing the coating solution at the microscope level.
このような事実に対して、1回目の結晶変換時に作製される一次粒子をできる限り小さいものを作製することは有効な手段である。このために、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めつつ、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料)を充分に接触させるために強い撹拌を用いるような手法は有効であることがわかる。 In response to such a fact, it is an effective means to produce as small primary particles as possible during the first crystal conversion. For this purpose, in order to complete the crystal conversion in a short time while selecting the appropriate crystal conversion solvent as described above and improving the crystal conversion efficiency, the solvent and titanyl phthalocyanine water paste (the raw material prepared as described above) are used. It can be seen that a technique using strong agitation is effective to sufficiently bring a contact of
このような結晶変換方法を採用することにより、一次粒子サイズの小さな(0.25μm以下、より好ましくは0.2μm以下)チタニルフタロシアニン結晶を得ることができる。特開2001−187794号公報に記載された技術に加えて、必要に応じて上述のような技術(微細なチタニルフタロシアニン結晶を得るための結晶変換方法)を併用することは、本発明において重要な手段である。 By adopting such a crystal conversion method, a titanyl phthalocyanine crystal having a small primary particle size (0.25 μm or less, more preferably 0.2 μm or less) can be obtained. In addition to the technique described in Japanese Patent Application Laid-Open No. 2001-187794, it is important in the present invention to use the above-described technique (crystal conversion method for obtaining fine titanyl phthalocyanine crystals) as necessary. Means.
続いて、結晶変換されたチタニルフタロシアニン結晶は直ちに濾過されることにより、結晶変換溶媒と分別される。この濾過に際しては、適当なサイズのフィルターを用いることにより行なわれる。この際、減圧濾過を用いることが最も適当である。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機は、公知のものがいずれも使用可能であるが、大気下で行なう場合には送風型の乾燥機が好ましい。更に、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。特に、高温で分解する、あるいは結晶型が変化するような材料に対しては有効な手段である。特に10mmHgよりも真空度が高い状態で乾燥することが有効である。
Subsequently, the crystallized titanyl phthalocyanine crystal is immediately filtered to be separated from the crystal conversion solvent. This filtration is performed by using a filter of an appropriate size. In this case, it is most appropriate to use vacuum filtration.
Thereafter, the separated titanyl phthalocyanine crystal is heat-dried as necessary. Any known dryer can be used for heating and drying, but a blower-type dryer is preferable when the drying is performed in the atmosphere. Furthermore, drying under reduced pressure is also a very effective means in order to increase the drying speed and to exhibit the effects of the present invention more remarkably. In particular, this is an effective means for a material that decomposes at a high temperature or changes its crystal form. It is particularly effective to dry in a state where the degree of vacuum is higher than 10 mmHg.
このように得られた特定の結晶型を有するチタニルフタロシアニン結晶は、電子写真感光体用電荷発生物質として極めて有用である。しかしながら、先述のように結晶型が不安定であり、分散液を作製する際に結晶型が転移し易いという欠点を有しているものであった。しかしながら、本発明のように一次粒子を限りなく小さなものに合成することにより、分散液作製時に過剰なシェアを与えることなく、平均粒径の小さな分散液を作製することができ、結晶型も極めて安定に(合成した結晶型を変えることなく)作製することができるものである。
次に、2回目の結晶変換方法について述べる。2回目の結晶変換は、1回目の結晶変換で作製したチタニルフタロシアニン結晶(乾燥粉末)を用いて、更に結晶変換を行なう工程である。具体的な方法としては、2種類の方法が挙げられる。
The thus obtained titanyl phthalocyanine crystal having a specific crystal type is extremely useful as a charge generating material for an electrophotographic photoreceptor. However, as described above, the crystal form is unstable, and the crystal form is easily transferred when a dispersion is prepared. However, by synthesizing primary particles into infinitely small particles as in the present invention, a dispersion with a small average particle diameter can be prepared without giving an excessive share during the preparation of the dispersion, and the crystal type is also extremely high. It can be produced stably (without changing the synthesized crystal form).
Next, the second crystal conversion method will be described. The second crystal conversion is a step of further crystal conversion using the titanyl phthalocyanine crystal (dry powder) prepared by the first crystal conversion. Specific methods include two methods.
1つは、先に作製したチタニルフタロシアニン結晶を有機溶媒中で処理する方法である。使用される有機溶媒としては、27.2゜に最大回折ピークを有する結晶型を、26.3゜に最大回折ピークを有する結晶型に変換できる溶媒であればいかなるものも使用できるが、トルエン、キシレンなどの芳香族炭化水素、アセトン、2―ブタノン等のケトン類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素、テトラヒドロフランなどの環状エーテル類が良好に用いられる。
有機溶媒の処理に関しては、前記チタニルフタロシアニン結晶を有機溶媒中にそのまま浸漬させておくだけでも構わないが、撹拌、超音波印加などの補助手段を併用することにより、処理時間を短縮することができ、有効である。有機溶媒による処理を行なった後、濾過分別して、再び乾燥を行なうことにより、目的とするチタニルフタロシアニン結晶を得ることができる。
One is a method of treating the previously prepared titanyl phthalocyanine crystal in an organic solvent. As the organic solvent used, any solvent can be used as long as it can convert the crystal form having the maximum diffraction peak at 27.2 ° to the crystal form having the maximum diffraction peak at 26.3 °. Aromatic hydrocarbons such as xylene, ketones such as acetone and 2-butanone, halogenated hydrocarbons such as methylene chloride and chloroform, and cyclic ethers such as tetrahydrofuran are preferably used.
Regarding the treatment of the organic solvent, the titanyl phthalocyanine crystal may be simply immersed in the organic solvent as it is, but the treatment time can be shortened by using auxiliary means such as stirring and ultrasonic application together. ,It is valid. After the treatment with an organic solvent, the target titanyl phthalocyanine crystal can be obtained by separating by filtration and drying again.
もう1つの方法としては、先に作製したチタニルフタロシアニン結晶に、機械的剪断力を与えることにより結晶変換を行なう方法である。この際、有機溶媒を併用しても構わないが、併用せずに乾式状態で処理を行なうことが望ましい。使用される方法としては、ボールミル、アトライター、振動ミル、ニーダーなどによる乾式ミリング、簡便的にはミキサーによる乾式ミリングも効果的である。また、乾式ミリングの際に、食塩等の無機塩を助剤として用いても良い。助剤を用いた場合には、結晶変換処理の後に、無機塩を除去する洗浄工程が必要である。このようにして、目的とするチタニルフタロシアニン結晶を得ることができる。 As another method, a crystal transformation is performed by applying a mechanical shearing force to the previously prepared titanyl phthalocyanine crystal. At this time, an organic solvent may be used in combination, but it is desirable to perform the treatment in a dry state without using it together. As a method to be used, dry milling using a ball mill, attritor, vibration mill, kneader, or the like, or simply dry milling using a mixer is also effective. Moreover, you may use inorganic salts, such as salt, as an adjuvant in the case of dry milling. When an auxiliary agent is used, a washing step for removing inorganic salts is necessary after the crystal conversion treatment. Thus, the target titanyl phthalocyanine crystal can be obtained.
いずれの方法を用いる場合にも、26.3゜のピーク強度が最大回折ピーク27.2゜のピーク強度に対して0.1〜5%の範囲であることが重要である。溶媒中での処理時間あるいは機械的剪断力を与える処理時間により26.3゜のピーク強度が決定されるが、使用する原料(1回目の結晶変換により作製したチタニルフタロシアニン結晶)の状態(例えば、粉末の大きさ、固さ等)によっても異なるため、予備的な実験により、処理時間を決定することが望ましい。
次に分散液の作製方法について述べる。
分散液の作製に関しては一般的な方法が用いられ、前記チタニルフタロシアニン結晶を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散することで得られるものである。この際、バインダー樹脂は感光体の静電特性などにより、また溶媒は顔料へのぬれ性、顔料の分散性などにより選択すればよい。
Whichever method is used, it is important that the peak intensity at 26.3 ° is in the range of 0.1 to 5% with respect to the peak intensity at the maximum diffraction peak of 27.2 °. The peak intensity of 26.3 ° is determined by the treatment time in the solvent or the treatment time giving mechanical shearing force, but the state of the raw material used (the titanyl phthalocyanine crystal produced by the first crystal conversion) (for example, It is desirable to determine the treatment time through preliminary experiments because it varies depending on the size and hardness of the powder.
Next, a method for preparing the dispersion will be described.
A general method is used for the preparation of the dispersion, and the titanyl phthalocyanine crystal is dispersed in a suitable solvent together with a binder resin as necessary by using a ball mill, an attritor, a sand mill, a bead mill, an ultrasonic wave, or the like. It is obtained. At this time, the binder resin may be selected depending on the electrostatic characteristics of the photoreceptor, and the solvent may be selected depending on the wettability to the pigment, the dispersibility of the pigment, and the like.
既に述べたように、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、熱エネルギー・機械的シェア等のストレスにより他の結晶型に容易に結晶転移をすることが知られている。本発明で用いるチタニルフタロシアニン結晶もこの傾向は変わらない。すなわち、微細な粒子を含む分散液を作製するためには、分散方法の工夫も必要であるが、結晶型の安定性と微粒子化はトレード・オフの関係になりがちである。分散条件を最適化することによりこれを回避する方法はあるが、いずれも製造条件を極めて狭くしてしまうものであり、より簡便な方法が望まれている。この問題を解決するために、以下のような方法も有効な手段である。 As already described, the titanyl phthalocyanine crystal having a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to the characteristic X-ray (wavelength 1.542 波長) of CuKα is It is known that crystal transition to other crystal forms easily occurs due to stress such as energy and mechanical share. This tendency does not change in the titanyl phthalocyanine crystal used in the present invention. In other words, in order to produce a dispersion containing fine particles, it is necessary to devise a dispersion method, but the stability of the crystal form and the micronization tend to be in a trade-off relationship. Although there are methods for avoiding this by optimizing the dispersion conditions, all of them make the manufacturing conditions extremely narrow, and a simpler method is desired. In order to solve this problem, the following method is also an effective means.
すなわち、結晶転移が起こらない範囲で、できる限り粒子を微細にした分散液を作製後、適当なフィルターで濾過してしまう方法である。この方法では、残存する目視では観察できない(あるいは粒径測定では検出できない)微量な粗大粒子をも取り除くことができ、また粒度分布を揃えるという点からも非常に有効な手段である。具体的には、上述のように作製した分散液を有効孔径が3μm以下のフィルター、より好ましくは1μm以下のフィルターにて濾過する操作を行ない、分散液を完成させるというものである。
この方法によっても、粒子サイズの小さな(0.25μm以下、より好ましくは0.2μm以下)チタニルフタロシアニン結晶のみを含む分散液を作製することができ、これを用いた感光体を画像形成装置に搭載使用することにより、本願の効果をより一層顕著にするものである。
That is, it is a method in which a dispersion liquid in which the particles are made as fine as possible is produced within a range where crystal transition does not occur, and then filtered through an appropriate filter. This method is a very effective means in that it can remove a minute amount of coarse particles that cannot be visually observed (or cannot be detected by particle size measurement), and that the particle size distribution is uniform. Specifically, the dispersion prepared as described above is filtered through a filter having an effective pore size of 3 μm or less, more preferably 1 μm or less, thereby completing the dispersion.
Also by this method, a dispersion containing only titanyl phthalocyanine crystals having a small particle size (0.25 μm or less, more preferably 0.2 μm or less) can be produced, and a photoconductor using the dispersion is mounted on an image forming apparatus. By using it, the effect of the present application is made more remarkable.
分散液を濾過するフィルターに関しては、除去したい粗大粒子のサイズによって異なるものであるが、本発明者等の検討によれば、600dpi程度の解像度を必要とする電子写真装置で使用される感光体としては、最低でも3μm以上の粗大粒子の存在は画像に対して影響を及ぼす。したがって、有効孔径が3μm以下のフィルターを使用すべきである。より好ましくは1μm以下の有効孔径を有するフィルターを使用することである。このようなフィルタリング処理を行うことにより、有効孔径よりも細かい粗大粒子も取り除くことが可能であり、粒度分布が狭く、かつ粗大粒子の含まない分散液を作製することが可能になる。 The filter for filtering the dispersion varies depending on the size of coarse particles to be removed, but according to the study by the present inventors, as a photoreceptor used in an electrophotographic apparatus that requires a resolution of about 600 dpi. The presence of coarse particles of at least 3 μm affects the image. Therefore, a filter with an effective pore size of 3 μm or less should be used. More preferably, a filter having an effective pore size of 1 μm or less is used. By performing such a filtering process, coarse particles finer than the effective pore size can be removed, and a dispersion having a narrow particle size distribution and no coarse particles can be produced.
この有効孔径に関しては、細かいほど粗大粒子の除去に効果があるものであるが、あまり細かすぎると、必要な顔料粒子そのものも濾過されてしまうため、適切なサイズが存在する。また、細かすぎた場合には、濾過に時間がかかる、フィルターが目詰まりを起こす、ポンプ等を使用して送液する場合には負荷がかかりすぎる等の問題を生じる。なお、ここで使用されるフィルターの材質は、当然のことながら濾過する分散液に使用される溶媒に対して耐性のあるものが使用される。 As for the effective pore size, the finer the particle, the more effective the removal of coarse particles. However, if the particle size is too fine, the necessary pigment particles themselves are also filtered, and therefore there is an appropriate size. In addition, if it is too fine, it takes time for filtration, clogging of the filter, and excessive load is applied when liquid is sent using a pump or the like. As a matter of course, a material having resistance to the solvent used in the dispersion to be filtered is used as the material of the filter used here.
濾過に際しては、濾過される分散液中の粗大粒子量があまりにも多い場合、取り除かれる顔料が多くなり、濾過後の分散液の固形分濃度が変化したりして好ましくない。従って、濾過を行う際には適切な粒度分布(粒子サイズ、標準偏差)が存在する。本発明のように、濾過による顔料のロス、フィルターの目詰まり等がなく、効率よく濾過を行うためには、濾過前の分散液の体積平均粒径が0.3μm以下で、その標準偏差が0.2μm以下に分散しておくことが望ましい。 During filtration, if the amount of coarse particles in the dispersion to be filtered is too large, the amount of pigment to be removed increases, and the solid content concentration of the dispersion after filtration changes, which is not preferable. Therefore, an appropriate particle size distribution (particle size, standard deviation) exists when performing filtration. As in the present invention, there is no loss of pigment due to filtration, filter clogging, etc., and in order to perform filtration efficiently, the volume average particle size of the dispersion before filtration is 0.3 μm or less, and its standard deviation is It is desirable to disperse to 0.2 μm or less.
このような分散液の濾過操作を加えることによっても、粗大粒子を取り除くことが可能になり、ひいては分散液を使用した感光体で発生する地汚れを低減化することが出来る。上述のように、より細かいフィルターを使用するほど、その効果は大きなもの(確実なもの)になるが、顔料粒子そのものが濾過されてしまう場合が存在してしまう。このような場合には、先に述べたチタニルフタロシアニン一次粒子を微細化合成する技術と併用することは、非常に大きな効果を発するものである。 By adding such an operation of filtering the dispersion, coarse particles can be removed, and as a result, background contamination generated on the photoconductor using the dispersion can be reduced. As described above, the finer the filter, the greater the effect (reliable), but there are cases where the pigment particles themselves are filtered. In such a case, using the titanyl phthalocyanine primary particles described above in combination with the technique for refining and synthesizing the particles produces a very large effect.
即ち、(i)微細化チタニルフタロシアニンを合成し、これを使用することにより、分散時間の短縮化・分散ストレスの低減化が図れ、分散における結晶転移の可能性が小さくなる。(ii)分散によって残存する粗大粒子サイズが、微細化しない場合よりも小さいため、より小さなフィルターを使用することが可能になり、粗大粒子の除去効果がより確実なものとなる。また、除去されるチタニルフタロシアニン粒子量が低減し、濾過前後における分散液組成の変化が少なく、安定した製造が可能になる。(iii)その結果、製造される感光体は安定して地汚れ耐性の高い感光体が製造されることになる。 That is, (i) by synthesizing and using refined titanyl phthalocyanine, the dispersion time can be shortened and the dispersion stress can be reduced, and the possibility of crystal transition in dispersion is reduced. (Ii) Since the size of the coarse particles remaining after dispersion is smaller than that in the case where the particles are not refined, a smaller filter can be used, and the effect of removing the coarse particles becomes more reliable. In addition, the amount of titanyl phthalocyanine particles to be removed is reduced, and there is little change in the composition of the dispersion before and after filtration, which enables stable production. (Iii) As a result, the manufactured photoreceptor is stably manufactured with high resistance to soiling.
本発明におけるチタニルフタロシアニン結晶における26.3゜のピーク強度の27.2゜のピーク強度に対する強度比について説明する。
使用するチタニルフタロシアニン結晶を粉末状態で、一般的なX線回折装置にて、X線回折スペクトルを測定する。得られたスペクトルに対して、ベースライン補正を行なった後、26.3±0.2゜のピーク強度、および27.2±0.2゜のピーク強度を求める。その値を用いて、26.3±0.2゜のピーク強度を27.2±0.2゜のピーク強度で割った値が、本発明で言うところのピーク強度比である。
ピーク強度比(%)=26.3±0.2゜のピーク強度/27.2±0.2゜のピーク強度×100
なお、ピーク強度比が1%以下になるような場合には、広い範囲での測定ではベースラインの補正が難しい場合がある。その場合には、測定範囲を狭めて(例えば、25〜30゜の範囲で測定する等)、再測定を行なうことにより、より正確に強度比を求めることができる。
The intensity ratio of the 26.3 ° peak intensity to the 27.2 ° peak intensity in the titanyl phthalocyanine crystal of the present invention will be described.
An X-ray diffraction spectrum is measured with a general X-ray diffractometer in a powder state of the titanyl phthalocyanine crystal to be used. Baseline correction is performed on the obtained spectrum, and then a peak intensity of 26.3 ± 0.2 ° and a peak intensity of 27.2 ± 0.2 ° are obtained. Using the value, the value obtained by dividing the peak intensity of 26.3 ± 0.2 ° by the peak intensity of 27.2 ± 0.2 ° is the peak intensity ratio in the present invention.
Peak intensity ratio (%) = 26.3 ± 0.2 ° peak intensity / 27.2 ± 0.2 ° peak intensity × 100
When the peak intensity ratio is 1% or less, it may be difficult to correct the baseline in measurement over a wide range. In that case, the intensity ratio can be obtained more accurately by narrowing the measurement range (for example, measuring within a range of 25 to 30 °) and performing remeasurement.
続いて、本発明に用いられる電子写真感光体について、図面を用いて詳しく説明する。
図12は、本発明に用いられる電子写真感光体の構成例を示す断面図であり、導電性支持体(31)上に、前記特定粒子サイズで特定結晶型を有するチタニルフタロシアニン結晶(電荷発生材料)を主成分とする電荷発生層(35)と、電荷輸送材料を主成分とする電荷輸送層(37)とが、積層された構成をとっている。
また、図13は、本発明に用いられる電子写真感光体の別の構成例を示す断面図であり、導電性支持体(31)上に、前記特定粒子サイズで特定結晶型を有するチタニルフタロシアニン結晶(電荷発生材料)を主成分とする電荷発生層(35)と、電荷輸送材料を主成分とする電荷輸送層(37)とが積層され、更に電荷輸送層上に、保護層(39)を設けた構成をとっている。
Next, the electrophotographic photosensitive member used in the present invention will be described in detail with reference to the drawings.
FIG. 12 is a cross-sectional view showing a structural example of the electrophotographic photosensitive member used in the present invention. On the conductive support (31), a titanyl phthalocyanine crystal having a specific crystal type with the specific particle size (charge generating material). ) As a main component and a charge transport layer (37) whose main component is a charge transport material are stacked.
FIG. 13 is a cross-sectional view showing another structural example of the electrophotographic photosensitive member used in the present invention, and a titanyl phthalocyanine crystal having the specific particle size and the specific particle size on the conductive support (31). A charge generation layer (35) mainly composed of (charge generation material) and a charge transport layer (37) mainly composed of a charge transport material are laminated, and a protective layer (39) is further formed on the charge transport layer. It has a configuration that is provided.
導電性支持体(31)としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを、押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、特開昭52−36016号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体(31)として用いることができる。 As the conductive support (31), a material having a volume resistance of 10 10 Ω · cm or less, for example, a metal such as aluminum, nickel, chromium, nichrome, copper, gold, silver, platinum, tin oxide, oxidation Metal oxide such as indium by vapor deposition or sputtering, film or cylindrical plastic, paper coated, or aluminum, aluminum alloy, nickel, stainless steel plates, etc. and methods such as extrusion and drawing After forming the tube, it is possible to use a tube subjected to surface treatment such as cutting, superfinishing or polishing. Further, an endless nickel belt and an endless stainless steel belt disclosed in Japanese Patent Application Laid-Open No. 52-36016 can be used as the conductive support (31).
また、これらの中でも陽極酸化皮膜処理を簡便に行なうことのできるアルミニウムからなる円筒状支持体が最も良好に使用できる。ここでいうアルミニウムとは、純アルミ系あるいはアルミニウム合金のいずれをも含むものである。具体的には、JIS1000番台、3000番台、6000番台のアルミニウムあるいはアルミニウム合金が最も適している。 Of these, a cylindrical support made of aluminum, which can be easily subjected to the anodic oxide film treatment, can be most preferably used. As used herein, aluminum includes both pure aluminum and aluminum alloys. Specifically, JIS 1000, 3000, and 6000 series aluminum or aluminum alloy is most suitable.
陽極酸化皮膜は各種金属、各種合金を電解質溶液中において陽極酸化処理したものであるが、中でもアルミニウムもしくはアルミニウム合金を電解質溶液中で陽極酸化処理を行なったアルマイトと呼ばれる被膜が本発明に用いる感光体には最も適している。特に、反転現像(ネガ・ポジ現像)に用いた際に発生する点欠陥(黒ポチ、地汚れ)を防止する点で優れている。 Anodized films are obtained by anodizing various metals and various alloys in an electrolyte solution. Among them, a film called anodized aluminum or an aluminum alloy that has been anodized in an electrolyte solution is used in the present invention. Is the most suitable. In particular, it is excellent in preventing point defects (black spots, background stains) that occur when used in reversal development (negative / positive development).
陽極酸化処理は、クロム酸、硫酸、蓚酸、リン酸、硼酸、スルファミン酸などの酸性浴中において行なわれる。このうち、硫酸浴による処理が最も適している。一例を挙げると、硫酸濃度:10〜20%、浴温:5〜25℃、電流密度:1〜4A/dm2、電解電圧:5〜30V、処理時間:5〜60分程度の範囲で処理が行なわれるが、これに限定するものではない。 The anodizing treatment is performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid. Of these, treatment with a sulfuric acid bath is most suitable. For example, sulfuric acid concentration: 10 to 20%, bath temperature: 5 to 25 ° C., current density: 1 to 4 A / dm 2 , electrolytic voltage: 5 to 30 V, treatment time: treatment in the range of about 5 to 60 minutes However, the present invention is not limited to this.
このように作製される陽極酸化皮膜は、多孔質であり、また絶縁性が高いため、表面が非常に不安定な状況である。このため、作製後の経時変化が存在し、陽極酸化皮膜の物性値が変化しやすい。これを回避するため、陽極酸化皮膜を更に封孔処理することが望ましい。 Since the anodic oxide film produced in this way is porous and has high insulation, the surface is very unstable. For this reason, there is a change with time after fabrication, and the physical property value of the anodized film is likely to change. In order to avoid this, it is desirable to further seal the anodized film.
封孔処理には、フッ化ニッケルや酢酸ニッケルを含有する水溶液に陽極酸化皮膜を浸漬する方法、陽極酸化皮膜を沸騰水に浸漬する方法、加圧水蒸気により処理する方法などがある。このうち、酢酸ニッケルを含有する水溶液に浸漬する方法が最も好ましい。 Examples of the sealing treatment include a method of immersing the anodized film in an aqueous solution containing nickel fluoride and nickel acetate, a method of immersing the anodized film in boiling water, and a method of treating with pressurized steam. Among these, the method of immersing in the aqueous solution containing nickel acetate is the most preferable.
封孔処理に引き続き、陽極酸化皮膜の洗浄処理が行なわれる。これは、封孔処理により付着した金属塩等の過剰なものを除去することが主な目的である。これが支持体(陽極酸化皮膜)表面に過剰に残存すると、この上に形成する塗膜の品質に悪影響を与えるだけでなく、一般的に低抵抗成分が残ってしまうため、逆に地汚れの発生原因にもなってしまう。洗浄は純水1回の洗浄でも構わないが、通常は他段階の洗浄を行なう。この際、最終の洗浄液が可能な限りきれい(脱イオンされた)ものであることが好ましい。また、他段階の洗浄工程のうち1工程に接触部材による物理的なこすり洗浄を施すことが望ましい。 Subsequent to the sealing treatment, the anodic oxide film is washed. The main purpose of this is to remove excess metal salts and the like attached by the sealing treatment. If this remains excessively on the surface of the support (anodized film), it not only adversely affects the quality of the coating film formed on this surface, but also generally low resistance components remain, resulting in the occurrence of soiling. It can also be a cause. The cleaning may be performed once with pure water, but is usually performed at another stage. At this time, it is preferable that the final cleaning liquid is as clean (deionized) as possible. Moreover, it is desirable to perform physical rubbing cleaning with a contact member in one of the other cleaning processes.
以上のようにして形成される陽極酸化皮膜の膜厚は、5〜15μm程度が望ましい。これより薄すぎる場合には陽極酸化皮膜としてのバリア性の効果が充分でなく、これより厚すぎる場合には電極としての時定数が大きくなりすぎて、残留電位の発生や感光体のレスポンスが低下する場合がある。 The film thickness of the anodized film formed as described above is preferably about 5 to 15 μm. If it is too thin, the barrier effect as an anodic oxide film is not sufficient, and if it is too thick, the time constant as an electrode becomes too large, resulting in the generation of residual potential and the response of the photoreceptor. There is a case.
この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものも、本発明の導電性支持体(31)として用いることができる。
この導電性粉体としては、カーボンブラック、アセチレンブラック、またアルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などが挙げられる。
また、同時に用いられる結着樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂が挙げられる。
このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
In addition to the above, a conductive powder dispersed in a suitable binder resin and coated on the support can be used as the conductive support (31) of the present invention.
Examples of the conductive powder include carbon black, acetylene black, metal powder such as aluminum, nickel, iron, nichrome, copper, zinc, and silver, or metal oxide powder such as conductive tin oxide and ITO. It is done.
The binder resin used at the same time is polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer. , Polyvinyl acetate, polyvinylidene chloride, polyarylate resin, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, poly-N-vinylcarbazole, acrylic resin, silicone resin, epoxy resin, Examples thereof include thermoplastic, thermosetting resins, and photocurable resins such as melamine resin, urethane resin, phenol resin, and alkyd resin.
Such a conductive layer can be provided by dispersing and coating these conductive powder and binder resin in a suitable solvent such as tetrahydrofuran, dichloromethane, methyl ethyl ketone, and toluene.
更に、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、ポリテトラフロロエチレン系フッ素樹脂などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体(31)として良好に用いることができる。 Furthermore, a heat-shrinkable tube in which the conductive powder is contained in a material such as polyvinyl chloride, polypropylene, polyester, polystyrene, polyvinylidene chloride, polyethylene, chlorinated rubber, polytetrafluoroethylene fluororesin on a suitable cylindrical substrate. Those provided with a conductive layer can be used favorably as the conductive support (31) of the present invention.
次に、感光層について説明する。感光層は前述のように、電荷発生層(35)と電荷輸送層(37)で構成される積層型が感度、耐久性において優れた特性を示し、良好に使用される。 Next, the photosensitive layer will be described. As described above, as the photosensitive layer, a laminated type composed of the charge generation layer (35) and the charge transport layer (37) exhibits excellent characteristics in sensitivity and durability, and is used favorably.
電荷発生層(35)は、電荷発生物質として、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する結晶型)に変換する工程である。特に、前記結晶型のうち、更に9.4゜、9.6゜、24.0゜に主要なピークを有
し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有する一次粒子の平均粒子サイズが0.25μm以下(好ましくは0.2μm以下)のチタニルフタロシアニン結晶が良好に用いられる。
電荷発生層(35)は、前記顔料を必要に応じて結着樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
The charge generation layer (35) has, as a charge generation material, a maximum diffraction peak at 27.2 ° as a diffraction peak (± 0.2 °) with a Bragg angle 2θ with respect to CuKα characteristic X-rays (wavelength 1.542 mm). The crystal form). In particular, among the crystal types, there are further main peaks at 9.4 °, 9.6 °, 24.0 °, and the lowest diffraction angle has a peak at 7.3 °, In addition, there is no peak between the peak at 7.3 ° and the peak at 9.4 °, and the average particle size of primary particles having a peak at 26.3 ° is not more than 0.25 μm (preferably 0 .2 μm or less) titanyl phthalocyanine crystals are used favorably.
In the charge generation layer (35), the pigment is dispersed in a suitable solvent together with a binder resin, if necessary, using a ball mill, an attritor, a sand mill, an ultrasonic wave, or the like, and this is applied onto a conductive support. It is formed by drying.
必要に応じて電荷発生層(35)に用いられる結着樹脂としては、必要に応じて電荷発生層(35)に用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
結着樹脂の量は、電荷発生物質100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。
As the binder resin used for the charge generation layer (35) as necessary, the binder resin used for the charge generation layer (35) as needed may be polyamide, polyurethane, epoxy resin, polyketone, polycarbonate, silicon. Resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polyvinyl ketone, polystyrene, polysulfone, poly-N-vinylcarbazole, polyacrylamide, polyvinyl benzal, polyester, phenoxy resin, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, Polyphenylene oxide, polyamide, polyvinyl pyridine, cellulosic resin, casein, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be mentioned.
The amount of the binder resin is suitably 0 to 500 parts by weight, preferably 10 to 300 parts by weight with respect to 100 parts by weight of the charge generating material.
ここで用いられる溶剤としては、例えばイソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられる。塗布液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の方法を用いることができる。 Examples of the solvent used here include isopropanol, acetone, methyl ethyl ketone, cyclohexanone, tetrahydrofuran, dioxane, ethyl cellosolve, ethyl acetate, methyl acetate, dichloromethane, dichloroethane, monochlorobenzene, cyclohexane, toluene, xylene, ligroin and the like. As a coating method for the coating solution, a dip coating method, spray coating, beat coating, nozzle coating, spinner coating, ring coating, or the like can be used.
電荷発生層35の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。 The thickness of the charge generation layer 35 is suitably about 0.01 to 5 μm, preferably 0.1 to 2 μm.
電荷輸送層(37)は、電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。 The charge transport layer (37) can be formed by dissolving or dispersing a charge transport material and a binder resin in a suitable solvent, and applying and drying the solution on the charge generation layer. Moreover, a plasticizer, a leveling agent, antioxidant, etc. can also be added as needed.
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。 Charge transport materials include hole transport materials and electron transport materials.
電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。 Examples of the electron transport material include chloroanil, bromanyl, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 2,6,8-trinitro-4H-indeno [1,2-b] thiophen-4-one, 1,3,7-tri Examples thereof include electron-accepting substances such as nitrodibenzothiophene-5,5-dioxide and benzoquinone derivatives.
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。 Examples of the hole transport material include poly-N-vinylcarbazole and derivatives thereof, poly-γ-carbazolylethyl glutamate and derivatives thereof, pyrene-formaldehyde condensates and derivatives thereof, polyvinylpyrene, polyvinylphenanthrene, polysilane, oxazole derivatives, Oxadiazole derivatives, imidazole derivatives, monoarylamine derivatives, diarylamine derivatives, triarylamine derivatives, stilbene derivatives, α-phenylstilbene derivatives, benzidine derivatives, diarylmethane derivatives, triarylmethane derivatives, 9-styrylanthracene derivatives, pyrazolines Derivatives, divinylbenzene derivatives, hydrazone derivatives, indene derivatives, butadiene derivatives, pyrene derivatives, etc., bisstilbene derivatives, enamine derivatives, etc. Other known materials may be mentioned. These charge transport materials may be used alone or in combination of two or more.
結着樹脂としてはポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
電荷輸送物質の量は結着樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。また、電荷輸送層の膜厚は5〜100μm程度とすることが好ましい。
Binder resins include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, poly Vinylidene chloride, polyarate, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, poly-N-vinylcarbazole, acrylic resin, silicone resin, epoxy resin, melamine resin, urethane resin, phenol resin And thermoplastic or thermosetting resins such as alkyd resins.
The amount of the charge transport material is appropriately 20 to 300 parts by weight, preferably 40 to 150 parts by weight, based on 100 parts by weight of the binder resin. The thickness of the charge transport layer is preferably about 5 to 100 μm.
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましいものである。具体的には、テトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、及びそれらの誘導体が良好に用いられる。 As the solvent used here, tetrahydrofuran, dioxane, toluene, dichloromethane, monochlorobenzene, dichloroethane, cyclohexanone, methyl ethyl ketone, acetone and the like are used. Among them, the use of a non-halogen solvent is desirable for the purpose of reducing the environmental load. Specifically, cyclic ethers such as tetrahydrofuran, dioxolane and dioxane, aromatic hydrocarbons such as toluene and xylene, and derivatives thereof are preferably used.
また、電荷輸送層には電荷輸送物質としての機能とバインダー樹脂の機能を持った高分子電荷輸送物質も良好に使用される。これら高分子電荷輸送物質から構成される電荷輸送層は耐摩耗性に優れたものである。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、式(I)〜(X)式で表わされる高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。 In addition, a polymer charge transport material having a function as a charge transport material and a function of a binder resin is also preferably used for the charge transport layer. The charge transport layer composed of these polymer charge transport materials is excellent in wear resistance. As the polymer charge transport material, known materials can be used, and in particular, a polycarbonate containing a triarylamine structure in the main chain and / or side chain is preferably used. Among these, polymer charge transport materials represented by the formulas (I) to (X) are preferably used, and these are exemplified below and specific examples are shown.
また、電荷輸送層に使用される高分子電荷輸送物質として、上述の高分子電荷輸送物質の他に、電荷輸送層の成膜時には電子供与性基を有するモノマーあるいはオリゴマーの状態で、成膜後に硬化反応あるいは架橋反応をさせることで、最終的に2次元あるいは3次元の架橋構造を有する重合体も含むものである。 Further, as the polymer charge transport material used in the charge transport layer, in addition to the polymer charge transport material described above, in the state of the monomer or oligomer having an electron donating group at the time of film formation of the charge transport layer, A polymer having a two-dimensional or three-dimensional crosslinked structure is finally included by carrying out a curing reaction or a crosslinking reaction.
これら電子供与性基を有する重合体から構成される電荷輸送層、あるいは架橋構造を有する重合体は耐摩耗性に優れたものである。通常、電子写真プロセスにおいては、帯電電位(未露光部電位)は一定であるため、繰り返し使用により感光体の表面層が摩耗すると、その分だけ感光体にかかる電界強度が高くなってしまう。この電界強度の上昇に伴い、地汚れの発生頻度が高くなるため、感光体の耐摩耗性が高いことは、地汚れに対して有利である。これら電子供与性基を有する重合体から構成される電荷輸送層は、自身が高分子化合物であるため成膜性に優れ、低分子分散型高分子からなる電荷輸送層に比べ、電荷輸送部位を高密度に構成することが可能で電荷輸送能に優れたものである。このため、高分子電荷輸送物質を用いた電荷輸送層を有する感光体には高速応答性が期待できる。 A charge transport layer composed of a polymer having these electron donating groups or a polymer having a crosslinked structure is excellent in wear resistance. Usually, in the electrophotographic process, since the charging potential (unexposed portion potential) is constant, if the surface layer of the photoreceptor is worn by repeated use, the electric field strength applied to the photoreceptor increases accordingly. As the electric field strength increases, the occurrence frequency of scumming increases. Therefore, the high wear resistance of the photosensitive member is advantageous for scumming. The charge transport layer composed of a polymer having these electron donating groups is a polymer compound, so it has excellent film-forming properties and has a charge transport site compared to a charge transport layer composed of a low molecular weight dispersed polymer. It can be configured with high density and has excellent charge transport capability. For this reason, a photoreceptor having a charge transport layer using a polymer charge transport material can be expected to have a high response speed.
その他の電子供与性基を有する重合体としては、公知単量体の共重合体や、ブロック重合体、グラフト重合体、スターポリマーや、また、例えば特開平3−109406号公報、特開2000−206723号公報、特開2001−34001号公報等に開示されているような電子供与性基を有する架橋重合体などを用いることも可能である。 Examples of other polymers having an electron donating group include copolymers of known monomers, block polymers, graft polymers, star polymers, and, for example, JP-A-3-109406, JP-A-2000- It is also possible to use a cross-linked polymer having an electron donating group as disclosed in JP-A-206723 and JP-A No. 2001-34001.
本発明において電荷輸送層(37)中に可塑剤やレベリング剤を添加してもよい。
可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂に対して0〜30重量%程度が適当である。
レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいは、オリゴマーが使用され、その使用量は結着樹脂に対して、0〜1重量%が適当である。
In the present invention, a plasticizer or a leveling agent may be added to the charge transport layer (37).
As the plasticizer, those used as general plasticizers such as dibutyl phthalate and dioctyl phthalate can be used as they are, and the amount used is suitably about 0 to 30% by weight based on the binder resin.
As the leveling agent, silicone oils such as dimethyl silicone oil and methylphenyl silicone oil, polymers or oligomers having a perfluoroalkyl group in the side chain are used, and the amount used is 0 to 0 with respect to the binder resin. 1% by weight is suitable.
本発明の電子写真感光体には、導電性支持体(31)と感光層との間に中間層を設けることができる。
中間層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶媒で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。また、中間層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。
In the electrophotographic photoreceptor of the present invention, an intermediate layer can be provided between the conductive support (31) and the photosensitive layer.
In general, the intermediate layer is mainly composed of a resin. However, considering that the photosensitive layer is coated with a solvent on these resins, it is desirable that the resin be a resin having high solvent resistance with respect to a general organic solvent. . Examples of such resins include water-soluble resins such as polyvinyl alcohol, casein, and sodium polyacrylate, alcohol-soluble resins such as copolymer nylon and methoxymethylated nylon, polyurethane, melamine resin, phenol resin, alkyd-melamine resin, and epoxy. Examples thereof include a curable resin that forms a three-dimensional network structure such as a resin. Further, fine powder pigments of metal oxides exemplified by titanium oxide, silica, alumina, zirconium oxide, tin oxide, indium oxide and the like may be added to the intermediate layer in order to prevent moire and reduce residual potential.
これらの中間層は前述の感光層の如く適当な溶媒、塗工法を用いて形成することができる。更に本発明の中間層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の中間層には、Al2O3を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO2、SnO2、TiO2、ITO、CeO2等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。中間層の膜厚は0〜5μmが適当である。 These intermediate layers can be formed by using an appropriate solvent and coating method like the above-mentioned photosensitive layer. Furthermore, a silane coupling agent, a titanium coupling agent, a chromium coupling agent, or the like can be used as the intermediate layer of the present invention. In addition, in the intermediate layer of the present invention, Al 2 O 3 is provided by anodic oxidation, organic substances such as polyparaxylylene (parylene), SiO 2 , SnO 2 , TiO 2 , ITO, CeO 2, etc. Those provided with an inorganic material by a vacuum thin film forming method can also be used favorably. In addition, known ones can be used. The thickness of the intermediate layer is suitably from 0 to 5 μm.
本発明の電子写真感光体には、感光層保護の目的で、保護層が感光層の上に設けられることもある。近年、日常的にコンピュータの使用が行なわれるようになり、プリンタによる高速出力とともに、装置の小型も望まれている。したがって、保護層を設け、耐久性を向上させることによって、本発明の高感度で異常欠陥のない感光体を有用に用いることができる。 In the electrophotographic photoreceptor of the present invention, a protective layer may be provided on the photosensitive layer for the purpose of protecting the photosensitive layer. In recent years, computers have been used on a daily basis, and there has been a demand for miniaturization of devices as well as high-speed output by printers. Therefore, by providing a protective layer and improving the durability, the photosensitive member of the present invention having high sensitivity and no abnormal defects can be used effectively.
保護層(39)に使用される材料としてはABS樹脂、ACS樹脂、オレフィン−ビニルモノマー共重合体、塩素化ポリエーテル、アリル樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリアリレート、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、アクリル樹脂、ポリメチルベンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ポリスチレン、AS樹脂、ブタジエン−スチレン共重合体、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げられる。中でも、ポリカーボネートもしくはポリアリレートが最も良好に使用できる。 Materials used for the protective layer (39) include ABS resin, ACS resin, olefin-vinyl monomer copolymer, chlorinated polyether, allyl resin, phenol resin, polyacetal, polyamide, polyamideimide, polyacrylate, polyallylsulfone. , Polybutylene, polybutylene terephthalate, polycarbonate, polyarylate, polyethersulfone, polyethylene, polyethylene terephthalate, polyimide, acrylic resin, polymethylbenten, polypropylene, polyphenylene oxide, polysulfone, polystyrene, AS resin, butadiene-styrene copolymer, polyurethane , Resins such as polyvinyl chloride, polyvinylidene chloride, and epoxy resin. Of these, polycarbonate or polyarylate can be most preferably used.
保護層にはその他、耐摩耗性を向上する目的でポリテトラフルオロエチレンのような弗素樹脂、シリコーン樹脂、及びこれらの樹脂に酸化チタン、酸化錫、チタン酸カリウム、シリカ等の無機フィラー(無機顔料)、また有機フィラー(有機顔料)を分散したもの等を添加することができる。
また、感光体の保護層に用いられるフィラー材料のうち有機性フィラー材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコーン樹脂粉末、a−カーボン粉末等が挙げられ、無機性フィラー材料としては、銅、スズ、アルミニウム、インジウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、酸化インジウム、酸化アンチモン、酸化ビスマス、アンチモンをドープした酸化錫、錫をドープした酸化インジウム等の金属酸化物、チタン酸カリウムなどの無機材料が挙げられる。特に、フィラーの硬度の点からは、この中でも無機材料を用いることが有利である。特に、シリカ、酸化チタン、アルミナが有効に使用できる。
In addition to the protective layer, fluorine resins such as polytetrafluoroethylene, silicone resins, and inorganic fillers such as titanium oxide, tin oxide, potassium titanate, and silica for the purpose of improving wear resistance (inorganic pigments) ), Or an organic filler (organic pigment) dispersed therein can be added.
Among the filler materials used for the protective layer of the photoreceptor, examples of the organic filler material include fluorine resin powder such as polytetrafluoroethylene, silicone resin powder, a-carbon powder, and the like. Metals such as copper, tin, aluminum and indium, silica, tin oxide, zinc oxide, titanium oxide, indium oxide, antimony oxide, bismuth oxide, tin oxide doped with antimony, tin doped indium oxide and other metals Examples thereof include inorganic materials such as oxides and potassium titanate. In particular, it is advantageous to use an inorganic material among them from the viewpoint of the hardness of the filler. In particular, silica, titanium oxide, and alumina can be used effectively.
保護層中のフィラー濃度は使用するフィラー種により、また感光体を使用する電子写真プロセス条件によっても異なるが、保護層の最表層側において全固形分に対するフィラーの比で5重量%以上、好ましくは10重量%以上、50重量%以下、好ましくは30重量%以下程度が良好である。
また、使用するフィラーの体積平均粒径は、0.1μm〜2μmの範囲が良好に使用され、好ましくは0.3μm〜1μmの範囲である。この場合、平均粒径が小さすぎると耐摩耗性が充分に発揮されず、大きすぎると塗膜の表面性が悪くなったり、塗膜そのものが形成できなかったりするからである。
The filler concentration in the protective layer varies depending on the type of filler used and also on the electrophotographic process conditions using the photoconductor, but the ratio of filler to the total solid content on the outermost layer side of the protective layer is preferably 5% by weight or more, preferably It is 10% by weight or more and 50% by weight or less, preferably about 30% by weight or less.
Further, the volume average particle size of the filler used is preferably in the range of 0.1 μm to 2 μm, and preferably in the range of 0.3 μm to 1 μm. In this case, if the average particle size is too small, the wear resistance is not sufficiently exhibited, and if it is too large, the surface property of the coating film is deteriorated or the coating film itself cannot be formed.
なお、本発明におけるフィラーの平均粒径とは、特別な記載のない限り体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median系)として算出されたものである。また、同時に測定される各々の粒子の標準偏差が1μm以下であることが重要である。これ以上の標準偏差の値である場合には、粒度分布が広すぎて、本発明の効果が顕著に得られなくなってしまう場合がある。
また、本発明で使用するフィラーのpHも解像度やフィラーの分散性に大きく影響する。その理由の一つとしては、フィラー、特に金属酸化物は製造時に塩酸等が残存することが考えられる。その残存量が多い場合には、画像ボケの発生は避けられず、またそれは残存量によってはフィラーの分散性にも影響を及ぼす場合がある。
The average particle diameter of the filler in the present invention is a volume average particle diameter unless otherwise specified, and is determined by an ultracentrifugal automatic particle size distribution analyzer: CAPA-700 (manufactured by Horiba). At this time, the particle size (Median system) corresponding to 50% of the cumulative distribution was calculated. In addition, it is important that the standard deviation of each particle measured simultaneously is 1 μm or less. If the standard deviation is larger than this, the particle size distribution may be too wide, and the effects of the present invention may not be obtained remarkably.
Further, the pH of the filler used in the present invention greatly affects the resolution and the dispersibility of the filler. One possible reason is that hydrochloric acid or the like remains in the filler, particularly the metal oxide, during production. When the remaining amount is large, the occurrence of image blur is unavoidable, and depending on the remaining amount, the dispersibility of the filler may be affected.
もう一つの理由としては、フィラー、特に金属酸化物の表面における帯電性の違いによるものである。通常、液体中に分散している粒子はプラスあるいはマイナスに帯電しており、それを電気的に中性に保とうとして反対の電荷を持つイオンが集まり、そこで電気二重層が形成されることによって粒子の分散状態は安定化している。粒子から遠ざかるに従いその電位(ゼータ電位)は徐々に低くなり、粒子から充分に離れて電気的に中性である領域の電位はゼロとなる。したがって、ゼータ電位の絶対値の増加によって粒子の反発力が高くなることによって安定性は高くなり、ゼロに近づくに従い凝集しやすく不安定になる。一方、系のpH値によってゼータ電位は大きく変動し、あるpH値において電位はゼロとなり等電点を持つことになる。したがって、系の等電点からできるだけ遠ざけて、ゼータ電位の絶対値を高めることによって分散系の安定化が図られることになる。 Another reason is due to the difference in chargeability on the surface of the filler, particularly the metal oxide. Usually, particles dispersed in a liquid are charged positively or negatively, and ions having opposite charges gather to try to keep it electrically neutral, and an electric double layer is formed there. The dispersed state of the particles is stabilized. The potential (zeta potential) gradually decreases with increasing distance from the particle, and the potential in a region that is sufficiently away from the particle and electrically neutral is zero. Therefore, the stability increases as the repulsive force of the particles increases due to an increase in the absolute value of the zeta potential, and the particles tend to aggregate and become unstable as they approach zero. On the other hand, the zeta potential varies greatly depending on the pH value of the system, and at a certain pH value, the potential becomes zero and has an isoelectric point. Therefore, the dispersion system is stabilized by increasing the absolute value of the zeta potential as far as possible from the isoelectric point of the system.
本発明の構成においては、フィラーとしては前述の等電点におけるpHが、少なくとも5以上を示すものが画像ボケ抑制の点から好ましく、より塩基性を示すフィラーであるほどその効果が高くなる傾向があることが確認された。等電点におけるpHが高い塩基性を示すフィラーは、系が酸性であったほうがゼータ電位はより高くなることにより、分散性及びその安定性は向上することになる。
ここで、本発明におけるフィラーのpHは、ゼータ電位から等電点におけるpH値を記載した。この際、ゼータ電位の測定は、大塚電子(株)製レーザーゼータ電位計にて測定した。
In the configuration of the present invention, the filler having a pH at the isoelectric point of at least 5 is preferably from the viewpoint of image blur suppression, and the more basic the filler, the higher the effect. It was confirmed that there was. A filler exhibiting basicity having a high pH at the isoelectric point has a higher zeta potential when the system is acidic, thereby improving dispersibility and its stability.
Here, the pH of the filler in the present invention is the pH value at the isoelectric point from the zeta potential. At this time, the zeta potential was measured with a laser zeta potentiometer manufactured by Otsuka Electronics Co., Ltd.
更に、画像ボケが発生しにくいフィラーとしては、電気絶縁性が高いフィラー(比抵抗が1010Ω・cm以上)が好ましく、フィラーのpHが5以上を示すものやフィラーの誘電率が5以上を示すものが特に有効に使用できる。また、pHが5以上のフィラーあるいは誘電率が5以上のフィラーを単独で使用することはもちろん、pHが5以下のフィラーとpHが5以上のフィラーとを2種類以上を混合したり、誘電率が5以下のフィラーと誘電率が5以上のフィラーとを2種類以上混合したりして用いることも可能である。また、これらのフィラーの中でも高い絶縁性を有し、熱安定性が高い上に、耐摩耗性が高い六方細密構造であるα型アルミナは、画像ボケの抑制や耐摩耗性の向上の点から特に有用である。 Furthermore, as the filler that is less likely to cause image blurring, a filler having high electrical insulation (specific resistance is 10 10 Ω · cm or more) is preferable, and the filler having a pH of 5 or more or the filler having a dielectric constant of 5 or more. The ones shown can be used particularly effectively. In addition, a filler having a pH of 5 or more or a filler having a dielectric constant of 5 or more can be used alone, or two or more fillers having a pH of 5 or less and a filler having a pH of 5 or more can be mixed. It is also possible to use a mixture of two or more fillers having a dielectric constant of 5 or less and a filler having a dielectric constant of 5 or more. Among these fillers, α-type alumina, which has high insulation properties, high thermal stability, and high wear resistance, is a hexagonal close-packed structure, from the viewpoint of suppressing image blur and improving wear resistance. It is particularly useful.
本発明において使用するフィラーの比抵抗は以下のように定義される。フィラーのような粉体は、充填率によりその比抵抗値が異なるので、一定の条件下で測定する必要がある。本発明においては、特開平5−94049号公報(図1)、特開平5−113688号公報(図1)に示された測定装置と同様の構成の装置を用いて、フィラーの比抵抗値を測定し、この値を用いた。測定装置において、電極面積は4.0cm2である。測定前に片側の電極に4kgの荷重を1分間かけ、電極間距離が4mmになるように試料量を調節する。測定の際は、上部電極の重量(1kg)の荷重状態で測定を行ない、印加電圧は100Vにて測定する。106Ω・cm以上の領域は、HIGH RESISTANCE METER(横河ヒューレットパッカード)、それ以下の領域についてはデジタルマルチメーター(フルーク)により測定した。これにより得られた比抵抗値を本発明でいうところの比抵抗値と定義するものである。 The specific resistance of the filler used in the present invention is defined as follows. Since the specific resistance value of a powder such as a filler varies depending on the filling rate, it is necessary to measure under certain conditions. In the present invention, the specific resistance value of the filler is determined using an apparatus having the same configuration as the measuring apparatus shown in Japanese Patent Laid-Open Nos. 5-94049 (FIG. 1) and 5-113688 (FIG. 1). Measured and used this value. In the measuring device, the electrode area is 4.0 cm 2 . Prior to measurement, a load of 4 kg is applied to one electrode for 1 minute, and the sample amount is adjusted so that the distance between the electrodes is 4 mm. At the time of measurement, the measurement is performed with the weight of the upper electrode (1 kg) loaded, and the applied voltage is measured at 100V. The area of 10 6 Ω · cm or more was measured with a HIGH RESISTER METER (Yokogawa Hewlett Packard), and the area below it was measured with a digital multimeter (Fluke). The specific resistance value thus obtained is defined as the specific resistance value in the present invention.
フィラーの誘電率は以下のように測定した。上述のような比抵抗の測定と同様なセルを用い、荷重をかけた後に、静電容量を測定し、これより誘電率を求めた。静電容量の測定は、誘電体損測定器(安藤電気)を使用した。 The dielectric constant of the filler was measured as follows. Using a cell similar to the measurement of the specific resistance as described above, after applying a load, the capacitance was measured, and the dielectric constant was determined from this. For the measurement of the capacitance, a dielectric loss measuring device (Ando Electric) was used.
更に、これらのフィラーは少なくとも一種の表面処理剤で表面処理させることが可能であり、そうすることがフィラーの分散性の面から好ましい。フィラーの分散性の低下は残留電位の上昇だけでなく、塗膜の透明性の低下や塗膜欠陥の発生、さらには耐摩耗性の低下をも引き起こすため、高耐久化あるいは高画質化を妨げる大きな問題に発展する可能性がある。 Further, these fillers can be surface-treated with at least one kind of surface treatment agent, and it is preferable from the viewpoint of dispersibility of the fillers. Decreasing the dispersibility of the filler not only increases the residual potential, but also decreases the transparency of the coating, causes defects in the coating, and decreases the wear resistance. It can develop into a big problem.
表面処理剤としては、従来用いられている表面処理剤すべてを使用することができるが、フィラーの絶縁性を維持できる表面処理剤が好ましい。例えば、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、高級脂肪酸等、あるいはこれらとシランカップリング剤との混合処理や、Al2O3、TiO2、ZrO2、シリコーン、ステアリン酸アルミニウム等、あるいはそれらの混合処理がフィラーの分散性及び画像ボケの点からより好ましい。 As the surface treatment agent, all conventionally used surface treatment agents can be used, but a surface treatment agent capable of maintaining the insulating properties of the filler is preferable. For example, a titanate coupling agent, an aluminum coupling agent, a zircoaluminate coupling agent, a higher fatty acid, etc., or a mixing treatment of these with a silane coupling agent, Al 2 O 3 , TiO 2 , ZrO 2 , Silicone, aluminum stearate, or the like, or a mixture thereof is more preferable from the viewpoint of filler dispersibility and image blur.
シランカップリング剤による処理は、画像ボケの影響が強くなるが、上記の表面処理剤とシランカップリング剤との混合処理を施すことによりその影響を抑制できる場合がある。 The treatment with the silane coupling agent is strongly influenced by image blur, but the influence may be suppressed by performing a mixing treatment of the surface treatment agent and the silane coupling agent.
表面処理量については、用いるフィラーの平均一次粒径によって異なるが、3〜30wt%が適しており、5〜20wt%がより好ましい。表面処理量がこれよりも少ないとフィラーの分散効果が得られず、また多すぎると残留電位の著しい上昇を引き起こす。 The surface treatment amount varies depending on the average primary particle size of the filler used, but is preferably 3 to 30 wt%, more preferably 5 to 20 wt%. If the surface treatment amount is less than this, the filler dispersion effect cannot be obtained, and if it is too much, the residual potential is significantly increased.
これらフィラ−材料は単独もしくは2種類以上混合して用いられる。フィラーの表面処理量に関しては、上述のようにフィラー量に対する使用する表面処理剤の重量比で定義される。 These filler materials may be used alone or in combination of two or more. The surface treatment amount of the filler is defined by the weight ratio of the surface treatment agent to be used with respect to the filler amount as described above.
また、これらフィラー材料は、適当な分散機を用いることにより分散できる。また、保護層の透過率の点から使用するフィラーは1次粒子レベルまで分散され、凝集体が少ないほうが好ましい。 Further, these filler materials can be dispersed by using an appropriate disperser. Further, from the viewpoint of the transmittance of the protective layer, it is preferable that the filler used is dispersed to the primary particle level and has less aggregates.
また、保護層(39)には残留電位低減、応答性改良のため、電荷輸送物質を含有しても良い。電荷輸送物質は、電荷輸送層の説明のところに記載した材料を用いることができる。電荷輸送物質として、低分子電荷輸送物質を用いる場合には、保護層中における濃度傾斜を設けても構わない。耐摩耗性向上のため、表面側を低濃度にすることは有効な手段である。ここでいう濃度とは、保護層を構成する全材料の総重量に対する低分子電荷輸送物質の重量の比を表わし、濃度傾斜とは上記重量比において表面側において濃度が低くなるような傾斜を設けることを示す。また、高分子電荷輸送物質を用いることは、感光体の耐久性を高める点で非常に有利である。 Further, the protective layer (39) may contain a charge transport material for reducing residual potential and improving responsiveness. As the charge transport material, the materials described in the description of the charge transport layer can be used. When a low molecular charge transport material is used as the charge transport material, a concentration gradient in the protective layer may be provided. In order to improve wear resistance, it is an effective means to reduce the concentration of the surface side. The concentration here refers to the ratio of the weight of the low molecular charge transporting material to the total weight of all the materials constituting the protective layer, and the concentration gradient is a gradient that lowers the concentration on the surface side in the above weight ratio. It shows that. The use of a polymer charge transport material is very advantageous in terms of enhancing the durability of the photoreceptor.
保護層の形成法としては通常の塗布法が採用される。なお保護層の厚さは0.1〜10μm程度が適当である。また、以上のほかに真空薄膜作成法にて形成したa−C、a−SiCなど公知の材料を保護層として用いることができる。 As a method for forming the protective layer, a normal coating method is employed. In addition, about 0.1-10 micrometers is suitable for the thickness of a protective layer. In addition to the above, a known material such as a-C or a-SiC formed by a vacuum thin film forming method can be used as the protective layer.
この他、保護層のバインダー樹脂としては電荷輸送層の項で説明した高分子電荷輸送物質も用いることが出来る。これを用いた場合の効果としては、電荷輸送層の項に記載したことと同様に、耐摩耗性の向上、高速電荷輸送の効果を得ることが出来る。
また、保護層のバインダー構成として、架橋構造からなる保護層も有効に使用される。架橋構造の形成に関しては、1分子内に複数個の架橋性官能基を有する反応性モノマーを使用し、光や熱エネルギーを用いて架橋反応を起こさせ、3次元の網目構造を形成するものである。この網目構造がバインダー樹脂として機能し、高い耐摩耗性を発現するものである。
In addition, as the binder resin for the protective layer, the polymer charge transport material described in the section of the charge transport layer can be used. As the effect when this is used, the effect of improving the wear resistance and the high-speed charge transport can be obtained as described in the section of the charge transport layer.
Moreover, the protective layer which consists of a crosslinked structure is also used effectively as a binder structure of a protective layer. Regarding the formation of a cross-linked structure, a reactive monomer having a plurality of cross-linkable functional groups in one molecule is used to cause a cross-linking reaction using light or thermal energy to form a three-dimensional network structure. is there. This network structure functions as a binder resin and exhibits high wear resistance.
また、上記反応性モノマーとして、全部もしくは一部に電荷輸送能を有するモノマーを使用することは非常に有効な手段である。このようなモノマーを使用することにより、網目構造中に電荷輸送部位が形成され、保護層としての機能を十分に発現することが可能となる。電荷輸送能を有するモノマーとしては、トリアリールアミン構造を有する反応性モノマーが有効に使用される。 Moreover, it is a very effective means to use a monomer having a charge transporting ability in whole or in part as the reactive monomer. By using such a monomer, a charge transporting site is formed in the network structure, and the function as a protective layer can be sufficiently expressed. A reactive monomer having a triarylamine structure is effectively used as the monomer having charge transporting ability.
このような網目構造を有する電荷輸送層は、耐摩耗性が高い反面、架橋反応時に体積収縮が大きく、あまり厚膜化するとクラックなどを生じる場合がある。このような場合には、保護層を積層構造として、下層(感光層側)には低分子分散ポリマーの保護層を使用し、上層(表面側)に架橋構造を有する保護層を形成しても良い。 The charge transport layer having such a network structure has high wear resistance, but has a large volume shrinkage during the crosslinking reaction, and if it is too thick, cracks may occur. In such a case, the protective layer may be a laminated structure, a low molecular dispersion polymer protective layer may be used for the lower layer (photosensitive layer side), and a protective layer having a crosslinked structure may be formed on the upper layer (surface side). good.
上述したように、感光層(電荷輸送層)に高分子電荷輸送物質を使用したり、あるいは感光体の表面に保護層を設けることは、各々の感光体の耐久性(耐摩耗性)を高めるだけでなく、後述のようなタンデム型フルカラー画像形成装置中で使用される場合には、モノクロ画像形成装置にはない新たな効果をも生み出すものである。 As described above, the use of a polymer charge transport material for the photosensitive layer (charge transport layer) or the provision of a protective layer on the surface of the photoreceptor increases the durability (wear resistance) of each photoreceptor. In addition, when used in a tandem type full-color image forming apparatus as described later, a new effect not found in the monochrome image forming apparatus is also produced.
フルカラーの画像の場合、様々な形態の画像が入力されるが、逆に定型的な画像も入力される場合がある。例えば、日本語の文書等における検印の存在などである。検印のようなものは通常、画像領域の端のほうに位置され、また使用される色も限定される。ランダムな画像が常に書き込まれているような状態においては、画像形成要素中の感光体には、平均的に画像書き込み、現像、転写が行なわれることになるが、上述のように特定の部分に数多くの画像形成が繰り返されたり、特定の画像形成要素ばかり使用された場合には、その耐久性のバランスを欠くことにつながる。
このような状態で表面の耐久性(物理的・化学的・機械的)の小さな感光体が使用された場合には、この差が顕著になり、画像上の問題になりやすい。一方、感光体を高耐久化した場合には、このような局所的な変化量が小さく、結果的に画像上の欠陥として現われにくくなるため、高耐久化を実現すると共に、出力画像の安定性をも増すことになり、非常に有効である。
In the case of a full-color image, various types of images are input, but on the contrary, a typical image may also be input. For example, the presence of a seal in a Japanese document or the like. Something like indicia is usually located towards the edge of the image area, and the colors used are also limited. In a state in which a random image is always written, image writing, development, and transfer are performed on the photoconductor in the image forming element on average. When many image formations are repeated or only a specific image forming element is used, the durability balance is lost.
When a photoconductor having a low surface durability (physical / chemical / mechanical) is used in such a state, this difference becomes prominent and easily causes an image problem. On the other hand, when the photoconductor is made highly durable, the amount of such local change is small, and as a result, it becomes difficult to appear as a defect on the image, so that high durability is achieved and the stability of the output image is improved. This is very effective.
以下、本発明を実施例を挙げて説明するが、本発明が実施例により制約を受けるものではない。なお、部はすべて重量部である。 Hereinafter, although an example is given and the present invention is explained, the present invention is not restricted by an example. All parts are parts by weight.
まず、電荷発生材料(チタニルフタロシアニン結晶)の合成例について述べる。
(比較合成例1)
特開2001−19871号公報に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン29.2gとスルホラン200mlを混合し、窒素気流下でチタニウムテトラブトキシド20.4gを滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶をろ過、ついで洗浄液が中性になるまで水洗いを繰り返し、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)2gをテトラヒドロフラン20gに投入し、4時間攪拌を行なった後、濾過を行ない、乾燥して、チタニルフタロシアニン粉末を得た。
更に、このチタニルフタロシアニン結晶30gをテトラヒドロフラン300gに浸漬し、2回目の結晶変換を行なった。12時間浸漬放置した後、濾過分別し、上記と同じ条件で減圧乾燥を行ない、本発明で用いるチタニルフタロシアニン結晶を得た。これを顔料1とする。(顔料1とする)。
First, a synthesis example of a charge generation material (titanyl phthalocyanine crystal) will be described.
(Comparative Synthesis Example 1)
A pigment was prepared according to Japanese Patent Application Laid-Open No. 2001-19871. That is, 29.2 g of 1,3-diiminoisoindoline and 200 ml of sulfolane are mixed, and 20.4 g of titanium tetrabutoxide is added dropwise under a nitrogen stream. After completion of the dropwise addition, the temperature was gradually raised to 180 ° C., and the reaction was carried out by stirring for 5 hours while maintaining the reaction temperature between 170 ° C. and 180 ° C. After completion of the reaction, the mixture was allowed to cool, and then the precipitate was filtered, washed with chloroform until the powder turned blue, then washed several times with methanol, further washed several times with hot water at 80 ° C., and dried. Crude titanyl phthalocyanine was obtained. Dissolve the crude titanyl phthalocyanine in 20 times the amount of concentrated sulfuric acid, add dropwise to 100 times the amount of ice water with stirring, filter the precipitated crystals, and then repeat washing with water until the washing solution becomes neutral. (Water paste) was obtained. 2 g of the obtained wet cake (water paste) was put into 20 g of tetrahydrofuran, stirred for 4 hours, filtered and dried to obtain titanyl phthalocyanine powder.
Further, 30 g of this titanyl phthalocyanine crystal was immersed in 300 g of tetrahydrofuran, and a second crystal conversion was performed. After leaving it immersed for 12 hours, it was separated by filtration and dried under reduced pressure under the same conditions as above to obtain a titanyl phthalocyanine crystal used in the present invention. This is designated as Pigment 1. (Referred to as pigment 1).
(合成例1)
比較合成例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行ない、比較合成例1よりも一次粒子の小さなフタロシアニン結晶を得た。
比較合成例1で得られた結晶変換前の水ペースト60部にテトラヒドロフラン1500部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行なった。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶58部を得た。
更に、このチタニルフタロシアニン結晶30gをテトラヒドロフラン300gに浸漬し、2回目の結晶変換を行なった。12時間浸漬放置した後、濾過分別し、上記と同じ条件で減圧乾燥を行ない、本発明で用いるチタニルフタロシアニン結晶を得た。これを顔料2とする。
(合成例2)
合成例1における2回目の結晶変換操作を下記の通りの条件に変更した以外は、合成例1と同様に処理を行ない、本発明のチタニルフタロシアニン結晶(図14参照)を得た。これを顔料3とする。
(Synthesis Example 1)
In accordance with the method of Comparative Synthesis Example 1, a titanyl phthalocyanine pigment water paste was synthesized, and crystal conversion was performed as follows to obtain phthalocyanine crystals having smaller primary particles than Comparative Synthesis Example 1.
To 60 parts of the water paste before crystal conversion obtained in Comparative Synthesis Example 1, 1500 parts of tetrahydrofuran was added and stirred vigorously (2000 rpm) with a homomixer (Kennis, MARKIIf model) at room temperature. When the color changed to light blue (20 minutes after the start of stirring), stirring was stopped and filtration under reduced pressure was immediately performed. The crystals obtained on the filter were washed with tetrahydrofuran to obtain a pigment wet cake. This was dried under reduced pressure (5 mmHg) at 70 ° C. for 2 days to obtain 58 parts of titanyl phthalocyanine crystals.
Further, 30 g of this titanyl phthalocyanine crystal was immersed in 300 g of tetrahydrofuran, and a second crystal conversion was performed. After leaving it immersed for 12 hours, it was separated by filtration and dried under reduced pressure under the same conditions as above to obtain a titanyl phthalocyanine crystal used in the present invention. This is designated as Pigment 2.
(Synthesis Example 2)
The treatment was performed in the same manner as in Synthesis Example 1 except that the second crystal conversion operation in Synthesis Example 1 was changed to the following conditions to obtain a titanyl phthalocyanine crystal of the present invention (see FIG. 14). This is designated as Pigment 3.
(2回目の結晶変換処理)
1回目の結晶変換処理を行なったチタニルフタロシアニン結晶30gを、市販のミキサーにより機械的剪断力を5分間与えた後、粉末を取り出した。
(Second crystal conversion process)
30 g of titanyl phthalocyanine crystals subjected to the first crystal conversion treatment were subjected to mechanical shearing force for 5 minutes by a commercially available mixer, and then the powder was taken out.
(合成例3)
合成例1における2回目の結晶変換操作を下記の通りの条件に変更した以外は、合成例1と同様に処理を行ない、本発明のチタニルフタロシアニン結晶を得た。これを顔料4とする。
(2回目の結晶変換処理)
1回目の結晶変換処理を行なったチタニルフタロシアニン結晶30gを、2kgのφ6mmのジルコニアボールと共に、φ90mmのガラスポットに投入し、乾式ミリングを10分間行なった後、粉末を取り出した。
(Synthesis Example 3)
The treatment was performed in the same manner as in Synthesis Example 1 except that the second crystal conversion operation in Synthesis Example 1 was changed to the following conditions to obtain a titanyl phthalocyanine crystal of the present invention. This is designated as Pigment 4.
(Second crystal conversion process)
30 g of titanyl phthalocyanine crystals subjected to the first crystal conversion treatment were put into a φ90 mm glass pot together with 2 kg of φ6 mm zirconia balls, and after dry milling for 10 minutes, the powder was taken out.
(比較合成例2)
合成例1における2回目の結晶変換溶媒をテトラヒドロフランからメタノールに変更した以外は、合成例1と同様に処理を行ない、チタニルフタロシアニン結晶を得た。これを顔料5とする。
(Comparative Synthesis Example 2)
The treatment was performed in the same manner as in Synthesis Example 1 except that the second crystal conversion solvent in Synthesis Example 1 was changed from tetrahydrofuran to methanol to obtain titanyl phthalocyanine crystals. This is designated as Pigment 5.
(比較合成例3)
比較合成例1において、1回目の結晶変換溶媒として、テトラヒドロフランの代わりに2−ブタノンを用い、2回目の結晶変換を行なわない以外は、比較合成例1と同様に処理を行ない、チタニルフタロシアニン結晶を得た。これを顔料6とする。
(Comparative Synthesis Example 3)
In Comparative Synthesis Example 1, treatment was performed in the same manner as in Comparative Synthesis Example 1 except that 2-butanone was used in place of tetrahydrofuran as the first crystal conversion solvent and the second crystal conversion was not performed, and the titanyl phthalocyanine crystals were obtained. Obtained. This is designated as Pigment 6.
以上のようにして得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定した。
(X線回折スペクトル測定条件)
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
The titanyl phthalocyanine powder obtained as described above was subjected to X-ray diffraction spectrum measurement under the following conditions.
(X-ray diffraction spectrum measurement conditions)
X-ray tube: Cu
Voltage: 50kV
Current: 30mA
Scanning speed: 2 ° / min Scanning range: 3 ° -40 °
Time constant: 2 seconds
比較合成例1及び合成例1〜3より得られた顔料1〜4については、26.3°のピーク強度以外は、いずれの場合にも同様のX線回折スペクトルを示したため、代表例として合成例2で得られたチタニルフタロシアニン結晶のX線回折スペクトルを図14に示す(図中の矢印が、26.3°のピークであり、ピーク強度比は8%である。)。
Cu−Kα線(波長1.542Å)に対するブラッグ角2θが27.2±0.2°に最大ピークと最低角7.3±0.2°にピークを有し、かつ7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有するチタニルフタロシアニン粉末であることが分かる。
また、比較合成例1で得られた水ペーストの一部を80℃の減圧下(5mmHg)で、2日間乾燥して、低結晶性チタニルフタロシアニン粉末を得た。水ペーストの乾燥粉末のX線回折スペクトルを図15に示す。
The pigments 1 to 4 obtained from Comparative Synthesis Example 1 and Synthesis Examples 1 to 3 showed the same X-ray diffraction spectrum in all cases except for the peak intensity of 26.3 °. The X-ray diffraction spectrum of the titanyl phthalocyanine crystal obtained in Example 2 is shown in FIG. 14 (the arrow in the figure is a peak at 26.3 °, and the peak intensity ratio is 8%).
Bragg angle 2θ with respect to Cu-Kα ray (wavelength 1.542 mm) has a maximum peak at 27.2 ± 0.2 ° and a peak at minimum angle 7.3 ± 0.2 °, and a peak at 7.3 ° It can be seen that this is a titanyl phthalocyanine powder having no peak between 1 and 9.4 ° and further having a peak at 26.3 °.
A part of the water paste obtained in Comparative Synthesis Example 1 was dried at 80 ° C. under reduced pressure (5 mmHg) for 2 days to obtain a low crystalline titanyl phthalocyanine powder. The X-ray diffraction spectrum of the dry powder of water paste is shown in FIG.
比較合成例2で得られたチタニルフタロシアニン結晶(顔料5)のX線回折スペクトルを図16に示すが、26.3°にピークを示さないものであった。
比較合成例3で得られたチタニルフタロシアニン結晶(顔料6)のX線回折スペクトルを図17に示すが、最低角が7.5°に存在するものであった。
比較合成例1で作製された結晶変換前チタニルフタロシアニン(水ペースト)の一部をイオン交換水でおよそ1重量%になるように希釈し、表面を導電性処理した銅製のネットですくい取り、チタニルフタロシアニンの粒子サイズを透過型電子顕微鏡(TEM、日立:H−9000NAR)にて、75000倍の倍率で観察を行なった。平均粒子サイズとして、以下のように求めた。
The X-ray diffraction spectrum of the titanyl phthalocyanine crystal (pigment 5) obtained in Comparative Synthesis Example 2 is shown in FIG. 16, but no peak was observed at 26.3 °.
The X-ray diffraction spectrum of the titanyl phthalocyanine crystal (pigment 6) obtained in Comparative Synthesis Example 3 is shown in FIG. 17, and the lowest angle exists at 7.5 °.
A portion of titanyl phthalocyanine (water paste) before crystal transformation prepared in Comparative Synthesis Example 1 was diluted with ion-exchanged water to approximately 1% by weight, and the surface was scooped with a copper net having been subjected to conductive treatment. The particle size of phthalocyanine was observed with a transmission electron microscope (TEM, Hitachi: H-9000NAR) at a magnification of 75000 times. The average particle size was determined as follows.
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、平均粒子サイズとした。
以上の方法により求められた合成例1における水ペースト中の平均粒子サイズは、0.06μmであった。
The TEM image observed as described above is taken as a TEM photograph, and 30 titanyl phthalocyanine particles (a shape close to a needle shape) projected are arbitrarily selected, and the size of each major axis is measured. The arithmetic average of the major diameters of the 30 individuals measured was determined as the average particle size.
The average particle size in the water paste in Synthesis Example 1 determined by the above method was 0.06 μm.
また、比較合成例1及び合成例1における濾過直前の結晶変換後チタニルフタロシアニン結晶を、テトラヒドロフランでおよそ1重量%になるように希釈し、上の方法と同様に観察を行なった。上記のようにして求めた平均粒子サイズを表1に示す。なお、比較合成例1及び合成例1で作製されたチタニルフタロシアニン結晶は、必ずしも全ての結晶の形が同一ではなかった(三角形に近い形、四角形に近い形など)。このため、結晶の最も大きな対角線の長さを長径として、計算を行なった。 In addition, the titanyl phthalocyanine crystal after crystal conversion just before filtration in Comparative Synthesis Example 1 and Synthesis Example 1 was diluted with tetrahydrofuran to about 1% by weight, and observed in the same manner as the above method. The average particle size obtained as described above is shown in Table 1. In addition, the titanyl phthalocyanine crystal produced in Comparative Synthesis Example 1 and Synthesis Example 1 did not necessarily have the same shape of all crystals (a shape close to a triangle, a shape close to a square, etc.). For this reason, the calculation was performed with the length of the largest diagonal line of the crystal as the major axis.
特開平1−299874号(特許第2512081号)公報の実施例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1gをポリエチレングリコール50gに加え、100gのガラスビーズと共に、サンドミルを行なった。結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥して顔料を得た。これを顔料7とする。
A pigment was prepared according to the method described in Example 1 of JP-A-1-299874 (Patent No. 2512081). That is, the wet cake produced in the previous Comparative Synthesis Example 1 was dried, 1 g of the dried product was added to 50 g of polyethylene glycol, and sand milling was performed with 100 g of glass beads. After the crystal transition, the mixture was washed successively with dilute sulfuric acid and aqueous ammonium hydroxide and dried to obtain a pigment. This is designated as Pigment 7.
(比較合成例5)
特開平3−269064号(特許第2584682号)公報の製造例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1gをイオン交換水10gとモノクロルベンゼン1gの混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥して顔料を得た。これを顔料8とする。
(Comparative Synthesis Example 5)
A pigment was produced according to the method described in Production Example 1 of JP-A-3-269064 (Patent No. 2854682). That is, the wet cake prepared in Comparative Synthesis Example 1 was dried, and 1 g of the dried product was stirred (50 ° C.) in a mixed solvent of 10 g of ion-exchanged water and 1 g of monochlorobenzene for 1 hour, and then methanol and ion-exchanged water. The pigment was obtained by washing and drying. This is designated as Pigment 8.
(比較合成例6)
特開平2−8256号(特公平7−91486号)公報の製造例に記載の方法に準じて、顔料を作製した。すなわち、フタロジニトリル9.8gと1−クロロナフタレン75mlを撹拌混合し、窒素気流下で四塩化チタン2.2mlを滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃〜220℃の間に保ちながら3時間撹拌して反応を行なった。反応終了後、放冷し130℃になったところ熱時ろ過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後、乾燥し顔料を得た。これを顔料9とする。
(Comparative Synthesis Example 6)
A pigment was produced according to the method described in the production example of JP-A-2-8256 (Japanese Patent Publication No. 7-91486). That is, 9.8 g of phthalodinitrile and 75 ml of 1-chloronaphthalene are stirred and mixed, and 2.2 ml of titanium tetrachloride is added dropwise under a nitrogen stream. After completion of the dropping, the temperature was gradually raised to 200 ° C., and the reaction was carried out by stirring for 3 hours while maintaining the reaction temperature between 200 ° C. and 220 ° C. After completion of the reaction, the mixture was allowed to cool to 130 ° C. and filtered while hot, then washed with 1-chloronaphthalene until the powder turned blue, then washed several times with methanol, and further with hot water at 80 ° C. After washing twice, it was dried to obtain a pigment. This is designated as Pigment 9.
(比較合成例7)
特開昭64−17066号(特公平7−97221号)公報の合成例1に記載の方法に準じて、顔料を作製した。すなわち、α型TiOPc5部を食塩10gおよびアセトフェノン5gと共にサンドグラインダーにて100℃にて10時間結晶変換処理を行なった。これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥して顔料を得た。これを顔料10とする。
(Comparative Synthesis Example 7)
A pigment was produced according to the method described in Synthesis Example 1 of JP-A No. 64-17066 (Japanese Patent Publication No. 7-97221). That is, 5 parts of α-type TiOPc was subjected to crystal conversion treatment at 100 ° C. for 10 hours with a sand grinder together with 10 g of sodium chloride and 5 g of acetophenone. This was washed with ion-exchanged water and methanol, purified with dilute sulfuric acid aqueous solution, washed with ion-exchanged water until the acid content disappeared, and dried to obtain a pigment. This is designated as Pigment 10.
(比較合成例8)
特開平11−5919号(特許第3003664号)公報の実施例1に記載の方法に準じて、顔料を作製した。すなわち、o−フタロジニトリル20.4部、四塩化チタン部7.6部をキノリン50部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩化水溶液、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニルフタロシアニンを得た。このチタニルフタロシアニン2部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を約1時間、5℃以下の温度を保ちながら攪拌する。続いて硫酸溶液を高速攪拌した400部の氷水中に、ゆっくりと注入し、析出した結晶を濾過する。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウエットケーキを得る。そのケーキをTHF100部中で約5時間攪拌を行ない、ろ過、THFによる洗浄を行ない乾燥後、顔料を得た。これを顔料11とする。
(Comparative Synthesis Example 8)
A pigment was prepared according to the method described in Example 1 of JP-A-11-5919 (Japanese Patent No. 3003664). That is, after 20.4 parts of o-phthalodinitrile and 7.6 parts of titanium tetrachloride were heated in 50 parts of quinoline at 200 ° C. for 2 hours, the solvent was removed by steam distillation, followed by a 2% aqueous chloride solution, The product was purified with a 2% aqueous sodium hydroxide solution, washed with methanol and N, N-dimethylformamide, and then dried to obtain titanyl phthalocyanine. 2 parts of this titanyl phthalocyanine is dissolved little by little in 40 parts of 98% sulfuric acid at 5 ° C., and the mixture is stirred for about 1 hour while maintaining the temperature at 5 ° C. or less. Subsequently, the sulfuric acid solution is slowly poured into 400 parts of ice water stirred at a high speed, and the precipitated crystals are filtered. The crystals are washed with distilled water until no acid remains, and a wet cake is obtained. The cake was stirred in 100 parts of THF for about 5 hours, filtered, washed with THF and dried to obtain a pigment. This is designated as Pigment 11.
(比較合成例9)
特開平3−255456号(特許第3005052号)公報の合成例2に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキ10部を塩化ナトリウム15部とジエチレングリコール7部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行なった。次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行なった。これを減圧乾燥した後にシクロヘキサノン200部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行ない、顔料を得た。これを顔料12とする。
(Comparative Synthesis Example 9)
A pigment was produced according to the method described in Synthesis Example 2 of JP-A-3-255456 (Patent No. 3005052). That is, 10 parts of the wet cake prepared in the previous Comparative Synthesis Example 1 was mixed with 15 parts of sodium chloride and 7 parts of diethylene glycol, and milled for 60 hours with an automatic mortar under heating at 80 ° C. Next, sufficient washing was performed to completely remove sodium chloride and diethylene glycol contained in the treated product. After drying this under reduced pressure, 200 parts of cyclohexanone and glass beads having a diameter of 1 mm were added, and the mixture was treated with a sand mill for 30 minutes to obtain a pigment. This is designated as Pigment 12.
(比較合成例10)
特開平11−5919号(特許第3003664号)公報の実施例4に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例8で得られたウェットケーキを5%の塩酸で洗浄し、中性になるまで水洗・濾過を行ない、乾燥した。更にこれをTHFと共にボールミルで10時間分散し、濾過・乾燥して顔料粉末を得た。これを顔料13とする。
(Comparative Synthesis Example 10)
A pigment was prepared according to the method described in Example 4 of JP-A-11-5919 (Japanese Patent No. 3003664). That is, the wet cake obtained in the previous Comparative Synthesis Example 8 was washed with 5% hydrochloric acid, washed with water and filtered until neutral, and dried. Further, this was dispersed with THF in a ball mill for 10 hours, filtered and dried to obtain a pigment powder. This is designated as Pigment 13.
(比較合成例11)
特開平5−134437号(特許第3196260号)公報の製造例1及び製造例2に記載の方法に準じて、顔料を作製した。
即ち、フタロジニトリル97.5gをα−クロロナフタレン750ml中に加え、次に窒素雰囲気下で四塩化チタン22mlを滴下する。滴下後昇温し、撹拌しながら200〜220℃で3時間反応させた後、放冷し、100〜130℃で熱時濾過し、100℃に加熱したα−クロロナフタレン200mlで洗浄した。更に200mlのN−メチルピロリドンで熱懸洗処理(100℃、1時間)を3回行った。続いてメタノール300mlで室温にて懸洗しさらにメタノール500mlで1時間熱懸洗を3回行った。これをフタロシアニン1とする。
次いで、フタロシアニン1をサンドグラインドミルにて20時間磨砕処理しを行い、続いて水400ml、o−ジクロロベンゼン40mlの懸濁液中に入れ、60℃で1時間加熱処理を行った。これをフタロシアニン2とする。
更に、特開平5−134437号公報の実施例1に準じて、フタロシアニン1およびフタロシアニン2をそれぞれ6部および4部混合し、n−プロパノール200部を加え、サンドグラインドミルで10時間粉砕、微粒化分散処理を行った。これを乾燥して、フタロシアニン粉末を得た。これを顔料14とする。
(Comparative Synthesis Example 11)
A pigment was produced according to the method described in Production Example 1 and Production Example 2 of JP-A-5-134437 (Patent No. 3196260).
That is, 97.5 g of phthalodinitrile is added to 750 ml of α-chloronaphthalene, and then 22 ml of titanium tetrachloride is added dropwise under a nitrogen atmosphere. After dropping, the temperature was raised, and the mixture was reacted at 200 to 220 ° C. for 3 hours with stirring, then allowed to cool, filtered hot at 100 to 130 ° C., and washed with 200 ml of α-chloronaphthalene heated to 100 ° C. Furthermore, the hot-washing process (100 degreeC, 1 hour) was performed 3 times with 200 ml N-methylpyrrolidone. Subsequently, the suspension was washed with 300 ml of methanol at room temperature, and further washed with 500 ml of methanol for 1 hour. This is designated as phthalocyanine 1.
Next, phthalocyanine 1 was ground in a sand grind mill for 20 hours, then placed in a suspension of 400 ml of water and 40 ml of o-dichlorobenzene, and heat-treated at 60 ° C. for 1 hour. This is designated as phthalocyanine 2.
Further, according to Example 1 of JP-A-5-134437, 6 parts and 4 parts of phthalocyanine 1 and phthalocyanine 2 were mixed, 200 parts of n-propanol was added, and pulverized and atomized in a sand grind mill for 10 hours. Distributed processing was performed. This was dried to obtain phthalocyanine powder. This is designated as Pigment 14.
(比較合成例12)
特開平8−110649号公報のチタニルフタロシアニン結晶体の製造方法に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン58g、テトラブトキシチタン51gをα−クロロナフタレン300mL中で210℃にて5時間反応後、α−クロロナフタレン、ジメチルホルムアミド(DMF)の順で洗浄した。その後、熱DMF、熱水、メタノールで洗浄、乾燥して50gのチタニルフタロシアニンを得た。チタニルフタロシアニン4gを0℃に冷却した硫酸400g中に加え、引き続き0℃、1時間撹拌した。フタロシアニンが完全に溶解したことを確認した後、0℃に冷却した水800mL/トルエン800mL混合液中に添加した。室温で2時間撹拌後、析出したフタロシアニン結晶体を混合液より濾別し、メタノール、水の順で洗浄した。洗浄水の中性を確認した後、洗浄水よりフタロシアニン結晶体を濾別し、乾燥して、2.9gのチタニルフタロシアニン結晶体を得た。これを顔料15とする。
(Comparative Synthesis Example 12)
A pigment was prepared according to the method for producing a titanyl phthalocyanine crystal of JP-A-8-110649. That is, 58 g of 1,3-diiminoisoindoline and 51 g of tetrabutoxy titanium were reacted in 210 mL of α-chloronaphthalene at 210 ° C. for 5 hours, and then washed in the order of α-chloronaphthalene and dimethylformamide (DMF). Thereafter, it was washed with hot DMF, hot water and methanol and dried to obtain 50 g of titanyl phthalocyanine. 4 g of titanyl phthalocyanine was added to 400 g of sulfuric acid cooled to 0 ° C., followed by stirring at 0 ° C. for 1 hour. After confirming that phthalocyanine was completely dissolved, it was added to a 800 mL water / 800 mL toluene mixture cooled to 0 ° C. After stirring at room temperature for 2 hours, the precipitated phthalocyanine crystal was separated from the mixture and washed with methanol and water in this order. After confirming the neutrality of the washing water, the phthalocyanine crystal was separated from the washing water and dried to obtain 2.9 g of titanyl phthalocyanine crystal. This is designated as Pigment 15.
以上の比較合成例4〜12で作製した顔料7〜15は、先程と同様の方法でX線回折スペクトルを測定し、それぞれの公報に記載のスペクトルと同様であることを確認した。表2に顔料1〜15のX線回折スペクトルのピーク位置の特徴を示す。 The pigments 7 to 15 prepared in the above Comparative Synthesis Examples 4 to 12 were measured for X-ray diffraction spectra by the same method as described above, and confirmed to be the same as the spectra described in the respective publications. Table 2 shows the characteristics of the peak positions of the X-ray diffraction spectra of the pigments 1 to 15.
比較合成例1で作製した顔料1を下記組成の処方にて、下記に示す条件にて分散を行い電荷発生層用塗工液として、分散液を作製した。
チタニルフタロシアニン顔料(顔料1) 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノンおよび顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行ない、分散液を作製した(分散液1とする)。
Pigment 1 prepared in Comparative Synthesis Example 1 was dispersed under the following composition under the following conditions to prepare a dispersion as a charge generation layer coating solution.
Titanyl phthalocyanine pigment (Pigment 1) 15 parts Polyvinyl butyral (manufactured by Sekisui Chemical: BX-1) 10 parts 2-butanone 280 parts A commercially available bead mill disperser was used to dissolve polyvinyl butyral using PSZ balls having a diameter of 0.5 mm All butanone and pigment were added, and the rotor rotation speed was 1200 r. p. m. And dispersion was performed for 30 minutes to prepare a dispersion (referred to as dispersion 1).
(分散液作製例2〜15)
分散液作製例1で使用した顔料1に変えて、それぞれ合成例1〜3及び比較合成例2〜12で作製した顔料2〜15を使用して、分散液作製例1と同じ条件にて分散液を作製した(顔料番号に対応して、それぞれ分散液2〜15とする)。
(Dispersion Preparation Examples 2 to 15)
In place of Pigment 1 used in Dispersion Preparation Example 1, pigments 2 to 15 prepared in Synthesis Examples 1 to 3 and Comparative Synthesis Examples 2 to 12 were used, respectively, and dispersed under the same conditions as Dispersion Preparation Example 1. Liquids were prepared (corresponding to the pigment numbers, dispersions 2 to 15, respectively).
(分散液作製例16)
分散液作製例1で作製した分散液1を、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった(分散液16とする)。
(Dispersion Preparation Example 16)
The dispersion 1 prepared in Dispersion Preparation Example 1 was filtered using a cotton wind cartridge filter, TCW-1-CS (effective pore size 1 μm) manufactured by Advantech. In the filtration, a pump was used and filtration was performed under pressure (referred to as dispersion liquid 16).
(分散液作製例17)
分散液作製例16で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−3−CS(有効孔径3μm)に変えた以外は、分散液作製例16と同様に加圧濾過を行ない分散液を作製した(分散液17とする)。
(Dispersion Preparation Example 17)
Dispersion was performed by pressure filtration in the same manner as in Dispersion Preparation Example 16 except that the filter used in Dispersion Preparation Example 16 was changed to a cotton wind cartridge filter manufactured by Advantech, TCW-3-CS (effective pore size 3 μm). A liquid was prepared (referred to as dispersion liquid 17).
(分散液作製例18)
分散液作製例15で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−5−CS(有効孔径5μm)に変えた以外は、分散液作製例16と同様に加圧濾過を行ない分散液を作製した(分散液18とする)。
(Dispersion Preparation Example 18)
Dispersion was performed by pressure filtration in the same manner as in Dispersion Preparation Example 16, except that the filter used in Dispersion Preparation Example 15 was changed to an Advantech Co., Ltd. cotton wind cartridge filter, TCW-5-CS (effective pore size 5 μm). A liquid was prepared (referred to as dispersion 18).
(分散液作製例19)
分散液作製例1における分散条件を下記の通り変更して、分散を行った(分散液19とする)。
ローター回転数:1000r.p.m.にて20分間分散を行った。
(Dispersion Preparation Example 19)
Dispersion was carried out by changing the dispersion conditions in Dispersion Preparation Example 1 as follows (referred to as Dispersion 19).
Rotor rotation speed: 1000 r. p. m. For 20 minutes.
(分散液作製例20)
分散液作製例19で作製した分散液をアドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった。濾過の途中でフィルターが目詰まりを起こして、全ての分散液を濾過することが出来なかった。このため以下の評価は未実施。
以上のように作製した分散液中の顔料粒子の粒度分布を、堀場製作所:CAPA−700にて測定した。結果を表3に示す。
(Dispersion Preparation Example 20)
The dispersion prepared in Dispersion Preparation Example 19 was filtered using a cotton wind cartridge filter, TCW-1-CS (effective pore size 1 μm) manufactured by Advantech. During filtration, a pump was used and filtration was performed in a pressurized state. During the filtration, the filter was clogged, and it was not possible to filter all the dispersions. Therefore, the following evaluation has not been conducted.
The particle size distribution of the pigment particles in the dispersion prepared as described above was measured by HORIBA, Ltd .: CAPA-700. The results are shown in Table 3.
直径100mmのアルミニウムシリンダー(JIS1050)に、下記組成の下引き層塗工液、電荷発生層塗工液、および電荷輸送層塗工液を、順次塗布・乾燥し、3.5μmの下引き層、電荷発生層、27μmの電荷輸送層を形成し、積層感光体を作製した(感光体1とする)。なお、電荷発生層の膜厚は、780nmにおける電荷発生層の透過率が20%になるように調整した。電荷発生層の透過率は、下記組成の電荷発生層塗工液を、ポリエチレンテレフタレートフィルムを巻き付けたアルミシリンダーに感光体作製と同じ条件で塗工を行ない、比較対照を電荷発生層を塗工していないポリエチレンテレフタレートフィルムとし、市販の分光光度計(島津:UV−3100)にて、780nmの透過率を評価した。
An undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution having the following composition were sequentially applied and dried on an aluminum cylinder (JIS1050) having a diameter of 100 mm, and an undercoat layer of 3.5 μm, A charge generation layer and a 27 μm charge transport layer were formed to produce a laminated photoreceptor (referred to as photoreceptor 1). The film thickness of the charge generation layer was adjusted so that the transmittance of the charge generation layer at 780 nm was 20%. The charge generation layer transmittance was measured by applying a charge generation layer coating solution having the following composition to an aluminum cylinder wrapped with a polyethylene terephthalate film under the same conditions as the preparation of the photoreceptor, and coating the charge generation layer as a comparative control. The transmittance was measured at 780 nm using a commercially available spectrophotometer (Shimadzu: UV-3100).
(下引き層塗工液)
酸化チタン(CR−EL:石原産業社製) 70部
アルキッド樹脂 15部
(ベッコライトM6401−50−S(固形分50%)
大日本インキ化学工業製)
メラミン樹脂 10部
(スーパーベッカミンL−121−60(固形分60%)
大日本インキ化学工業製)
2−ブタノン 100部
(Undercoat layer coating solution)
Titanium oxide (CR-EL: manufactured by Ishihara Sangyo Co., Ltd.) 70 parts Alkyd resin 15 parts (Beckolite M6401-50-S (solid content 50%)
Dainippon Ink & Chemicals)
Melamine resin 10 parts (Super Becamine L-121-60 (solid content 60%)
Dainippon Ink & Chemicals)
2-butanone 100 parts
(電荷発生層塗工液)
先に作製した分散液1を用いた。
(Charge generation layer coating solution)
The previously prepared dispersion 1 was used.
(電荷輸送層塗工液)
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
Polycarbonate (TS2050: manufactured by Teijin Chemicals Ltd.) 10 parts 7 parts of charge transport material having the following structural formula
(感光体作製例2〜19)
感光体作製例1で使用した電荷発生層塗工液(分散液1)をそれぞれ、分散液2〜19に変更した以外は、感光体作製例1と同様に感光体を作製した。なお、電荷発生層の膜厚は、感光体作製例1と同様に、すべての塗工液を用いた場合に780nmの透過率が20%になるように調整した。
(Photosensitive member production examples 2 to 19)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 1 except that the charge generation layer coating liquid (dispersion 1) used in Photoconductor Preparation Example 1 was changed to dispersions 2 to 19, respectively. In addition, the film thickness of the charge generation layer was adjusted so that the transmittance at 780 nm was 20% when all the coating liquids were used, as in Photoreceptor Preparation Example 1.
(実施例1〜3、参考例1,2および比較例1〜33)
以上のように作製した感光体作製例1〜19の電子写真感光体を図3に示す画像形成装置(感光体線速は320mm/sec)に搭載し、スコロトロン方式の帯電部材を用いて下記の帯電条件にて帯電を行い、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、転写部材として転写ベルトを用い、書き込み率6%のチャートを用い、連続10万枚印刷を行った(試験環境は、22℃−55%RHである)。
(Examples 1 to 3, Reference Examples 1 and 2, and Comparative Examples 1 to 33)
The electrophotographic photoconductors of photoconductor production examples 1 to 19 produced as described above are mounted on the image forming apparatus shown in FIG. 3 (photoconductor linear velocity is 320 mm / sec), and a scorotron charging member is used as follows. Charging under charging conditions, image exposure light source is 780nm semiconductor laser (image writing by polygon mirror, resolution 600dpi), transfer belt is used as transfer member, and 100,000 sheets are printed continuously using a chart with a writing rate of 6% (The test environment is 22 ° C.-55% RH).
帯電条件1:
放電電圧:−6.0kV
グリッド電圧:−920V(感光体の未露光部表面電位は、−900V)
Charging condition 1:
Discharge voltage: -6.0 kV
Grid voltage: -920V (surface potential of unexposed portion of photoconductor is -900V)
帯電条件2:
放電電圧:−5.8kV
グリッド電圧:−780V(感光体の未露光部表面電位は、−750V)
なお、画像評価は10万枚印刷後に、下記2つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価
直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、
ランク評価を実施した。
いずれの場合にもランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表4および表5に示す。
Charging condition 2:
Discharge voltage: -5.8 kV
Grid voltage: -780V (surface potential of unexposed portion of photoconductor is -750V)
The following two evaluations were carried out after printing 100,000 sheets of images.
(I) Evaluation of soiling:
A white solid image was output, and rank evaluation was performed from the number and size of black spots generated on the background.
(Ii) Evaluation of dot formation state A 1-dot image having a diameter of 60 μm was formed, and the dot formation state was observed with a 150 × microscope.
Rank evaluation was conducted.
In each case, the rank evaluation was performed in 4 stages, and very good ones were indicated by ◎, good ones by ○, slightly inferior by Δ, and very bad by x. The above results are shown in Tables 4 and 5.
更に、22℃−55%RHでの上記試験の後、上記の帯電条件のまま(帯電条件は、条件1のみ)、10℃−15%RHで2万枚、30℃−90%RHで2万枚のランニング試験を行ない、それぞれの2万枚後の画像を同じように画像評価を行なった。結果をそれぞれ、表6から表9に示す。
尚、電界強度の計算に際して、電荷発生層の膜厚はおよそ0.1μm程度であるが、感光層の膜厚は電荷輸送層の膜厚と等しいと仮定して計算を行った。
Further, after the above test at 22 ° C.-55% RH, the above charging conditions remain unchanged (charging conditions are only condition 1), 20,000 sheets at 10 ° C.-15% RH, and 2 at 30 ° C.-90% RH. Ten thousand running tests were conducted, and the images after 20,000 images were evaluated in the same manner. The results are shown in Tables 6 to 9, respectively.
In the calculation of the electric field strength, the film thickness of the charge generation layer was about 0.1 μm, but the calculation was performed assuming that the film thickness of the photosensitive layer is equal to the film thickness of the charge transport layer.
<22℃−55%RH環境下での評価結果>
<22℃−55%RH環境下での評価結果>
<10℃−15%RH環境下での評価結果>
<30℃−90%RH環境下での評価結果>
<30℃−90%RH環境下での評価結果>
感光体作製例2における電荷輸送層塗工液を以下の組成のものに変更した以外は、感光体作製例2と同様に感光体を作製した。
(電荷輸送層塗工液)
下記組成の高分子電荷輸送物質 10部
下記構造の添加剤 0.5部
(感光体作製例21)
感光体作製例2における電荷輸送層の膜厚を21μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、5μmの保護層を設けた以外は感光体作製例2と同様に感光体を作製した。
<Evaluation results in a 30 ° C.-90% RH environment>
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 2, except that the charge transport layer coating solution in Photoconductor Preparation Example 2 was changed to one having the following composition.
(Charge transport layer coating solution)
10 parts of polymer charge transport material with the following composition
0.5 parts of additive with the following structure
Similar to Photoconductor Preparation Example 2 except that the thickness of the charge transport layer in Photosensitive Member Preparation Example 2 was 21 μm, a protective layer coating solution having the following composition was applied and dried on the charge transport layer, and a protective layer of 5 μm was provided. A photoreceptor was prepared.
(保護層塗工液)
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
(Protective layer coating solution)
Polycarbonate (TS2050: manufactured by Teijin Chemicals Ltd.) 10 parts 7 parts of charge transport material having the following structural formula
Cyclohexanone 500 parts Tetrahydrofuran 150 parts
(感光体作製例22)
感光体作製例21における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例21と同様に感光体を作製した。
酸化チタン微粒子 4部
(比抵抗:1.5×1010Ω・cm、平均一次粒径:0.5μm)
(Photoconductor Preparation Example 22)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 21, except that the alumina fine particles in the protective layer coating solution in Photoconductor Preparation Example 21 were changed to the following.
4 parts of titanium oxide fine particles (specific resistance: 1.5 × 10 10 Ω · cm, average primary particle size: 0.5 μm)
(感光体作製例23)
感光体作製例21における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例21と同様に感光体を作製した。
酸化錫−酸化アンチモン粉末 4部
(比抵抗:106Ω・cm、平均1次粒径0.4μm)
(Photoconductor Preparation Example 23)
A photoconductor was prepared in the same manner as in Photoconductor Preparation Example 21, except that the alumina fine particles in the protective layer coating solution in Photoconductor Preparation Example 21 were changed to the following.
4 parts of tin oxide-antimony oxide powder (specific resistance: 10 6 Ω · cm, average primary particle size 0.4 μm)
(感光体作製例24)
感光体作製例21における保護層塗工液を下記組成のものに変更した以外は、感光体作製例21と同様に電子写真感光体を作製した。
(保護層塗工液)
下記構造式の高分子電荷輸送物質 17部
「GPCにより測定した結果、nはおよそ250と求められた」
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
(Photoconductor Preparation Example 24)
An electrophotographic photosensitive member was prepared in the same manner as in the photosensitive member preparation example 21 except that the protective layer coating solution in the photosensitive member preparation example 21 was changed to one having the following composition.
(Protective layer coating solution)
17 parts of a polymeric charge transport material having the following structural formula: “As measured by GPC, n was determined to be about 250”
Cyclohexanone 500 parts Tetrahydrofuran 150 parts
(感光体作製例25)
感光体作製例21における保護層塗工液を下記組成のものに変更した以外は、感光体作製例21と同様に電子写真感光体を作製した。
(保護層塗工液)
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
(Photoconductor Preparation Example 25)
An electrophotographic photosensitive member was prepared in the same manner as in the photosensitive member preparation example 21 except that the protective layer coating solution in the photosensitive member preparation example 21 was changed to one having the following composition.
(Protective layer coating solution)
Methyltrimethoxysilane 100 parts 3% acetic acid 20 parts 35 parts of a charge transporting compound having the following structure
(感光体作製例26)
感光体作製例21における保護層塗工液を下記組成のものに変更した以外は、感光体作製例21と同様に電子写真感光体を作製した。
(Photoconductor Preparation Example 26)
An electrophotographic photosensitive member was prepared in the same manner as in the photosensitive member preparation example 21 except that the protective layer coating solution in the photosensitive member preparation example 21 was changed to one having the following composition.
(保護層塗工液)
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
酸化防止剤(サノール LS2626:三共化学社製) 1部
ポリカルボン酸化合物 BYK P104:ビックケミー社製 0.4部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
(Protective layer coating solution)
Methyltrimethoxysilane 100 parts 3% acetic acid 20 parts 35 parts of a charge transporting compound having the following structure
(感光体作製例27)
感光体作製例2におけるアルミニウムシリンダー(JIS1050)を以下の陽極酸化皮膜処理を行ない、次いで下引き層を設けずに、感光体作製例2と同様に電荷発生層、電荷輸送層を設け、感光体を作製した。
(Photoconductor Preparation Example 27)
The aluminum cylinder (JIS 1050) in photoreceptor preparation example 2 is subjected to the following anodic oxide film treatment, and then a charge generation layer and a charge transport layer are provided in the same manner as in photoreceptor preparation example 2 without providing an undercoat layer. Was made.
(陽極酸化皮膜処理)
支持体表面の鏡面研磨仕上げを行ない、脱脂洗浄、水洗浄を行なった後、液温20℃、硫酸15vol%の電解浴に浸し、電解電圧15Vにて30分間陽極酸化皮膜処理を行なった。更に、水洗浄を行なった後、7%の酢酸ニッケル水溶液(50℃)にて封孔処理を行なった。その後純水による洗浄を経て、7μmの陽極酸化皮膜が形成された支持体を得た。
(Anodized film treatment)
The surface of the support was mirror polished, degreased and washed with water, then immersed in an electrolytic bath of 20 ° C. and 15 vol% sulfuric acid, and anodized film treatment was performed for 30 minutes at an electrolysis voltage of 15V. Further, after washing with water, sealing treatment was performed with a 7% nickel acetate aqueous solution (50 ° C.). Thereafter, the substrate was washed with pure water to obtain a support on which a 7 μm anodic oxide film was formed.
(実施例4〜11および比較例34〜40)
以上のように感光体作製例20〜27で作製した電子写真感光体を図3に示す画像形成装置(感光体線速は320mm/sec)に搭載し、スコロトロン方式の帯電部材を用いて下記の帯電条件にて帯電を行い、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、転写部材として転写ベルトを用い、書き込み率6%のチャートを用い、連続10万枚印刷を行った(試験環境は、22℃−55%RHである)。
(Examples 4 to 11 and Comparative Examples 34 to 40)
As described above, the electrophotographic photoreceptors produced in the photoreceptor preparation examples 20 to 27 are mounted on the image forming apparatus shown in FIG. 3 (photoconductor linear velocity is 320 mm / sec), and the following is used using a scorotron charging member. Charging under charging conditions, image exposure light source is 780nm semiconductor laser (image writing by polygon mirror, resolution 600dpi), transfer belt is used as transfer member, and 100,000 sheets are printed continuously using a chart with a writing rate of 6% (The test environment is 22 ° C.-55% RH).
帯電条件1:
放電電圧:−6.0kV
グリッド電圧:−920V(感光体の未露光部表面電位は、−900V)
Charging condition 1:
Discharge voltage: -6.0 kV
Grid voltage: -920V (surface potential of unexposed portion of photoconductor is -900V)
帯電条件2:
放電電圧:−5.8kV
グリッド電圧:−780V(感光体の未露光部表面電位は、−750V)
なお、画像評価は10万枚印刷後に、下記2つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価
直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、ランク評価を実施した。
いずれの場合にもランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。また、10万枚印刷後の感光層の摩耗量(保護層を有する場合は保護層の摩耗量)を測定した。以上の結果、実施例1の場合と併せて表10に示す。
Charging condition 2:
Discharge voltage: -5.8 kV
Grid voltage: -780V (surface potential of unexposed portion of photoconductor is -750V)
The following two evaluations were carried out after printing 100,000 sheets of images.
(I) Evaluation of soiling:
A white solid image was output, and rank evaluation was performed from the number and size of black spots generated on the background.
(Ii) Evaluation of dot formation state A one-dot image having a diameter of 60 μm was formed, and the dot formation state was observed with a 150 × microscope, and rank evaluation was performed.
In each case, the rank evaluation was performed in 4 stages, and very good ones were indicated by ◎, good ones by ○, slightly inferior by Δ, and very bad by x. In addition, the amount of abrasion of the photosensitive layer after printing 100,000 sheets (the amount of abrasion of the protective layer when a protective layer is provided) was measured. The results are shown in Table 10 together with the case of Example 1.
実施例1において、画像形成装置の帯電部材をスコロトロン方式の帯電部材から、接触帯電方式の帯電ローラ(φ30mm)に変更した。帯電条件は下記の条件で帯電を行った以外は、実施例1と同様に評価を行った。
帯電条件:
DCバイアス:−1600V(感光体の未露光部表面電位が、−900Vになるようにあわせた)
In Example 1, the charging member of the image forming apparatus was changed from a scorotron charging member to a contact charging charging roller (φ30 mm). Evaluation was performed in the same manner as in Example 1 except that charging was performed under the following conditions.
Charging conditions:
DC bias: -1600 V (Adjusted so that the surface potential of the unexposed portion of the photoreceptor is -900 V)
(比較例43)
実施例1において、画像形成装置の帯電部材をスコロトロン方式の帯電部材から、接触帯電方式の帯電ローラ(φ30mm)に変更した。帯電条件は下記の条件で帯電を行った以外は、実施例1と同様に評価を行った。
帯電条件:
DCバイアス:−900V
ACバイアス:2.0kV(peak to peak)、周波数:3.0kHz
以上の結果を、実施例1の結果とあわせて表11に示す。
一方、比較例43の場合には、帯電均一性はある程度確保されている様に見られたが、摩耗量が大きく、10万枚後の画像では地汚れがひどかった。
(Comparative Example 43)
In Example 1, the charging member of the image forming apparatus was changed from a scorotron charging member to a contact charging charging roller (φ30 mm). Evaluation was performed in the same manner as in Example 1 except that charging was performed under the following conditions.
Charging conditions:
DC bias: -900V
AC bias: 2.0 kV (peak to peak), frequency: 3.0 kHz
The above results are shown in Table 11 together with the results of Example 1.
On the other hand, in the case of Comparative Example 43, it was seen that the charging uniformity was ensured to some extent, but the amount of wear was large, and the background stain was severe in the image after 100,000 sheets.
(感光体作製例28)
感光体作製例1のアルミシリンダーを直径60mmのものに変え、感光体作製例1と同じ組成の感光体を作製した。
(Photoreceptor Preparation Example 28)
The aluminum cylinder of the photoreceptor preparation example 1 was changed to one having a diameter of 60 mm, and a photoreceptor having the same composition as that of the photoreceptor preparation example 1 was prepared.
(感光体作製例29)
感光体作製例2のアルミシリンダーを直径60mmのものに変え、感光体作製例2と同じ組成の感光体を作製した。
(Photoconductor Preparation Example 29)
The aluminum cylinder of the photoreceptor preparation example 2 was changed to one having a diameter of 60 mm, and a photoreceptor having the same composition as that of the photoreceptor preparation example 2 was prepared.
(感光体作製例30)
感光体作製例4のアルミシリンダーを直径60mmのものに変え、感光体作製例4と同じ組成の感光体を作製した。
(Photoreceptor Preparation Example 30)
The aluminum cylinder of the photoreceptor preparation example 4 was changed to one having a diameter of 60 mm to prepare a photoreceptor having the same composition as the photoreceptor preparation example 4.
(感光体作製例31)
感光体作製例13のアルミシリンダーを直径60mmのものに変え、感光体作製例13と同じ組成の感光体を作製した。
(Photoreceptor Preparation Example 31)
The aluminum cylinder of the photoreceptor preparation example 13 was changed to one having a diameter of 60 mm, and a photoreceptor having the same composition as that of the photoreceptor preparation example 13 was prepared.
(感光体作製例32)
感光体作製例14のアルミシリンダーを直径60mmのものに変え、感光体作製例14と同じ組成の感光体を作製した。
(Photoconductor Preparation Example 32)
A photoconductor having the same composition as that of Photoconductor Preparation Example 14 was prepared by changing the aluminum cylinder of Photoconductor Preparation Example 14 to one having a diameter of 60 mm.
(感光体作製例33)
感光体作製例15のアルミシリンダーを直径60mmのものに変え、感光体作製例15と同じ組成の感光体を作製した。
(Photoconductor Preparation Example 33)
A photoconductor having the same composition as that of Photoconductor Preparation Example 15 was prepared by changing the aluminum cylinder of Photoconductor Preparation Example 15 to one having a diameter of 60 mm.
(実施例12〜13および比較例44〜51)
以上のように作製した感光体作製例28〜33の感光体を、帯電部材(スコロトロン帯電)と共に、図5に示すような1つの画像形成装置用プロセスカートリッジに装着し、更に図4に示すフルカラー画像形成装置に搭載した。4つの画像形成要素では、帯電部材としてスコロトロン方式の帯電部材により下記の帯電条件にて帯電を行い、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、転写部材として転写ベルトを用い、書き込み率6%のチャートを用い、連続10万枚印刷を行った(試験環境は、22℃−55%RHである)。
(Examples 12 to 13 and Comparative Examples 44 to 51)
The photoconductors of photoconductor production examples 28 to 33 produced as described above were mounted on a single process cartridge for an image forming apparatus as shown in FIG. 5 together with a charging member (scorotron charging), and further, the full color shown in FIG. It was installed in an image forming apparatus. In the four image forming elements, a scorotron charging member is charged as a charging member under the following charging conditions, an image exposure light source is a 780 nm semiconductor laser (image writing by a polygon mirror, resolution 600 dpi), and a transfer member is transferred. Using a belt, a continuous printing of 100,000 sheets was performed using a chart with a writing rate of 6% (the test environment is 22 ° C.-55% RH).
帯電条件1:
放電電圧:−6.0kV
グリッド電圧:−970V(感光体の未露光部表面電位は、−950V)
帯電条件2:
放電電圧:−5.8kV
グリッド電圧:−830V(感光体の未露光部表面電位は、−800V)
Charging condition 1:
Discharge voltage: -6.0 kV
Grid voltage: -970V (surface potential of unexposed portion of photoconductor is -950V)
Charging condition 2:
Discharge voltage: -5.8 kV
Grid voltage: -830V (surface potential of unexposed portion of photoconductor is -800V)
なお、画像評価は10万枚印刷後に、下記3つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価
直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、
ランク評価を実施した。
(iii)色再現性の評価
感光体初期状態と10万枚ランニング後に、同じフルカラー画像を出力し、色再現性
の評価を試みた。
いずれの場合にもランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。また、10万枚印刷後の感光層の摩耗量(保護層を有する場合は保護層の摩耗量)を測定した。以上の結果を表12に示す。
The following three evaluations were performed after printing 100,000 sheets.
(I) Evaluation of soiling:
A white solid image was output, and rank evaluation was performed from the number and size of black spots generated on the background.
(Ii) Evaluation of dot formation state A 1-dot image having a diameter of 60 μm was formed, and the dot formation state was observed with a 150 × microscope.
Rank evaluation was conducted.
(Iii) Evaluation of color reproducibility After running the photoconductor and 100,000 sheets, the same full-color image was output and an attempt was made to evaluate color reproducibility.
In each case, the rank evaluation was performed in 4 stages, and very good ones were indicated by ◎, good ones by ○, slightly inferior by Δ, and very bad by x. In addition, the amount of abrasion of the photosensitive layer after printing 100,000 sheets (the amount of abrasion of the protective layer when a protective layer is provided) was measured. The above results are shown in Table 12.
最後に、本発明で使用するチタニルフタロシアニン結晶の特徴であるブラッグ角θの最低角ピークである7.3°について、公知材料の最低角7.5°と同一であるか否かについて検証する。 Finally, 7.3 ° which is the lowest angle peak of the Bragg angle θ, which is a feature of the titanyl phthalocyanine crystal used in the present invention, will be verified as to whether or not it is the same as the lowest angle 7.5 ° of known materials.
(測定例1)
比較合成例3で得られた顔料(最低角7.3°)に特開昭61−239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例1のX線回折スペクトルを図18に示す。
(Measurement Example 1)
The pigment obtained in Comparative Synthesis Example 3 (minimum angle 7.3 °) was prepared in the same manner as the pigment described in JP-A-61-239248 (having a maximum diffraction peak at 7.5 °). Weight% was added and mixed in a mortar, and the X-ray diffraction spectrum was measured in the same manner as before. The X-ray diffraction spectrum of Measurement Example 1 is shown in FIG.
(測定例2)
比較合成例2で得られた顔料(最低角7.5°)に特開昭61−239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例2のX線回折スペクトルを図19に示す。
(Measurement example 2)
3 was prepared in the same manner as the pigment described in JP-A-61-239248 (having a maximum diffraction peak at 7.5 °) as the pigment obtained in Comparative Synthesis Example 2 (minimum angle 7.5 °). Weight% was added and mixed in a mortar, and the X-ray diffraction spectrum was measured in the same manner as before. The X-ray diffraction spectrum of Measurement Example 2 is shown in FIG.
図19のスペクトルにおいては、低角側に7.3°と7.5°の2つの独立したピークが存在し、少なくとも7.3°と7.5°のピークは異なるものであることが判る。一方、図18のスペクトルにおいては、低角側のピークは7.5°のみに存在し、図19のスペクトルとは明らかに異なっている。
以上のことから、本願発明のチタニルフタロシアニン結晶における最低角ピークである7.3°は、公知のチタニルフタロシアニン結晶における7.5°のピークとは異なるものであることが判る。
In the spectrum of FIG. 19, it can be seen that there are two independent peaks at 7.3 ° and 7.5 ° on the lower angle side, and at least the peaks at 7.3 ° and 7.5 ° are different. . On the other hand, in the spectrum of FIG. 18, the low angle side peak exists only at 7.5 °, which is clearly different from the spectrum of FIG.
From the above, it can be seen that the minimum angle peak of 7.3 ° in the titanyl phthalocyanine crystal of the present invention is different from the 7.5 ° peak in the known titanyl phthalocyanine crystal.
1 感光体
2 除電ランプ
3 帯電ローラ
5 画像露光部
6 現像ユニット
7 転写前チャージャー
8 レジストローラ
9 転写紙
10 転写チャージャー
11 分離チャージャー
12 分離爪
13 クリーニング前チャージャー
14 ファーブラシ
15 クリーニングブラシ
16Y、16M、16C、16K 感光体
17Y、17M、17C、17K 帯電部材
18Y、18M、18C、18K レーザー光
19Y、19M、19C、19K 現像部材
20Y、20M、20C、20K クリーニング部材
21Y、21M、21C、21K 転写ブラシ
22 転写搬送ベルト
23 レジストローラ
24 定着装置
25Y、25M、25C、25K 画像形成要素
26 転写紙
31 導電性支持体
35 電荷発生層
37 電荷輸送層
39 保護層
101 感光体
102 帯電手段
103 露光
104 現像手段
105 転写体
106 転写手段
107 クリーニング手段
DESCRIPTION OF SYMBOLS 1 Photoconductor 2 Static elimination lamp 3 Charging roller 5 Image exposure part 6 Developing unit 7 Charger before transfer 8 Registration roller 9 Transfer paper 10 Transfer charger 11 Separation charger 12 Separation claw 13 Charger before cleaning 14 Fur brush 15 Cleaning brushes 16Y, 16M, 16C , 16K photoconductors 17Y, 17M, 17C, 17K charging members 18Y, 18M, 18C, 18K laser beams 19Y, 19M, 19C, 19K developing members 20Y, 20M, 20C, 20K cleaning members 21Y, 21M, 21C, 21K transfer brush 22 Transfer conveyor belt 23 Registration roller 24 Fixing device 25Y, 25M, 25C, 25K Image forming element 26 Transfer paper 31 Conductive support 35 Charge generation layer 37 Charge transport layer 39 Protective layer 101 Photoconductor 102 Charging means 10 3 Exposure 104 Developing means 105 Transfer body 106 Transfer means 107 Cleaning means
Claims (12)
電界強度(V/μm)=現像位置における感光体未露光部表面電位(V)/感光層膜厚(μm) In an image forming apparatus comprising at least a scorotron charging means, an exposure means having a resolution of 600 dpi or higher, a developing means, a transfer means, and an electrophotographic photosensitive member, and operated at a photosensitive member linear velocity of 300 mm / sec or higher. The absolute value of the electric field strength applied to the electrophotographic photosensitive member from the charging means defined as follows is 30 (V / μm) or more, and the electrophotographic photosensitive member is at least on the conductive support. An electrophotographic photosensitive member in which a charge generation layer and a charge transport layer are sequentially laminated, and a diffraction peak (± 0.2 °) with a Bragg angle of 2θ with respect to a characteristic X-ray (wavelength: 1.542 mm) of CuKα in the charge generation layer. ) Having a maximum diffraction peak at least 27.2 °, further having main peaks at 9.4 °, 9.6 °, and 24.0 °, and the diffraction peak at the lowest angle side as 7. 3 Titanyl having a peak at 7.3 ° and no peak between the peak at 7.3 ° and the peak at 9.4 °, and the average size of primary particles having a peak at 26.3 ° is 0.25 μm or less A phthalocyanine crystal, the titanyl phthalocyanine crystal having a Bragg angle 2θ diffraction peak (± 0.2 °) with respect to the characteristic X-ray of CuKα (± 0.2 °) at a maximum of 7.0 to 7.5 ° Crystal transformation of amorphous titanyl phthalocyanine or low crystalline titanyl phthalocyanine having a diffraction peak and a half-width of the diffraction peak of 1 ° or more and an average primary particle size of 0.1 μm or less with an organic solvent in the presence of water The titanyl phthalocyanine after crystal conversion is separated from the organic solvent before the average primary particle size after crystal conversion grows larger than 0.3 μm. An image forming apparatus characterized in that which is filtered.
Electric field strength (V / μm) = surface potential of unexposed portion of photoreceptor at development position (V) / photosensitive layer thickness (μm)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003406565A JP4230894B2 (en) | 2003-12-04 | 2003-12-04 | Image forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003406565A JP4230894B2 (en) | 2003-12-04 | 2003-12-04 | Image forming apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005165151A JP2005165151A (en) | 2005-06-23 |
JP4230894B2 true JP4230894B2 (en) | 2009-02-25 |
Family
ID=34728875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003406565A Expired - Fee Related JP4230894B2 (en) | 2003-12-04 | 2003-12-04 | Image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4230894B2 (en) |
-
2003
- 2003-12-04 JP JP2003406565A patent/JP4230894B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005165151A (en) | 2005-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4300279B2 (en) | Titanyl phthalocyanine crystal, method for producing titanyl phthalocyanine crystal, electrophotographic photosensitive member, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus | |
JP3891485B2 (en) | Electrophotographic equipment | |
JP3946654B2 (en) | Electrophotographic photosensitive member manufacturing method, electrophotographic photosensitive member, image forming method, image forming apparatus, and process cartridge for image forming apparatus | |
JP4283213B2 (en) | Image forming apparatus and image forming method | |
JP4274889B2 (en) | Electrophotographic equipment | |
JP4201753B2 (en) | Image forming apparatus | |
JP4230895B2 (en) | Image forming apparatus | |
JP3919191B2 (en) | Electrophotographic equipment | |
JP4271128B2 (en) | Image forming apparatus | |
JP3917087B2 (en) | Dispersion preparation method, electrophotographic photosensitive member, image forming apparatus, and process cartridge for image forming apparatus | |
JP4209759B2 (en) | Image forming apparatus | |
JP4230340B2 (en) | Image forming apparatus | |
JP4230894B2 (en) | Image forming apparatus | |
JP3867121B2 (en) | Electrophotographic equipment | |
JP4207210B2 (en) | Image forming apparatus and image forming method | |
JP3917082B2 (en) | Dispersion preparation method, electrophotographic photosensitive member, image forming apparatus, and process cartridge for image forming apparatus | |
JP4377315B2 (en) | Image forming apparatus | |
JP4209313B2 (en) | Image forming apparatus | |
JP3834003B2 (en) | Dispersion preparation method, electrophotographic photosensitive member, image forming apparatus, and process cartridge for image forming apparatus | |
JP2005165027A (en) | Image forming apparatus | |
JP4343052B2 (en) | Electrophotographic photosensitive member, image forming apparatus, and process cartridge for image forming apparatus | |
JP4237607B2 (en) | Image forming apparatus | |
JP4208147B2 (en) | Image forming apparatus and image forming method | |
JP4208148B2 (en) | Image forming apparatus and image forming method | |
JP4207211B2 (en) | Image forming apparatus and image forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050225 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061204 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081121 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4230894 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |