JP4230261B2 - Method for producing lanthanum sulfide thin film - Google Patents
Method for producing lanthanum sulfide thin film Download PDFInfo
- Publication number
- JP4230261B2 JP4230261B2 JP2003083931A JP2003083931A JP4230261B2 JP 4230261 B2 JP4230261 B2 JP 4230261B2 JP 2003083931 A JP2003083931 A JP 2003083931A JP 2003083931 A JP2003083931 A JP 2003083931A JP 4230261 B2 JP4230261 B2 JP 4230261B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- lanthanum
- substrate
- sulfide thin
- film body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、熱電材料等として有用な硫化ランタン薄膜体の製造方法に関する。
【0002】
【従来の技術】
硫化ランタンは熱起電力の大きな材料であり、本発明者らは、先に原料粉末を焼結したゼーベック係数の大きな焼結体を開発した(特許文献1)。
【0003】
硫化ランタンを得るには、酸化ランタン粉末を出発原料として、硫化水素又は二硫化炭素(非特許文献1)で硫化するか、又はランタン金属単体と硫黄を直接反応させる(非特許文献2)のが従来の方法であった。
【0004】
【特許文献1】
特開2001−335367号公報
【非特許文献1】
平井伸治、嶋影和宣、上村揚一郎「ランタノイド系二元系硫化物の合成と焼成」、金属、70(2000)629〜636
【非特許文献2】
C.Wood et al. "Thermoelectric Properties of Lanthanum Sulfide"J.Appl.Phys.,58(1985)1542
【0005】
【発明が解決しようとする課題】
硫化ランタン材料を製造するための従来技術では、粉末状の原料を使用することから、成形体を得るためには、焼結工程が不可欠であり、提供されるのはバルクの成形体であった。
【0006】
【課題を解決するための手段】
本発明は、湿式法で混合した物質を出発原料として、電気的に導体である金属板又は絶縁体であるガラス等を基板として、組成がLa2S3である硫化ランタンを薄膜状態で形成することが出来る方法を提供する。これまで、塩化ランタンを出発原料として硫化ランタンの合成を行なった先例は見あたらないが、本発明では、基板を使用することで、それを可能にした。
【0007】
すなわち、本発明は、(1)塩化ランタンとチオ尿素を、水、又は極性を有する有機溶媒であるアルコール等に混合溶解する工程、その溶液中に基板を浸漬し引き上げる工程、引き上げた基板に付着した湿式合成膜を二硫化炭素気流中で加熱することにより硫化処理する工程によって組成がLa2S3である硫化ランタン薄膜体を基板上に形成することを特徴とする硫化ランタン薄膜体の製造方法、である。
【0008】
また、本発明は、(2)塩化ランタンとチオ尿素の混合の割合が、塩化ランタン:チオ尿素がモル比で1:1.3〜1:2.3とすることを特徴とし、それらの全溶質10gに対して水又は有機溶媒を10〜20mLの割合とする上記(1)の硫化ランタン薄膜体の製造方法、である。
【0009】
また、本発明は、(3)引き上げ回数は1回以上とし、引き上げ毎に塩化ランタンとチオ尿素の異なる混合比の水又は有機溶媒の溶液を用いることにより、硫化処理後に組成がLa2S3であって、構造の異なる硫化ランタン薄膜の積層体からなる薄膜体を形成することを特徴とする上記(1)の硫化ランタン薄膜体の製造方法、である。
【0010】
また、本発明は、(4)塩化ランタンとチオ尿素の混合の割合をモル比で1:1.5±0.2として、水又は有機溶媒に溶かした溶液に、基板を浸漬して引き上げた後、塩化ランタン単体を水又は有機溶媒に溶かした溶液に浸漬することを特徴とする上記(1)に記載の硫化ランタン薄膜体の製造方法、である。
【0011】
また、本発明は、(5)硫化処理の温度は550℃〜1000℃、時間は10分〜2時間の間とすることを特徴とする上記(1)の硫化ランタン薄膜体の製造方法、である。
【0012】
また、本発明は、(6)基板に対する薄膜の付着度を向上させるため、予め基板表面をフッ酸浸漬法、エッチピット形成法、陽極酸化法、機械的研磨法等の粗面化方法を用いて粗面にしておくことを特徴とする上記(1)の硫化ランタン薄膜体の製造方法、である。
【0013】
上記(1)〜(6)のいずれかに記載された方法で基板上に作製された硫化ランタン薄膜体が得られる。
【0014】
【発明の実施の形態】
以下に本発明の方法を具体的に説明する。
第一の工程として、塩化ランタン粉末(LaCl3又はLaCl3・7H2O)とチオ尿素粉末(CS(NH2)2)を、塩化ランタン:チオ尿素がモル比で1:1.3〜1:2.3程度となるように混合し、これを水、又は極性を持つアルコール等の有機溶媒に溶解する。塩化ランタン:チオ尿素がモル比で1:1.3〜1:2.3程度とするのはチオ尿素が多いと硫黄分が過多の組成となるので好ましくないからである。また、チオ尿素が少ないと基板への濡れ性が悪く、湿式混合膜の剥離が生じやすいためである。
【0015】
塩化ランタンとチオ尿素を加えた溶質10gに対して溶媒を10〜20mL程度の割合とする。これらの溶液は1時間の攪拌で、沈澱のない透明な溶液となる。溶液の動粘度は、ウベローデ法によるガラス製粘度計を用い、一定温度の恒温槽中にて測定する。その値は室温において2〜12とし、より有効な動粘度の範囲は3〜10.5である。
【0016】
第二の工程として、上記の溶液中に基板を浸漬し引き上げる。浸漬する基板は、塩化ランタンとチオ尿素が付着するものであり、少なくとも、500℃〜1000℃の加熱に耐えるものであれば、特に限定しない。ただし、好ましい基板としては、ソーダライムガラス板、石英板等の電気的絶縁体、及びTi、Ta等の電気的導電体の金属板である。
【0017】
基板に対する湿式混合膜の付着度を向上させるため、予め基板表面をフッ酸浸漬法、エッチピット形成法、陽極酸化法、機械的研磨法等の粗面化処理方法を用いて粗面にしておくことが望ましい。
【0018】
基板の引き上げ速度は、10mm/sec 以下とし、2.3〜4.6mm/secがより好ましい。引き上げ回数は1回以上とし、引き上げ毎に異なる塩化ランタンとチオ尿素の混合比の溶液を用いることにより、硫化処理後に組成がLa2S3であって、構造の異なる硫化ランタン薄膜の積層体からなる薄膜体を形成することができる。例えば、最初に電気的に絶縁体であるβ型のLa2S3を作製した後に、半導体であるγ型のLa2S3を作製することで、絶縁体と半導体の積層したLa2S3薄膜体を得ることができる。
【0019】
得られた湿式混合膜は無光沢で、少し濁りのある白色である。湿式混合膜の付着量は基板を粗くすることで増加する。本発明で提供する薄膜体作成法により、薄膜体の構造は、浸漬液の組成等により所定のものを得ることが出来る。
【0020】
第三の工程として、引き上げた基板の表面に形成された湿式混合膜を二硫化炭素気流中で加熱することにより硫化処理する。硫化処理の前に、残存する湿式混合膜中の溶媒を除くため、室温から約100℃の範囲で、10分以上の乾燥を行なうことが望ましい。二硫化炭素による硫化処理の温度は550℃〜1000℃程度、時間は10分〜2時間程度であるが、温度が低い時は長時間必要であり、温度が高くなれば、短時間で、硫化は終了する。
【0021】
硫化処理は、次のように行なう(S.Hirai, K.Shimakage, Y.Saitou,N.Nishimura, Y.Uemura and M.Mitomo: J.Am.Ceram. Soc.,81,(1998)145〜148参照)。
基板を透明石英の反応管内に挿入し、アルゴン雰囲気中にて所定温度まで昇温する。次に、二硫化炭素溶液中から気化させた二硫化炭素ガスを、搬送ガスにアルゴンを用いて反応管内に導入することにより硫化処理を行なう。搬送ガスの流量は、1.33〜2.66mL/sec程度とする。処理後の薄膜体の色は、低温で硫化した場合は、黒みがかったオレンジ色、高温で硫化処理した場合は、黒みがかったレモン色を呈する。
【0022】
【実施例】
(実施例1)
塩化ランタンとチオ尿素のモル比が1:1.5で、合計10gの試料を15mLのアルコールに溶かした溶液に、寸法が20×15(mm)で、厚さ1〜1.5(mm)の石英基板を浸漬し、引き上げたところ、石英基板表面に白濁した湿式混合膜が付着した。基板に付着した湿式混合膜を、約100℃で約10分間、乾燥機中で乾燥した後、800℃、1時間、二硫化炭素中で硫化処理したところ、基板表面には、黒みがかったレモン色の薄膜体が形成された。薄膜体の厚みは約10μm程度であった。この薄膜体をX線回折法(XRD)で測定した結果、LaS2と微弱なγ-La2S3、が観測された。
【0023】
(実施例2)
塩化ランタンとチオ尿素のモル比が1:2であること以外は実施例1と同じ条件で基板表面に薄膜体を形成した。この薄膜体をXRDで測定した結果、γ-La2S3の他、微弱なLaS2のピークが検出された
【0024】
(実施例3)
塩化ランタンとチオ尿素のモル比が1:1.5のアルコール溶液に石英基板を浸漬して引き上げた後、次に、塩化ランタンのみのアルコール溶液にその基板を浸漬し引き上げたところ、石英基板表面に白色の湿式混合膜が付着した。基板に付着した湿式混合膜を実施例1と同様の硫化処理を行なったところ、基板表面には、黒みがかったレモン色の薄膜体が形成された。薄膜体の厚みは約10μmであった。この薄膜体のXRD測定の結果は、β-La2S3であった。
【0025】
(実施例4)
塩化ランタンとチオ尿素のモル比が1:1.5のアルコール溶液に、ソーダライムガラス基板を2回繰り返し浸漬したところガラス基板表面に白濁した湿式混合膜が付着した。基板に付着した湿式混合膜を硫化処理温度以外は、実施例1と同様の手順で硫化処理を行なった。硫化処理温度が約550℃を超えるとXRD法によりLaS1.94の形成が確認され、温度が650℃以上ではγ-La2S3単相の形成が確認された。
【0026】
(実施例5)
Ti、Ta、Mo、Ptの各金属基板上へ実施例1と同じ条件で薄膜体を形成した。XRD法による測定の結果、TiとTa基板ではβ、γ混合相のLa2S3が得られた。また、MoとPt基板の場合はβ-La2S3単相であった。
【0027】
【発明の効果】
熱起電力の大きな材料は種々の利用面から大きな期待が寄せられている。熱起電力の大きい硫化ランタンを薄膜状態で提供できれば、放熱板等の応用面において、一層の広がりが期待できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lanthanum sulfide thin film useful as a thermoelectric material or the like.
[0002]
[Prior art]
Lanthanum sulfide is a material having a large thermoelectromotive force, and the present inventors have previously developed a sintered body having a large Seebeck coefficient obtained by sintering raw material powder (Patent Document 1).
[0003]
In order to obtain lanthanum sulfide, lanthanum oxide powder is used as a starting material, sulfurized with hydrogen sulfide or carbon disulfide (Non-patent Document 1), or lanthanum metal alone and sulfur are directly reacted (Non-patent Document 2). It was a conventional method.
[0004]
[Patent Document 1]
JP 2001-335367 A [Non-Patent Document 1]
Shinji Hirai, Kazunobu Shimakage, Yoichiro Uemura “Synthesis and Firing of Lanthanoid Binary Sulfides”, Metals, 70 (2000) 629-636
[Non-Patent Document 2]
C. Wood et al. "Thermoelectric Properties of Lanthanum Sulfide" J. Appl. Phys., 58 (1985) 1542
[0005]
[Problems to be solved by the invention]
In the prior art for producing a lanthanum sulfide material, since a powdery raw material is used, a sintering process is indispensable to obtain a molded body, and a bulk molded body is provided. .
[0006]
[Means for Solving the Problems]
The present invention forms a lanthanum sulfide having a composition of La 2 S 3 in a thin film state using a material mixed by a wet method as a starting material, a metal plate as an electrical conductor or glass as an insulator as a substrate. Provide a method that can So far, there has been no precedent for the synthesis of lanthanum sulfide using lanthanum chloride as a starting material, but in the present invention, this has been made possible by using a substrate.
[0007]
That is, the present invention includes (1) a step of mixing and dissolving lanthanum chloride and thiourea in water or alcohol which is an organic solvent having polarity, a step of immersing and pulling up the substrate in the solution, and attaching to the pulled-up substrate Of forming a lanthanum sulfide thin film body having a composition La 2 S 3 on a substrate by a sulfidation process by heating the wet synthetic film in a carbon disulfide gas stream .
[0008]
In addition, the present invention is characterized in that (2) the mixing ratio of lanthanum chloride and thiourea is 1: 1.3 to 1: 2.3 in a molar ratio of lanthanum chloride: thiourea, and the total solute is 10 g. (1) The method for producing a lanthanum sulfide thin film body according to (1), wherein water or an organic solvent is in a ratio of 10 to 20 mL.
[0009]
In the present invention, (3) the number of pulling is one or more, and each time pulling, using a solution of water or an organic solvent having a different mixing ratio of lanthanum chloride and thiourea, the composition becomes La 2 S 3 after the sulfiding treatment. The method for producing a lanthanum sulfide thin film according to (1) above, wherein a thin film body comprising a laminate of lanthanum sulfide thin films having different structures is formed.
[0010]
The present invention also provides (4) a mixture ratio of lanthanum chloride and thiourea in a molar ratio of 1: 1.5 ± 0.2, dipping the substrate in a solution dissolved in water or an organic solvent and pulling it up, and then lanthanum chloride. The method for producing a lanthanum sulfide thin film according to (1), wherein the simple substance is immersed in a solution in water or an organic solvent.
[0011]
The present invention also provides (5) the method for producing a lanthanum sulfide thin film according to (1) above, wherein the temperature of the sulfidation treatment is 550 ° C. to 1000 ° C. and the time is 10 minutes to 2 hours. is there.
[0012]
In addition, the present invention uses (6) a surface roughening method such as a hydrofluoric acid immersion method, an etch pit formation method, an anodic oxidation method, or a mechanical polishing method in advance to improve the adhesion of the thin film to the substrate. (1) The method for producing a lanthanum sulfide thin film body according to (1) above, wherein the surface is roughened.
[0013]
A lanthanum sulfide thin film produced on a substrate by the method described in any one of (1) to (6) above is obtained .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention will be specifically described below.
As a first step, lanthanum chloride powder (LaCl 3 or LaCl 3 .7H 2 O) and thiourea powder (CS (NH 2 ) 2 ) are used in a molar ratio of lanthanum chloride: thiourea of 1: 1.3 to 1: 2.3. It mixes so that it may become a grade, This is melt | dissolved in organic solvents, such as water or alcohol with polarity. The reason why the molar ratio of lanthanum chloride: thiourea is about 1: 1.3 to 1: 2.3 is that if there is a large amount of thiourea, the sulfur content becomes excessive, which is not preferable. Moreover, when there is little thiourea, the wettability to a board | substrate will be bad and peeling of a wet mixed film will arise easily.
[0015]
A solvent is made into the ratio of about 10-20mL with respect to 10g of solute which added lanthanum chloride and thiourea. These solutions become clear solutions without precipitation after stirring for 1 hour. The kinematic viscosity of the solution is measured in a constant temperature bath using a glass viscometer by the Ubbelohde method. The value is 2 to 12 at room temperature, and the more effective kinematic viscosity range is 3 to 10.5.
[0016]
As a second step, the substrate is dipped in the above solution and pulled up. The substrate to be immersed is not particularly limited as long as lanthanum chloride and thiourea adhere to each other and can withstand at least heating at 500 ° C. to 1000 ° C. However, preferred substrates are electrical insulators such as soda lime glass plates and quartz plates, and metal plates of electrical conductors such as Ti and Ta.
[0017]
In order to improve the adhesion of the wet mixed film to the substrate, the surface of the substrate is previously roughened by using a roughening treatment method such as a hydrofluoric acid immersion method, an etch pit formation method, an anodic oxidation method, or a mechanical polishing method. It is desirable.
[0018]
The pulling speed of the substrate is 10 mm / sec or less, more preferably 2.3 to 4.6 mm / sec. The number of pull-ups should be one or more, and by using a solution with a different mixture ratio of lanthanum chloride and thiourea for each pull-up, the composition is La 2 S 3 after the sulfidation treatment, and the laminate of lanthanum sulfide thin films with different structures A thin film body can be formed. For example, after first preparing a La 2 S 3 beta type is electrically insulating, by manufacturing a La 2 S 3 of γ type is a semiconductor, La 2 S 3 obtained by stacking the insulation and semiconductor A thin film body can be obtained.
[0019]
The obtained wet mixed film is matte and slightly white with turbidity. The adhesion amount of the wet mixed film is increased by roughening the substrate. With the thin film body preparation method provided in the present invention, a predetermined structure can be obtained from the composition of the immersion liquid and the like.
[0020]
As a third step, the wet mixed film formed on the surface of the pulled up substrate is subjected to sulfidation treatment by heating in a carbon disulfide stream. Prior to the sulfidation treatment, it is desirable to perform drying for 10 minutes or more in the range of room temperature to about 100 ° C. in order to remove the solvent in the remaining wet mixed film. The temperature of sulfuration treatment with carbon disulfide is about 550 ° C to 1000 ° C, and the time is about 10 minutes to 2 hours. However, when the temperature is low, it is necessary for a long time. Ends.
[0021]
Sulfurization is performed as follows (S. Hirai, K. Shimakage, Y. Saitou, N. Nishimura, Y. Uemura and M. Mitomo: J. Am. Ceram. Soc., 81, (1998) 145- 148).
The substrate is inserted into a reaction tube made of transparent quartz and heated to a predetermined temperature in an argon atmosphere. Next, the carbon disulfide gas vaporized from the carbon disulfide solution is introduced into the reaction tube using argon as a carrier gas, thereby performing a sulfiding treatment. The flow rate of the carrier gas is about 1.33 to 2.66 mL / sec. The color of the thin film after the treatment exhibits a dark orange color when sulfurized at a low temperature, and a dark lemon color when sulfurized at a high temperature.
[0022]
【Example】
Example 1
A quartz substrate with dimensions of 20 x 15 (mm) and a thickness of 1 to 1.5 (mm) is added to a solution of a lanthanum chloride and thiourea molar ratio of 1: 1.5 and a total of 10 g of sample dissolved in 15 mL of alcohol. When immersed and pulled up, a cloudy wet mixed film adhered to the surface of the quartz substrate. The wet mixed film adhering to the substrate was dried in a dryer at about 100 ° C for about 10 minutes and then sulfurized in carbon disulfide at 800 ° C for 1 hour. A colored thin film was formed. The thickness of the thin film body was about 10 μm. As a result of measuring this thin film by X-ray diffraction (XRD), LaS 2 and weak γ-La 2 S 3 were observed.
[0023]
(Example 2)
A thin film was formed on the substrate surface under the same conditions as in Example 1 except that the molar ratio of lanthanum chloride to thiourea was 1: 2. As a result of measuring this thin film by XRD, a weak LaS 2 peak was detected in addition to γ-La 2 S 3.
(Example 3)
After the quartz substrate was dipped in an alcohol solution with a molar ratio of lanthanum chloride and thiourea of 1: 1.5 and then pulled up, the substrate was dipped in an alcohol solution containing only lanthanum chloride and pulled up. The wet mixed film was attached. When the wet mixed film adhering to the substrate was subjected to the same sulfurization treatment as in Example 1, a blackish lemon-colored thin film was formed on the substrate surface. The thickness of the thin film body was about 10 μm. The result of XRD measurement of this thin film body was β-La 2 S 3 .
[0025]
(Example 4)
When a soda lime glass substrate was dipped twice in an alcohol solution having a molar ratio of lanthanum chloride to thiourea of 1: 1.5, a cloudy wet mixed film adhered to the glass substrate surface. The wet mixed film adhering to the substrate was subjected to sulfiding treatment in the same procedure as in Example 1 except for the sulfiding temperature. The formation of LaS 1.94 was confirmed by the XRD method when the sulfidation temperature exceeded about 550 ° C, and the formation of γ-La 2 S 3 single phase was confirmed when the temperature was 650 ° C or higher.
[0026]
(Example 5)
A thin film body was formed on Ti, Ta, Mo, and Pt metal substrates under the same conditions as in Example 1. As a result of measurement by XRD method, La 2 S 3 of β and γ mixed phases was obtained for Ti and Ta substrates. In the case of Mo and Pt substrates, it was β-La 2 S 3 single phase.
[0027]
【The invention's effect】
Materials with a large thermoelectromotive force are highly expected from various usage aspects. If lanthanum sulfide having a large thermoelectromotive force can be provided in a thin film state, further expansion can be expected in application aspects such as a heat sink.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083931A JP4230261B2 (en) | 2003-03-25 | 2003-03-25 | Method for producing lanthanum sulfide thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083931A JP4230261B2 (en) | 2003-03-25 | 2003-03-25 | Method for producing lanthanum sulfide thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004292192A JP2004292192A (en) | 2004-10-21 |
JP4230261B2 true JP4230261B2 (en) | 2009-02-25 |
Family
ID=33399227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003083931A Expired - Fee Related JP4230261B2 (en) | 2003-03-25 | 2003-03-25 | Method for producing lanthanum sulfide thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4230261B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102390856B (en) * | 2011-11-14 | 2013-06-19 | 西北工业大学 | Method for preparing high-stability gamma-phase nanometer lanthanum sulfide powder in low temperature |
CN106518073B (en) * | 2016-10-18 | 2019-02-15 | 西北工业大学 | A kind of γ-La of high infrared transmittance2S3Infrared transparent ceramic preparation |
CN108715549B (en) * | 2018-06-05 | 2021-04-02 | 西北工业大学 | Preparation of rare earth sulfide gamma-Ln2S3Method for making transparent ceramics |
-
2003
- 2003-03-25 JP JP2003083931A patent/JP4230261B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004292192A (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ristov et al. | Chemical deposition of Cu2O thin films | |
JPS63258959A (en) | Coating liquid for forming metallic oxide film | |
Sinha et al. | Effects of various parameters on structural and optical properties of CBD-grown ZnS thin films: a review | |
Ahire et al. | Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method | |
JP4230261B2 (en) | Method for producing lanthanum sulfide thin film | |
CN1699273A (en) | Lithium titanium co-doped nickel oxide base ceramic film and preparation method thereof | |
Suarez et al. | Co-deposition of PbS–CuS thin films by chemical bath technique | |
Agarwal et al. | Transport properties of molybdenum sulphoselenide (MoSxSe2-x, 0⩽ x⩽ 2) single crystals | |
Xu et al. | Bonding behavior of copper thick films containing lead-free glass frit on aluminum nitride substrates | |
US3573177A (en) | Electrochemical methods for production of films and coatings of semiconductors | |
Pan et al. | Influence of praseodymium content and postdeposition annealing on the structural and sensing characteristics of PrTi x O y sensing films using the sol–gel spin-coating method | |
JP2002114515A (en) | METHOD FOR PRODUCING THIN CuAlO2 FILM BY CHEMICAL PROCESS | |
CN110265287B (en) | Preparation method of bismuth iron titanium-based layered oxide oriented film based on silicon wafer substrate | |
KR102510135B1 (en) | Nitriding solution, method for producing nitrided metal oxide, and nitrided indium oxide film | |
JP3130972B2 (en) | Ceramic substrate and method of manufacturing the same | |
Bhattacharyya et al. | Room-temperature metallic behavior in nanophase polypyrrole | |
JPH0443843B2 (en) | ||
Jaschek et al. | Hard coatings in the system (Ti, Al)(C, N) prepared by pyrolysis of polymeric precursor films | |
KR0185563B1 (en) | Method for manganese dioxide film using nitric manganese solvent | |
JPH0221083B2 (en) | ||
JP2000178751A (en) | Production of silicon carbide body | |
JPS61166978A (en) | Formation of thin sulfide film | |
Kavanagh et al. | The preparation and characterization of VO2 thick films | |
CN117624673A (en) | Microcrystalline cellulose doped polyvinylidene fluoride dielectric composite film and preparation method and application thereof | |
Soh et al. | Properties of Al₂O₃-SiO₂ Films prepared with Metal Alkoxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051006 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080502 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081203 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |