JP2002114515A - METHOD FOR PRODUCING THIN CuAlO2 FILM BY CHEMICAL PROCESS - Google Patents

METHOD FOR PRODUCING THIN CuAlO2 FILM BY CHEMICAL PROCESS

Info

Publication number
JP2002114515A
JP2002114515A JP2000301840A JP2000301840A JP2002114515A JP 2002114515 A JP2002114515 A JP 2002114515A JP 2000301840 A JP2000301840 A JP 2000301840A JP 2000301840 A JP2000301840 A JP 2000301840A JP 2002114515 A JP2002114515 A JP 2002114515A
Authority
JP
Japan
Prior art keywords
solution
film
thin film
producing
cualo2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000301840A
Other languages
Japanese (ja)
Other versions
JP3527944B2 (en
Inventor
Masayoshi Oohashi
優喜 大橋
Yasuo Iida
康夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000301840A priority Critical patent/JP3527944B2/en
Publication of JP2002114515A publication Critical patent/JP2002114515A/en
Application granted granted Critical
Publication of JP3527944B2 publication Critical patent/JP3527944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a thin CuAlO2 film by a chemical process by which such a film is very difficult to produce so far. SOLUTION: In the method for producing a thin CuAlO2 film, copper acetate monohydrate or anhydrous copper acetate is dissolved in ethanol and 2- methoxyethanol, an aluminum alkoxide solution containing 0.8-1.5 time (mol) as much aluminum as copper is added to prepare a starting solution and this solution is refluxed and distilled to prepare a precursor solution having 0.5-1.5 M/l concentration of metal ions (Cu2++Al3+). This solution is applied on a substrate by dip coating or spin coating, dried and fired in an atmosphere of nitrogen or argon to produce a CuAlO2-base thin film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CuAlO2 を主
成分とする薄膜を製造する方法に関するものであり、更
に詳しくは、透明(ワイドバンドギャップ)でp型の導
電性を示すCuAlO2 薄膜のケミカルプロセスによる
製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing a film on the basis of CuAlO 2, more particularly, transparent illustrates a p-type conductivity in (wide band gap) CuAlO 2 thin film The present invention relates to a manufacturing method using a chemical process.

【0002】[0002]

【従来の技術】現在、ITO等のn型の透明導電性薄膜
は、フラットパネルディスプレーや太陽電池等の透明電
極として応用されている。それに対して、p型の透明導
電性薄膜は殆ど見あたらない。仮に、高導電性を持つp
型の透明導電性薄膜が開発されれば、透明なp−n接合
体が作製可能となり、透明トランジスタ等の新しいオプ
トエレクトロニクスデバイスの出現が期待できる。
2. Description of the Related Art At present, an n-type transparent conductive thin film such as ITO is applied as a transparent electrode for flat panel displays and solar cells. In contrast, a p-type transparent conductive thin film is hardly found. Assuming that p has high conductivity
If a transparent conductive thin film of the type is developed, a transparent pn junction can be produced, and a new optoelectronic device such as a transparent transistor can be expected.

【0003】ゾル−ゲル法に代表されるケミカルプロセ
スによる薄膜作製は、真空容器内でのドライプロセスに
よる薄膜作製に比べ、低コストであり、組成均質性に優
れている。これまで、レーザーアブレーション法でp型
の高導電性を示すCuAlO2 薄膜が作製された例はあ
るが(川副ら,Nature,389(1997)p.
941)、ケミカルプロセスによりCuAlO2 薄膜が
作製されたという報告は見あたらない。
[0003] Thin film production by a chemical process represented by the sol-gel method is lower in cost and excellent in composition uniformity than thin film production by a dry process in a vacuum vessel. Until now, there has been an example in which a Cu-AlO 2 thin film exhibiting high conductivity of p-type has been produced by a laser ablation method (Kawasoe et al., Nature, 389 (1997) p.
941), there is no report that a CuAlO 2 thin film was produced by a chemical process.

【0004】[0004]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、ケミカルプ
ロセスにより高収率かつ低コストでCuAlO2 薄膜を
作製する方法を確立することを目標として鋭意研究を積
み重ねた結果、酢酸銅1水塩あるいは無水の特定のアル
コール類の溶液にアルミニウムアルコキシド溶液を加え
た出発溶液を用いて、前駆体溶液を調製し、これを基板
上にコーティングして焼成することにより所期の目的を
達成し得ることを見出し、本発明を完成するに至った。
本発明の目的は、これまで極めて困難であったケミカル
プロセスによるCuAlO2 薄膜の作製法を提供するこ
とである。また、本発明は、透明(ワイドバンドギャッ
プ)でp型の導電性を示すCuAlO2 薄膜を化学的プ
ロセスで効率よく、高収率かつ低コストで作製する方法
を提供することを目的とするものである。
Under such circumstances, the present inventors have established a method for producing a CuAlO 2 thin film at a high yield and at low cost by a chemical process in view of the above prior art. As a result of intensive research aiming at this, a precursor solution was prepared using a starting solution obtained by adding an aluminum alkoxide solution to a solution of copper acetate monohydrate or anhydrous specific alcohols, and this was prepared on a substrate. It has been found that the desired object can be achieved by coating and firing, and the present invention has been completed.
An object of the present invention is to provide a method for producing a CuAlO 2 thin film by a chemical process, which has been extremely difficult to date. Another object of the present invention is to provide a method for efficiently producing a CuAlO 2 thin film exhibiting p-type conductivity with transparency (wide band gap) by a chemical process at high yield and at low cost. It is.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段により構成される。 (1)酢酸銅(1水塩あるいは無水)をアルコール類に
溶解した後、銅に対して0.8〜1.5倍モルのアルミ
ニウムを含むアルミニウムアルコキシド溶液を加えて出
発溶液を作製し、次に、この溶液を還流した後、蒸留し
て金属イオン濃度(Cu2++Al3+)が0.5〜1.5
M/Lの前駆体溶液を作製し、更に、この溶液をディッ
プコーティングあるいはスピンコーティングして基板上
に堆積させ、乾燥する操作をした後、窒素又はアルゴン
雰囲気で焼成を行ってCuAlO2 を主成分とする薄膜
を作製することを特徴とするCuAlO2 薄膜の製造方
法。 (2)酢酸銅(1水塩あるいは無水)をエタノール及び
2−メトキシエタノールに溶解する前記(1)記載の方
法。 (3)堆積させ、乾燥する操作を繰り返して適当な厚み
を持った膜を積層した後、焼成する前記(1)記載の方
法。 (4)溶液をディップコーティング、又はスピンコーテ
ィングして基板上に堆積する前記(1)記載の方法。 (5)700〜900℃で焼成する前記(1)記載の方
法。
[MEANS FOR SOLVING THE PROBLEMS]
The present invention is constituted by the following technical means. (1) Convert copper acetate (monohydrate or anhydrous) into alcohol
After melting, 0.8-1.5 times mole of aluminum
Add aluminum alkoxide solution containing
The solution is then refluxed and then distilled.
Metal ion concentration (Cu2++ Al3+) Is 0.5 to 1.5
A precursor solution of M / L was prepared, and this solution was further
Pre-coated or spin-coated on the substrate
After drying and drying, nitrogen or argon
Firing in an atmosphere to obtain CuAlOTwo Thin film mainly composed of
CuAlO characterized by producingTwo How to make thin films
Law. (2) Copper acetate (monohydrate or anhydrous) is converted to ethanol and
The method according to the above (1), which is dissolved in 2-methoxyethanol.
Law. (3) An appropriate thickness by repeating the operation of depositing and drying
After laminating a film having
Law. (4) Dip coating the solution or spin coating
The method according to the above (1), wherein the substrate is deposited on a substrate. (5) The method described in (1) above, which is fired at 700 to 900 ° C.
Law.

【0006】[0006]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明は、ワイドバンドギャップでp型導電
性を示すCuAlO2 薄膜をケミカルプロセスにより作
製する方法に関するものである。本発明に係わる薄膜の
製造方法は、酢酸銅(1水塩あるいは無水)をアルコー
ル類、好適には、エタノール及び2−メトキシエタノー
ルに溶解した後、銅に対して0.8〜1.5倍モルのア
ルミニウムを含むアルミニウムアルコキシド溶液を加え
て出発溶液を作製する。次に、この溶液を還流した後、
蒸留して金属イオン濃度(Cu2++Al3+)が0.5〜
1.5M/Lの前駆体溶液とし、更に、この溶液をディ
ップコーティングあるいはスピンコーティングして基板
上に堆積させ、次に乾燥するという操作を繰り返して適
当な厚みを持った膜を積層した後、窒素又はアルゴン雰
囲気で焼成を行ってCuAlO2 を主成分とする薄膜を
作製する。
Next, the present invention will be described in more detail. The present invention relates to a method for producing a CuAlO 2 thin film having p-type conductivity with a wide band gap by a chemical process. In the method for producing a thin film according to the present invention, copper acetate (monohydrate or anhydrous) is dissolved in alcohols, preferably ethanol and 2-methoxyethanol, and then 0.8 to 1.5 times the amount of copper. An aluminum alkoxide solution containing moles of aluminum is added to make a starting solution. Next, after refluxing the solution,
After distillation, the metal ion concentration (Cu 2+ + Al 3+ ) is 0.5 to
After forming a precursor solution of 1.5 M / L, and further dip coating or spin coating this solution to deposit on the substrate, and then repeating drying, a film having an appropriate thickness is laminated. Firing is performed in a nitrogen or argon atmosphere to produce a thin film containing CuAlO 2 as a main component.

【0007】本発明において、銅成分の出発原料として
は、酢酸銅1水塩(Cu(CH3 COO)2 2 O)あ
るいは無水酢酸銅(Cu(CH3 COO)2 )が使用さ
れる。これをアルコール類、好適には、エタノール及び
2−メトキシエタノールに溶解するが、この場合、好適
には、エタノールの濃度は、0.05〜0.2M/Lが
好ましく、更に、酢酸銅に対して10〜30倍当量程度
の2−メトキシエタノールを加える。次に、この溶液中
に、銅に対して0.5〜1.5倍モル、好ましくは等モ
ルのアルミニウムを含むアルミニウムアルコキシド、例
えば、アルミニウムブトキサイド、アルミニウムイソプ
ロポキシド溶液を加えて出発溶液を調製する。
In the present invention, copper acetate monohydrate (Cu (CH 3 COO) 2 H 2 O) or anhydrous copper acetate (Cu (CH 3 COO) 2 ) is used as a starting material for the copper component. This is dissolved in alcohols, preferably ethanol and 2-methoxyethanol. In this case, preferably, the concentration of ethanol is preferably 0.05 to 0.2 M / L. And add about 10 to 30 equivalents of 2-methoxyethanol. Next, an aluminum alkoxide containing aluminum in an amount of 0.5 to 1.5 times, preferably equimolar to copper, aluminum, for example, aluminum butoxide, aluminum isopropoxide solution is added to this solution, and a starting solution is added. Is prepared.

【0008】次に、この溶液を攪拌しながら、80℃前
後で1〜3h還流した後、金属イオン濃度(Cu2++A
3+)が0.5〜1.5M/L、好ましくは0.8M/
L以上になるまで蒸留して前駆体溶液を調製する。この
場合、必要により、Al/Cu比の調整、あるいは導電
率を高める目的でドーパント元素(例えば、Alサイト
を置換するBe、Mg、Ca等)を前駆体溶液中に目的
の濃度に合わせて溶かし込むことができる。次いで、こ
の溶液を基板上にコーティングし、乾燥する。この場
合、基板としては、例えば、好適には、シリカガラス、
アルミナ、ジルコニア、ムライト等の基板が例示される
が、これらに限らず、800℃程度の温度に耐え得る基
板であれば同様に使用することが可能であり、基板の種
類は、特に限定されるものではない。また、コーティン
グ方法としては、好適には、ディップコーティング、ス
ピンコーティング等が例示される。上記コーティング−
乾燥の操作を1回以上、必要により、適宜の回数の操作
を繰り返して適当な厚みを持った膜を堆積させた後、窒
素、アルゴン等の不活性雰囲気で焼成する。焼成条件
は、700〜900℃が好ましい。700℃以下ではC
uAlO2 の生成量が少なく、高い導電性を示さず、ま
た、900℃以上では、透明基板の失透、あるいは基板
と膜との反応のおそれがあるため、800℃付近での焼
成がより好ましい。
Next, the solution is refluxed for 1 to 3 hours at about 80 ° C. while stirring, and then the metal ion concentration (Cu 2+ + A
l3 + ) is 0.5 to 1.5 M / L, preferably 0.8 M / L.
Distill until L or more to prepare the precursor solution. In this case, if necessary, a dopant element (for example, Be, Mg, Ca, etc. which replaces an Al site) is dissolved in the precursor solution in accordance with a target concentration for the purpose of adjusting the Al / Cu ratio or increasing the conductivity. Can be included. The solution is then coated on a substrate and dried. In this case, as the substrate, for example, preferably, silica glass,
Substrates such as alumina, zirconia, and mullite are exemplified, but the present invention is not limited thereto, and any substrate that can withstand a temperature of about 800 ° C. can be used in the same manner, and the type of substrate is particularly limited. Not something. Further, as the coating method, preferably, dip coating, spin coating, or the like is exemplified. The above coating
The film is dried one or more times, and if necessary, repeated an appropriate number of times to deposit a film having an appropriate thickness, and then fired in an inert atmosphere such as nitrogen or argon. The firing conditions are preferably from 700 to 900C. C below 700 ° C
Since the production amount of uAlO 2 is small and does not show high conductivity, and at 900 ° C. or higher, there is a possibility of devitrification of the transparent substrate or a reaction between the substrate and the film. .

【0009】本発明の方法は、特に、以下のような利点
を有する。 (1)本発明により、p型の酸化物導電体として、25
0Ω・cm以下の抵抗率と高透過率(図1)を示すCu
AlO2 薄膜が得られる。 (2)本発明の方法は、ドライプロセスによる薄膜作製
のように、高価な真空装置や原料を必要とせず、また、
収率も100%に近く、非常に低コストなプロセスであ
る。 (3)Al/Cu比の調整、あるいは導電率を高める目
的で添加されるドーパント元素(例えば、Alサイトを
置換するBe、Mg、Ca等)を前駆体溶液中に目的の
濃度に合わせて溶かし込むことにより、目的の化学組成
を持った均質な薄膜を比較的容易に作製することが可能
である。
The method of the present invention has the following advantages. (1) According to the present invention, as a p-type oxide conductor, 25
Cu exhibiting a resistivity of 0 Ω · cm or less and a high transmittance (FIG. 1)
An AlO 2 thin film is obtained. (2) The method of the present invention does not require expensive vacuum equipment and raw materials, unlike a thin film produced by a dry process.
The yield is close to 100%, which is a very low-cost process. (3) Dissolve a dopant element (for example, Be, Mg, Ca, etc. that replaces an Al site) added to adjust the Al / Cu ratio or increase the electrical conductivity in the precursor solution according to the target concentration. By doing so, a homogeneous thin film having a desired chemical composition can be relatively easily produced.

【0010】[0010]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は、当該実施例によって何ら限定され
るものではない。 実施例 (1)CuAlO2 薄膜の作製方法 0.015モルの酢酸銅1水塩(Cu(CH3 COO)
22 O)を0.2lのエタノール及び0.6モルの2
−メトキシエタノールに溶解した後、1.0モル/lの
Al−tri−sec−butoxide溶液15〜2
2.5mlを加えて出発溶液を作製した。次に、この溶
液を1.5時間還流した後、約1.5時間蒸留して金属
イオン濃度(Cu2++Al3+)が0.8M/Lの前駆体
溶液を調製した。更に、この溶液をシリカガラス基板上
にディップコーティング(8cm/min)した後、大
気中400℃で10分間乾燥した。この操作を10回繰
り返した後、窒素気流中において700〜900℃で1
時間焼成を行ってCuAlO2 を主成分とする薄膜を作
製した。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. EXAMPLES (1) Method for producing CuAlO 2 thin film 0.015 mol of copper acetate monohydrate (Cu (CH 3 COO))
2 H 2 O) in 0.2 l of ethanol and 0.6 mol of 2
After dissolving in methoxyethanol, a 1.0 mol / l Al-tri-sec-butoxide solution 15 to 2
2.5 ml was added to make a starting solution. Next, the solution was refluxed for 1.5 hours, and then distilled for about 1.5 hours to prepare a precursor solution having a metal ion concentration (Cu 2+ + Al 3+ ) of 0.8 M / L. Further, this solution was dip-coated (8 cm / min) on a silica glass substrate, and then dried at 400 ° C. in the atmosphere for 10 minutes. After repeating this operation 10 times, the temperature is reduced to 1 to 700-900 ° C. in a nitrogen stream.
By firing for a time, a thin film containing CuAlO 2 as a main component was prepared.

【0011】(2)CuAlO2 薄膜の特性 各温度で焼成した試料(膜厚約1ミクロン)の構成結晶
相(粉末X線回折法)及び抵抗率(4探針法)を表1に
示す。Al/Cu原子比が1.0に近いほど抵抗率が低
下した。また、700℃以下ではCuAlO2 の生成量
が少なく、膜は高い導電性を示さなかった。また、90
0℃以上では、粒子の粗大化に伴う気孔の増大により、
僅かに抵抗率が増大した。更に、図1に示すように同薄
膜は高い透過率を示した(Al/Cu比=1.0)。焼
成温度の上昇に伴って透過率が低下しているのは、シリ
カガラスの結晶化による基板ガラスの白濁による。従っ
て、抵抗率に影響がでない程度に低温で、好ましくは、
800℃前後で焼成することが望ましい。
(2) Characteristics of CuAlO 2 thin film Table 1 shows the constituent crystal phases (powder X-ray diffraction method) and resistivity (four-point probe method) of the sample (thickness: about 1 μm) fired at each temperature. The resistivity decreased as the Al / Cu atomic ratio was closer to 1.0. At 700 ° C. or lower, the amount of generated CuAlO 2 was small, and the film did not show high conductivity. Also, 90
At 0 ° C. or higher, pores increase due to coarsening of particles,
The resistivity increased slightly. Further, as shown in FIG. 1, the thin film showed high transmittance (Al / Cu ratio = 1.0). The decrease in the transmittance with the increase in the firing temperature is due to the cloudiness of the substrate glass due to the crystallization of the silica glass. Therefore, at a temperature as low as not affecting the resistivity, preferably,
It is desirable to fire at around 800 ° C.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】以上詳述したように、本発明は、透明
(ワイドバンドギャップ)でp型導電性を示すCuAl
2 薄膜をケミカルプロセスにより作製する方法に係る
ものであり、本発明により、1)これまで困難であった
ケミカルプロセスによるCuAlO2 薄膜の作製方法を
実現できる、2)本発明により作製されるCuAlO2
薄膜は、p型の酸化物導電体として高い導電性を示す、
3)従って、本発明により、透明でp型導電性を示すC
uAlO2 薄膜をより低コストで提供することが可能と
なる、4)Al/Cu比の調整、あるいは導電率を高め
る目的で添加されるドーパント元素(例えば、Alサイ
トを置換するBe、Mg、Ca等)を前駆体溶液中に目
的の濃度に合わせて溶かし込むことにより、目的の化学
組成を持った均質な薄膜を比較的容易に作製することが
可能となる、という格別の効果が得られる。
As described in detail above, the present invention provides a transparent (wide band gap) CuAl which exhibits p-type conductivity.
The present invention relates to a method of producing an O 2 thin film by a chemical process. According to the present invention, 1) a method of producing a CuAlO 2 thin film by a chemical process, which has been difficult until now, can be realized. 2) CuAlO produced by the present invention. Two
The thin film shows high conductivity as a p-type oxide conductor,
3) Therefore, according to the present invention, C is transparent and exhibits p-type conductivity.
It is possible to provide a uAlO 2 thin film at lower cost. 4) A dopant element added for the purpose of adjusting the Al / Cu ratio or increasing the conductivity (for example, Be, Mg, Ca for replacing the Al site) ) Is dissolved in the precursor solution in accordance with the desired concentration, whereby a uniform thin film having the desired chemical composition can be relatively easily produced, thereby obtaining a special effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各温度で焼成した試料の波長と透過率の関係を
示す。
FIG. 1 shows the relationship between the wavelength and the transmittance of a sample fired at each temperature.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酢酸銅(1水塩あるいは無水)をアル
コール類に溶解した後、銅に対して0.8〜1.5倍モ
ルのアルミニウムを含むアルミニウムアルコキシド溶液
を加えて出発溶液を作製し、次に、この溶液を還流した
後、蒸留して金属イオン濃度(Cu2++Al3+)が0.
5〜1.5M/Lの前駆体溶液を作製し、更に、この溶
液をディップコーティングあるいはスピンコーティング
して基板上に堆積させ、乾燥する操作をした後、窒素又
はアルゴン雰囲気で焼成を行ってCuAlO2 を主成分
とする薄膜を作製することを特徴とするCuAlO2
膜の製造方法。
1. A starting solution is prepared by dissolving copper acetate (monohydrate or anhydrous) in alcohols and then adding an aluminum alkoxide solution containing 0.8 to 1.5 times mol of aluminum to copper. Then, the solution was refluxed and distilled to obtain a metal ion concentration (Cu 2+ + Al 3+ ) of 0.1.
After preparing a precursor solution of 5 to 1.5 M / L, dip-coating or spin-coating this solution to deposit it on a substrate, and drying it, calcination is performed in a nitrogen or argon atmosphere to obtain CuAlO. 2. A method for producing a CuAlO 2 thin film, comprising producing a thin film containing 2 as a main component.
【請求項2】 酢酸銅(1水塩あるいは無水)をエタノ
ール及び2−メトキシエタノールに溶解する請求項1記
載の方法。
2. The method according to claim 1, wherein copper acetate (monohydrate or anhydrous) is dissolved in ethanol and 2-methoxyethanol.
【請求項3】 堆積させ、乾燥する操作を繰り返して適
当な厚みを持った膜を積層した後、焼成する請求項1記
載の方法。
3. The method according to claim 1, wherein the steps of depositing and drying are repeated to form a film having an appropriate thickness, and then firing.
【請求項4】 溶液をディップコーティング、又はスピ
ンコーティングして基板上に堆積する請求項1記載の方
法。
4. The method according to claim 1, wherein the solution is dip-coated or spin-coated to deposit on the substrate.
【請求項5】 700〜900℃で焼成する請求項1記
載の方法。
5. The method according to claim 1, wherein the calcination is performed at 700 to 900 ° C.
JP2000301840A 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process Expired - Lifetime JP3527944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000301840A JP3527944B2 (en) 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000301840A JP3527944B2 (en) 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process

Publications (2)

Publication Number Publication Date
JP2002114515A true JP2002114515A (en) 2002-04-16
JP3527944B2 JP3527944B2 (en) 2004-05-17

Family

ID=18783300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000301840A Expired - Lifetime JP3527944B2 (en) 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process

Country Status (1)

Country Link
JP (1) JP3527944B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324206A (en) * 2002-04-30 2003-11-14 National Institute Of Advanced Industrial & Technology Photovoltaic cell for converting ultraviolet radiation to electric power, and method of manufacturing the same
JP2004311845A (en) * 2003-04-09 2004-11-04 National Institute Of Advanced Industrial & Technology Visible-ray transmitting structure having power generating function
WO2004106593A3 (en) * 2003-05-21 2005-02-17 Hahn Meitner Inst Berlin Gmbh METHOD FOR PRODUCING TRANSPARENT P-CONDUCTIVE CuAlO2
CN100494064C (en) * 2006-07-19 2009-06-03 中国科学院合肥物质科学研究院 Method of manufacturing alumine acid cuprous polycrystalline material with delafossite structure and manufacturing material thereof
KR101316237B1 (en) * 2011-12-06 2013-10-08 연세대학교 산학협력단 Manufacturing Method of Solution-processed semiconductor buffer layer And solar cells using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324206A (en) * 2002-04-30 2003-11-14 National Institute Of Advanced Industrial & Technology Photovoltaic cell for converting ultraviolet radiation to electric power, and method of manufacturing the same
JP2004311845A (en) * 2003-04-09 2004-11-04 National Institute Of Advanced Industrial & Technology Visible-ray transmitting structure having power generating function
WO2004106593A3 (en) * 2003-05-21 2005-02-17 Hahn Meitner Inst Berlin Gmbh METHOD FOR PRODUCING TRANSPARENT P-CONDUCTIVE CuAlO2
CN100494064C (en) * 2006-07-19 2009-06-03 中国科学院合肥物质科学研究院 Method of manufacturing alumine acid cuprous polycrystalline material with delafossite structure and manufacturing material thereof
KR101316237B1 (en) * 2011-12-06 2013-10-08 연세대학교 산학협력단 Manufacturing Method of Solution-processed semiconductor buffer layer And solar cells using it

Also Published As

Publication number Publication date
JP3527944B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
Ma et al. Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots
Seo et al. Photoelectrochemical water splitting on particulate ANbO2N (A= Ba, Sr) photoanodes prepared from perovskite-type ANbO3
JP5469107B2 (en) Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles
JP5255039B2 (en) Indium tin oxide sputtering target and transparent conductive film produced using the same
Raninga et al. Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides
CN103360107B (en) A kind of gold-nickel acid lanthanum composite conductive thin film material and preparation method thereof
CN106803601B (en) preparation method of solid electrolyte lithium lanthanum titanium oxide film
CN109273601A (en) A kind of perovskite solar battery and preparation method thereof
Niu et al. Magnetron sputtered ZnO electron transporting layers for high performance perovskite solar cells
CN103833416B (en) A kind of chemical solution deposition preparation method of the sour lanthanum conductive film of nickel
JP2002284525A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
CN102503162A (en) Preparation method for Ag-Al co-doped p type ZnO film
JPH10273783A (en) Production of chalcopyrite light absorption film
JP2007123873A (en) METHOD OF MANUFACTURING P-TYPE SrCu2O2 THIN FILM DOPED WITH CaO
Oyewole et al. Annealing effects on interdiffusion in layered FA-rich perovskite solar cells
Huang et al. Enhancement of All-Inorganic Perovskite Solar Cells by Lead–Cerium Bimetal Strategy
JP5535466B2 (en) Metal oxide coating
JP2002114515A (en) METHOD FOR PRODUCING THIN CuAlO2 FILM BY CHEMICAL PROCESS
TWI676595B (en) A method of making a graphitic carbon sheet
Ibrahim et al. The impact of annealing process on the grain morphology and performance of mesoporous nip carbon-based perovskite solar cells
WO2017054120A1 (en) Method of making multilayer structure
JP2009040640A (en) Method for producing zinc oxide thin film
Mutlu et al. Approach to enhance the stability and efficiency of triple-cation perovskite solar cells by reactive antisolvents
Gupta et al. Evaluating the role of precursor concentration in facile conformal coating of sub-micrometer thick Cu2ZnSnS4 films using non-toxic ethanol based solutions
CN107034452B (en) The chemical production method of flexible doping type ZnO-based transparent conductive film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350