JP4229933B2 - Salmon-derived angiotensin I converting enzyme-inhibiting peptide compound or peptide composition containing the same and method for producing them - Google Patents

Salmon-derived angiotensin I converting enzyme-inhibiting peptide compound or peptide composition containing the same and method for producing them Download PDF

Info

Publication number
JP4229933B2
JP4229933B2 JP2005223422A JP2005223422A JP4229933B2 JP 4229933 B2 JP4229933 B2 JP 4229933B2 JP 2005223422 A JP2005223422 A JP 2005223422A JP 2005223422 A JP2005223422 A JP 2005223422A JP 4229933 B2 JP4229933 B2 JP 4229933B2
Authority
JP
Japan
Prior art keywords
peptide
angiotensin
converting enzyme
phe
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005223422A
Other languages
Japanese (ja)
Other versions
JP2006096747A (en
Inventor
宏之 江成
義宣 ▲高▼橋
馨 栃澤
元比古 多田
邦明 竜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruha Nichiro Corp
Original Assignee
Maruha Nichiro Foods Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruha Nichiro Foods Inc filed Critical Maruha Nichiro Foods Inc
Priority to JP2005223422A priority Critical patent/JP4229933B2/en
Publication of JP2006096747A publication Critical patent/JP2006096747A/en
Application granted granted Critical
Publication of JP4229933B2 publication Critical patent/JP4229933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、血圧の上昇を調節できるとされるアンジオテンシンI変換酵素阻害活性を有するペプチド化合物及びそれを含有する組成物に関するもので、高血圧症を予防したり治療するための医薬品や医薬部外品、食品添加物、機能性食品等に広く利用できるものである。   TECHNICAL FIELD The present invention relates to a peptide compound having an angiotensin I converting enzyme inhibitory activity, which is said to be capable of regulating an increase in blood pressure, and a composition containing the same, and a pharmaceutical or quasi drug for preventing or treating hypertension It can be widely used for food additives, functional foods and the like.

突然死を引き起こす可能性のある心筋梗塞などの冠動脈疾患の危険因子は、高血圧症、高脂血症、耐糖能低下、肥満の4つであり、死の四重奏とも言われている。当該危険因子の内の1つである高血圧症は、日本高血圧学会によれば我が国では3300万人の患者がいるとされている。高血圧症は治療を受けずに放置しておくと、重症でない限り多くの場合無症状で進行し死に至る事が少なくない事から、サイレントキラ−と呼ばれている。このような高血圧症を改善する要請が強いため、様々な降圧剤や血圧を調節する機能性食品の開発が進められている。   There are four risk factors for coronary artery disease such as myocardial infarction that can cause sudden death: hypertension, hyperlipidemia, impaired glucose tolerance, and obesity, and is also said to be a quartet of death. Hypertension, which is one of the risk factors, is reported to have 33 million patients in Japan according to the Japanese Society of Hypertension. If hypertension is left untreated, it is often called as a silent killer because it often progresses asymptomatic and results in death unless it is severe. Since there is a strong demand for improving such hypertension, various antihypertensive agents and functional foods that regulate blood pressure are being developed.

生体において血圧を調節するメカニズムの1つには、昇圧系であるレニン−アンジオテンシン系と、降圧系であるカリクレイン−キニン系がある。前者のレニン− アンジオテンシン系では、酵素レニンが腎臓の旁糸球体細胞から循環血液中に分泌され、肝臓で生合成され血液中に存在する基質アンジオテンシノ−ゲンに働いてアンジオテンシンI(Asp−Arg−Val−Tyr−Ile−His−Pro−Phe−His−Leu)を生成する。このアンジオテンシンIをアンジオテンシンII(Asp−Arg−Val−Tyr−Ile−His−Pro−Phe)に変換する酵素は、主として血管内皮細胞や肺、腎臓近位尿細管に存在するアンジオテンシンI変換酵素である。このようにして生じたアンジオテンシンIIは、血管平滑筋を収縮させる作用がある。また、当該アンジオテンシンIIは副腎皮質に作用してアルドステロンの生成と分泌を促進すると共に、腎臓近位尿細管に働いて腎糸球体で濾過されたナトリウムの再吸収を高める作用がある。その結果、血圧は上昇する。   One mechanism for regulating blood pressure in a living body is a renin-angiotensin system that is a pressor system and a kallikrein-kinin system that is a hypotensive system. In the former renin-angiotensin system, the enzyme renin is secreted from the glomerular cells of the kidney into the circulating blood, and is biosynthesized in the liver and acts on the substrate angiotensinogen present in the blood, thereby causing angiotensin I (Asp-Arg). -Val-Tyr-Ile-His-Pro-Phe-His-Leu). The enzyme that converts this angiotensin I into angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) is an angiotensin I-converting enzyme that exists mainly in vascular endothelial cells, lungs, and renal proximal tubules. . The angiotensin II produced in this way has the effect of contracting vascular smooth muscle. In addition, the angiotensin II acts on the adrenal cortex to promote the production and secretion of aldosterone, and acts on the renal proximal tubule to enhance the reabsorption of sodium filtered through the glomeruli. As a result, blood pressure increases.

一方、後者のカリクレイン−キニン系では、酵素カリクレインが基質キニノ−ゲンに作用してキニンを生じる。そのキニンは血管平滑筋を拡張させて血圧を下げる働きがあるが、アンジオテンシンI変換酵素は当該キニンを分解する事が知られている。この様にアンジオテンシンI変換酵素は、昇圧系であるレニン−アンジオテンシン系の活性化と、降圧系であるカリクレイン−キニン系の不活性化を同時に行う作用を有しており、結果として血圧を上昇させる作用がある。従って、アンジオテンシンI変換酵素の活性を阻害する物質は、血圧の上昇を調節する事が期待できるので、各方面でこれに着目した医薬品及び機能性食品の開発が行われている。   On the other hand, in the latter kallikrein-kinin system, the enzyme kallikrein acts on the substrate kininogen to produce kinin. The kinin works to dilate vascular smooth muscles and lower blood pressure, but angiotensin I converting enzyme is known to degrade the kinin. Thus, the angiotensin I converting enzyme has the action of simultaneously activating the renin-angiotensin system, which is a pressor system, and inactivating the kallikrein-kinin system, which is a hypotensive system, and as a result, increases blood pressure. There is an effect. Therefore, since substances that inhibit the activity of angiotensin I converting enzyme can be expected to regulate an increase in blood pressure, pharmaceuticals and functional foods focusing on this are being developed in various directions.

アンジオテンシンI変換酵素阻害物質としては、1977年にOndettiらが発表したカプトプリル(D−3−メルカプト−2−メチルプロパノイル−L−プロリン)に代表される合成化合物が医薬品として実用化されている。又その他、近年、種々の食品中から多数のアンジオテンシンI変換酵素阻害ペプチドが見出され、これらの内、牛乳カゼイン、発酵乳、魚肉由来のペプチドを添加した食品が特定保健用食品として実用化されている。   As an angiotensin I converting enzyme inhibitory substance, a synthetic compound represented by captopril (D-3-mercapto-2-methylpropanoyl-L-proline) published by Ondetti et al. In addition, in recent years, many angiotensin I converting enzyme inhibitory peptides have been found in various foods, and among these, foods added with milk casein, fermented milk, and fish-derived peptides have been put to practical use as foods for specified health use. ing.

牛由来カゼインから得られるペプチドについては、特開昭58−109425号公報(特公昭60−2390号公報)にはPhe-Phe-Val-Ala-Pro-Phe-Pro-Glu-Val-Phe-Gly-Lysからなるアミノ酸配列を有するアンジオテンシンI転換酵素阻害剤が記載されている。また、特開昭59−44323号公報には、Phe-Phe-Val-Ala-Pheからなるアミノ酸配列を有するアンジオテンシンI転換酵素阻害剤が、更に、特開昭59−44324号公報には、Val-Ala-Proからなるアミノ酸配列を有するアンジオテンシンI変換酵素阻害剤が記載されている。更に、特開昭61−36226号公報には、Ala-Val-Pro-Tyr-Pro-Gln-Argからなるアミノ酸配列を有するアンジオテンシンI転換酵素阻害剤が、特開昭61−36227号公報には、Thr-Thr-Met-Pro-Leu-Trpからなるアミノ酸配列を有するアンジオテンシンI転換酵素阻害剤が記載されている。一方、特開平5−271297号公報には、魚肉由来の特定の物性を有するペプチドa−1000を有効成分とするアンジオテンシン変換酵素阻害剤、血圧降下剤、特定保健用食品、及びこれらの製造方法が記載されている。   Regarding peptides obtained from casein derived from cattle, JP-A-58-109425 (JP-B-60-2390) discloses Phe-Phe-Val-Ala-Pro-Phe-Pro-Glu-Val-Phe-Gly. Angiotensin I converting enzyme inhibitors having an amino acid sequence consisting of -Lys are described. JP-A-59-44323 discloses an angiotensin I converting enzyme inhibitor having an amino acid sequence consisting of Phe-Phe-Val-Ala-Phe, and JP-A-59-44324 discloses Val. An angiotensin I converting enzyme inhibitor having an amino acid sequence consisting of -Ala-Pro is described. Further, JP-A 61-36226 discloses an angiotensin I converting enzyme inhibitor having an amino acid sequence consisting of Ala-Val-Pro-Tyr-Pro-Gln-Arg, and JP-A 61-36227 discloses. Describes an angiotensin I converting enzyme inhibitor having an amino acid sequence consisting of Thr-Thr-Met-Pro-Leu-Trp. On the other hand, JP-A-5-271297 discloses an angiotensin converting enzyme inhibitor, antihypertensive agent, food for specified health use, and a method for producing these, containing peptide a-1000 having specific physical properties derived from fish meat as an active ingredient. Are listed.

更に、各種のジまたはトリペプチドについては、以下の報告が知られている。
Val-Leu:Fermentforschung, 11, 271-86 (1930);
Ile-Leu:Journal of Organic Chemistry, 20, 1169-72(1955);
Val-Phe:Compt. Rend., 235, 180-2 (1952);
Ile-Phe:Journal of Organic Chemistry, 20, 1169-72 (1955);
Phe-Tyr:Annalen Der Chemie., 653, 76-80(1962);
Tyr-Phe:Journal of the Chemical Society, Abstracts, 3658-69 (1960);
Leu-Phe:Biochemical Journal, 41, 596-602. (1947);
Leu-Ile:Journal of Biological Chemistry, 247(4),1208-10,(1972);
Ala-Phe-Leu:J.O.C. (1971), 36(1), 49-59;
Leu-Val-Leu:Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung (1975), 159(6), 329-36;
Ile-Val-Leu:Journal of Immunology (1998), 161(5), 2465-2472;
Val-Ile-Leu:Biochemistry (1998), 37(13), 4473-4481;
Val-Ile-Phe:Bulletin of the Chemical Society of Japan (1984), 57(1), 103-7;
Tyr-Leu-Val:Quantative Structure-Activity Relationships (1989), 8(3), 195-203;
Phe-Val-Leu:International Journal of Peptide & Protein Research (1996), 48(2) 148-155;
Leu-Tyr:Fermentforschung, 11, 399-432 (1930);
Leu-Trp:Biochemical Journal, 39, 351-355 (1945);
Ile-Trp:Journal of Organic Chemistry, 32(11), 3415-25 (1967);
Ile-Val-Trp:米国特許第4356118号明細書 Oct. 26 (1982);
特開昭58−109425号公報(特公昭60−2390号公報) 特開昭59−44323号公報 特開昭59−44324号公報 特開昭61−36226号公報 特開昭61−36227号公報 特開平5−271297号公報 米国特許第4356118号明細書 Fermentforschung, 11, 271-86 (1930) Journal of Organic Chemistry, 20, 1169-72 (1955) Compt. Rend., 235, 180-2 (1952) Journal of Organic Chemistry, 20, 1169-72 (1955) Annalen Der Chemie., 653, 76-80 (1962) Journal of the Chemical Society, Abstracts, 3658-69 (1960) Biochemical Journal, 41, 596-602. (1947) Journal of Biological Chemistry, 247(4), 1208-10, (1972) J.O.C. (1971), 36(1), 49-59 Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung (1975), 159(6), 329-36. Journal of Immunology (1998), 161(5), 2465-2472. Biochemistry (1998), 37(13), 4473-4481. Bulletin of the Chemical Society of Japan (1984), 57(1), 103-7. Quantative Structure-Activity Relationships (1989), 8(3), 195-203. International Journal of Peptide & Protein Research (1996), 48(2), 148-155 Fermentforschung, 11, 399-432 (1930) Biochemical Journal, 39, 351-355 (1945); Journal of Organic Chemistry, 32(11), 3415-25 (1967);
Furthermore, the following reports are known for various di- or tripeptides.
Val-Leu: Fermentforschung, 11, 271-86 (1930);
Ile-Leu: Journal of Organic Chemistry, 20, 1169-72 (1955);
Val-Phe: Compt. Rend., 235, 180-2 (1952);
Ile-Phe: Journal of Organic Chemistry, 20, 1169-72 (1955);
Phe-Tyr: Annalen Der Chemie., 653, 76-80 (1962);
Tyr-Phe: Journal of the Chemical Society, Abstracts, 3658-69 (1960);
Leu-Phe: Biochemical Journal, 41, 596-602. (1947);
Leu-Ile: Journal of Biological Chemistry, 247 (4), 1208-10, (1972);
Ala-Phe-Leu: JOC (1971), 36 (1), 49-59;
Leu-Val-Leu: Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung (1975), 159 (6), 329-36;
Ile-Val-Leu: Journal of Immunology (1998), 161 (5), 2465-2472;
Val-Ile-Leu: Biochemistry (1998), 37 (13), 4473-4481;
Val-Ile-Phe: Bulletin of the Chemical Society of Japan (1984), 57 (1), 103-7;
Tyr-Leu-Val: Quantative Structure-Activity Relationships (1989), 8 (3), 195-203;
Phe-Val-Leu: International Journal of Peptide & Protein Research (1996), 48 (2) 148-155;
Leu-Tyr: Fermentforschung, 11, 399-432 (1930);
Leu-Trp: Biochemical Journal, 39, 351-355 (1945);
Ile-Trp: Journal of Organic Chemistry, 32 (11), 3415-25 (1967);
Ile-Val-Trp: US Pat. No. 4,356,118 Oct. 26 (1982);
Japanese Laid-Open Patent Publication No. 58-109425 (Japanese Patent Publication No. 60-2390) JP 59-44323 A JP 59-44324 JP 61-36226 A JP 61-36227 A JP-A-5-271297 U.S. Pat.No. 4,356,118 Fermentforschung, 11, 271-86 (1930) Journal of Organic Chemistry, 20, 1169-72 (1955) Compt. Rend., 235, 180-2 (1952) Journal of Organic Chemistry, 20, 1169-72 (1955) Annalen Der Chemie., 653, 76-80 (1962) Journal of the Chemical Society, Abstracts, 3658-69 (1960) Biochemical Journal, 41, 596-602. (1947) Journal of Biological Chemistry, 247 (4), 1208-10, (1972) JOC (1971), 36 (1), 49-59 Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung (1975), 159 (6), 329-36. Journal of Immunology (1998), 161 (5), 2465-2472. Biochemistry (1998), 37 (13), 4473-4481. Bulletin of the Chemical Society of Japan (1984), 57 (1), 103-7. Quantative Structure-Activity Relationships (1989), 8 (3), 195-203. International Journal of Peptide & Protein Research (1996), 48 (2), 148-155 Fermentforschung, 11, 399-432 (1930) Biochemical Journal, 39, 351-355 (1945); Journal of Organic Chemistry, 32 (11), 3415-25 (1967);

上述のようにアンジオテンシンI変換酵素阻害物質は既に多数報告されているが、医薬品にあっては合成法で作られているため高価である。又、合成法で作られている当該アンジオテンシンI変換酵素阻害物質は、強力な降圧作用を有するものの用量が不適切であると腎機能障害や低血圧をもたらす事から、医師の管理下において慎重に使用する事が求められている。   As described above, many angiotensin I converting enzyme inhibitors have already been reported, but pharmaceuticals are expensive because they are made by synthetic methods. In addition, the angiotensin I converting enzyme inhibitor produced by the synthetic method has a strong antihypertensive effect, but if the dose is inappropriate, it causes renal dysfunction and hypotension. It is required to use.

一方、食品由来のアンジオテンシンI変換酵素阻害ペプチドは数多く知られているが、これらの中で実用化されているものは、上述の如くごく僅かである。その理由としては、経口摂取時の作用効果が弱かったり、味、臭い、色等にそれぞれ特徴があって、実用に適していない事が多い等が挙げられる。   On the other hand, many food-derived angiotensin I converting enzyme inhibitory peptides are known, but only a few are practically used as described above. The reason for this is that the action and effects at the time of oral ingestion are weak, and the taste, smell, color, etc. are characteristic and are not suitable for practical use.

本発明の目的は、血管内への吸収性、安定性、安全性が高い強力なアンジオテンシンI変換酵素阻害活性を有するペプチド化合物及びその薬学的に許容される塩を提供することにある。本発明の他の目的は、これらのペプチド化合物及びそれらの薬学的に許容される塩の少なくとも1種を有効成分とするアンジオテンシンI変換酵素阻害剤を提供することにある。本発明の他の目的は、これらのペプチド化合物及びその薬学的に許容される塩を含む組成物及びその製造方法を提供することにある。   An object of the present invention is to provide a peptide compound having a strong angiotensin I converting enzyme inhibitory activity and a pharmaceutically acceptable salt thereof, which are highly absorbable into the blood vessel, stable and safe. Another object of the present invention is to provide an angiotensin I converting enzyme inhibitor comprising as an active ingredient at least one of these peptide compounds and pharmaceutically acceptable salts thereof. Another object of the present invention is to provide a composition comprising these peptide compounds and pharmaceutically acceptable salts thereof, and a method for producing the same.

アンジオテンシンI変換酵素阻害活性を有するペプチド化合物としては、下記式(i)乃至式(xxi)のアミノ酸配列で示されるペプチド化合物を挙げることができる。
Val−Leu(i)、
Ile−Leu(ii)、
Val−Phe(iii)、
Ile−Phe(iv)、
Phe−Tyr(v)、
Tyr−Phe(vi)、
Leu−Phe(vii)、
Leu−Ile(viii)、
Ala−Phe−Leu(ix)、
Leu−Val−Leu(x)、
Ile−Val−Leu(xi)、
Val−Ile−Leu(xii)、
Val−Ile−Phe(xiii)、
Tyr−Leu−Val(xiv)、
Phe−Val−Leu(xv)、
Ile−Val−Phe(xvi)、
Phe−Ile−Ala(xvii)、
Leu−Tyr(xviii)、
Leu-Trp(xix)、
Ile-Trp(xx)、
Ile-Val-Trp(xxi)。
Examples of peptide compounds having angiotensin I converting enzyme inhibitory activity include peptide compounds represented by the amino acid sequences of the following formulas (i) to (xxi) .
Val-Leu (i),
Ile-Leu (ii),
Val-Phe (iii),
Ile-Phe (iv),
Phe-Tyr (v),
Tyr-Phe (vi),
Leu-Phe (vii),
Leu-Ile (viii),
Ala-Phe-Leu (ix),
Leu-Val-Leu (x),
Ile-Val-Leu (xi),
Val-Ile-Leu (xii),
Val-Ile-Phe (xiii),
Tyr-Leu-Val (xiv),
Phe-Val-Leu (xv),
Ile-Val-Phe (xvi),
Phe-Ile-Ala (xvii),
Leu-Tyr (xviii),
Leu-Trp (xix),
Ile-Trp (xx),
Ile-Val-Trp (xxi).

前記ペプチド化合物は、無機酸、有機酸、無機塩基または有機塩基と、で形成してなる薬学的に許容される塩としてもよい。 The peptide compounds, inorganic acids, organic acids, inorganic bases or organic bases, in may be formed pharmaceutically acceptable salts formed by.

本発明にかかるアンジオテンシンI変換酵素阻害剤は、Ile−Val−Phe(xvi)のアミノ酸配列で示されるペプチド化合物及びPhe−Ile−Ala(xvii)のアミノ酸配列で示されるペプチド化合物、およびこれらのペプチド化合物の薬学的に許容される塩から選択された少なくとも1種を有効成分として含むことを特徴とするアンジオテンシンI変換酵素阻害剤である。The angiotensin I converting enzyme inhibitor according to the present invention includes a peptide compound represented by the amino acid sequence of Ile-Val-Phe (xvi), a peptide compound represented by the amino acid sequence of Phe-Ile-Ala (xvii), and these peptides An angiotensin I converting enzyme inhibitor comprising at least one selected from pharmaceutically acceptable salts of compounds as an active ingredient.

本発明にかかるアンジオテンシンI変換酵素阻害剤は、Tyr−Phe(vi)のアミノ酸配列で示されるペプチド化合物、Leu-Trp(xix)のアミノ酸配列で示されるペプチド化合物及びIle-Trp(xx)のアミノ酸配列で示されるペプチド化合物およびこれらのペプチド化合物の薬学的に許容される塩から選択された少なくとも1種を更に含み、前記ペプチド化合物の全てが、サケまたはその処理物を蛋白質分解酵素と反応させて分解させて得られた分解液から分離したものであることができる。 The angiotensin I converting enzyme inhibitor according to the present invention includes a peptide compound represented by the amino acid sequence of Tyr-Phe (vi) , a peptide compound represented by the amino acid sequence of Leu-Trp (xix), and an amino acid of Ile-Trp (xx) And further comprising at least one selected from peptide compounds represented by sequences and pharmaceutically acceptable salts of these peptide compounds, wherein all of the peptide compounds are obtained by reacting salmon or a processed product thereof with a proteolytic enzyme. It can be separated from the decomposition solution obtained by decomposition.

本発明により得られたペプチド化合物は、強いアンジオテンシンI変換酵素阻害活性を有し、強い血圧降下作用、ブラジキニン不活性化抑制作用を示す。従って本発明は、例えば本態性高血圧、腎性高血圧、副腎性高血圧等の高血圧症の予防、治療剤、これら疾患の診断薬、各種病態で用いられる降圧剤、心筋梗塞の減少、うっ血性心不全における病態の改善剤等として有用である。   The peptide compound obtained by the present invention has a strong angiotensin I converting enzyme inhibitory activity, and exhibits a strong blood pressure lowering action and a bradykinin inactivation inhibiting action. Therefore, the present invention is useful in the prevention and treatment of hypertension such as essential hypertension, renal hypertension, adrenal hypertension, diagnostic agents for these diseases, antihypertensive agents used in various pathologies, reduction of myocardial infarction, congestive heart failure. It is useful as a disease condition improving agent.

また、本発明で得られるペプチド化合物は、臭い、味、色に特異な厭味が認められない事から経口摂取が容易である。その為、本発明で得られるペプチド化合物、あるいは当該化合物を含有する各種製剤を、例えば、ゼリ−、飴、顆粒菓、錠菓、飲料、ス−プ、麺、煎餅、和菓子、洋菓子、冷菓、焼き菓子、調味料等の食品に配合、添加し提供する事ができる。上記の様な有用な作用を有する健康食品や特定保健用食品、機能性食品としての利用が可能である。更に、化粧品や医薬部外品としても提供することもできる。   Moreover, the peptide compound obtained by this invention is easy to ingest orally since the peculiar taste of smell, taste, and color is not recognized. Therefore, the peptide compound obtained in the present invention, or various preparations containing the compound, for example, jelly, rice cake, granule confectionery, tablet confectionery, beverage, supermarket, noodles, rice cracker, Japanese confectionery, Western confectionery, frozen confectionery, It can be formulated and added to foods such as baked goods and seasonings. It can be used as a health food having a useful action as described above, a food for specified health use, or a functional food. Furthermore, it can also be provided as a cosmetic or quasi-drug.

本発明者らは、血圧の上昇を調節できる食品由来のアンジオテンシンI変換酵素阻害物質ペプチドを見つけ出すべく鋭意研究を進めたところ、サケ筋肉を蛋白質分解酵素で処理した蛋白質分解酵素処理物がアンジオテンシンI変換酵素を強く阻害することに気付き、当該蛋白質分解酵素処理物中に20種類の強力なアンジオテンシンI変換酵素阻害ペプチドを見出した。更に、サケ肝臓を蛋白質分解酵素で処理した蛋白質分解酵素処理物にもアンジオテンシンI変換酵素を強く阻害する成分が含まれていることを突き止め、当該蛋白質分解酵素処理物中に7種類の強力なアンジオテンシンI変換酵素阻害ペプチドを見出した。   The present inventors have conducted extensive research to find a food-derived angiotensin I-converting enzyme inhibitor peptide capable of regulating an increase in blood pressure. As a result, a processed proteolytic enzyme obtained by treating salmon muscle with a proteolytic enzyme is converted to angiotensin I. It was noticed that the enzyme was strongly inhibited, and 20 kinds of strong angiotensin I converting enzyme inhibitory peptides were found in the processed protease. Furthermore, it has been found that the processed product of proteolytic enzyme obtained by treating salmon liver with a proteolytic enzyme contains a component that strongly inhibits angiotensin I-converting enzyme. Seven types of strong angiotensin are included in the processed proteolytic enzyme. I-converting enzyme inhibitory peptides were found.

これらは、先に挙げた(i)乃至(xxi)のアミノ酸配列のいずれかで示されるアンジオテンシンI変換酵素阻害活性を有するジまたはトリペプチド化合物であった。これらの中で、式(i)乃至(vi)は、サケ筋肉及び肝臓の両方に存在が確認されたものである。そして、上記21種類のアミノ酸配列の異なるペプチド化合物のうち、特に(xvi)のIle−Val−Phe及び(xvii)のPhe−Ile−Alaは文献未記載の新規なペプチド化合物である。又、Val−Leu(i)、Tyr−Phe(vi)、Leu−Ile(viii)、Ile−Val−Leu(xi)、Val−Ile−Leu(xii)、Val−Ile−Phe(xiii)、Tyr−Leu−Val(xiv)、Phe−Val−Leu(xv)は各種の一般有機化学的手法あるいは酵素分解手法により得られたことが報告されているが、それらにアンジオテンシンI変換酵素阻害活性があるとの報告はされていない。それ以外の11種類のペプチド化合物のアンジオテンシンI変換酵素阻害活性は別個に報告されているが、サケ由来として、又、それが一定の割合で含まれる混合物としての報告はされていない。   These were di- or tripeptide compounds having angiotensin I converting enzyme inhibitory activity represented by any of the amino acid sequences (i) to (xxi) listed above. Among these, the formulas (i) to (vi) have been confirmed to exist in both salmon muscle and liver. Among the 21 types of peptide compounds having different amino acid sequences, (xvi) Ile-Val-Phe and (xvii) Phe-Ile-Ala are novel peptide compounds not described in any literature. Moreover, Val-Leu (i), Tyr-Phe (vi), Leu-Ile (viii), Ile-Val-Leu (xi), Val-Ile-Leu (xii), Val-Ile-Phe (xiii), Tyr-Leu-Val (xiv) and Phe-Val-Leu (xv) have been reported to be obtained by various general organic chemical methods or enzymatic degradation methods, but they have angiotensin I converting enzyme inhibitory activity. No report has been made. The other 11 types of peptide compounds have been reported separately as angiotensin I converting enzyme inhibitory activity, but they have not been reported as being derived from salmon or as a mixture containing them at a certain ratio.

更に、サケ肝臓由来のタンパク分解酵素処理物から同定した7種のアンジオテンシンI変換酵素阻害ペプチドの全てを特定の割合(サケ肝臓酵素処理物中に含まれる割合)で含む混合物に対し、元のサケ肝臓由来酵素分解物は50〜100倍ものアンジオテンシンI変換酵素阻害活性を有していることを確認した。   In addition, a mixture containing all seven types of angiotensin I-converting enzyme inhibitory peptides identified from the processed proteolytic enzyme derived from salmon liver in a specific ratio (the ratio included in the processed salmon liver enzyme) is compared to the original salmon. It was confirmed that the liver-derived enzyme degradation product had angiotensin I converting enzyme inhibitory activity of 50 to 100 times.

そこで本発明者らは、これらサケ由来の21種類のアミノ酸配列のいずれかで示されるペプチド化合物について、そのアンジオテンシンI変換酵素阻害活性を測定したところ、それぞれに血管内への吸収性、安定性、安全性が高い強力なアンジオテンシンI変換酵素阻害活性を有することを新たに見出した。そこで、発明者らは、このサケ由来のアンジオテンシンI変換酵素阻害ペプチド化合物を利用して、高血圧症を改善したり治療するための医薬品(医薬原料を含む)、医薬部外品、食品添加物や機能性食品等を開発し提供せんとするものである。   Therefore, the present inventors measured the angiotensin I converting enzyme inhibitory activity of the peptide compound represented by any one of these 21 kinds of salmon-derived amino acid sequences. It was newly found to have a strong angiotensin I converting enzyme inhibitory activity with high safety. Therefore, the inventors have used a salmon-derived angiotensin I converting enzyme inhibitory peptide compound to improve or treat hypertension (including pharmaceutical raw materials), quasi drugs, food additives, We will develop and provide functional foods.

そして、本発明者らは、サケ筋肉または肝臓の蛋白質分解酵素処理物中に存在する21種の強力なアンジオテンシンI変換酵素阻害ペプチドを見出し、これを利用してアンジオテンシンI変換酵素阻害ペプチド化合物またはそれを含有するペプチド組成物とそれらの製造方法の発明を完成するに至ったものである。   Then, the present inventors have found 21 kinds of potent angiotensin I converting enzyme inhibitory peptides present in processed salmon muscle or liver proteolytic enzyme, and using these, angiotensin I converting enzyme inhibitory peptide compounds or The present invention has been completed for inventions of peptide compositions containing these and methods for producing them.

すなわち、 本発明にかかるアンジオテンシンI変換酵素阻害剤は、Ile−Val−Phe(xvi)のアミノ酸配列で示されるペプチド化合物及びPhe−Ile−Ala(xvii)のアミノ酸配列で示されるペプチド化合物、およびこれらのペプチド化合物の薬学的に許容される塩から選択された少なくとも1種を有効成分として含むことを特徴とするアンジオテンシンI変換酵素阻害剤である。 That is, the angiotensin I converting enzyme inhibitor according to the present invention includes a peptide compound represented by the amino acid sequence of Ile-Val-Phe (xvi), a peptide compound represented by the amino acid sequence of Phe-Ile-Ala (xvii), and these An angiotensin I converting enzyme inhibitor comprising, as an active ingredient, at least one selected from pharmaceutically acceptable salts of the peptide compounds.

尚、本明細書中で、Val若しくはVはバリン、Leu若しくはLはロイシン、Ile若しくはIはイソロイシン、Phe若しくはFはフェニルアラニン、Tyr若しくはYはタイロシン、Ala若しくはAはアラニン、Trp若しくはWはトリプトファンを意味し、その他のアミノ酸残基を表す各記号や表記法もアミノ酸化学における慣用的方法に基づくもので、アミノ酸配列は左側がN末端、右側がC末端である。又、これらアミノ酸は特に表記しない限りは何れもL体である。   In this specification, Val or V is valine, Leu or L is leucine, Ile or I is isoleucine, Phe or F is phenylalanine, Tyr or Y is tylosin, Ala or A is alanine, Trp or W is tryptophan. This means that each symbol and notation representing other amino acid residues is also based on a conventional method in amino acid chemistry, and the amino acid sequence is N-terminal on the left side and C-terminal on the right side. These amino acids are all in the L form unless otherwise indicated.

まず、本発明において用いられるアンジオテンシンI変換酵素阻害活性を有するペプチド化合物は、先に挙げた(i)〜(xxi)から選択されるが、Ile−Val−Phe(xvi)のアミノ酸配列で示されるペプチド化合物及びPhe−Ile−Ala(xvii)のアミノ酸配列で示されるペプチド化合物の少なくとも1種がアンジオテンシンI変換酵素阻害剤の必須有効成分として用いられる。 First, the peptide compound having angiotensin I converting enzyme inhibitory activity used in the present invention is selected from (i) to (xxi) listed above, and is represented by the amino acid sequence of Ile-Val-Phe (xvi). At least one of the peptide compound and the peptide compound represented by the amino acid sequence of Phe-Ile-Ala (xvii) is used as an essential active ingredient of an angiotensin I converting enzyme inhibitor.

本発明にかかるペプチド化合物は、薬学的に許容される塩の形で使用することもできる。この塩の形成には、有機酸、無機酸、有機塩基、無機塩基を所望に応じて用いることができる。ペプチド化合物を薬学的に許容される塩として用いる場合には、1種のペプチド化合物について、それから得られる塩の1種を用いてもよいし、1種のペプチド化合物から得られる酸または塩基が異なる2種以上の塩の組み合わせを用いてもよい。   The peptide compound according to the present invention can also be used in the form of a pharmaceutically acceptable salt. For the formation of this salt, an organic acid, an inorganic acid, an organic base, or an inorganic base can be used as desired. When a peptide compound is used as a pharmaceutically acceptable salt, one kind of salt obtained therefrom may be used for one kind of peptide compound, or the acid or base obtained from one kind of peptide compound is different. A combination of two or more salts may be used.

上記の(i)乃至(xxi)の21種類のアミノ酸配列の異なるジまたはトリペプチド化合物は、それぞれに血管内への吸収性、安定性、安全性が高い強力なアンジオテンシンI変換酵素阻害活性を有している。 The above-mentioned 21 kinds of di- or tripeptide compounds having different amino acid sequences (i) to (xxi) each have a potent angiotensin I converting enzyme inhibitory activity with high absorbability, stability and safety in blood vessels. is doing.

また、上記の21種類のアミノ酸配列の少なくとも1種からなるペプチド化合物またはペプチド混合物は、当該化合物と同じアミノ酸配列を有する蛋白質から上記と同様の蛋白質分解酵素処理にても得られるが、これらのペプチドはアミノ酸を段階的に導入する一般的な有機化学的液相または固相法によるペプチド合成や遺伝子工学手法等によっても得る事ができる。   A peptide compound or peptide mixture comprising at least one of the above 21 amino acid sequences can also be obtained from a protein having the same amino acid sequence as the compound by the same proteolytic enzyme treatment as described above. Can also be obtained by peptide synthesis or genetic engineering techniques using general organic chemical liquid phase or solid phase methods in which amino acids are introduced stepwise.

本発明において用いられる蛋白質分解酵素としては、例えばBacillus属(例えばBacillus subtilis、Bacillus thermoproteolyticus、Bacillus licheniformis等)の産生する酵素、Aspergillus属(例えばAspergillus oryzae、Aspergillus niger、Aspergillus mellens等)の産生する酵素、Rhizopus属(例えばRhizopus niveus、Rhizopus delemar等)の産生する酵素、ペプシン、パンクレアチン、パパイン等が挙げられる。これらの酵素は単独、または2種以上を組み合わせてもよい。   Examples of the proteolytic enzyme used in the present invention include enzymes produced by the genus Bacillus (eg, Bacillus subtilis, Bacillus thermoproteolyticus, Bacillus licheniformis, etc.), enzymes produced by the genus Aspergillus (eg, Aspergillus oryzae, Aspergillus niger, Aspergillus mellens, etc.), Examples include enzymes produced by the genus Rhizopus (for example, Rhizopus niveus, Rhizopus delemar, etc.), pepsin, pancreatin, papain and the like. These enzymes may be used alone or in combination of two or more.

本発明にかかるペプチド化合物は、薬学的に許容される塩の形で用いることもできる。この薬学的に許容される塩は、先に記載したアンジオテンシンI変換酵素阻害活性のペプチド化合物の1種若しくは2種以上と、無機酸若しくは有機酸、または無機塩基若しくは有機塩基と、で形成してなる薬学的に許容される塩である。   The peptide compound according to the present invention can also be used in the form of a pharmaceutically acceptable salt. This pharmaceutically acceptable salt is formed by one or more of the aforementioned angiotensin I converting enzyme inhibitory activity peptide compounds and an inorganic acid or organic acid, or an inorganic base or organic base. And a pharmaceutically acceptable salt.

この薬学的に許容される塩も、その由来を問わずに得られた(蛋白質分解酵素処理やペプチド合成や遺伝子工学手法で得られるものを含む。)アンジオテンシンI変換酵素阻害活性を有するペプチド化合物に対して、薬学的に許容される塩を形成し得る酸または塩基を用いる形成することができる。   This pharmaceutically acceptable salt was also obtained regardless of its origin (including those obtained by proteolytic enzyme treatment, peptide synthesis, and genetic engineering techniques). Peptide compounds having angiotensin I converting enzyme inhibitory activity In contrast, it can be formed using acids or bases that can form pharmaceutically acceptable salts.

なお、本発明で得られるペプチド化合物は必要に応じて無機酸若しくは有機酸との塩や無機塩基若しくは有機塩基との塩を形成させる事ができる。酸や塩基としては、塩の用途に応じて選択できるが、食品、化粧品、医薬品などへの用途を考慮すると、以下に挙げる薬学的に許容される塩が好ましい。酸付加塩としては、例えば、塩酸塩、硝酸塩、硫酸塩、メタンスルホン酸塩、p−トルエンスルホン酸塩、更にはシュウ酸、マロン酸、コハク酸、マレイン酸、またはフマル酸等のジカルボン酸との塩、更に、酢酸、プロピオン酸、または酪酸等のモノカルボン酸との塩等を挙げる事ができる。又、本発明で得られるペプチド化合物の塩の形成に適した無機塩基は、例えば、アンモニア、ナトリウム、リチウム、カルシウム、マグネシウム、アルミニウム等の水酸化物、炭酸塩及び重炭酸塩等である。有機塩基との塩としては、例えば、メチルアミン、ジメチルアミン、トリエチルアミンの様なモノ−、ジ−及びトリ−アルキルアミン塩、モノ−、ジ−及びトリ−ヒドロキシアルキルアミン塩、グアニジン塩、N −メチルグルコサミン塩等を挙げる事ができる。   In addition, the peptide compound obtained by this invention can form the salt with an inorganic acid or an organic acid, and the salt with an inorganic base or an organic base as needed. The acid or base can be selected according to the use of the salt, but the following pharmaceutically acceptable salts are preferable in consideration of the use for foods, cosmetics, pharmaceuticals and the like. Examples of the acid addition salt include hydrochloride, nitrate, sulfate, methanesulfonate, p-toluenesulfonate, and dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid. And salts with monocarboxylic acids such as acetic acid, propionic acid or butyric acid. Inorganic bases suitable for forming a salt of the peptide compound obtained in the present invention are, for example, hydroxides such as ammonia, sodium, lithium, calcium, magnesium and aluminum, carbonates and bicarbonates. Examples of salts with organic bases include mono-, di- and tri-alkylamine salts such as methylamine, dimethylamine and triethylamine, mono-, di- and trihydroxyalkylamine salts, guanidine salts, N- Examples thereof include methyl glucosamine salt.

先に記載した式(i)乃至式(xxi)で示されるアンジオテンシンI変換酵素阻害活性を有するペプチド化合物は、サケ筋肉またはサケ肝臓、あるいはこれらの処理物を蛋白質分解酵素で分解し、分解液から得られる。このペプチド化合物も薬学的に許容される塩の形で用いることはできる。 The peptide compound having angiotensin I converting enzyme inhibitory activity represented by the formulas (i) to (xxi) described above decomposes salmon muscle or salmon liver, or a processed product thereof with a proteolytic enzyme, Is obtained . This peptide compound can also be used in the form of a pharmaceutically acceptable salt.

ここで当該ペプチド化合物を得るサケの種類は特に限定されないが、シロサケ(Oncorhynchus keta)、ベニサケ(Oncorhynchus nerka)、ギンザケ(Oncorhynchus kisutch)、マスノスケ(Oncorhynchus tshawytscha)、カラフトマス(Oncorhynchus gorbuscha)、ニジマス(Oncorhynchus mykiss)、サクラマス(Oncorhynchus masou masou)、イワナ(Salvelinus leucomaenis)、ブラウントラウト(Salmo trutta)、アトランティックサーモン(Salmo salar salar)等が好適に用いられる。   Here, the type of salmon from which the peptide compound is obtained is not particularly limited. ), Salmon trout (Oncorhynchus masou masou), charr (Salvelinus leucomaenis), brown trout (Salmo trutta), Atlantic salmon (Salmo salar salar), etc. are preferably used.

また、このサケまたはその処理物の分解に用いる蛋白質分解酵素は、先に記載したのと同様の蛋白質分解酵素であり、これらの酵素は単独、または2種以上を組み合わせてもよいこと勿論である。   The proteolytic enzyme used for decomposing this salmon or its processed product is the same proteolytic enzyme as described above, and these enzymes may be used alone or in combination of two or more. .

本発明にかかるアンジオテンシンI変換酵素阻害剤は、上記のペプチド化合物及びそれらの薬学的に許容される塩からなる群から選択されるが、Ile−Val−Phe(xvi)のアミノ酸配列で示されるペプチド化合物及びPhe−Ile−Ala(xvii)のアミノ酸配列で示されるペプチド化合物、およびこれらのペプチド化合物の薬学的に許容される塩から選択された少なくとも1種を必須有効成分として含む。 The angiotensin I converting enzyme inhibitor according to the present invention is selected from the group consisting of the above peptide compounds and pharmaceutically acceptable salts thereof, and is a peptide represented by the amino acid sequence of Ile-Val-Phe (xvi) A compound and a peptide compound represented by the amino acid sequence of Phe-Ile-Ala (xvii) and at least one selected from pharmaceutically acceptable salts of these peptide compounds are contained as essential active ingredients.

本発明にかかるアンジオテンシンI変換酵素阻害活性を有するペプチド化合物及びそれらの薬学的に許容される塩の少なくとも1種を食品、化粧品、医薬品または医薬部外品に含有させることで、アンジオテンシンI変換酵素阻害活性に由来する高血圧症の予防、緩和あるいは治療等の効果を得ることができる。   Inhibition of angiotensin I converting enzyme by containing at least one peptide compound having an angiotensin I converting enzyme inhibitory activity and a pharmaceutically acceptable salt thereof according to the present invention in foods, cosmetics, pharmaceuticals or quasi drugs. Effects such as prevention, alleviation or treatment of hypertension derived from the activity can be obtained.

高血圧治療及び/または予防剤は、上記のペプチド化合物及びそれらの薬学的に許容される塩の少なくとも1種と、必要に応じて適宜賦形剤等の添加剤と混合して、例えば注射剤、経口用液剤、錠剤、顆粒剤、散剤、カプセル剤、坐剤、軟膏、点鼻剤、貼付剤等の形態で製剤化する事により得ることができる。   The antihypertensive agent and / or prophylactic agent is prepared by mixing at least one of the above peptide compounds and pharmaceutically acceptable salts thereof with an additive such as an excipient as necessary, for example, an injection, It can be obtained by formulation in the form of oral liquids, tablets, granules, powders, capsules, suppositories, ointments, nasal drops, patches and the like.

上記の各種製剤で用いられる添加剤としては、例えばステアリン酸マグネシウム、タルク、乳糖、デキストリン、デンプン類、メチルセルロ−ス、脂肪酸グリセリド類、水、プロピレングリコ−ル、マクロゴ−ル類、アルコ−ル、結晶セルロ−ス、ヒドロキシプロピルセルロ−ス、低置換度ヒドロキシプロピルセルロ−ス、カルメロ−ス類、ポピドン、ポリビニルアルコ−ル、ステアリン酸カルシウム等を挙げる事ができる。この際、必要に応じて、着色剤、安定化剤、抗酸化剤、防腐剤、pH 調節剤、等張化剤、溶解補助剤及び/または無痛化剤等を添加する事ができる。顆粒剤、錠剤、またはカプセル剤は、コ−ティング基剤、例えばヒドロキシプロピルメチルセルロ−ス、ヒドロキシプロピルメチルセルロ−スフタレ−ト等によってコ−ティングする事もできる。これらの製剤は本発明で得られるペプチド化合物を0.01重量%以上、好ましくは0.1 〜70重量%の割合で含有する事ができる。   Examples of additives used in the above various preparations include magnesium stearate, talc, lactose, dextrin, starches, methyl cellulose, fatty acid glycerides, water, propylene glycol, macrogols, alcohol, Crystalline cellulose, hydroxypropyl cellulose, low-substituted hydroxypropyl cellulose, carmelloses, popidone, polyvinyl alcohol, calcium stearate and the like can be mentioned. In this case, a colorant, a stabilizer, an antioxidant, an antiseptic, a pH adjuster, a tonicity agent, a solubilizing agent and / or a soothing agent can be added as necessary. Granules, tablets, or capsules can be coated with a coating base such as hydroxypropylmethylcellulose, hydroxypropylmethylcellulose phthalate, and the like. These preparations can contain the peptide compound obtained in the present invention in an amount of 0.01% by weight or more, preferably 0.1 to 70% by weight.

製剤の調製に際しては必要に応じメント−ル、クエン酸及びその塩類、香料等の矯臭剤を用いる事ができる。更に、本発明で得られるアンジオテンシンI変換酵素 阻害剤は治療上有用な他の成分、例えばカプトプリル、エナラプリル等の公知の降圧剤を含有、または併用する事もできる。   In preparing the preparation, flavoring agents such as menthol, citric acid and salts thereof, and fragrance can be used as necessary. Furthermore, the angiotensin I converting enzyme inhibitor obtained in the present invention may contain other components useful for treatment, for example, known antihypertensive agents such as captopril and enalapril, or may be used in combination.

本発明で得られるペプチド化合物及びそれらの薬学的に許容される塩の少なくとも1つを有効成分とする事を特徴とするアンジオテンシンI変換酵素阻害剤は、ヒトを含めた哺乳動物に経口的または非経口的(例えば経皮、静脈内、腹腔内等)に投与される。投与量は動物種、対象となる患者の人種、性別、症状、体重、年齢、血圧の程度、投与方法等によって異なり一概には言えないが、一般的なヒトの成人に経口投与する場合は、通常、1日につき体重1kgあたり0.1〜200mg、好ましくは1〜150mgであり、これを通常1日1回または2〜3回に分けて投与する。しかしながらその投与量は症状の程度に応じ適宜選択する事ができる。   An angiotensin I converting enzyme inhibitor characterized by comprising as an active ingredient at least one of the peptide compounds obtained in the present invention and pharmaceutically acceptable salts thereof is orally or non-humanly used in mammals including humans. It is administered orally (for example, transdermally, intravenously, intraperitoneally, etc.). The dose varies depending on the animal species, the race of the target patient, sex, symptoms, weight, age, blood pressure level, method of administration, etc., but it cannot be said unconditionally, but when administered orally to general human adults The dose is usually 0.1 to 200 mg / kg body weight per day, preferably 1 to 150 mg per day, and this is usually administered once a day or divided into 2 to 3 times a day. However, the dose can be appropriately selected according to the degree of symptoms.

本発明のペプチド化合物は優れたアンジオテンシンI変換酵素阻害活性を有し、血圧降下作用、ブラジキニン不活性化抑制作用を示す。しかも本発明で得られるペプチド化合物は臭い、味、色に特異な厭味が認められない事から経口摂取が容易である。その為、本発明で得られるペプチド化合物、あるいは後述の組成物を、医薬品としてだけでなく、例えば、ゼリ−、飴、顆粒菓、錠菓、飲料、ス−プ、麺、煎餅、和菓子、洋菓子、冷菓、焼き菓子、調味料等の食品に配合、添加し提供する事ができるし、化粧品、または、医薬部外品として提供することもできる。医薬部外品としては、例えば、育毛剤・養毛剤、脱毛剤、染毛剤、脱色剤、パーマネントウェーブ用剤、浴用剤、薬用化粧品・薬用石けん、薬用歯みがき類、清涼剤、腋臭防止剤、てんか粉類、などが挙げられる。   The peptide compound of the present invention has excellent angiotensin I converting enzyme inhibitory activity, and exhibits blood pressure lowering action and bradykinin inactivation inhibiting action. Moreover, the peptide compound obtained by the present invention is easy to be taken orally because no peculiar taste of smell, taste and color is observed. Therefore, the peptide compound obtained in the present invention or the composition described later is used not only as a pharmaceutical product, but also, for example, jelly, rice cake, granule confectionery, tablet confectionery, beverage, supermarket, noodle, rice cracker, Japanese confectionery, Western confectionery. It can be provided by adding to a food such as frozen confectionery, baked confectionery, seasoning, etc., and can also be provided as cosmetics or quasi-drugs. Quasi-drugs include, for example, hair restorers, hair nourishing agents, hair removal agents, hair dyes, depigmenting agents, permanent wave agents, bath preparations, medicated cosmetics / medicinal soaps, medicated dentifrices, refreshing agents, odor control agents, and tenka And powders.

これらの物品へのペプチド化合物の含有量は、その物品の目的とする用途や機能に応じて設定すればよく、例えば、0.01重量%以上、好ましくは0.1〜70重量%の範囲から選択することができる。また、化粧品の場合は、各種の固体状、半固体状あるいは液体状の化粧品用の基材と、目的とする化粧効果を得るための有効成分に加えて、ペプチド化合物あるいは組成物を用いて、ローション、クリーム、パウダー、乳液ゲルなどの各種形態の化粧品を構成することができる。   What is necessary is just to set the content of the peptide compound in these articles | goods according to the intended use and function of the articles | goods, for example, 0.01 weight% or more, Preferably it is selected from the range of 0.1 to 70 weight%. it can. In the case of cosmetics, in addition to various solid, semi-solid or liquid cosmetic base materials and active ingredients for obtaining the desired cosmetic effect, using peptide compounds or compositions, Various forms of cosmetics such as lotions, creams, powders, and emulsion gels can be constructed.

本発明にかかるアンジオテンシンI変換酵素阻害活性を有する化合物を食品、化粧品、医薬品及び医薬部外品に用いる場合には、サケからの抽出物や粗ペプチド混合物、粗精製物などの各種の組成物(調製物)の形で用いることもできる。この組成物は、サケ筋肉または肝臓、あるいはこれらの処理物を蛋白質分解酵素で分解して得られた分解液から目的とするペプチド化合物を含有する成分を抽出し、必要に応じて精製して得られた調製物として得ることができる。この調製物(組成物)の好ましい例としては、サケ筋肉を用いた製造例1におけるペプチド混合物と同様の処理によって得られる以下の表1−1で示される組成のものや、サケ肝臓を用いた製造例3におけるペプチド混合物と同様の処理によって得られる以下の表1−2で示される組成のものを挙げることができる。   When the compound having angiotensin I converting enzyme inhibitory activity according to the present invention is used in foods, cosmetics, pharmaceuticals, and quasi drugs, various compositions such as salmon extracts, crude peptide mixtures, and crude purified products ( It can also be used in the form of a preparation. This composition is obtained by extracting components containing the target peptide compound from salmon muscle or liver, or a degradation solution obtained by decomposing these processed products with a proteolytic enzyme, and purifying as necessary. As a prepared product. As a preferable example of this preparation (composition), the thing of the composition shown by the following Table 1-1 obtained by the process similar to the peptide mixture in the manufacture example 1 using a salmon muscle, and the salmon liver were used. The thing of the composition shown by the following Table 1-2 obtained by the process similar to the peptide mixture in manufacture example 3 can be mentioned.

Figure 0004229933
Figure 0004229933

なお、これらのペプチド組成物に、単離または合成された各ペプチドの少なくとも1種を添加してその配合量を変化させてもよい。   In addition, at least 1 sort of each isolated or synthesized peptide may be added to these peptide compositions, and the compounding quantity may be changed.

上記のペプチド組成物の中で、サケ肝臓またはその処理物をタンパク分解酵素で処理して得られた調製物(ペプチド以外の成分も含む)のアンジオテンシンI変換酵素阻害活性は、上記のペプチド(i)〜(vi)及び(xviii)を単離して表1−2の組成で単に混合した混合物に対して約50〜100倍の値を示すことが後述する試験例8により確認されている。従って、この調製物は、アンジオテンシンI変換酵素阻害として好ましい態様のひとつである。   Among the above peptide compositions, the angiotensin I converting enzyme inhibitory activity of a preparation (including components other than peptides) obtained by treating salmon liver or a processed product thereof with a proteolytic enzyme is the same as that of the peptide (i ) To (vi) and (xviii) were isolated by Test Example 8 to be described later to show a value of about 50 to 100 times that obtained by simply mixing the compositions shown in Table 1-2. Therefore, this preparation is one of the preferred embodiments for inhibiting angiotensin I converting enzyme.

上記調製物は、好ましくは、サケ筋肉または肝臓、あるいはこれらの処理物を蛋白質分解酵素と反応させて分解産物を含む分解液を得る工程と、この分解液から先に所望とするペプチド化合物を抽出する工程と、を有する製造方法により得ることができる。   The preparation is preferably a step of reacting salmon muscle or liver or a processed product thereof with a proteolytic enzyme to obtain a degradation solution containing degradation products, and extracting a desired peptide compound from the degradation solution. It can obtain by the manufacturing method which has a process to do.

本発明に係るペプチド化合物を、サケ筋肉または肝臓、あるいはこれらの処理物より製造する方法を具体的に説明する。サケ筋肉または肝臓、あるいはこれらの処理物を蛋白質分解酵素にて分解する方法は、常法に従って行う。例えば所望によりサケ筋肉または肝臓を粉砕後、精製水を加え、必要に応じてpHと温度を至適値に調整し適当な蛋白質分解酵素を添加してインキュベ−トする。次いで必要に応じて中和した後、酵素を失活させて酵素分解液を得る。分解液を例えば濾紙及び/または濾過助剤等を用いて濾過する事によって不溶物を除去し、得られた濾液を限外濾過等で処理して分子量5〜1万以下の粗ペプチド画分を得る。得られた粗ペプチド画分は必要に応じて活性炭処理、濾過後濃縮して粗ペプチド混合物を得る。   A method for producing the peptide compound according to the present invention from salmon muscle or liver, or a processed product thereof will be specifically described. A method for decomposing salmon muscle or liver or a processed product thereof with a proteolytic enzyme is performed according to a conventional method. For example, if desired, salmon muscle or liver is crushed, purified water is added, pH and temperature are adjusted to optimum values as necessary, and an appropriate proteolytic enzyme is added and incubated. Next, after neutralization as necessary, the enzyme is deactivated to obtain an enzyme decomposition solution. The decomposition solution is filtered using, for example, filter paper and / or a filter aid to remove insoluble matter, and the resulting filtrate is treated by ultrafiltration to obtain a crude peptide fraction having a molecular weight of 50,000 to 10,000. obtain. The obtained crude peptide fraction is treated with activated carbon as necessary, filtered and concentrated to obtain a crude peptide mixture.

この粗ペプチド混合物や、この粗ペプチド混合物から不純物を必要に応じて除去し、精製して得られる調製物を先に述べた組成物として利用することもできる。更に、粗ペプチド混合物は所望により液液分配等を経てカラムクロマトグラフィ−にて分画し、優れたアンジオテンシンI変換酵素阻害活性を有する各ペプチド化合物を得ることができる。   This crude peptide mixture or a preparation obtained by removing impurities from this crude peptide mixture as necessary and purifying it can also be used as the composition described above. Furthermore, the crude peptide mixture can be fractionated by column chromatography through liquid-liquid partitioning or the like, if desired, to obtain each peptide compound having excellent angiotensin I converting enzyme inhibitory activity.

サケ筋肉または肝臓の処理物としては、細断したサケ筋肉または肝臓に水溶性液媒体、好ましくはエタノール、水、酢酸、あるいはこれらを適当な割合で混合したものを0.1乃至10等容、好ましくは1乃至5等容を加え、室温乃至100℃、好ましくは20乃至70℃条件下で0.1乃至5時間、好ましくは0.5乃至3時間攪拌し、夾雑物を除いたものが好適に利用できる。   As processed salmon muscle or liver, 0.1 to 10 equivalents of shredded salmon muscle or liver in an aqueous liquid medium, preferably ethanol, water, acetic acid, or a mixture of these in an appropriate ratio, Preferably, 1 to 5 equivalent volumes are added, and the mixture is stirred for 0.1 to 5 hours, preferably 0.5 to 3 hours under room temperature to 100 ° C., preferably 20 to 70 ° C. to remove impurities. Available to:

具体例としては、細断サケ筋肉または肝臓200gにエタノール500mLを加え2時間攪拌した。吸引濾過にてエタノールを除き、サケ処理物185gを得て後述の製造で用いた。   As a specific example, 500 mL of ethanol was added to 200 g of shredded salmon muscle or liver and stirred for 2 hours. Ethanol was removed by suction filtration to obtain 185 g of a salmon-treated product, which was used in the production described later.

特に好ましいタンパク質分解酵素及び処理条件としては、サケ筋肉または肝臓、あるいはこれらの処理物に水0.5乃至10等容、好ましくは1乃至5等容を加え、液温を室温乃至70℃、好ましくは30乃至60℃に保ち、必要に応じ適当な酸、アルカリを用いpHを1乃至10、好ましくは3乃至8に調整したものへ、好ましくはサーモリシン、パパイン等のタンパク質分解酵素を加え、1乃至12時間、好ましくは3乃至8時間、反応を行う。用いる酸、アルカリは塩酸、酢酸、クエン酸、水酸化ナトリウム、炭酸水素ナトリウム、アンモニア水等が選ばれる。   Particularly preferred proteolytic enzymes and treatment conditions are as follows: salmon muscle or liver, or a treated product thereof, 0.5 to 10 equivalents, preferably 1 to 5 equivalents of water, and the liquid temperature is room temperature to 70 ° C., preferably Is kept at 30 to 60 ° C., and a suitable acid or alkali is used to adjust the pH to 1 to 10, preferably 3 to 8, preferably with addition of a proteolytic enzyme such as thermolysin or papain. The reaction is carried out for 12 hours, preferably 3 to 8 hours. As the acid and alkali to be used, hydrochloric acid, acetic acid, citric acid, sodium hydroxide, sodium hydrogen carbonate, aqueous ammonia and the like are selected.

一方、上記の液液分配は、サケ筋肉または肝臓の分解液のpHを必要に応じ酸、アルカリで1乃至10、好ましくは2乃至9に調整し適当な有機溶媒を用いて行なうことができる。用いる酸、アルカリは塩酸、酢酸、クエン酸、水酸化ナトリウム、炭酸水素ナトリウム、アンモニア水等が選ばれる。又、用いる有機溶媒は水と混和しないものであればよく、クロロホルム、酢酸エチル、ブタノール、オクタノール等が選ばれる。   On the other hand, the liquid-liquid distribution can be performed using a suitable organic solvent by adjusting the pH of the salmon muscle or liver decomposition solution to 1 to 10, preferably 2 to 9, with acid or alkali as required. As the acid and alkali to be used, hydrochloric acid, acetic acid, citric acid, sodium hydroxide, sodium hydrogen carbonate, aqueous ammonia and the like are selected. The organic solvent to be used may be any one that is immiscible with water, and chloroform, ethyl acetate, butanol, octanol and the like are selected.

また、上記のカラムクロマトにおける好ましい分離用液体としては、クロロホルム、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、トルエン、アセトニトリル、ピリジン、ジエチルエーテル、酢酸、トリフルオロ酢酸、ギ酸、アンモニア水、水などを挙げることができ、分離用の媒体としては、順相シリカゲル、逆相シリカゲル、酸性イオン交換樹脂、塩基性イオン交換樹脂などを挙げることができる。   Preferred separation liquids in the above column chromatography include chloroform, methanol, ethanol, butanol, isopropanol, ethyl acetate, toluene, acetonitrile, pyridine, diethyl ether, acetic acid, trifluoroacetic acid, formic acid, aqueous ammonia, water, and the like. Examples of the separation medium include normal phase silica gel, reverse phase silica gel, acidic ion exchange resin, and basic ion exchange resin.

以下、本発明の実施例について詳細に説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
<製造例1>アンジオテンシンI変換酵素阻害ペプチド化合物の製造
カラフトマス(Oncorhynchus gorbuscha)筋肉3kgを細断、精製水9kgを加え55℃に加温した後、パパイン(Carica Papaya)7.5gを添加して8時間攪拌し酵素分解反応(pH5〜6)を行った。反応液を95℃に加温して酵素活性を失活させ、冷却後、中間孔径7ミクロンのセライトを用いて濾過した。濾液を限外濾過膜(ロミコンHF1.0−43−PM50)に透過させて分子量5万以上の画分を除いた後、噴霧乾燥してアンジオテンシンI変換酵素阻害ペプチド混合物の粉末360gを得た。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
Example 1
<Production Example 1> Production of Angiotensin I Converting Enzyme Inhibiting Peptide Compound After cutting 3 kg of carrot trout (Oncorhynchus gorbuscha) muscle, adding 9 kg of purified water and warming to 55 ° C, adding 7.5 g of papain (Carica Papaya) and adding 8 The mixture was stirred for an hour to carry out an enzymatic decomposition reaction (pH 5-6). The reaction solution was heated to 95 ° C. to deactivate the enzyme activity, cooled, and filtered using Celite having an intermediate pore diameter of 7 μm. The filtrate was passed through an ultrafiltration membrane (Romicon HF1.0-43-PM50) to remove a fraction having a molecular weight of 50,000 or more and then spray-dried to obtain 360 g of an angiotensin I converting enzyme-inhibiting peptide mixture powder.

上記の方法により得たアンジオテンシンI変換酵素阻害ペプチド混合物の粉末を下記条件でHPLC分析したところ図1に示すようなクロマトグラムを得た。
<HPLC分析条件>
カラム:Waters μBONDASPHERE C18 3.9×150mm
カラム温度:40℃
移動相A:H2O(0.1容量%TFA含有)
移動相B:アセトニトリル(0.1容量%TFA含有)
グラジエント:0〜60分にかけてB液5容量%からB液40容量%へのリニアグラジェント60〜75分にかけてB液40容量%保持。
分析時間:75分
流量:0.4ml/min
注入量:15μL
検出:UV220nm
(実施例2)
<製造例2>
そこで、前記ペプチド混合物粗体中に含有している強力なアンジオテンシンI変換酵素阻害ペプチドの夫々を分離処理することとした。
When the powder of the angiotensin I converting enzyme inhibitory peptide mixture obtained by the above method was subjected to HPLC analysis under the following conditions, a chromatogram as shown in FIG. 1 was obtained.
<HPLC analysis conditions>
Column: Waters μBONDASPHERE C18 3.9 × 150mm
Column temperature: 40 ° C
Mobile phase A: H 2 O (containing 0.1% by volume TFA)
Mobile phase B: acetonitrile (containing 0.1 vol% TFA)
Gradient: A linear gradient from 5% by volume of B solution to 40% by volume of B solution from 0 to 60 minutes, and 40% by volume of B solution from 60 to 75 minutes.
Analysis time: 75 minutes Flow rate: 0.4ml / min
Injection volume: 15μL
Detection: UV220nm
(Example 2)
<Production Example 2>
Therefore, each of the strong angiotensin I converting enzyme inhibitory peptides contained in the peptide mixture crude was subjected to separation treatment.

まず、製造例1に記載のペプチド混合物300 gを水1200mLに溶解させアンモニア水(28.0重量%)にてpHを8.0に調整した。この水溶液をn−ブタノ−ル1200mLで抽出し、水層を更にn−ブタノ−ル600mLで2回抽出した。n−ブタノ−ル層を減圧下濃縮して抽出物24gを得た。   First, 300 g of the peptide mixture described in Production Example 1 was dissolved in 1200 mL of water, and the pH was adjusted to 8.0 with aqueous ammonia (28.0 wt%). This aqueous solution was extracted with 1,200 mL of n-butanol, and the aqueous layer was further extracted twice with 600 mL of n-butanol. The n-butanol layer was concentrated under reduced pressure to obtain 24 g of an extract.

この抽出物20gを図2及び図3に記載の方法に従って分離した。分離したペプチドは一部を一般的有機化学的手法に従いメチルエステル化した。NMR測定により推定された構造を有する候補ペプチドをペプチド合成装置にて合成し、一般的有機化学的手法に従いメチルエステル化したものを標準物質とした。これらをLC-MSで比較する事で20種のペプチド構造を決定した。   20 g of this extract was separated according to the method described in FIGS. A part of the isolated peptide was methyl esterified according to a general organic chemical method. A candidate peptide having a structure estimated by NMR measurement was synthesized with a peptide synthesizer and methyl esterified according to a general organic chemistry method as a standard substance. By comparing these with LC-MS, 20 types of peptide structures were determined.

なお、分離されたIle−Val−Phe及びPhe−Ile−Alaのそれぞれについての遊離体のNMR及び融点(分解点)測定及びメチルエステル体のNMRの結果を以下に示す。
Ile-Val-Pheについて
<遊離体のデータ>
(1)1H NMRデータ:
1H NMR (500 MHz, methanol-d4; TMS); d0.87 (3H, d, J=7 Hz), 0.90 (3H, t, J=7 Hz), 0.95 (3H, d, J=7 Hz), 0.97 (3H, d, J=7 Hz), 1.10 (1H, ddq, J=14, 9 and 7 Hz), 1.47 (1H, ddq, J=14, 4 and 7 Hz), 1.83 (1H, dddq, J=9, 5, 4 and 7 Hz), 2.03 (1H, dqq, J=7, 7 and 7 Hz), 2.97 (1H, dd, J=14 and 9 Hz), 3.18 (1H, dd, J=14 and 5 Hz), 3.72 (1H, d, J=6 Hz), 4.22 (1H, d, J=7 Hz), 4.62 (1H, dd, J=9 and 5 Hz), 7.17 (1H, m) and 7.24 (4H, d, J=4 Hz).
(2)分解点 186℃
<メチルエステル体のデータ>
1H NMRデータ:
1H NMR (500 MHz, methanol-d4; TMS); d0.87 (3H, d, J=7 Hz), 0.88 (3H, t, J=7 Hz), 0.93 (3H, d, J=7 Hz), 0.95 (3H, d, J=7 Hz), 1.11 (1H, ddq, J=14, 9 and 7 Hz), 1.46 (1H, ddq, J=14, 4 and 7 Hz), 1.75 (1H, dddq, J=9, 5, 4 and 7 Hz), 2.02 (1H, dqq, J=7, 7 and 7 Hz), 2.97 (1H, dd, J=14 and 9 Hz), 3.14 (1H, dd, J=14 and 6 Hz), 3.41 (1H, d, J=5 Hz), 3.67 (3H, s), 4.21 (1H, d, J=7 Hz), 4.66 (1H, dd, J=9 and 6 Hz), 7.17-7.22 (3H, m) and 7.24-7.27 (2H, m).
Phe-Ile-Alaについて
<遊離体のデータ>
(1)1H NMRデータ
1H NMR (500 MHz, methanol-d4; TMS); d0.92 (3H, t, J=7 Hz), 0.99 (3H, d, J=7 Hz), 1.19 (1H, ddq, J=14, 9 and 7 Hz), 1.41 (3H, d, J=7 Hz), 1.60 (1H, ddq, J=14, 4 and 7 Hz), 1.85 (1H, dddq, J=9, 8, 4 and 7 Hz), 3.01 (1H, dd, J=14 and 9 Hz), 3.25 (1H, dd, J=14 and 5 Hz), 4.16 (1H, dd, J=9 and 6 Hz), 4.27 (1H, d, J=8 Hz), 4.33 (1H, q, J=7 Hz) and 7.26-7.36 (5H, m).
(2)分解点 188℃
<メチルエステル体のデータ>
1H NMRデータ:
1H NMR (500 MHz, methanol-d4; TMS); d0.89 (3H, t, J=7 Hz), 0.93 (3H, d, J=7 Hz), 1.12 (1H, ddq, J=13, 9 and 7 Hz), 1.39 (3H, d, J=7 Hz), 1.46 (1H, ddq, J=13, 4 and 7 Hz), 1.78 (1H, dddq, J=9, 8, 4 and 7 Hz), 2.80 (1H, dd, J=13 and 8 Hz), 3.03 (1H, dd, J=13 and 6 Hz), 3.63 (1H, dd, J=8 and 6 Hz), 3.70 (3H, s), 4.22 (1H, d, J=7 Hz), 4.37 (1H, q, J=7 Hz), 7.19-7.22 (3H, m) and 7.25-7.29 (2H, m).
<試験例1>アンジオテンシンI変換酵素阻害物質の阻害活性の測定
アンジオテンシンI変換酵素阻害活性を有するペプチド化合物の阻害性の測定は、Cushmann らの方法(Biochemical Pharmacology,20,1637−1648(1971)を一部改変して行った。
The results of NMR and melting point (decomposition point) measurement of the free form and NMR of the methyl ester form are shown below for each of the separated Ile-Val-Phe and Phe-Ile-Ala.
About Ile-Val-Phe <Ecological data>
(1) 1 H NMR data:
1 H NMR (500 MHz, methanol-d 4 ; TMS); d0.87 (3H, d, J = 7 Hz), 0.90 (3H, t, J = 7 Hz), 0.95 (3H, d, J = 7 Hz), 0.97 (3H, d, J = 7 Hz), 1.10 (1H, ddq, J = 14, 9 and 7 Hz), 1.47 (1H, ddq, J = 14, 4 and 7 Hz), 1.83 (1H , dddq, J = 9, 5, 4 and 7 Hz), 2.03 (1H, dqq, J = 7, 7 and 7 Hz), 2.97 (1H, dd, J = 14 and 9 Hz), 3.18 (1H, dd , J = 14 and 5 Hz), 3.72 (1H, d, J = 6 Hz), 4.22 (1H, d, J = 7 Hz), 4.62 (1H, dd, J = 9 and 5 Hz), 7.17 (1H , m) and 7.24 (4H, d, J = 4 Hz).
(2) Decomposition point 186 ℃
<Methyl ester data>
1 H NMR data:
1 H NMR (500 MHz, methanol-d 4 ; TMS); d0.87 (3H, d, J = 7 Hz), 0.88 (3H, t, J = 7 Hz), 0.93 (3H, d, J = 7 Hz), 0.95 (3H, d, J = 7 Hz), 1.11 (1H, ddq, J = 14, 9 and 7 Hz), 1.46 (1H, ddq, J = 14, 4 and 7 Hz), 1.75 (1H , dddq, J = 9, 5, 4 and 7 Hz), 2.02 (1H, dqq, J = 7, 7 and 7 Hz), 2.97 (1H, dd, J = 14 and 9 Hz), 3.14 (1H, dd , J = 14 and 6 Hz), 3.41 (1H, d, J = 5 Hz), 3.67 (3H, s), 4.21 (1H, d, J = 7 Hz), 4.66 (1H, dd, J = 9 and 6 Hz), 7.17-7.22 (3H, m) and 7.24-7.27 (2H, m).
About Phe-Ile-Ala <Ecological data>
(1) 1 H NMR data
1 H NMR (500 MHz, methanol-d 4 ; TMS); d0.92 (3H, t, J = 7 Hz), 0.99 (3H, d, J = 7 Hz), 1.19 (1H, ddq, J = 14 , 9 and 7 Hz), 1.41 (3H, d, J = 7 Hz), 1.60 (1H, ddq, J = 14, 4 and 7 Hz), 1.85 (1H, dddq, J = 9, 8, 4 and 7 Hz), 3.01 (1H, dd, J = 14 and 9 Hz), 3.25 (1H, dd, J = 14 and 5 Hz), 4.16 (1H, dd, J = 9 and 6 Hz), 4.27 (1H, d , J = 8 Hz), 4.33 (1H, q, J = 7 Hz) and 7.26-7.36 (5H, m).
(2) Decomposition point 188 ℃
<Methyl ester data>
1 H NMR data:
1 H NMR (500 MHz, methanol-d 4 ; TMS); d0.89 (3H, t, J = 7 Hz), 0.93 (3H, d, J = 7 Hz), 1.12 (1H, ddq, J = 13 , 9 and 7 Hz), 1.39 (3H, d, J = 7 Hz), 1.46 (1H, ddq, J = 13, 4 and 7 Hz), 1.78 (1H, dddq, J = 9, 8, 4 and 7 Hz), 2.80 (1H, dd, J = 13 and 8 Hz), 3.03 (1H, dd, J = 13 and 6 Hz), 3.63 (1H, dd, J = 8 and 6 Hz), 3.70 (3H, s ), 4.22 (1H, d, J = 7 Hz), 4.37 (1H, q, J = 7 Hz), 7.19-7.22 (3H, m) and 7.25-7.29 (2H, m).
<Test Example 1> Measurement of inhibitory activity of angiotensin I converting enzyme inhibitory substance The inhibitory activity of a peptide compound having angiotensin I converting enzyme inhibitory activity was measured by the method of Cushmann et al. (Biochemical Pharmacology, 20, 1637-1648 (1971)). Partly modified.

即ち、1.5mLエッペンドルフチュ−ブに5mMのBenzoyl−Glycyl−L−Histidyl−L−Leucine(ペプチド研究所製)の0.2Mホウ酸−リン酸カリウム緩衝液(0.4MのNaCl含有、pH8.3)を250μL、所定濃度に調製した供試化合物水溶液30μLを加え、37℃で5分間プレインキュベ−ションした。この溶液に対して、アンジオテンシンI変換酵素 (ウサギ肺由来、シグマ社製、酵素番号EC3.4.15.1)溶液(60mU/mL 0.2M ホウ酸−リン酸カリウム緩衝液)を100μL添加し、酵素反応を開始した。37℃で60分間、シェ−カ−バス内で100rpmにて反応を行った後、1N塩酸250μLを加え、反応を停止した。これに酢酸エチル580μLを加え、45秒間振とうさせた後、3000rpm 、10分間遠心分離を行い、上清の酢酸エチル層を500μL採取した。水層へ更に520μLの酢酸エチルを加え、20秒間浸透させた後、3000rpmで10分間遠心分離を行い、上清の酢酸エチル層を500μL採取した。この操作を再度繰返し、得られた酢酸エチル層合計1.5mL を遠心エバポレ−タ−にて3000rpmで30分間、減圧条件下にて乾固し、酢酸エチルを完全に除去した。乾固物を高速液体クロマトグラフィ−緩衝液(20容量%アセトニトリル/0.1容量%トリフルオロ酢酸水溶液)3mLに溶解した。   That is, 0.2 mM boric acid-potassium phosphate buffer (containing 0.4 M NaCl, pH 8.3) of 5 mM Benzoyl-Glycyl-L-Histidyl-L-Leucine (manufactured by Peptide Institute) in 1.5 mL Eppendorf tube Was added at 30 μL of a test compound aqueous solution prepared to a predetermined concentration, and preincubated at 37 ° C. for 5 minutes. To this solution, 100 μL of an angiotensin I converting enzyme (from rabbit lung, Sigma, enzyme number EC3.4.15.1) solution (60 mU / mL 0.2M boric acid-potassium phosphate buffer) was added, and the enzyme reaction was performed. Started. After reaction at 37 ° C. for 60 minutes in a shaker bath at 100 rpm, 250 μL of 1N hydrochloric acid was added to stop the reaction. To this was added 580 μL of ethyl acetate, and the mixture was shaken for 45 seconds, then centrifuged at 3000 rpm for 10 minutes, and 500 μL of the supernatant ethyl acetate layer was collected. An additional 520 μL of ethyl acetate was added to the aqueous layer, allowed to permeate for 20 seconds, and then centrifuged at 3000 rpm for 10 minutes, and 500 μL of the supernatant ethyl acetate layer was collected. This operation was repeated again, and a total of 1.5 mL of the obtained ethyl acetate layer was dried at 3000 rpm for 30 minutes under reduced pressure using a centrifugal evaporator to completely remove ethyl acetate. The dried product was dissolved in 3 mL of high-performance liquid chromatography buffer (20 vol% acetonitrile / 0.1 vol% trifluoroacetic acid aqueous solution).

生成した馬尿酸を逆相系高速液体クロマトグラフィ−(HPLC)にて分析し、酵素反応で生成した馬尿酸のピ−ク面積を228nmの吸光度を測定する事で求めた。又、酵素反応時に予め1N塩酸を添加して同様の操作を行ったものをブランクとして作成した。HPLCはカラムにμBONDASPHERE C18 φ3.9 ×150mm(Waters 社製)を、移動相に20容量%アセトニトリル/0.1容量%トリフルオロ酢酸水溶液を用いた。   The generated hippuric acid was analyzed by reversed-phase high performance liquid chromatography (HPLC), and the peak area of hippuric acid generated by the enzymatic reaction was determined by measuring the absorbance at 228 nm. Further, a blank was prepared by performing the same operation by adding 1N hydrochloric acid in advance during the enzyme reaction. For HPLC, μBONDASPHERE C18 φ3.9 × 150 mm (Waters) was used for the column, and 20 volume% acetonitrile / 0.1 volume% trifluoroacetic acid aqueous solution was used for the mobile phase.

阻害率は次式を用いて算出した。
アンジオテンシンI変換酵素 阻害率(%)={1−((B−C)÷A)}×100
A:蒸留水添加時のピ−ク面積(228nm)
B:阻害剤添加時のピ−ク面積(228nm)
C:阻害剤添加時のブランクのピ−ク面積(228nm)
一方、上記の17種のペプチド化合物を含むペプチド混合物及び各単離された17種のペプチド化合物について、臭い、味、色について検査したところいずれも特異な厭味が認められず、食品などの味を壊さず添加できるものであることが確認された。
The inhibition rate was calculated using the following formula.
Angiotensin I converting enzyme inhibition rate (%) = {1 − ((B−C) ÷ A)} × 100
A: Peak area when adding distilled water (228nm)
B: Peak area when an inhibitor is added (228 nm)
C: Peak area of the blank when an inhibitor is added (228 nm)
On the other hand, when the peptide mixture containing the above 17 kinds of peptide compounds and each of the 17 kinds of isolated peptide compounds were inspected for odor, taste and color, no peculiar taste was found, and the taste of foods, etc. It was confirmed that it could be added without breaking.

表2に実施例1及び実施例2に記載した各試料197μg/mLにおけるアンジオテンシンI変換酵素阻害率(%)を示した。   Table 2 shows the angiotensin I converting enzyme inhibition rate (%) in each sample of 197 μg / mL described in Example 1 and Example 2.

Figure 0004229933
Figure 0004229933

<試験例2>自然発症高血圧ラットに対する尾静脈投与による降圧効果
試験には体重250±50g、収縮期血圧200±20mmHg、心拍数400±50 回/分の雄性自然発症高血圧ラット(Wister−Okamoto derived Spontaneously Hypertensive Rat、以下SHRと記す)を用いた。試験開始前に明暗周期12時間(午前9時〜午後9時点灯)、室温21〜23℃、湿度50〜70%、飼料(PMI Nutrition International 社製Lab Diet)及び飲水(水道水質基準適合自家揚水)自由摂取の環境下で45×23×21cmのケージにSHR6匹を入れ1週間馴化飼育した。製造例1で得られたペプチド混合物の限外濾過液乾燥物をSHR体重1kgあたり30mgの用量で、SHR体重1kgあたり5mLの0.9重量%食塩水に溶解し、SHR(1群3 匹)に対して尾静脈単回投与して32±1℃の環境下で飼育した。対照群としてはSHR(1群3匹)に同用量の0.9 %食塩水のみを尾静脈投与した。試料投与直前、及び投与60、120、240分後に血圧を非観血血圧測定装置(Model 59,IITC,CA,USA)を用いて測定した。表3には、その収縮期血圧の経時的変化を示した。
<Test Example 2> Antihypertensive effect of tail vein administration in spontaneously hypertensive rats Male Spontaneously hypertensive rats (Wister-Okamoto derived) with body weight 250 ± 50g, systolic blood pressure 200 ± 20mmHg, heart rate 400 ± 50 times / min Spontaneously Hypertensive Rat (hereinafter referred to as SHR) was used. Light / dark cycle 12 hours (lights on from 9:00 am to 9:00 pm) before the start of the test, room temperature 21-23 ° C, humidity 50-70%, feed (Lab Diet manufactured by PMI Nutrition International) and drinking water ) 6 SHRs were placed in a 45 x 23 x 21 cm cage in an environment of free consumption and acclimated for 1 week. The dried ultrafiltrate of the peptide mixture obtained in Production Example 1 was dissolved at a dose of 30 mg / kg SHR body weight in 0.9 ml of 0.9% by weight saline per 1 kg body weight of SHR. A single tail vein administration was carried out in an environment of 32 ± 1 ° C. As a control group, SHR (3 mice per group) was administered with the same dose of 0.9% saline alone via the tail vein. Blood pressure was measured using a non-invasive blood pressure measuring device (Model 59, IITC, CA, USA) immediately before sample administration and 60, 120, and 240 minutes after administration. Table 3 shows changes over time in the systolic blood pressure.

<試験例3>SHR に対する強制経口投与による降圧効果
試験例2と同様の方法でSHRを用意し、製造例1で得られたペプチド混合物の限外濾過液乾燥物をSHR体重1kgあたり300mgの用量で、SHR 体重1kgあたり10mLの0.9 %食塩水に溶解し、SHR (1群3匹)に対して経口単回投与して32±1℃の環境下で飼育した。対照群としてはSHR(1群3匹)に同用量の0.9重量%食塩水のみを経口投与した。試料投与直前、及び投与60、120、240分後に血圧を非観血血圧測定装置(Model 59,IITC,CA,USA )を用いて測定した。表3に収縮期血圧の経時的変化を示した。
<Test Example 3> Antihypertensive effect of SHR by oral gavage SHR was prepared in the same manner as Test Example 2, and the dried ultrafiltrate of the peptide mixture obtained in Production Example 1 was administered at a dose of 300 mg per kg SHR body weight. Thus, SHR was dissolved in 10 mL of 0.9% saline per 1 kg body weight, and was orally administered once to SHR (3 mice per group) and reared in an environment of 32 ± 1 ° C. As a control group, the same dose of 0.9% by weight saline was orally administered to SHR (3 mice per group). Blood pressure was measured using a non-invasive blood pressure measuring device (Model 59, IITC, CA, USA) immediately before sample administration and 60, 120, and 240 minutes after administration. Table 3 shows changes in systolic blood pressure over time.

Figure 0004229933
Figure 0004229933

(実施例3)
<製造例3>アンジオテンシンI変換酵素 阻害ペプチド化合物の製造
カラフトマス(Oncorhynchus gorbuscha)肝臓21.2kgを細断した後に凍結乾燥し、乾燥物4.66kgを得た。この乾燥物4.66kgに対し、約5倍量のエタノール(24L)を加え、70℃で1時間撹拌を行い、エタノール可溶成分を吸引濾過にて除去した。得られたエタノール不溶物に対して再度同様の操作を行った後に、固形分を減圧乾燥することでサケ肝臓脱脂物約4.1kgを得た。
(Example 3)
Production Example 3 Production of Angiotensin I Converting Enzyme Inhibitory Peptide Compound 21.2 kg of carrot trout (Oncorhynchus gorbuscha) liver was shredded and freeze-dried to obtain 4.66 kg of a dried product. About 5.66 volumes of ethanol (24 L) was added to 4.66 kg of this dried product, and the mixture was stirred at 70 ° C. for 1 hour, and ethanol-soluble components were removed by suction filtration. After the same operation was again performed on the obtained ethanol-insoluble matter, the solid content was dried under reduced pressure to obtain about 4.1 kg of salmon liver defatted product.

このサケ肝臓脱脂物4.1kgに精製水80kgを加え55℃に加温した後、パパイン(Carica Papaya)41gを添加して8時間攪拌し酵素分解反応(pH5〜6)を行った。反応液を95℃に加温して酵素活性を失活させ、冷却後、中間孔径7ミクロンのセライトを用いて濾過した。濾液を限外濾過膜(ロミコンHF1.0−43−PM50)に透過させて分子量5万以上の画分を除いた後、噴霧乾燥してアンジオテンシンI変換酵素阻害ペプチド混合物の粉末2.9kgを得た。   After adding 80 kg of purified water to 4.1 kg of this salmon liver defatted material and heating to 55 ° C., 41 g of papain (Carica Papaya) was added and stirred for 8 hours to carry out an enzymatic decomposition reaction (pH 5-6). The reaction solution was heated to 95 ° C. to deactivate the enzyme activity, cooled, and filtered using Celite having an intermediate pore diameter of 7 μm. The filtrate was passed through an ultrafiltration membrane (Romicon HF1.0-43-PM50) to remove a fraction having a molecular weight of 50,000 or more, and then spray-dried to obtain 2.9 kg of an angiotensin I converting enzyme-inhibiting peptide mixture powder. .

上記の方法により得たアンジオテンシンI変換酵素阻害ペプチド混合物の粉末を下記条件でHPLC分析したところ図4に示すようなクロマトグラムを得た。
<HPLC分析条件>
カラム:Waters μBONDASPHERE C18 3.9×150mm
カラム温度:40℃
移動相A:H2O(0.1容量%TFA含有)
移動相B:アセトニトリル(0.1容量%TFA含有)
グラジエント:0〜60分にかけてB液5容量%からB液60容量%へのリニアグラジェント60〜75分にかけてB液60容量%保持。
分析時間:75分
流量:0.4ml/min
注入量:15μL
検出:UV220nm。
When the powder of the angiotensin I converting enzyme inhibitory peptide mixture obtained by the above method was analyzed by HPLC under the following conditions, a chromatogram as shown in FIG. 4 was obtained.
<HPLC analysis conditions>
Column: Waters μBONDASPHERE C18 3.9 × 150mm
Column temperature: 40 ° C
Mobile phase A: H 2 O (containing 0.1% by volume TFA)
Mobile phase B: acetonitrile (containing 0.1 vol% TFA)
Gradient: A linear gradient from 5% by volume of B solution to 60% by volume of B solution over 0 to 60 minutes, and 60% by volume of B solution maintained over 60 to 75 minutes.
Analysis time: 75 minutes Flow rate: 0.4ml / min
Injection volume: 15μL
Detection: UV 220 nm.

(実施例4)
<製造例4>
そこで、前記ペプチド混合物粗体中に含有している強力なアンジオテンシンI変換酵素阻害ペプチドの夫々を分離処理することとした。
(Example 4)
<Production Example 4>
Therefore, each of the strong angiotensin I converting enzyme inhibitory peptides contained in the peptide mixture crude was subjected to separation treatment.

まず、製造例3に記載のペプチド混合物1000 gを水4000mLに溶解させアンモニア水(28.0重量%)にてpHを8.0に調整した。この水溶液をn−ブタノール4000mLで抽出し、水層を更にn−ブタノール2000mLで2回抽出した。n−ブタノール層を減圧下濃縮して抽出物78gを得た。   First, 1000 g of the peptide mixture described in Production Example 3 was dissolved in 4000 mL of water, and the pH was adjusted to 8.0 with aqueous ammonia (28.0 wt%). This aqueous solution was extracted with 4000 mL of n-butanol, and the aqueous layer was further extracted twice with 2000 mL of n-butanol. The n-butanol layer was concentrated under reduced pressure to obtain 78 g of an extract.

この抽出物20gを図5に記載の方法に従って分離した。分離したペプチドは一部を一般的有機化学的手法に従いメチルエステル化した。NMR測定により推定された構造を有する候補ペプチドをペプチド合成装置にて合成し、一般的有機化学的手法に従いメチルエステル化したものを標準物質とした。これらを1H-NMR、TOF-MSで比較する事で7種のペプチド構造を決定した。 20 g of this extract was separated according to the method described in FIG. A part of the isolated peptide was methyl esterified according to a general organic chemical method. A candidate peptide having a structure estimated by NMR measurement was synthesized with a peptide synthesizer and methyl esterified according to a general organic chemistry method as a standard substance. By comparing these with 1 H-NMR and TOF-MS, seven types of peptide structures were determined.

<試験例5>アンジオテンシンI変換酵素阻害物質の阻害活性の測定
アンジオテンシンI変換酵素阻害活性を有するペプチド化合物の阻害性の測定は、試験例1と同様にCushmann らの方法(Biochemical Pharmacology,20,1637−1648(1971)を一部改変して行った。
<Test Example 5> Measurement of inhibitory activity of angiotensin I converting enzyme inhibitory substance The inhibitory activity of a peptide compound having angiotensin I converting enzyme inhibitory activity was measured by the method of Cushmann et al. (Biochemical Pharmacology, 20, 1637) as in Test Example 1. -1648 (1971) was partially modified.

表4に実施例3及び4に記載した各試料197μg/mLにおけるアンジオテンシンI変換酵素阻害率(%)を示した。   Table 4 shows the inhibition rate (%) of angiotensin I converting enzyme in each sample 197 μg / mL described in Examples 3 and 4.

Figure 0004229933
Figure 0004229933

表5に実施例4に記載した各試料197μg/mLにおけるアンジオテンシンI変換酵素阻害率(%)を示した。   Table 5 shows the angiotensin I converting enzyme inhibition rate (%) in each sample 197 μg / mL described in Example 4.

Figure 0004229933
Figure 0004229933

<試験例6>自然発症高血圧ラットに対する尾静脈投与による降圧効果
試験には体重250±50g、収縮期血圧200±20mmHg、心拍数400±50 回/分の雄性自然発症高血圧ラット(Wister−Okamoto derived Spontaneously Hypertensive Rat、以下SHRと記す)を用いた。試験開始前に明暗周期12時間(午前9時〜午後9時点灯)、室温21〜23℃、湿度50〜70%、飼料(PMI Nutrition International 社製Lab Diet)及び飲水(水道水質基準適合自家揚水)自由摂取の環境下で45×23×21cmのケージにSHR6匹を入れ1週間馴化飼育した。製造例4で得られたペプチド混合物の限外濾過液噴霧乾燥物をSHR体重1kgあたり30mgの用量で、SHR体重1kgあたり5mLの0.9重量%食塩水に溶解し、SHR(1群3 匹)に対して尾静脈単回投与して32±1℃の環境下で飼育した。対照群としてはSHR(1群3匹)に同用量の0.9 %食塩水のみを尾静脈投与した。試料投与直前、及び投与60、120、240分後に血圧を非観血血圧測定装置(Model 59,IITC,CA,USA)を用いて測定した。表6には、その収縮期血圧の経時的変化を示した。
<Test Example 6> Antihypertensive effect of tail vein administration on spontaneously hypertensive rats Male spontaneously hypertensive rats (Wister-Okamoto derived) with body weight 250 ± 50g, systolic blood pressure 200 ± 20mmHg, heart rate 400 ± 50 times / min Spontaneously Hypertensive Rat (hereinafter referred to as SHR) was used. Light / dark cycle 12 hours (lights on from 9:00 am to 9:00 pm) before the start of the test, room temperature 21-23 ° C, humidity 50-70%, feed (Lab Diet manufactured by PMI Nutrition International) and drinking water ) 6 SHRs were placed in a 45 x 23 x 21 cm cage in an environment of free consumption and acclimated for 1 week. The ultrafiltrate spray-dried product of the peptide mixture obtained in Production Example 4 was dissolved at a dose of 30 mg / kg SHR body weight in 0.9 ml of 0.9% by weight saline per 1 kg body weight of SHR, and dissolved in SHR (3 mice per group). On the other hand, the tail vein was single-administered and reared in an environment of 32 ± 1 ° C. As a control group, SHR (3 mice per group) was administered with the same dose of 0.9% saline alone via the tail vein. Blood pressure was measured using a non-invasive blood pressure measuring device (Model 59, IITC, CA, USA) immediately before sample administration and 60, 120, and 240 minutes after administration. Table 6 shows changes over time in the systolic blood pressure.

<試験例7>SHR に対する強制経口投与による降圧効果
試験例6と同様の方法でSHRを用意し、製造例3で得られたペプチド混合物の限外濾過液噴霧乾燥物をSHR体重1kgあたり300mgの用量で、SHR 体重1kgあたり10mLの0.9 %食塩水に溶解し、SHR (1群3匹)に対して経口単回投与して32±1℃の環境下で飼育した。対照群としてはSHR(1群3匹)に同用量の0.9重量%食塩水のみを経口投与した。試料投与直前、及び投与60、120、240分後に血圧を非観血血圧測定装置(Model 59,IITC,CA,USA )を用いて測定した。表6に収縮期血圧の経時的変化を示した。
<Test Example 7> Antihypertensive effect of SHR by oral gavage SHR was prepared in the same manner as in Test Example 6, and 300 mg / kg of SHR body weight was applied to the ultrafiltrate spray-dried product of the peptide mixture obtained in Production Example 3. The dose was dissolved in 10% 0.9% saline per kg of SHR body weight, and was orally administered to SHR (3 mice per group) in an environment of 32 ± 1 ° C. As a control group, the same dose of 0.9% by weight saline was orally administered to SHR (3 mice per group). Blood pressure was measured using a non-invasive blood pressure measuring device (Model 59, IITC, CA, USA) immediately before sample administration and 60, 120, and 240 minutes after administration. Table 6 shows changes over time in systolic blood pressure.

Figure 0004229933
Figure 0004229933

<試験例8>
製造例3で得られたペプチド混合物(組成は先の表1−2参照)を59.1μg/mLに調製したサンプルAと、その中に含まれる7種の単離ペプチドを先の表1−2に示したペプチド混合物における割合に相当する量を混合したサンプルBのACE阻害率(ACEI活性)を試験例1と同様に測定したところ、図6に示すようにAはBに対して約50〜100倍の阻害率を示した。
<Test Example 8>
Sample A prepared by preparing 59.1 μg / mL of the peptide mixture obtained in Production Example 3 (see Table 1-2 above for the composition), and the seven types of isolated peptides contained therein were shown in Table 1-2 above. When the ACE inhibition rate (ACEI activity) of sample B mixed with the amount corresponding to the ratio in the peptide mixture shown in Fig. 6 was measured in the same manner as in Test Example 1, A was about 50 to B relative to B as shown in Fig. 6. The inhibition rate was 100 times.

<LC-MS分析条件>
なお、ペプチド混合物中の各ぺプチドの定性及び定量におけるLC-MS分析は以下の条件に従った。
<遊離体の分析条件>
HPLC分析条件
・使用機器:Waters Alliance 2695 / PDA 2996 (Waters)
・カラム:Xterra(登録商標) MS C18 3.5μm, 4.6X100mm (Waters)
・使用溶媒:A液/アセトニトリル(0.1%キ゛酸)、B液/蒸留水(0.1%ギ酸)
・グラジエント:0分(A:B=5:95)→30分(A:B=30:70)→35分(A:B=60:40)→40分(A:B=5:95)
・流速:0.2 mL/min
・分析時間:40分
・注入量:10μL
・試料濃度(分離画分10μg/mL、合成ペプチド1μg/mL)
MS検出器条件
・使用機器:JMS-LCmate JMS-BU30 (JEOL)
・イオン化モード:ESI+
・イオン源:Needle KV/2.5、Orifice 1/0、Ring lens/30、Ion guide/3
・検出器:Multiplier/450、 Preamp gain/×1、Filter/1、Attenuator//1
・Inlet:Desolvating Plate/230℃、Orifice 1/150℃
・Mass selection:Mass Range/1500、Accelerating volts/2500、Scan range/100-1000
・Slit setting:Main slit/750、Alpha slit/4.0
<メチルエステル体の分析条件>
HPLC条件
・使用機器:Waters Alliance 2695 / PDA 2996 (Waters)
・カラム:Xterra(登録商標)MS C18 3.5μm, 4.6×100mm (Waters)
・使用溶媒:A液/アセトニトリル(0.1%キ゛酸)、B液/蒸留水(0.1%ギ酸)
・溶出グラジエント:0分(A:B=18:82)→30分(A:B=35:65)→35分(A:B=60:40)→40分(A:B=18:82)
・流速:0.2 mL/min
・分析時間:40分
・注入量:10μL
・試料濃度(分離画分10μg/mL、合成ペプチド1μg/mL)
MS検出器条件
・遊離体と同じ
<LC-MS analysis conditions>
The LC-MS analysis for qualitative and quantitative determination of each peptide in the peptide mixture was performed under the following conditions.
<Enalyzing conditions for free form>
HPLC analysis conditions and equipment: Waters Alliance 2695 / PDA 2996 (Waters)
Column: Xterra (registered trademark) MS C 18 3.5μm, 4.6X100mm (Waters)
・ Solvent: Liquid A / acetonitrile (0.1% diacid), Liquid B / distilled water (0.1% formic acid)
・ Gradient: 0 minutes (A: B = 5: 95) → 30 minutes (A: B = 30: 70) → 35 minutes (A: B = 60: 40) → 40 minutes (A: B = 5: 95)
・ Flow rate: 0.2 mL / min
・ Analysis time: 40 minutes ・ Injection volume: 10 μL
・ Sample concentration (separated fraction 10μg / mL, synthetic peptide 1μg / mL)
MS detector conditions and equipment: JMS-LCmate JMS-BU30 (JEOL)
・ Ionization mode: ESI +
・ Ion source: Needle KV / 2.5, Orifice 1/0, Ring lens / 30, Ion guide / 3
・ Detector: Multiplier / 450, Preamp gain / × 1, Filter / 1, Attenuator / 1
・ Inlet: Desolvating Plate / 230 ℃, Orifice 1/150 ℃
・ Mass selection: Mass Range / 1500, Accelerating volts / 2500, Scan range / 100-1000
・ Slit setting: Main slit / 750, Alpha slit / 4.0
<Methyl ester analysis conditions>
HPLC conditions and equipment: Waters Alliance 2695 / PDA 2996 (Waters)
Column: Xterra (registered trademark) MS C 18 3.5 μm, 4.6 × 100 mm (Waters)
・ Solvent: Liquid A / acetonitrile (0.1% diacid), Liquid B / distilled water (0.1% formic acid)
・ Elution gradient: 0 minutes (A: B = 18: 82) → 30 minutes (A: B = 35: 65) → 35 minutes (A: B = 60: 40) → 40 minutes (A: B = 18: 82) )
・ Flow rate: 0.2 mL / min
・ Analysis time: 40 minutes ・ Injection volume: 10 μL
・ Sample concentration (separated fraction 10μg / mL, synthetic peptide 1μg / mL)
Same as MS detector condition and educt

本発明により得られたペプチド化合物は、強力なアンジオテンシンI変換酵素阻害活性を有し、強い降圧作用を示すため、本態性高血圧、腎性高血圧、副腎性高血圧等の高血圧症の予防、治療剤、これら疾患の診断薬、各種病態で用いられる降圧剤、心筋梗塞の減少、うっ血性心不全における病態の改善剤等の医薬品として有用であるとともに、本発明のペプチド化合物は、経口摂取が可能である事から、上記の様な有用な作用を有する健康食品や特定保健用食品や機能性食品としての利用が可能である。   The peptide compound obtained by the present invention has a strong angiotensin I converting enzyme inhibitory activity and exhibits a strong antihypertensive action. Therefore, a prophylactic or therapeutic agent for hypertension such as essential hypertension, renal hypertension, adrenal hypertension, In addition to being useful as a pharmaceutical for diagnostics of these diseases, antihypertensive agents used in various pathological conditions, reduction of myocardial infarction, pathological conditions in congestive heart failure, etc., the peptide compound of the present invention can be taken orally. Therefore, it can be used as a health food, a specific health food or a functional food having the above-mentioned useful action.

製造例1で得られたアンジオテンシンI変換酵素阻害ペプチド混合物のHPLC分析でのクロマトグラムを示す図である。It is a figure which shows the chromatogram in the HPLC analysis of the angiotensin I converting enzyme inhibition peptide mixture obtained in manufacture example 1. FIG. 製造例1で得られたアンジオテンシンI変換酵素阻害ペプチド混合物からの各混合物の分離工程(4−1〜9画分までの工程)を示す図である。It is a figure which shows the isolation | separation process (process to 4-1-9 fraction) of each mixture from the angiotensin I converting enzyme inhibition peptide mixture obtained by manufacture example 1. FIG. 製造例1で得られたアンジオテンシンI変換酵素阻害ペプチド混合物からの各混合物の分離工程(4−1〜9画分からの工程)を示す図である。It is a figure which shows the isolation | separation process (process from a 4-1-9 fraction) of each mixture from the angiotensin I converting enzyme inhibition peptide mixture obtained in manufacture example 1. FIG. 製造例3で得られたアンジオテンシンI変換酵素阻害ペプチド混合物のHPLC分析でのクロマトグラムを示す図である。FIG. 4 is a diagram showing a chromatogram in HPLC analysis of an angiotensin I converting enzyme-inhibiting peptide mixture obtained in Production Example 3. 製造例3で得られたアンジオテンシンI変換酵素阻害ペプチド混合物からの各混合物の分離工程を示す図である。It is a figure which shows the isolation | separation process of each mixture from the angiotensin I converting enzyme inhibition peptide mixture obtained in manufacture example 3. FIG. 試験例8におけるサンプルA及びBのアンジオテンシンI変換酵素阻害活性の比較結果を示す図である。It is a figure which shows the comparison result of the angiotensin I converting enzyme inhibitory activity of the samples A and B in Test Example 8.

Claims (2)

Ile−Val−Phe(xvi)のアミノ酸配列で示されるペプチド化合物及びPhe−Ile−Ala(xvii)のアミノ酸配列で示されるペプチド化合物、およびこれらのペプチド化合物の薬学的に許容される塩から選択された少なくとも1種を有効成分として含むことを特徴とするアンジオテンシンI変換酵素阻害剤。 A peptide compound represented by the amino acid sequence of Ile-Val-Phe (xvi), a peptide compound represented by the amino acid sequence of Phe-Ile-Ala (xvii) , and pharmaceutically acceptable salts of these peptide compounds. An angiotensin I converting enzyme inhibitor, comprising at least one active ingredient as an active ingredient . Tyr−Phe(vi)のアミノ酸配列で示されるペプチド化合物、Leu-Trp(xix)のアミノ酸配列で示されるペプチド化合物及びIle-Trp(xx)のアミノ酸配列で示されるペプチド化合物およびこれらのペプチド化合物の薬学的に許容される塩から選択された少なくとも1種を更に含み、前記ペプチド化合物の全てが、サケまたはその処理物を蛋白質分解酵素と反応させて分解させて得られた分解液から分離したものである請求項1に記載のアンジオテンシンI変換酵素阻害剤。 Peptide compound represented by the amino acid sequence of Tyr-Phe (vi) , peptide compound represented by the amino acid sequence of Leu-Trp (xix) , peptide compound represented by the amino acid sequence of Ile-Trp (xx), and these peptide compounds Further comprising at least one selected from pharmaceutically acceptable salts, wherein all of the peptide compounds are separated from a decomposition solution obtained by decomposing salmon or its processed product by reacting with a proteolytic enzyme The angiotensin I converting enzyme inhibitor according to claim 1 .
JP2005223422A 2004-08-31 2005-08-01 Salmon-derived angiotensin I converting enzyme-inhibiting peptide compound or peptide composition containing the same and method for producing them Expired - Fee Related JP4229933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223422A JP4229933B2 (en) 2004-08-31 2005-08-01 Salmon-derived angiotensin I converting enzyme-inhibiting peptide compound or peptide composition containing the same and method for producing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004253538 2004-08-31
JP2005223422A JP4229933B2 (en) 2004-08-31 2005-08-01 Salmon-derived angiotensin I converting enzyme-inhibiting peptide compound or peptide composition containing the same and method for producing them

Publications (2)

Publication Number Publication Date
JP2006096747A JP2006096747A (en) 2006-04-13
JP4229933B2 true JP4229933B2 (en) 2009-02-25

Family

ID=36236893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223422A Expired - Fee Related JP4229933B2 (en) 2004-08-31 2005-08-01 Salmon-derived angiotensin I converting enzyme-inhibiting peptide compound or peptide composition containing the same and method for producing them

Country Status (1)

Country Link
JP (1) JP4229933B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994093B2 (en) * 2006-04-13 2012-08-08 ロート製薬株式会社 Hair restorer
JP5645360B2 (en) * 2006-04-21 2014-12-24 株式会社明治 Composition containing dipeptide as active ingredient
JP5118399B2 (en) * 2006-06-23 2013-01-16 ロート製薬株式会社 Composition having hyaluronic acid production promoting ability and / or fibroblast proliferation promoting ability
CA2667260A1 (en) * 2006-10-23 2008-05-02 National University Corporation Nagoya University Intracerebral oxidation inhibitor and use thereof
ATE525114T1 (en) 2006-12-22 2011-10-15 Nippon Barrier Free Co Ltd COSMETIC PRODUCT CONTAINING A SALMONIDAE OVARIAN MEMBRANE INGREDIENT
JP2008208096A (en) * 2007-02-28 2008-09-11 Kanetoku:Kk New peptide derived from jellyfish protein and use thereof
DE102008032828A1 (en) * 2008-07-02 2010-01-07 Technische Universität Dresden Tryptophan-containing peptides from alpha-lactalbumin with hypotensive and vasoprotective action for biofunctional foods
WO2010087480A1 (en) * 2009-02-02 2010-08-05 国立大学法人京都大学 Pharmaceutical preparation or food containing peptide
CN105637096A (en) * 2013-10-04 2016-06-01 英诺威有限公司 Hydrolysate of animal protein, manufacturing method thereof and use thereof
JP5963093B2 (en) * 2014-02-18 2016-08-03 株式会社 レオロジー機能食品研究所 Method for producing Trp-containing peptide
WO2018079695A1 (en) * 2016-10-28 2018-05-03 ゼリア新薬工業株式会社 Inhibitor for cognitive function decline
CN113801195B (en) * 2021-10-15 2023-06-27 浙江海洋大学 Tuna roe antihypertensive peptide and application thereof

Also Published As

Publication number Publication date
JP2006096747A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4229933B2 (en) Salmon-derived angiotensin I converting enzyme-inhibiting peptide compound or peptide composition containing the same and method for producing them
Harnedy et al. Bioactive peptides from marine processing waste and shellfish: A review
JP5341300B2 (en) Agents having angiotensin converting enzyme inhibitory activity or blood pressure lowering effect
JP5337809B2 (en) Anti-inflammatory peptide
US8227207B2 (en) Bioactive peptides derived from the proteins of egg white by means of enzymatic hydrolysis
WO2009035169A1 (en) Peptide having anti-hypertensive activity
JP5417405B2 (en) Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition
JP3592593B2 (en) Angiotensin converting enzyme inhibitor
JP5416964B2 (en) Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors
KR101566036B1 (en) Composition for preventing or treating lung disease
JPH04279597A (en) New peptide, angiotensinase inhibitory peptide and per oral composition containing the same peptide
WO2005061529A1 (en) Peptide inhibiting angiontensin converting enzyme
WO2013133032A1 (en) Dipeptidyl peptidase-iv inhibitor
JP5456100B2 (en) Angiotensin converting enzyme inhibitory dipeptide
JP2006347937A (en) Hypotensive peptide derived from protein of meat of domestic animal
JP4934369B2 (en) Peptide having blood pressure lowering effect
JP4187633B2 (en) Angiotensin I converting enzyme inhibitor and method for producing the same
JP5456144B1 (en) Angiotensin converting enzyme inhibitory dipeptide
JP2008208096A (en) New peptide derived from jellyfish protein and use thereof
JP2003128694A (en) Angiotensin-converting enzyme inhibitor peptide
JP3096455B1 (en) Angiotensin converting enzyme inhibitory peptide
JP2002121199A (en) New peptide and method for producing the same
JP2000191690A (en) Angiotensin converting enzyme inhibitory peptide
JP3108920B1 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP2023551318A (en) Novel angiotensin I-converting enzyme (ACE) inhibitory peptide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Ref document number: 4229933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees