JP4228758B2 - Piezoelectric oscillator - Google Patents
Piezoelectric oscillator Download PDFInfo
- Publication number
- JP4228758B2 JP4228758B2 JP2003109343A JP2003109343A JP4228758B2 JP 4228758 B2 JP4228758 B2 JP 4228758B2 JP 2003109343 A JP2003109343 A JP 2003109343A JP 2003109343 A JP2003109343 A JP 2003109343A JP 4228758 B2 JP4228758 B2 JP 4228758B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- control voltage
- varactor
- circuit
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水晶振動子等の圧電振動子を使用した圧電発振器に関し、特に簡単な回路構成によって周波数の温度補償が可能な温度補償発振器の位相雑音低減方法に関するものである。
【0002】
【従来の技術】
近年、水晶振動子等の圧電振動子に対して発振回路、温度補償回路等を付加した圧電発振器では周波数安定度は勿論のこと、小型化、低価格化等の要求が厳しく、更には、通信方式のデジタル化が進むにつれて、従来問題とならなかった雑音比特性(C/N特性)の向上が望まれている。圧電発振器の出力周波数は種々の要因で変化するが、比較的周波数の安定度が高い水晶発振器においても、周囲温度、電源電圧及び出力負荷等の条件変化による周波数変動があり、これ等に対応する手段は種々のものが提案されている。例えば温度変化に関しては水晶発振器に温度補償回路を付加し、この温度補償水晶発振器(以下、TCXOと記す)の発振ループの負荷容量を変化させて、水晶振動子固有の温度−周波数特性変動を相殺するように前記負荷容量を温度変化に対して制御するものがあり、大きく分けて3つの補償方法がある。
第1の補償方法は、図8に示すように、直接温度補償方式と称される方法であって、図のようにサーミスタとコンデンサから構成される補償回路を、水晶振動子Xと直列に接続することにより構成したものである。一般的に、補償回路は温度センサ(サーミスタ等)とコンデンサとを並列に接続したものを基本構成とする高温部補償回路と低温部補償回路を直列に接続したものであり、構成が単純で、小型化が容易であることから、携帯電話等の分野で広く用いられている。第2は図9に示すように、間接温度補償方式と称される方法であって、図のように可変容量ダイオードDを水晶振動子Xと直列に接続すると共に、補償回路を高周波阻止抵抗Rを介して可変容量ダイオードDの両端に接続したものである。この方法はサーミスタと抵抗とで構成される補償回路において発生する直流電圧を、前記高周波阻止抵抗Rを介して前記可変容量ダイオードDに加え、その回路の周波数変化量が水晶振動子Xの温度特性と逆特性になるようにすることにより、水晶発振器の温度特性を補償するものである。第3はデジタル型補償と称されている方法であって、図示を省略するが、第2の補償方法で示した補償回路を温度センサ、半導体メモリ、A/Dコンバータ、D/Aコンバータ等を用いてデジタル的に処理する補償方式である。これらTCXOにより、携帯電話等の通信端末機用の基準周波数源に要求されている周波数安定度(例えば温度範囲−25〜75℃で±2〜2.5ppm)が実現されている。また一方、AFC(自動周波数制御)や変調機能を持たせるために、可変容量素子を発振ループ中に備えたものも多用されており、上述した間接型TCXOやデジタル型TCXOにおいては、この可変容量素子を温度補償に流用するものも知られている。
また雑音比特性(C/N特性)を改善した従来例として、特開平11−251836号公報には、制御電圧発生回路から水晶発振回路へ伝達される雑音成分を除去して、位相雑音の少ない温度補償型発振器について開示されている。それによると、温度検出回路と、制御電圧発生回路と、周波数調整回路と、発振回路を備え、温度補償型発振器においては制御電圧発生回路から周波数調整回路を介して発振回路へ伝達される雑音成分が発振回路の発振出力の位相雑音を増加させるので、制御電圧発生回路と周波数調整回路の間にローパスフィルタを入れて、制御電圧発生回路から周波数調整回路を介して発振回路へ伝達される雑音成分を除去するとしている。
【特許文献1】
特開平11−251836号公報
【0003】
【発明が解決しようとする課題】
しかしながら、上述した従来の温度補償発振器は何れも以下の欠点を有していた。即ち、サーミスタと容量素子との並列回路により温度補償を行う直接温度補償方式では、回路が簡単であるという特徴はあるが、サーミスタの抵抗値が発振ループに挿入されることになるので、本来水晶振動子が有する高いQがそのまま維持されず、雑音抑圧の能力が低下することになる。また、温度によってサーミスタの抵抗値が変化するため発振出力レベルが大幅に変動する問題がある。従来このレベル変動を防止するために、発振用増幅器のトランジスタのコレクタに抵抗素子を挿入するように変形したコレクタ接地回路とすることによって、発振振幅値を飽和させ、これにより、出力レベルの変動を抑圧していた。しかし、このような回路方式では、コレクタ抵抗の存在によって実際にトランジスタに供給される電源電圧が減少することから低電圧化に限界があり、また、消費電流の増加にも繋がるものであった。いずれにしても、直接温度補償方式によるサーミスタ、抵抗、或いはコンデンサだけでは温度補償領域に限界がある。
また、間接温度補償方式では、回路構成が複雑であることから低価格化に限界があり、直接温度補償方式の出現と共に、一部の分野にしか使用されなくなった。しかも、高感度の可変容量を必要とすることから、必然的に雑音の混入による影響が大きく、現在の低雑音化の要求を到底満足し得るものではない。即ち、ATカット水晶振動子等の3次曲線の周波数変化を相殺するために、同様の曲線関数電圧信号を発生して、発振ループ中に挿入した高感度の可変容量ダイオード等に印加するように構成するが、この制御電圧信号に種々雑音が重畳すると、そのまま発振信号に混入し、C/N特性の著しい低下に繋がる虞があった。
また特許文献1は、温度補償制御電圧を発振回路のバラクタに印加して、温度補償する方式において、制御電圧から発生するノイズをローパスフィルタにより除去して絶対ノイズを低減することで位相雑音の改善をおこなうものであるが、ローパスフィルタのノイズを低減する能力には限界がある。
本発明は、かかる課題に鑑み、可変容量素子の容量特性の非線形部分を利用して温度補償を行うと共に、前記可変容量素子に印加する制御電圧のノイズレベルと位相を同相にすることにより、ノイズによる位相雑音劣化を減少する温度補償型圧電発振器を提供することを目的する。
【0004】
【課題を解決するための手段】
本発明はかかる課題を解決するために、請求項1は、所定の周波数で励振される圧電素子を備えた圧電振動子と、該圧電素子に電流を流して励振させる発振用増幅器と、電圧制御型の可変容量素子を備えた圧電発振器であって、前記可変容量素子の両端に印加する各制御電圧のノイズが同相であり、前記制御電圧の出力端を、夫々抵抗を介して前記可変容量素子の両端に接続し、前記各抵抗の値は、前記各制御電圧発生部側から前記可変容量素子の両端をみた場合のカットオフ周波数が夫々同じか、若しくは近似した値となるように設定することを特徴とする。
基本的に温度補償回路は、周囲温度を検出する温度検出部と、例えば温度検出部がサーミスタにより構成されていれば、抵抗分圧により電圧変化として取り出し、その電圧変化に基づいて所定の温度範囲をカバーするように温度制御電圧を発生する。そして、これらの電圧が同じ発生源から発生されれば、その信号線に重畳されるノイズの位相は同相となる。また、ノイズレベルも大きく変化しないで略同レベルとなる。従って、これらの制御電圧を可変容量素子の両端に印加することにより、ノイズによる電位差が発生しないようにして相対的なノイズレベルを低下するものである。また、基準制御電圧発生部の出力端および温度制御電圧発生部の出力端を抵抗を介して可変容量素子の両端に接続された場合、可変容量素子の対グランド容量と抵抗によりフィルタが構成される。従って、このフィルタ効果により同レベルのノイズを印加しても可変容量素子に印加されるノイズレバルが両端子で異なってしまう場合が考えられる。そこで本発明では、可変容量素子の両端に接続される抵抗の値は、各制御電圧発生部側からみて、夫々のカットオフ周波数が略一致するように設定される。
かかる発明によれば、基準制御電圧と温度補償制御電圧とを可変容量素子の両端に印加するので、ノイズの位相が同相になってノイズによる電位差がゼロとなり、発振回路の位相雑音を低減することができる。また、可変容量素子の両端に接続される抵抗の値は、各制御電圧発生部側からみて、夫々のカットオフ周波数が略一致するように設定するので、可変容量素子の両端に印加されるノイズレベルを同じにすることができる。
なお、本明細書において、圧電素子とは、圧電基板の主面に励振電極、リード端子を形成した素子を指称し、圧電振動子とは、この圧電素子自体、或いは圧電素子を気密封止した電子部品を指称する。
【0007】
【発明の実施の形態】
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
まず本発明の実施形態を説明する前に、温度補償回路の主たる構成要素であるMOSバラクタについて説明しておく。
図1は、可変容量素子であるMOSバラクタに於ける、端子間の印加電圧値と可変容量の関係を表す図である。縦軸に可変容量値(C)、横軸に印加電圧値(VC)を表す。この図はMOSバラクタの基本的な特性を表しており、印加電圧値(VC)を直線的に変化させると、可変容量値(C)は図のように非線形に変化する(特性10)。つまり、MOSバラクタへの印加電圧値(VC)が、マイナス電位となると可変容量値(C)が減少して所定の電位から略一定の容量となり、電圧変化に対して容量変化がほとんど無くなる。また、印加電圧値(VC)がプラス電位となると、可変容量値(C)が増加して所定の電位から略一定の容量となり、電圧変化に対して容量変化がほとんど無くなる。このような印加電圧と容量の関係(非線形な特性)を利用して水晶発振器の温度補償が可能となる。図2は本発明の一実施形態に係る温度補償型水晶発振器の回路図である。この温度補償型水晶発振器は、コルピッツ発振回路1と温度補償回路2により構成され、コルピッツ発振回路1は、発振用トランジスタQ1のベース・接地間に負荷容量の一部となるコンデンサC12とコンデンサC13との直列回路を挿入接続し、この直列回路の接続中点と発振用トランジスタQ1のエミッタとを接続し、更に接続中点と接地間とにエミッタ抵抗R2を挿入接続する。更に、発振用トランジスタQ1のベースに抵抗R3及び抵抗R4とから成るベースバイアス回路を接続する。発振用トランジスタQ1のベースから水晶振動子Xの一端を接続する。また温度補償回路2は、水晶振動子Xの他端をバラクタB1の正極側に接続し、バラクタB1の負極側はコンデンサC11と直列接続して接地する。更に、バラクタB1の正極側に抵抗R11を介して制御電圧Vc1の入力端子を接続し、負極側に抵抗R21を介して基準電圧(制御電圧)Vc2の入力端子を接続する。この図では制御電圧Vc1と基準電圧Vc2を発生する回路については図示を省略する。
【0008】
次に図2の温度補償型水晶発振器の動作を図3及び図4を参照して説明する。図3は、バラクタB1に印加される制御電圧と周囲温度との関係を表す図であり、同図内のバラクタB1に於いては図2に示すそれと同じ参照番号が付されている。縦軸に制御電圧、横軸に周囲温度を表す。本実施形態では説明を簡単にするために、常温を+25℃として、常温を中心に低温側−30℃、高温側+80℃までとした温度変化とする。まず、基準電圧は、温度に関係なく一定電圧Vc2である(符号12)。また制御電圧Vc1は、電圧特性11のごとく温度が−30℃のときに0Vであり、+25℃では基準電圧Vc2と等しくなり、+80℃のときに制御電圧がVmになるように直線的に変化するものであり、一定電圧Vc2との交点の温度をPとする。そしてバラクタB1は正極端子14に制御電圧Vc1が印加され、負極端子15には基準電圧Vc2が印加される。
図4は、可変容量とバラクタB1に印加される制御電圧との関係を表す図であり、周囲温度との関係と併せて表している。縦軸はバラクタB1の容量値を表し、横軸は制御電圧と、制御電圧に対応する周囲温度を表す。この図は図3と対応して参照するとわかり易い。つまり、図3で周囲温度が−30℃から+25℃の間で変化した時に、バラクタB1の正極端子14には負極端子15の電位を基準として−30℃で−Vc2となる。そして温度Pで0Vとなり、そこから逆転して正極端子14の電位がVc2より高電位となるので、正極端子14から見た場合、プラス電位となり+80℃で+Vaとなる。このように制御電圧Vc1が電圧0VからVmまで変化することにより、図1に示すMOSバラクタ基本特性に基づきバラクタB1の容量が温度変化に対して図4の曲線13のように変化する。ここで制御電圧が−Vc2のときの容量をCb、0VのときをC0、+VaのときをCaとする。
以上の動作により、図2の回路により本実施形態の発振回路が温度補償されることを説明する。バラクタB1は直流カット用のコンデンサC11と直列に接続されているため、常温での合成容量CB1はバラクタB1の容量をCbとすると、CB1=Cb×C11/(Cb+C11)となる。ここでバラクタB1の感度を高めるにはC11の値をCbに比べて大きくする必要がある。仮にC11の値をCbに比べて無視できるほど大きくすれば、CB1≒Cbとなる。ここではこの前提で説明する。例えば、図3に於ける温度Pが常温(+25℃)のとき制御電圧Vc1は基準電圧Vc2と等しくなり、バラクタB1の両端の電位差はゼロとなり、図4から明らかなように、常温(+25℃)のときのバラクタB1の容量はC0であり、このとき所望の発振周波数foが得られるような発振回路の設定条件とする。
【0009】
次に低温側の動作について説明する。例えば、周囲温度が−30℃の場合、図3から図2の制御電圧Vc1には0Vの電圧が発生し、抵抗R11を介してバラクタB1の正極端子に印加されている。このときバラクタB1とコンデンサC11の接続点には、基準電圧Vc2が印加されている。従って、図4から明らかなように、−30℃のときは、バラクタB1の容量はCbとなり、発振ループの負荷容量はCbとなる。つまり、水晶振動子の周波数が常温時を基凖として低温側で低くなるような特性であればバラクタB1の容量変化に伴い回路全体の負荷容量が減少するため発振周波数を高くする働きが生じ、低温時の発振周波数の低下を補正することができるので発振周波数はfoとなる。
次に高温側の動作について説明する。例えば、周囲温度が+80℃の場合、図3から図2の制御電圧Vc1にはVmの電圧が発生し、抵抗R11を介してバラクタB1の正極端子に印加されている。このときバラクタB1とコンデンサC11の接続点には、基準電圧Vc2が印加されている。従って、図4から明らかなように、+80℃のときは、バラクタB1の容量はCaであり、発振ループの負荷容量はCaとなる。つまり、水晶振動子の周波数が常温時を基凖にして高温側で低くなるような特性であれば、バラクタB1の容量変化に伴い回路全体の負荷容量が増加するため発振周波数を低くする働きが生じ、高温時の発振周波数の上昇を補正することができるので発振周波数はfoとなる。
【0010】
図5は、本発明の発振回路の位相雑音特性を表す図である。この図では比較のためにMOSバラクタを使用した従来の発振器の特性と併せて表している。縦軸に位相雑音C/N(dBc/Hz)を表し、横軸に周波数を表す。この図から明らかなように、バラクタの片側だけにノイズを含んだ制御電圧を使用した従来の発振器の特性20は低周波領域で位相雑音が大きくなっている。これに対して、本発明に基づく水晶発振器の場合では、位相雑音特性21に示すように、上述した特性20と比較して優れた結果が得られた。このことから、上述した機能を有する本発明に基づく水晶発振器であれば、バラクタB1の両端に接続された基準電圧Vc2と制御電圧Vc1に同相のノイズが重畳した場合でも、両端子のノイズのレベルがほぼ同じであれば端子間における電位差として現れないので、次段の発振回路には位相雑音として現れないことが確認できる。
図6は、図2の温度補償型水晶発振器のカットオフ周波数の影響を説明するための図である。ここで、制御電圧Vc1端子から見たカットオフ周波数をF1、基準電圧Vc2端子から見たカットオフ周波数をF2とする。この回路のように、基準電圧Vc2および制御電圧Vc1の出力端を交流阻止用の抵抗R11、R21を介してバラクタB1の両端に接続された場合、バラクタB1の対グランド容量と抵抗によりフィルタが構成される。従って、このフィルタ効果により同レベルのノイズをバラクタB1の両端子に印加してもバラクタB1に印加されるノイズレベルが両端子で異なってしまう場合が考えられる。そしてバラクタB1の両端のカットオフ周波数がずれると、同相ノイズであってもバラクタB1端子の周波数に対するノイズレベルが異なり両端に電位差が発生する。従って、カットオフ周波数のずれた分だけ、同相ノイズによる位相雑音の改善が得られない周波数帯が発生する虞がでてくる。そこで本発明では、バラクタB1の両端に接続される抵抗R11、R21の値を基準電圧Vc2および制御電圧Vc1側からみて、夫々のカットオフ周波数が略一致するように設定する。
【0011】
尚、図7は、本発明の発振回路のカットオフ周波数が同じ場合と異なる場合の位相雑音特性を表す図である。この図では比較のためにMOSバラクタを使用した従来の発振器の特性と併せて表している。縦軸に位相雑音C/N(dBc/Hz)を表し、横軸に周波数を表す。この図から明らかなように、バラクタの片側だけにノイズを含んだ制御電圧を使用した従来の発振器の特性30は低周波領域で位相雑音が大きくなっている。また本発明のようにバラクタ両端にノイズを含んだ制御電圧を使用し、制御電圧印加端子のカットオフ周波数F1、F2が同じ場合は、特性31のように各周波数帯で位相雑音が改善されている。しかし、制御電圧印加端子のカットオフ周波数F1、F2が違う場合は、特性32のように周波数1kHz近傍で位相雑音のレベルが高くなっているのが解り、周波数F1以上の範囲において、特性30とほぼ等しい位相雑音特性を呈する。
以上本発明では可変容量素子としてバラクタを例にとり説明したが、容量が外部の印加電圧により変化すれば、可変容量ダイオード、接合型FETのゲート・ソース又はゲート・ドレイン容量、MOS型FETのゲート・ソース又はゲート・ドレイン容量、バイポーラトランジスタのベース・エミッタ容量、又はベース・コレクタ容量を用いても本発明の発振器を構成することができる。
【0012】
【発明の効果】
以上記載のごとく請求項1の発明によれば、基準制御電圧と温度補償制御電圧とを可変容量素子の両端に印加するので、ノイズの位相が同相になってノイズによる電位差がゼロとなり、発振回路の位相雑音を低減することができる。また、可変容量素子の両端に接続される抵抗の値は、各制御電圧発生部側からみて、夫々のカットオフ周波数が略一致するように設定するので、可変容量素子の両端に印加されるノイズレベルを同じにすることができる。
【図面の簡単な説明】
【図1】本発明の可変容量素子のMOSバラクタと可変容量の関係を表す図である。
【図2】本発明の一実施形態に係る温度補償型水晶発振器の回路図である。
【図3】本発明のバラクタB1に印加される制御電圧と周囲温度との関係を表す図である。
【図4】本発明の可変容量値とバラクタB1に印加される制御電圧との関係を表す図である。
【図5】本発明の発振回路の位相雑音特性を表す図である。
【図6】図2の温度補償型水晶発振器のカットオフ周波数の影響を説明するための図である。
【図7】本発明の発振回路のカットオフ周波数が同じ場合と異なる場合の位相雑音特性を表す図である。
【図8】従来のサーミスタによる温度補償回路の部分回路図である。
【図9】従来の可変容量素子による温度補償回路の部分回路図である。
【符号の説明】
1 発振回路、2 温度補償回路、B1 バラクタ、C11 固定コンデンサ、R11、R12 抵抗[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric oscillator using a piezoelectric vibrator such as a crystal vibrator, and more particularly to a phase noise reduction method for a temperature compensated oscillator capable of temperature compensation of a frequency with a simple circuit configuration.
[0002]
[Prior art]
In recent years, piezoelectric oscillators in which an oscillation circuit, a temperature compensation circuit, etc. are added to a piezoelectric vibrator such as a quartz crystal vibrator, have demanded not only frequency stability but also miniaturization and cost reduction, and further communication As the system becomes more digital, it is desired to improve the noise ratio characteristic (C / N characteristic), which has not been a problem in the past. The output frequency of a piezoelectric oscillator changes due to various factors. Even in a crystal oscillator with relatively high frequency stability, there are frequency fluctuations due to changes in conditions such as ambient temperature, power supply voltage, and output load. Various means have been proposed. For example, with regard to temperature changes, a temperature compensation circuit is added to the crystal oscillator, and the load capacity of the oscillation loop of this temperature compensated crystal oscillator (hereinafter referred to as TCXO) is changed to cancel the temperature-frequency characteristic variation inherent in the crystal oscillator. As described above, there is one that controls the load capacity with respect to a temperature change, and there are roughly three compensation methods.
The first compensation method is a method called a direct temperature compensation method as shown in FIG. 8, and a compensation circuit composed of a thermistor and a capacitor is connected in series with the crystal unit X as shown in the figure. It is constituted by doing. Generally, a compensation circuit is a series of a high-temperature part compensation circuit and a low-temperature part compensation circuit that are basically composed of a temperature sensor (such as a thermistor) and a capacitor connected in parallel, and the configuration is simple. Since it is easy to downsize, it is widely used in the field of mobile phones and the like. The second is a method called an indirect temperature compensation system, as shown in FIG. 9, in which a variable capacitance diode D is connected in series with a crystal resonator X as shown in the figure, and the compensation circuit is connected to a high frequency blocking resistor R. Are connected to both ends of the variable-capacitance diode D. In this method, a DC voltage generated in a compensation circuit composed of a thermistor and a resistor is applied to the variable capacitance diode D through the high-frequency blocking resistor R, and the frequency change amount of the circuit is the temperature characteristic of the crystal resonator X. Thus, the temperature characteristic of the crystal oscillator is compensated for by reversing the characteristics. The third is a method called digital compensation, and although not shown, the compensation circuit shown in the second compensation method is replaced with a temperature sensor, a semiconductor memory, an A / D converter, a D / A converter, and the like. It is a compensation method that uses and processes digitally. With these TCXOs, the frequency stability required for a reference frequency source for a communication terminal such as a cellular phone (for example, ± 2 to 2.5 ppm at a temperature range of −25 to 75 ° C.) is realized. On the other hand, in order to provide an AFC (automatic frequency control) and modulation function, a variable capacitance element provided in an oscillation loop is often used. In the indirect type TCXO and the digital type TCXO described above, this variable capacitance is used. There are also known devices in which elements are used for temperature compensation.
In addition, as a conventional example in which the noise ratio characteristic (C / N characteristic) is improved, Japanese Patent Laid-Open No. 11-251836 discloses that the noise component transmitted from the control voltage generation circuit to the crystal oscillation circuit is removed, and the phase noise is small. A temperature compensated oscillator is disclosed. According to this, a temperature detection circuit, a control voltage generation circuit, a frequency adjustment circuit, and an oscillation circuit are provided. In a temperature compensated oscillator, a noise component transmitted from the control voltage generation circuit to the oscillation circuit via the frequency adjustment circuit Increases the phase noise of the oscillation output of the oscillation circuit. Insert a low-pass filter between the control voltage generation circuit and the frequency adjustment circuit to transmit the noise component from the control voltage generation circuit to the oscillation circuit via the frequency adjustment circuit. Is going to be removed.
[Patent Document 1]
Japanese Patent Laid-Open No. 11-251836
[Problems to be solved by the invention]
However, each of the above-described conventional temperature compensated oscillators has the following drawbacks. In other words, the direct temperature compensation method in which temperature compensation is performed by a parallel circuit of a thermistor and a capacitive element has a feature that the circuit is simple, but the resistance value of the thermistor is inserted into the oscillation loop. The high Q of the vibrator is not maintained as it is, and the noise suppression capability is reduced. In addition, since the resistance value of the thermistor varies with temperature, there is a problem that the oscillation output level varies greatly. Conventionally, in order to prevent this level fluctuation, the oscillation amplitude value is saturated by using a grounded collector circuit in which a resistance element is inserted into the collector of the transistor of the oscillation amplifier, thereby reducing the fluctuation of the output level. I was repressed. However, in such a circuit system, since the power supply voltage actually supplied to the transistor is reduced due to the presence of the collector resistance, there is a limit to lowering the voltage, and the current consumption is also increased. In any case, the temperature compensation region is limited only by the thermistor, resistor, or capacitor using the direct temperature compensation method.
In addition, the indirect temperature compensation method has a limited circuit cost because of its complicated circuit configuration, and has been used only in some fields with the advent of the direct temperature compensation method. In addition, since a highly sensitive variable capacitor is required, the influence of noise is inevitably large, and the current demand for low noise cannot be satisfied at all. That is, in order to cancel the frequency change of the cubic curve of an AT cut crystal resonator, a similar curve function voltage signal is generated and applied to a highly sensitive variable capacitance diode or the like inserted in the oscillation loop. Although it is configured, when various noises are superimposed on the control voltage signal, it is mixed into the oscillation signal as it is, and there is a possibility that the C / N characteristic is remarkably lowered.
Further, in Patent Document 1, in a method of applying temperature compensation control voltage to a varactor of an oscillation circuit to compensate temperature, noise generated from the control voltage is removed by a low-pass filter to reduce phase noise, thereby improving phase noise. However, there is a limit to the ability of the low-pass filter to reduce noise.
In view of such problems, the present invention performs temperature compensation by using a nonlinear portion of the capacitance characteristic of the variable capacitance element and makes the noise level and phase of the control voltage applied to the variable capacitance element in-phase. An object of the present invention is to provide a temperature-compensated piezoelectric oscillator that reduces phase noise degradation due to the above.
[0004]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides a piezoelectric vibrator having a piezoelectric element excited at a predetermined frequency, an oscillation amplifier for exciting the piezoelectric element by passing a current, and voltage control. A piezoelectric oscillator having a variable capacitance element of a type, wherein the noise of each control voltage applied to both ends of the variable capacitance element is in phase, and the output terminal of the control voltage is connected to the variable capacitance element via a resistor, respectively. The values of the resistors are set so that the cut-off frequencies when the both ends of the variable capacitance element are viewed from the control voltage generator side are the same or approximate values, respectively. It is characterized by .
Basically, the temperature compensation circuit is a temperature detection unit that detects the ambient temperature, and, for example, if the temperature detection unit is composed of a thermistor, it is extracted as a voltage change by resistance voltage division, and a predetermined temperature range based on the voltage change. A temperature control voltage is generated so as to cover. If these voltages are generated from the same generation source, the phase of the noise superimposed on the signal line becomes the same phase. Further, the noise level does not change greatly and becomes substantially the same level. Therefore, by applying these control voltages to both ends of the variable capacitance element, the relative noise level is lowered without causing a potential difference due to noise. In addition, when the output terminal of the reference control voltage generator and the output terminal of the temperature control voltage generator are connected to both ends of the variable capacitor through resistors, a filter is configured by the ground capacitance and resistor of the variable capacitor. . Therefore, even if the same level of noise is applied due to this filter effect, the noise level applied to the variable capacitance element may be different at both terminals. Therefore, in the present invention, the values of the resistors connected to both ends of the variable capacitance element are set so that the respective cut-off frequencies substantially coincide with each other when viewed from the side of each control voltage generator.
According to this invention, since the reference control voltage and the temperature compensation control voltage are applied to both ends of the variable capacitance element, the noise phase becomes the same phase, the potential difference due to the noise becomes zero, and the phase noise of the oscillation circuit is reduced. Can do. In addition, since the resistance values connected to both ends of the variable capacitance element are set so that the respective cut-off frequencies substantially coincide with each other when viewed from the side of each control voltage generator, noise applied to both ends of the variable capacitance element The level can be the same.
In this specification, the piezoelectric element refers to an element in which excitation electrodes and lead terminals are formed on the main surface of the piezoelectric substrate, and the piezoelectric vibrator refers to the piezoelectric element itself or the piezoelectric element hermetically sealed. An electronic component is designated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
First, before describing an embodiment of the present invention, a MOS varactor that is a main component of a temperature compensation circuit will be described.
FIG. 1 is a diagram illustrating a relationship between an applied voltage value between terminals and a variable capacitance in a MOS varactor that is a variable capacitance element. The vertical axis represents the variable capacitance value (C), and the horizontal axis represents the applied voltage value (VC). This figure shows the basic characteristics of the MOS varactor. When the applied voltage value (VC) is changed linearly, the variable capacitance value (C) changes nonlinearly as shown in the figure (characteristic 10). That is, when the voltage value (VC) applied to the MOS varactor becomes a negative potential, the variable capacitance value (C) decreases and becomes a substantially constant capacitance from a predetermined potential, and the capacitance change hardly occurs with respect to the voltage change. Further, when the applied voltage value (VC) becomes a positive potential, the variable capacitance value (C) increases to become a substantially constant capacitance from a predetermined potential, and there is almost no capacitance change with respect to the voltage change. Using such a relationship between the applied voltage and the capacitance (nonlinear characteristics), temperature compensation of the crystal oscillator can be performed. FIG. 2 is a circuit diagram of a temperature compensated crystal oscillator according to an embodiment of the present invention. This temperature-compensated crystal oscillator includes a Colpitts oscillation circuit 1 and a temperature compensation circuit 2. The Colpitts oscillation circuit 1 includes a capacitor C12 and a capacitor C13 that are part of a load capacitance between the base and ground of the oscillation transistor Q1. The series circuit is inserted and connected, the connection midpoint of this series circuit is connected to the emitter of the oscillation transistor Q1, and the emitter resistor R2 is inserted and connected between the connection midpoint and the ground. Further, a base bias circuit including a resistor R3 and a resistor R4 is connected to the base of the oscillation transistor Q1. One end of the crystal unit X is connected from the base of the oscillation transistor Q1. In the temperature compensation circuit 2, the other end of the crystal unit X is connected to the positive side of the varactor B1, and the negative side of the varactor B1 is connected in series with the capacitor C11 and grounded. Furthermore, the input terminal of the control voltage Vc1 is connected to the positive side of the varactor B1 through the resistor R11, and the input terminal of the reference voltage (control voltage) Vc2 is connected to the negative side through the resistor R21. In this figure, the circuit for generating the control voltage Vc1 and the reference voltage Vc2 is not shown.
[0008]
2 will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a diagram showing the relationship between the control voltage applied to the varactor B1 and the ambient temperature. The varactor B1 in the figure is given the same reference numeral as that shown in FIG. The vertical axis represents the control voltage, and the horizontal axis represents the ambient temperature. In this embodiment, in order to simplify the description, it is assumed that the normal temperature is + 25 ° C., and the temperature changes from the normal temperature to the low temperature side −30 ° C. and the high temperature side + 80 ° C. First, the reference voltage is a constant voltage Vc2 regardless of the temperature (reference numeral 12). The control voltage Vc1 varies linearly so that the voltage is 0V when the temperature is −30 ° C. as shown in the voltage characteristic 11, is equal to the reference voltage Vc2 at + 25 ° C., and the control voltage is Vm at + 80 ° C. Let P be the temperature of the intersection with the constant voltage Vc2. In the varactor B1, the control voltage Vc1 is applied to the positive terminal 14 and the reference voltage Vc2 is applied to the negative terminal 15.
FIG. 4 is a diagram illustrating the relationship between the variable capacitor and the control voltage applied to the varactor B1, and also illustrates the relationship with the ambient temperature. The vertical axis represents the capacity value of the varactor B1, and the horizontal axis represents the control voltage and the ambient temperature corresponding to the control voltage. This figure can be easily understood by referring to FIG. That is, when the ambient temperature changes between −30 ° C. and + 25 ° C. in FIG. 3, the positive terminal 14 of the varactor B 1 becomes −Vc 2 at −30 ° C. with reference to the potential of the negative terminal 15. Then, it becomes 0 V at the temperature P and reverses from there, and the potential of the positive electrode terminal 14 becomes higher than Vc2. Therefore, when viewed from the positive electrode terminal 14, it becomes a positive potential and becomes + Va at + 80 ° C. As the control voltage Vc1 changes from the voltage 0V to Vm in this way, the capacitance of the varactor B1 changes as shown by the
The operation of the oscillation circuit of this embodiment is compensated for temperature by the circuit of FIG. 2 by the above operation. Since the varactor B1 is connected in series with the DC cut capacitor C11, the combined capacity CB1 at room temperature is CB1 = Cb × C11 / (Cb + C11), where Cb is the capacity of the varactor B1. Here, in order to increase the sensitivity of the varactor B1, it is necessary to make the value of C11 larger than Cb. If the value of C11 is increased to be negligible compared to Cb, CB1≈Cb. Here, the explanation will be made based on this premise. For example, when the temperature P in FIG. 3 is normal temperature (+ 25 ° C.), the control voltage Vc 1 is equal to the reference voltage Vc 2, and the potential difference between both ends of the varactor B 1 becomes zero. The capacitance of the varactor B1 is C0, and the oscillation circuit setting conditions are such that a desired oscillation frequency fo can be obtained.
[0009]
Next, the operation on the low temperature side will be described. For example, when the ambient temperature is −30 ° C., a voltage of 0 V is generated in the control voltage Vc1 of FIGS. 3 to 2 and is applied to the positive terminal of the varactor B1 via the resistor R11. At this time, the reference voltage Vc2 is applied to the connection point between the varactor B1 and the capacitor C11. Therefore, as is apparent from FIG. 4, when the temperature is −30 ° C., the capacity of the varactor B1 is Cb, and the load capacity of the oscillation loop is Cb. In other words, if the frequency of the crystal unit is low on the low temperature side based on normal temperature, the load capacity of the entire circuit decreases with the capacitance change of the varactor B1, and thus the function of increasing the oscillation frequency occurs. Since the decrease in the oscillation frequency at a low temperature can be corrected, the oscillation frequency becomes fo.
Next, the operation on the high temperature side will be described. For example, when the ambient temperature is + 80 ° C., a voltage Vm is generated in the control voltage Vc1 of FIGS. 3 to 2 and applied to the positive terminal of the varactor B1 via the resistor R11. At this time, the reference voltage Vc2 is applied to the connection point between the varactor B1 and the capacitor C11. Therefore, as apparent from FIG. 4, at + 80 ° C., the capacity of the varactor B1 is Ca, and the load capacity of the oscillation loop is Ca. That is, if the frequency of the crystal unit is such that the frequency becomes lower on the high temperature side at room temperature, the load capacity of the entire circuit increases with the change in the capacity of the varactor B1, so that the oscillation frequency is lowered. Oscillation frequency becomes fo because it is possible to correct the increase in oscillation frequency at high temperature.
[0010]
FIG. 5 is a diagram showing the phase noise characteristics of the oscillation circuit of the present invention. In this figure, the characteristics of a conventional oscillator using a MOS varactor are shown for comparison. The vertical axis represents phase noise C / N (dBc / Hz), and the horizontal axis represents frequency. As is apparent from this figure, the characteristic 20 of the conventional oscillator using a control voltage containing noise on only one side of the varactor has a large phase noise in the low frequency region. On the other hand, in the case of the crystal oscillator according to the present invention, as shown in the phase noise characteristic 21, an excellent result was obtained as compared with the characteristic 20 described above. Therefore, in the case of the crystal oscillator according to the present invention having the above-described function, the noise levels of both terminals are obtained even when in-phase noise is superimposed on the reference voltage Vc2 and the control voltage Vc1 connected to both ends of the varactor B1. If they are substantially the same, it does not appear as a potential difference between the terminals, so it can be confirmed that they do not appear as phase noise in the next-stage oscillation circuit.
FIG. 6 is a diagram for explaining the influence of the cutoff frequency of the temperature-compensated crystal oscillator of FIG. Here, the cutoff frequency viewed from the control voltage Vc1 terminal is F1, and the cutoff frequency viewed from the reference voltage Vc2 terminal is F2. When the output ends of the reference voltage Vc2 and the control voltage Vc1 are connected to both ends of the varactor B1 via the AC blocking resistors R11 and R21 as in this circuit, a filter is configured by the ground capacitance and resistance of the varactor B1. Is done. Therefore, even if the same level of noise is applied to both terminals of the varactor B1, due to this filter effect, the noise level applied to the varactor B1 may differ between the two terminals. When the cut-off frequencies at both ends of the varactor B1 are shifted, the noise level with respect to the frequency of the varactor B1 terminal is different even with in-phase noise, and a potential difference is generated at both ends. Therefore, there is a risk that a frequency band in which the improvement of the phase noise due to the in-phase noise cannot be obtained by the amount of deviation of the cut-off frequency. Therefore, in the present invention, the values of the resistors R11 and R21 connected to both ends of the varactor B1 are set so that the respective cutoff frequencies substantially coincide with each other when viewed from the reference voltage Vc2 and control voltage Vc1 side.
[0011]
FIG. 7 is a diagram showing the phase noise characteristics when the cutoff frequency of the oscillation circuit of the present invention is the same and different. In this figure, the characteristics of a conventional oscillator using a MOS varactor are shown for comparison. The vertical axis represents phase noise C / N (dBc / Hz), and the horizontal axis represents frequency. As is apparent from this figure, the characteristic 30 of the conventional oscillator using a control voltage containing noise only on one side of the varactor has a large phase noise in the low frequency region. Further, when a control voltage including noise is used at both ends of the varactor as in the present invention and the cutoff frequencies F1 and F2 of the control voltage application terminal are the same, the phase noise is improved in each frequency band as in the characteristic 31. Yes. However, when the cut-off frequencies F1 and F2 of the control voltage application terminals are different, it can be seen that the phase noise level is high near the frequency 1 kHz as in the characteristic 32, and in the range above the frequency F1, the characteristic 30 It exhibits almost the same phase noise characteristics.
In the present invention, the varactor has been described as an example of the variable capacitance element. However, if the capacitance is changed by an externally applied voltage, the variable capacitance diode, the gate / source capacitance of the junction FET, the gate / drain capacitance, the gate of the MOS FET, The oscillator of the present invention can also be configured using a source or gate-drain capacitance, a base-emitter capacitance of a bipolar transistor, or a base-collector capacitance.
[0012]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the reference control voltage and the temperature compensation control voltage are applied to both ends of the variable capacitance element, the phase of the noise becomes the same phase and the potential difference due to the noise becomes zero. The phase noise can be reduced. In addition, since the resistance values connected to both ends of the variable capacitance element are set so that the respective cut-off frequencies substantially coincide with each other when viewed from the side of each control voltage generator, noise applied to both ends of the variable capacitance element The level can be the same.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a relationship between a MOS varactor and a variable capacitor of a variable capacitor according to the present invention.
FIG. 2 is a circuit diagram of a temperature compensated crystal oscillator according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating a relationship between a control voltage applied to a varactor B1 of the present invention and an ambient temperature.
FIG. 4 is a diagram illustrating a relationship between a variable capacitance value of the present invention and a control voltage applied to a varactor B1.
FIG. 5 is a diagram illustrating phase noise characteristics of the oscillation circuit of the present invention.
6 is a diagram for explaining the influence of the cutoff frequency of the temperature compensated crystal oscillator of FIG. 2; FIG.
FIG. 7 is a diagram showing phase noise characteristics when the cutoff frequency of the oscillation circuit of the present invention is the same and different.
FIG. 8 is a partial circuit diagram of a temperature compensation circuit using a conventional thermistor.
FIG. 9 is a partial circuit diagram of a temperature compensation circuit using a conventional variable capacitance element.
[Explanation of symbols]
1 oscillation circuit, 2 temperature compensation circuit, B1 varactor, C11 fixed capacitor, R11, R12 resistance
Claims (1)
前記可変容量素子の両端に印加する各制御電圧のノイズが同相であり、前記制御電圧の出力端を、夫々抵抗を介して前記可変容量素子の両端に接続し、前記各抵抗の値は、前記各制御電圧発生部側から前記可変容量素子の両端をみた場合のカットオフ周波数が夫々同じか、若しくは近似した値となるように設定することを特徴とする圧電発振器。 A piezoelectric oscillator including a piezoelectric vibrator including a piezoelectric element excited at a predetermined frequency, an oscillation amplifier for exciting the piezoelectric element by flowing a current, and a voltage-controlled variable capacitance element,
The noise of each control voltage applied to both ends of the variable capacitance element is in phase, and the output terminals of the control voltage are respectively connected to both ends of the variable capacitance element via resistors, and the values of the resistors are A piezoelectric oscillator characterized in that the cut-off frequency when the both ends of the variable capacitance element are viewed from the respective control voltage generation units is the same or approximated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003109343A JP4228758B2 (en) | 2003-04-14 | 2003-04-14 | Piezoelectric oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003109343A JP4228758B2 (en) | 2003-04-14 | 2003-04-14 | Piezoelectric oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004320239A JP2004320239A (en) | 2004-11-11 |
JP4228758B2 true JP4228758B2 (en) | 2009-02-25 |
Family
ID=33470535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003109343A Expired - Fee Related JP4228758B2 (en) | 2003-04-14 | 2003-04-14 | Piezoelectric oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4228758B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4550726B2 (en) | 2005-12-01 | 2010-09-22 | 三菱電機株式会社 | Voltage controlled oscillator |
JP2008211763A (en) * | 2007-01-30 | 2008-09-11 | Epson Toyocom Corp | Piezoelectric oscillator |
-
2003
- 2003-04-14 JP JP2003109343A patent/JP4228758B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004320239A (en) | 2004-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3921362B2 (en) | Temperature compensated crystal oscillator | |
US6861915B2 (en) | Crystal oscillator with adjustable capacitive assembly having selectable capacitances | |
US6734747B1 (en) | Piezoelectric oscillator | |
JPWO2005020427A1 (en) | Temperature compensated piezoelectric oscillator and electronic device provided with the same | |
US5357222A (en) | Voltage controlled component including a capacitive diode biased to operate in the linear region | |
JP4228758B2 (en) | Piezoelectric oscillator | |
US6043720A (en) | Oscillator frequency drift compensated by varying different biassing parameters | |
JP3876594B2 (en) | Temperature compensated oscillator | |
JP2004336373A (en) | Temperature compensation piezoelectric oscillator | |
JP2006114974A (en) | Voltage-controlled piezoelectric oscillator capable of linear frequency control | |
JPH0846427A (en) | Voltage controlled crystal oscillator | |
JP2009272734A (en) | Piezoelectric oscillator | |
JP2002290151A (en) | Temperature compensated quartz oscillator with afc | |
JP2004104609A (en) | Temperature compensation type piezoelectric oscillator | |
JP4360389B2 (en) | Temperature compensated oscillator | |
JP2005006030A (en) | Temperature compensated piezoelectric oscillator | |
JP4428124B2 (en) | Temperature compensated oscillator | |
JPH11122038A (en) | Crystal oscillation circuit | |
JP2009278218A (en) | Piezoelectric resonator | |
JP2004356872A (en) | Temperature-compensated piezoelectric oscillator | |
JP3577244B2 (en) | Voltage controlled crystal oscillator | |
JP2000216633A (en) | Voltage controlled crystal oscillator | |
JP4314988B2 (en) | Temperature compensated piezoelectric oscillator | |
JP2002084135A (en) | Voltage-controlled oscillator | |
JP2006135540A (en) | Temperature compensation piezoelectric oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4228758 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |