JP4228441B2 - Method for manufacturing transfer mask - Google Patents

Method for manufacturing transfer mask Download PDF

Info

Publication number
JP4228441B2
JP4228441B2 JP34525298A JP34525298A JP4228441B2 JP 4228441 B2 JP4228441 B2 JP 4228441B2 JP 34525298 A JP34525298 A JP 34525298A JP 34525298 A JP34525298 A JP 34525298A JP 4228441 B2 JP4228441 B2 JP 4228441B2
Authority
JP
Japan
Prior art keywords
single crystal
electron beam
crystal silicon
silicon wafer
beam transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34525298A
Other languages
Japanese (ja)
Other versions
JP2000173892A (en
Inventor
敏雄 小西
裕信 佐々木
秀幸 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP34525298A priority Critical patent/JP4228441B2/en
Publication of JP2000173892A publication Critical patent/JP2000173892A/en
Application granted granted Critical
Publication of JP4228441B2 publication Critical patent/JP4228441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子線露光マスク、SCALPEL、X線マスク、イオンビーム転写用マスク等の転写マスクに関する。
【0002】
【従来の技術】
最近、次世代の超微細パターン素子等の製造技術として電子線リソグラフィ、X線リソグラフィ、イオンビームリソグラフィ等が注目されている。これらの露光には転写マスクが用いられ、微細加工のし易さから単結晶シリコンウェハを用いた転写マスクが使用されている。
ここで、図2(a)〜(h)に従来の転写マスクの一般的な製造工程を工程順に示す構成断面図を示す。
【0003】
まず、面方位が(100)の単結晶シリコンウェハ11、シリコン酸化膜12及び単結晶シリコンウェハ13からなる貼り合せ単結晶シリコン基板14を準備する(図2(a)参照)。
【0004】
次に、単結晶シリコンウェハ13面にレジストパターン15を通常のリソグラフィ工程で形成する(図2(b)参照)。
【0005】
次に、レジストパターン15をマスクにして、ドライエッチングにより貼り合せ単結晶シリコン基板14の単結晶シリコンウェハ13をシリコン酸化膜12に到達する深さまでエッチングして、電子ビーム透過マスクパターン16を形成する(図2(c)参照)。
【0006】
次に、CVDにより貼り合せ単結晶シリコン基板14の両面に窒化シリコン膜17を形成する(図2(d)参照)。
【0007】
次に、貼り合せ単結晶シリコン基板14の単結晶シリコンウェハ11面に形成された窒化シリコン膜17をパターニングして支持枠形成用マスクパターン17aを形成する(図3(e)参照)。
【0008】
次に、電子ビーム透過マスクパターン16が形成された単結晶シリコンウェハ13表面を保護するため、貼り合せ単結晶シリコン基板14を治具にセットし70℃から100℃に加熱されたKOH水溶液等のエッチング液に入れ、支持枠形成用マスクパターン17aをマスクにして単結晶シリコンウェハ11を、エッチングストッパー層となるシリコン酸化膜12まで面方位に沿った異方性エッチングして、電子ビーム透過開口部18及び支持枠11aを形成する(図2(f)参照)。
【0009】
次に、窒化シリコン膜17及び支持枠形成用マスクパターン17aを170℃の熱リン酸でエッチング除去する。
【0010】
次に、電子ビーム透過マスクパターン16下部のシリコン酸化膜12をフッ酸によりエッチングで除去し、電子ビーム透過孔16aを形成する(図2(g)参照)。
【0011】
最後に、両面に、重金属等の導電膜19を形成して転写マスクを得る(図2(h)参照)。
【0012】
しかし、上記従来の製造方法では次のような問題がある。貼り合せ単結晶シリコン基板14の単結晶シリコンウェハ11をエッチングして電子ビーム透過開口部18及び支持枠11aを形成する際、ウェットエッチングのみでおこなうとシリコン酸化膜12付近になると、KOHの撹拌時の揺動圧や、単結晶シリコン基板の歪によりシリコン酸化膜や基板自体が破壊され、歩留まりが悪くなる。
【0013】
【発明が解決しようとする課題】
本発明は上記の問題点に鑑みなされたもので、転写マスクの支持枠形成時の破壊を防ぎ、製造歩留まりの高い高品質の転写マスクを作製する方法を提供することを目的とする。
【0014】
本発明は上記課題を解決するために、第1のシリコンウェハと、シリコン酸化膜と、第2のシリコンウェハと、が、この順で積層された貼り合せ単結晶シリコン基板を用意する工程と、前記貼り合せ単結晶シリコン基板の第1のシリコンウェハに電子ビーム透過開口部および支持枠を形成する工程と、前記貼り合せ単結晶シリコン基板の第2のシリコンウェハに電子ビーム透過パターンを形成する工程と、前記貼り合せ単結晶シリコン基板のシリコン酸化膜に前記電子ビーム透過パターン対応する電子ビーム透過孔を形成する工程と、を備え、前記電子ビーム透過開口部および支持枠を形成する工程にあたり、第1のシリコンウェハに中途までウェットエッチングを行った後、該第1のシリコンウェハにシリコン酸化膜に達するまでドライエッチングを行うことを特徴とする転写マスクの製造方法としたものである。
【0016】
【発明の実施の形態】
本発明の転写マスクの製造方法は、図1(a)〜(g)に示すように単結晶シリコンウェハ1、シリコン酸化膜2及び単結晶シリコンウェハ3からなる貼り合せ単結晶シリコン基板4の単結晶シリコンウェハ1をエッチング加工して電子ビーム透過開口部7及び支持枠1aを形成する際最初にウエットエッチングにて単結晶シリコンウェハ1の残厚が5〜100μmになるまで異方性エッチングした後単結晶シリコンウェハ1の残り量をドライエッチングにて加工して電子ビーム透過開口部7及び支持枠1aを形成するものである。
このような加工方法を採用することにより製造歩留まりの高い高品質の転写マスクを作製することができる。
【0017】
【実施例】
以下本実施例により本発明を詳細に説明する。
図1(a)〜(g)に本発明の転写マスクの製造方法の模式断面図を示す。
【0018】
まず、面方位が(100)の500μm厚の単結晶シリコンウェハ1と20μm厚の単結晶シリコンウェハ3を1μm厚のシリコン酸化膜2にて貼り合せた貼り合せ単結晶シリコン基板4を作製した(図1(a)参照)。
【0019】
次に、貼り合せ単結晶シリコン基板4の単結晶シリコンウェハ3面に電子線レジストEBR900(東レ(株)製)を塗布し、0.5μm厚の電子ビーム感光層を形成した。さらに、加速電圧20KVの電子線描画機を用いドーズ量14μC/cm2でパターン描画し、専用の現像液を用いて現像をおこないレジストパターン5を作製した(図1(b)参照)。なお、本実施例では電子線レジストを用いた電子線描画を用いたが、通常のフォトレジストを用いたステッパー露光を用いても良い。
【0020】
次に、レジストパターン5をマスクにして、ICPドライエッチング装置を用い、SF6等のフッ素系のガスを用いて単結晶シリコンウエハ3をシリコン酸化膜2に到達する深さまでドライエッチングして、電子ビーム透過マスクパターン6を形成した。本実施例ではドライエッチングとしてICPドライエッチング装置を用いたが、これに限らず、RIE、マグネトロンRIE、ECR、マイクロ波、ヘリコン波等の放電方式を用いたドライエッチング装置を用いても良い。また、レジストパターンとの選択比が取れない場合、シリコン酸化膜をレジストの代わりに用いても良い。
【0021】
次に、レジストパターン5を剥離処理した後減圧CVDを用い、ジクロルシラン、アンモニア等のガスを用いて貼り合せ単結晶シリコン基板4の両面に窒化シリコン膜7を0.5μmの厚さで形成した(図1(d)参照)。
【0022】
次に、単結晶シリコンウェハ1面に形成された窒化シリコン膜7をCHF3等のフッ素系のガスを用いドライエッチングによりパターニングして支持枠形成用マスクパターン7aを形成した(図1(e)参照)。
【0023】
次に、電子ビーム透過マスクパターン6を形成した単結晶シリコンウェハ3の表面を保護するため、貼り合せ単結晶シリコン基板4を治具にセットし、70℃から100℃に加熱された30%のKOH水溶液に入れ、支持枠形成用マスクパターン7aをマスクにして単結晶シリコンウェハ1をウェットエッチングして、シリコン酸化膜に到達する前に、エッチング液から引き上げウェットエッチングを終了した。このときの単結晶シリコンウェハ1のエッチング残りの厚みは5〜100μmになるようにした。さらに、ICPドライエッチング装置を用い、SF6等のフッ素系のガスを用いて単結晶シリコンウェハ1の残りをシリコン酸化膜に到達するまでドライエッチングにより加工し、電子ビーム透過開口部8及び支持枠1aを形成した(図1(f)参照)。本実施例ではドライエッチングにICPを用いたが、これに限らず、RIE、マグネトロンRIE、ECR、マイクロ波、ヘリコン波等の放電方式を用いたドライエッチング装置を用いても良い。
【0024】
次に、窒化シリコン膜7及び支持枠形成用マスクパターン7aを170℃の熱リン酸でエッチングして除去し、さらに、電子ビーム透過マスクパターン6下部のシリコン酸化膜2を緩衝フッ酸によりエッチング除去して電子ビーム透過孔6aを形成した(図1(g)参照)。
【0025】
最後に、両面に金、白金等の導電膜10をスパッタ装置を用いて0.05〜0.2μm形成して、転写マスクを得た(図1(g)参照)。
【0026】
【発明の効果】
本発明の製造方法を用いれば、支持枠及び電子ビーム透過開口部形成時のシリコン単結晶基板の破壊がなくなり、転写マスクの製造歩留まりが向上し、高品質の転写マスクを得ることができる。
【図面の簡単な説明】
【図1】(a)〜(g)は、本発明の製造方法を用いて転写マスクを製造する製造工程を示す模式断面図である。
【図2】(a)〜(h)は、従来の転写マスクの製造工程を示す工程順に示す模式断面図である。
【符号の説明】
1……単結晶シリコンウェハ
1a……支持枠
2……シリコン酸化膜
3……単結晶シリコンウェハ
4……貼り合せ単結晶シリコン基板
5……レジストパターン
6……電子ビーム透過マスクパターン
6a……電子ビーム透過孔
7……窒化シリコン膜
7a……支持枠形成用マスクパターン
8……電子ビーム透過開口部
9……導電膜
11……単結晶シリコンウェハ
11a……支持枠
12……シリコン酸化膜
13……単結晶シリコンウェハ
14……貼り合せ単結晶シリコン基板
15……レジストパターン
16……電子ビーム透過マスクパターン
16a……電子ビーム透過孔
17……窒化シリコン膜
17a……支持枠形成用マスクパターン
18……電子ビーム透過開口部
19……導電膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transfer mask such as an electron beam exposure mask, a SCALPEL, an X-ray mask, and an ion beam transfer mask.
[0002]
[Prior art]
Recently, electron beam lithography, X-ray lithography, ion beam lithography, and the like have attracted attention as manufacturing technologies for next-generation ultrafine pattern elements and the like. A transfer mask is used for these exposures, and a transfer mask using a single crystal silicon wafer is used for ease of fine processing.
Here, FIG. 2A to FIG. 2H are sectional views showing a general manufacturing process of a conventional transfer mask in the order of steps.
[0003]
First, a bonded single crystal silicon substrate 14 including a single crystal silicon wafer 11, a silicon oxide film 12, and a single crystal silicon wafer 13 having a plane orientation of (100) is prepared (see FIG. 2A).
[0004]
Next, a resist pattern 15 is formed on the surface of the single crystal silicon wafer 13 by a normal lithography process (see FIG. 2B).
[0005]
Next, using the resist pattern 15 as a mask, the single crystal silicon wafer 13 of the bonded single crystal silicon substrate 14 is etched to a depth reaching the silicon oxide film 12 by dry etching to form an electron beam transmission mask pattern 16. (See FIG. 2 (c)).
[0006]
Next, a silicon nitride film 17 is formed on both surfaces of the bonded single crystal silicon substrate 14 by CVD (see FIG. 2D).
[0007]
Next, the silicon nitride film 17 formed on the single crystal silicon wafer 11 surface of the bonded single crystal silicon substrate 14 is patterned to form a support frame forming mask pattern 17a (see FIG. 3E).
[0008]
Next, in order to protect the surface of the single crystal silicon wafer 13 on which the electron beam transmission mask pattern 16 is formed, the bonded single crystal silicon substrate 14 is set on a jig, and a KOH aqueous solution or the like heated at 70 ° C. to 100 ° C. is used. The single crystal silicon wafer 11 is put into an etching solution, and the single crystal silicon wafer 11 is anisotropically etched along the plane direction to the silicon oxide film 12 serving as an etching stopper layer, using the support frame forming mask pattern 17a as a mask, and an electron beam transmission opening 18 and the support frame 11a are formed (see FIG. 2 (f)).
[0009]
Next, the silicon nitride film 17 and the support frame forming mask pattern 17a are removed by etching with hot phosphoric acid at 170.degree.
[0010]
Next, the silicon oxide film 12 under the electron beam transmission mask pattern 16 is removed by etching with hydrofluoric acid to form an electron beam transmission hole 16a (see FIG. 2G).
[0011]
Finally, a conductive film 19 such as heavy metal is formed on both surfaces to obtain a transfer mask (see FIG. 2H).
[0012]
However, the conventional manufacturing method has the following problems. When the single crystal silicon wafer 11 of the bonded single crystal silicon substrate 14 is etched to form the electron beam transmission opening 18 and the support frame 11a, if only wet etching is performed, the vicinity of the silicon oxide film 12 may occur. The silicon oxide film and the substrate itself are destroyed by the fluctuation pressure of the crystal and the distortion of the single crystal silicon substrate, and the yield is deteriorated.
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a high-quality transfer mask having a high manufacturing yield by preventing breakage of the transfer mask when the support frame is formed.
[0014]
In order to solve the above problems, the present invention provides a bonded single crystal silicon substrate in which a first silicon wafer, a silicon oxide film, and a second silicon wafer are laminated in this order; Forming an electron beam transmission opening and a support frame on the first silicon wafer of the bonded single crystal silicon substrate; and forming an electron beam transmission pattern on the second silicon wafer of the bonded single crystal silicon substrate. A step of forming an electron beam transmission hole corresponding to the electron beam transmission pattern in a silicon oxide film of the bonded single crystal silicon substrate, and forming the electron beam transmission opening and the support frame. After performing wet etching on one silicon wafer halfway, dry etching is performed until the first silicon wafer reaches the silicon oxide film. It is obtained by a method for producing a transfer mask which is characterized in that the quenching.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIGS. 1A to 1G, a method for manufacturing a transfer mask according to the present invention includes a single crystal silicon substrate 4 made of a single crystal silicon wafer 1, a silicon oxide film 2, and a single crystal silicon wafer 3. When the crystalline silicon wafer 1 is etched to form the electron beam transmission opening 7 and the support frame 1a, first, anisotropic etching is performed until the remaining thickness of the single crystal silicon wafer 1 becomes 5 to 100 μm by wet etching. The remaining amount of the single crystal silicon wafer 1 is processed by dry etching to form the electron beam transmission opening 7 and the support frame 1a.
By adopting such a processing method, a high-quality transfer mask with a high production yield can be produced.
[0017]
【Example】
The present invention will be described in detail with reference to the following examples.
1A to 1G are schematic cross-sectional views of a method for manufacturing a transfer mask according to the present invention.
[0018]
First, a bonded single crystal silicon substrate 4 in which a 500 μm-thick single crystal silicon wafer 1 having a plane orientation of (100) and a 20 μm-thick single crystal silicon wafer 3 were bonded together with a 1 μm-thick silicon oxide film 2 was produced ( FIG. 1 (a)).
[0019]
Next, an electron beam resist EBR900 (manufactured by Toray Industries, Inc.) was applied to the single crystal silicon wafer 3 surface of the bonded single crystal silicon substrate 4 to form an electron beam photosensitive layer having a thickness of 0.5 μm. Further, a pattern was drawn with an electron beam drawing machine with an acceleration voltage of 20 KV at a dose of 14 μC / cm 2 , and development was performed using a dedicated developer to produce a resist pattern 5 (see FIG. 1B). In this embodiment, electron beam drawing using an electron beam resist is used, but stepper exposure using a normal photoresist may be used.
[0020]
Next, using the resist pattern 5 as a mask, the ICP dry etching apparatus is used to dry-etch the single crystal silicon wafer 3 to a depth reaching the silicon oxide film 2 using a fluorine-based gas such as SF 6. A beam transmission mask pattern 6 was formed. In this embodiment, the ICP dry etching apparatus is used as the dry etching. However, the present invention is not limited to this, and a dry etching apparatus using a discharge method such as RIE, magnetron RIE, ECR, microwave, helicon wave or the like may be used. Further, when the selection ratio with the resist pattern cannot be obtained, a silicon oxide film may be used instead of the resist.
[0021]
Next, after the resist pattern 5 is peeled off, a silicon nitride film 7 is formed to a thickness of 0.5 μm on both surfaces of the bonded single crystal silicon substrate 4 using a gas such as dichlorosilane and ammonia using low pressure CVD ( (Refer FIG.1 (d)).
[0022]
Next, the silicon nitride film 7 formed on the surface of the single crystal silicon wafer 1 is patterned by dry etching using a fluorine-based gas such as CHF 3 to form a support frame forming mask pattern 7a (FIG. 1E). reference).
[0023]
Next, in order to protect the surface of the single crystal silicon wafer 3 on which the electron beam transmission mask pattern 6 is formed, the bonded single crystal silicon substrate 4 is set on a jig and heated to 30 to 100 ° C. The single crystal silicon wafer 1 was wet etched using the support frame forming mask pattern 7a as a mask, and was lifted from the etching solution before reaching the silicon oxide film to finish the wet etching. At this time, the remaining etching thickness of the single crystal silicon wafer 1 was set to 5 to 100 μm. Further, using an ICP dry etching apparatus, the remaining portion of the single crystal silicon wafer 1 is processed by dry etching using a fluorine-based gas such as SF 6 until it reaches the silicon oxide film, and the electron beam transmission opening 8 and the support frame are processed. 1a was formed (see FIG. 1 (f)). In this embodiment, ICP is used for dry etching. However, the present invention is not limited to this, and a dry etching apparatus using a discharge method such as RIE, magnetron RIE, ECR, microwave, helicon wave, or the like may be used.
[0024]
Next, the silicon nitride film 7 and the support frame forming mask pattern 7a are removed by etching with hot phosphoric acid at 170 ° C., and the silicon oxide film 2 under the electron beam transmission mask pattern 6 is removed by etching with buffered hydrofluoric acid. Thus, an electron beam transmission hole 6a was formed (see FIG. 1G).
[0025]
Finally, a conductive mask 10 made of gold, platinum, or the like was formed on both surfaces by using a sputtering apparatus to form 0.05 to 0.2 μm to obtain a transfer mask (see FIG. 1G).
[0026]
【The invention's effect】
If the manufacturing method of the present invention is used, the silicon single crystal substrate is not broken when the support frame and the electron beam transmission opening are formed, the transfer mask manufacturing yield is improved, and a high-quality transfer mask can be obtained.
[Brief description of the drawings]
FIGS. 1A to 1G are schematic cross-sectional views showing manufacturing steps for manufacturing a transfer mask using the manufacturing method of the present invention.
FIGS. 2A to 2H are schematic cross-sectional views illustrating a conventional transfer mask manufacturing process in order of steps.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Single crystal silicon wafer 1a ... Support frame 2 ... Silicon oxide film 3 ... Single crystal silicon wafer 4 ... Bonding single crystal silicon substrate 5 ... Resist pattern 6 ... Electron beam transmission mask pattern 6a ... Electron beam transmission hole 7... Silicon nitride film 7 a... Support frame forming mask pattern 8. Electron beam transmission opening 9... Conductive film 11... Single crystal silicon wafer 11 a. 13 ... Single crystal silicon wafer 14 ... Bonded single crystal silicon substrate 15 ... Resist pattern 16 ... Electron beam transmission mask pattern 16a ... Electron beam transmission hole 17 ... Silicon nitride film 17a ... Mask for supporting frame formation Pattern 18 ... Electron beam transmission opening 19 ... Conductive film

Claims (1)

第1のシリコンウェハと、シリコン酸化膜と、第2のシリコンウェハと、が、この順で積層された貼り合せ単結晶シリコン基板を用意する工程と、  Preparing a bonded single crystal silicon substrate in which a first silicon wafer, a silicon oxide film, and a second silicon wafer are laminated in this order;
前記貼り合せ単結晶シリコン基板の第1のシリコンウェハに電子ビーム透過開口部および支持枠を形成する工程と、Forming an electron beam transmission opening and a support frame on the first silicon wafer of the bonded single crystal silicon substrate;
前記貼り合せ単結晶シリコン基板の第2のシリコンウェハに電子ビーム透過パターンを形成する工程と、Forming an electron beam transmission pattern on the second silicon wafer of the bonded single crystal silicon substrate;
前記貼り合せ単結晶シリコン基板のシリコン酸化膜に前記電子ビーム透過パターン対応する電子ビーム透過孔を形成する工程と、を備え、Forming an electron beam transmission hole corresponding to the electron beam transmission pattern in a silicon oxide film of the bonded single crystal silicon substrate,
前記電子ビーム透過開口部および支持枠を形成する工程にあたり、第1のシリコンウェハに中途までウェットエッチングを行った後、該第1のシリコンウェハにシリコン酸化膜に達するまでドライエッチングを行うことIn the step of forming the electron beam transmission opening and the support frame, after the wet etching is performed on the first silicon wafer halfway, the dry etching is performed on the first silicon wafer until the silicon oxide film is reached.
を特徴とする転写マスクの製造方法。A method of manufacturing a transfer mask characterized by the above.
JP34525298A 1998-12-04 1998-12-04 Method for manufacturing transfer mask Expired - Fee Related JP4228441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34525298A JP4228441B2 (en) 1998-12-04 1998-12-04 Method for manufacturing transfer mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34525298A JP4228441B2 (en) 1998-12-04 1998-12-04 Method for manufacturing transfer mask

Publications (2)

Publication Number Publication Date
JP2000173892A JP2000173892A (en) 2000-06-23
JP4228441B2 true JP4228441B2 (en) 2009-02-25

Family

ID=18375343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34525298A Expired - Fee Related JP4228441B2 (en) 1998-12-04 1998-12-04 Method for manufacturing transfer mask

Country Status (1)

Country Link
JP (1) JP4228441B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465090B2 (en) * 2000-09-04 2010-05-19 株式会社アドバンテスト Manufacturing method of mask member
CN101062761B (en) * 2006-12-27 2010-09-29 中国科学院上海微系统与信息技术研究所 Method for producing nano-beam with right-angled triangle cross-section by wet method corrosion technique
CN102866438B (en) * 2011-07-06 2015-06-03 奇景光电股份有限公司 Method for carrying out wet etching on substrates
KR101386004B1 (en) * 2012-08-24 2014-04-16 한국전기연구원 Method of Fabricating Micro-Grid Structure using Wafer Bonding Techniques
KR101384725B1 (en) * 2012-08-24 2014-04-14 한국전기연구원 Method of Fabricating Micro-Grid Structure using SOI Structure Wafer Bonding Techniques

Also Published As

Publication number Publication date
JP2000173892A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP3678199B2 (en) Method for manufacturing mask for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP4334832B2 (en) Membrane mask having a large area and method for producing the same
JP4220229B2 (en) Mask blank for charged particle beam exposure and method for manufacturing mask for charged particle beam exposure
JP4228441B2 (en) Method for manufacturing transfer mask
JP2003100583A (en) Mask and its manufacturing method, and manufacturing method of semiconductor device
JP2725319B2 (en) Manufacturing method of charged particle beam mask
JP2001326169A (en) Stencil mask and its manufacturing method
JP4465090B2 (en) Manufacturing method of mask member
JP4686914B2 (en) Manufacturing method of stencil mask
JP4333107B2 (en) Transfer mask and exposure method
JP3271390B2 (en) Transmission mask for charged beam exposure and method of manufacturing the same
JP4207272B2 (en) Aperture for electron beam drawing
JP2001093894A (en) Method for etching material layer used in manufacture of microstructure and method of forming lithography mask
JPH10268506A (en) Mask for electron beam device and its production
US6355384B1 (en) Mask, its method of formation, and a semiconductor device made thereby
JP2001351840A (en) Manufacturing method of transfer mask and transfer mask
JPS6289324A (en) Manufacture of semiconductor device
TWI277126B (en) Method of relieving wafer stress
JP2886573B2 (en) X-ray mask and manufacturing method thereof
JP3104727B2 (en) Aperture manufacturing method
JP2001118775A (en) Manufacturing method of membrane mask, and soi substrate
JPH0612963A (en) Manufacture of electrostatic type microrelay
JP2000003844A (en) Mask for x-ray exposure and manufacture thereof
JP2001007005A (en) Aperture for electron beam lithography, mask holder, and electron beam exposure mask using them
JP2005093484A (en) Stencil mask and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees