JP4228247B2 - Improved hazardous substance removing member and method of manufacturing the same - Google Patents

Improved hazardous substance removing member and method of manufacturing the same Download PDF

Info

Publication number
JP4228247B2
JP4228247B2 JP03019597A JP3019597A JP4228247B2 JP 4228247 B2 JP4228247 B2 JP 4228247B2 JP 03019597 A JP03019597 A JP 03019597A JP 3019597 A JP3019597 A JP 3019597A JP 4228247 B2 JP4228247 B2 JP 4228247B2
Authority
JP
Japan
Prior art keywords
removing member
substance removing
harmful substance
surface layer
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03019597A
Other languages
Japanese (ja)
Other versions
JPH10225619A (en
Inventor
英男 田原
義彦 村田
浩司 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP03019597A priority Critical patent/JP4228247B2/en
Publication of JPH10225619A publication Critical patent/JPH10225619A/en
Application granted granted Critical
Publication of JP4228247B2 publication Critical patent/JP4228247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Catalysts (AREA)
  • Road Paving Structures (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、改良された有害物質除去部材及びその製造方法に関し、更に詳しくは本発明は、浄化性能が向上した有害物質除去部材及びその製造方法に関する。
【0002】
【従来の技術】
最近、地球環境の破壊が問題視されるなか、光触媒が地球環境の汚染防止乃至は浄化に役に立つことが注目されるようになった。この光触媒は紫外線等の放射線を当てると有機物質の分解、浄化作用を呈することがわかり、例えば、表面の汚れの防止、大気中のNOX の浄化、水の浄化、抗菌・防カビ、脱臭等に応用された製品の開発が行われた。具体的に特開平2−273514号公報には、二酸化チタンの半導体と粘土とを練り合わせ、乾燥して得られる有害物質の除去剤が開示されている。また特開平6−327965号公報には、エチレン等の有害物質の除去剤として、水硬性化合物の水和凝集物に0.5〜5eVの禁止帯幅を有する半導体(例えば二酸化チタン等)を分散してなる有害物質除去剤が開示されており、また特開平7−171408号公報には、難分解性結着剤を介して光触媒粒子を基体上に接着した光触媒が開示されている。更に特開平8−243402号公報には、無機硬化体の表面部に酸化チタン及び酸化促進剤の一部又は全部が存在している如き光触媒材料が開示されている。これらはいずれも有害物質の除去に使用されるものである。
【0003】
【発明が解決しようとする課題】
しかしながら、前述の如く、特開平2−273514号公報に記載の有害物質の除去剤は、有害物質の除去速度が低いため除去剤を大量に使用する必要があり今一つ問題があり、また特開平6−327965号公報に記載の有害物質除去剤や特開平7−171408号公報に記載の光触媒は、その除去効率は改善されているものの、なおいっそうの改良が望まれている。更に特開平8−243402号公報に記載の光触媒材料は、酸化促進剤を含有することにより長期にわたり良好な消臭効果を発揮することが示されているが、前記酸化促進剤が高価であるという欠点があり、また分解物は酸性を呈するので、環境上好ましくないという問題を有する。
【0004】
そこで本発明者等は、前述の如き有害物質除去剤や光触媒の有害物質の除去速度乃至除去効率を向上させる点につき、種々検討したところ、半導体等の光触媒の光吸収率を向上させるために有害物質除去剤や光触媒に更に特定の粒度を有する骨材あるいは消石灰あるいは吸着性物質の少なくとも1種を加えることによりさらにいっそう優れた有害物質除去性能が得られるばかりでなく有害物質除去部材の劣化が防止され、環境破壊のない優れた有害物質除去部材が得られることを見出し、本発明は、この知見に基づいてなされたものである。
【0005】
したがって、本発明が解決しようとする第1の課題は、良好な有害物質の除去性能乃至浄化性能を有し、長期にわたって劣化することなく、自然環境保護に適する有害物質除去部材を提供することにある。また本発明が解決しようとする第2の課題は、簡単かつ安価に製造でき、良好な有害物質の除去性能乃至浄化性能を有し、長期にわたって劣化することなく、自然環境保護に適する有害物質除去部材の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の上記課題は、以下の各発明によりそれぞれ達成される。
【0007】
(1)基体上に無機硬化体、平均粒径5mm〜10mmの骨材、光触媒からなる表面層を有することを特徴とする有害物質除去部材。
(2)表面層に、更に酸化促進剤を含有していることを特徴とする前記第1項に記載の有害物質除去部材。
(3)酸化促進剤がNi、Cr、Fe、Zn、Ti、Mn、Co、Mo、V、Sr、W、Pd、Cu、Au、Ag、Pt、La、Ce、Pr、Nd、Dy、Ho、Er、Ru、Rh及びLuの単体又はこれらの化合物の少なくとも1種であることを特徴とする前記第1項又は第2項に記載の有害物質除去部材。
(4)表面層の厚みが1mm〜20mmであることを特徴とする前記第1項乃至第3項のいずれかに記載の有害物質除去部材。
)表面層に、吸着性物質を含有していることを特徴とする前記第1項乃至第項のいずれかに記載の有害物質除去部材。
)無機硬化性結合剤を成分とする基体用混練物を流し込んだ後、無機硬化性結合剤、光触媒、及び5mm〜10mmの骨材を混練して得られた表面層用混練物を流し込んで成形し、養生することを特徴とする有害物質除去部材の製造方法。
7)無機硬化性結合剤を成分とする基体用混練物を流し込んだ後、無機硬化性結合剤、光触媒、及び5mm〜10mmの骨材及び吸着性物質を混練して得られた表面層用混練物を流し込んで成形し、養生することを特徴とする有害物質除去部材の製造方法。
(8)表面層用混練物を、流し込むことに代えて散布することを特徴とする請求項6又は請求項7に記載の有害物質除去部材の製造方法。
【0008】
このように本発明の有害物質除去部材は、基体上に無機硬化体、平均粒径5mm〜10mmの骨材、光触媒からなる表面層を有することを特徴とするもので、特に5〜10mmの骨材を混合したことにより表面層の透水係数が向上し、光触媒の露出度が増大して光吸収率を向上させることができ、更に雨水により硝酸イオンを溶かして排出することができる。その結果、優れた有害物質の除去性能乃至浄化性能が得られるばかりでなく洗浄効果を高めることができる。本発明の有害物質除去部材において、表面層に、更に酸化促進剤を含有していることにより、有害物質の除去性能乃至浄化性能をいっそう向上させることができる。
【0009】
本発明では、前記の表面層の厚みが1mm〜20mmであり、これは平均粒径5mm〜10mmmmの骨材を使用することと相まって数mmの厚みを越えてこの範囲まで厚みを厚くしても表面層に光触媒作用をもたせることができ、したがって有害物質の除去性能を向上させることができる。
【0010】
更に前記表面層に吸着性物質を含有していることにより、昼間、光が当たっている状態では、有害物質は光触媒によって分解除去され、更に夜間では、有害物質は吸着性物質に吸着されて除去される。更にまた昼間になり光が当たると吸着性物質に吸着された有害物質が放出され光触媒によって分解除去される。したがって、昼夜にわたって有害物質の除去が可能となるという優れた浄化性能を有するものである。即ち光触媒物質及び吸着性物質の混合物を被覆することにより表面層で光触媒物質及び吸着性物質の両作用が昼夜交互に行われ効率よく有害物質の除去を行うことができる。
【0011】
本発明の有害物質除去部材は、無機硬化性結合剤を成分とする基体用混練物を流し込んだ後、無機硬化性結合剤、光触媒、及び平均粒径5mm〜10mmの骨材を混練して得られた表面層用混練物を流し込み、ついで成形し、養生することにより製造される。この方法により有害物質除去部材が簡単かつ安価に製造することができるばかりでなく、基体と表面層とが一体化され、強固に結合させることができる。また本発明の別の有害物質除去部材の製造方法では、前記の有害物質除去部材の製造方法において、前記の表面層用混練物を、流し込むことに代えて散布することにより製造される。これにより有害物質除去部材が簡単かつ安価に製造することができ、また基体と光触媒被覆物とを強固に接着することができると共にこの光触媒被覆物が表面に存在する層を形成することができるので光吸収面積が増大しかつ有害物質の接触,接触面積が増大するので、優れた有害物質の除去性能乃至浄化性能が得られるばかりでなく洗浄効果を高めることができる。
【0012】
【発明の実施の形態】
以下に、本発明の実施の形態を挙げるが、本発明は、これに限定されるものではない。
【0013】
本発明の有害物質除去部材は、基体上に無機硬化体、平均粒径5mm〜10mmの骨材、光触媒からなる表面層を有するものであり、基体としては、セラミックス、ガラス、コンクリート等の無機質材料、プラスチックス、ゴム、木、紙等の有機質材料が挙げられ、形状としては、球状体、半球状体や板状体が用いられる。本発明に用いられる無機硬化体とは、光触媒が持つ光触媒機能による分解の速度が極めて遅く、実質的に分解されないものを意味する。
【0014】
この無機硬化体を形成し得る物質、いわゆる無機硬化性結合剤としては、珪素系化合物、燐酸塩、重燐酸塩、セメント類、石灰(生石灰、消石灰、石灰プラスター、石灰モルタル等)、石膏(半水石膏、石膏プラスター等)等の無機系結着剤等が挙げられ、特にセメント類が好ましく、セメントとしては、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、超早強ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント、アルミナセメント、マグネシアセメント、超速硬セメント等が挙げられる。
【0015】
この他、生石灰、硫酸カルシウム、珪酸塩(珪酸カルシウム、珪酸マグネシウム、合成珪酸カルシウム、合成珪酸マグネシウム等)、炭酸マグネシウム(特に塩基性炭酸マグネシウムがよい。)、アルミン酸カルシウム、鉄酸カルシウム、セリット、シーライト、ゲーレナイト、灰長石、ドロマイト等が挙げられる。好ましくは、前記セメント類、特に白色ポルトランドセメントをはじめ、硫酸カルシウム、焼き石膏である。
【0016】
本発明に用いられる合成珪酸カルシウムとしては、石灰原料と珪酸原料から水熱反応によって得られるもの、例えば、ゾノトライト、トベルモナイト、フォシャジャイト、ジャイロライト、α−ダイカルシウムシリケート、トリカルシウムシリケート、ヒレブランダイト、ローゼンハナイト、トラスコタイト、リエライト、カルシオコンドロダイト、キルコアナイト、アフィライト、準結晶質珪酸カルシウム(CSHn)等の合成珪酸カルシウム水和物、更には、これらの合成珪酸カルシウム水和物を加熱して得られるワラストナイト等の合成珪酸カルシウム等が挙げられる。前記の珪酸カルシウムを主成分とする無機硬化体は、いかなる方法で製造したものでも使用することできる。本発明に用いられる合成珪酸カルシウムのように、それ自体有害物質を吸収する性質をもっているものを使用すれば、有害物質を効果的に分解することができる。
【0017】
本発明に用いられる光触媒は、一種の半導体物質であり、具体的には、二酸化すず、酸化亜鉛、三酸化タングステン、酸化セリウム、二酸化チタン、チタン酸バリウム、酸化第二鉄等の金属酸化物;硫化亜鉛、硫化カドミウム、硫化鉛、セレン化亜鉛、セレン化カドミウム等の金属カルコゲナイト;シリコン、ゲルマニウム等の第IV族金属;ガリウムリン、ガリウム砒素、インジウムリン等の第III族元素と第V族元素との化合物が挙げられる。これらのうち、更に好ましいものは、二酸化チタン、酸化亜鉛、酸化セレニウム、三酸化タングステン等の半導体である。前記の二酸化チタンとしては、アナターゼ型二酸化チタン粉末、ルチル型二酸化チタン粉末のいずれも使用することができ、好ましくはアナターゼ型二酸化チタン粉末がよい。二酸化チタンは、その粒径は微粒の方がより良好な有害物質除去効果乃至消臭効果が得られるが、通常、5〜250nmがよく、好ましくは10〜100nmのものが使用される。
【0018】
本発明において、前記無機・金属系半導体に加えることができる酸化促進剤として、遷移金属、貴金属、又は希土類元素の単体、酸化物、水酸化物、ハロゲン化物及び塩類の少なくとも1種が挙げられる。塩類としては、硫酸塩、硝酸塩、燐酸塩、炭酸塩等がよい。酸化促進剤としては、Ni、Cr、Fe、Zn、Ti、Mn、Co、Mo、V、Sr、W、Pd、Cu、Au、Ag、Pt、La、Ce、Pr、Nd、Dy、Ho、Er、Ru、Rh及びLuの単体、酸化物、水酸化物、ハロゲン化物及び塩類からなる群より選択された少なくとも一種が挙げられ、具体的には硫酸鉄、硝酸銀等が挙げられる。これらの酸化促進剤を用いることにより有害物質除去性能をいっそう向上させることができる。前記半導体と酸化促進剤との組み合わせは、好ましくは混合するのがよい。本発明に用いられる半導体は、粉末で用いられ、該半導体粉末を無機硬化性結合剤に混合して分散し、被覆、成形等の手段で基体に適用する。又は本発明で形成される表面層において、半導体及び酸化促進剤は内部又はその表層部に存在してもよく、好ましくは無機硬化性結合剤の表面に半導体粉末を散布してもよい。
【0019】
更に本発明に用いられる骨材としては、平均粒径5mm〜10mmの骨材がよく、このような骨材を混合することにより表面層の透水係数が向上し、光触媒の露出度が増大して光吸収率を向上させることができ、更に雨水により硝酸イオンを溶かして排出することができる。したがって、有害物質除去部材は、長期にわたって耐久性が得られる。このような骨材としては、砂、砕石、珪砂、ガラス等が挙げられる。この骨材の大きさは、粒径が5mm〜10mmの範囲の粒度でよい。特に用途との関係でNO除去率を高くする場合には、5mm〜10mmがよい。
【0020】
本発明において、表面層には、更に吸着性物質を加えることができ、具体的には、活性炭、ゼオライト、マガディアイト、ペタライト等が挙げられる。マガディアイトは、Na2 Si1429nH2 Oの化学式を有し、吸着性物質として有効である。更にペタライトは外観が石英に似て白色や灰色の鉱物で、鉱物学的には長石族に属する珪酸塩鉱物(Li2 OAl2 3 8SiO2 )である。吸着性能に優れている。これらの吸着性物質は、いずれも吸着性能に優れており、有害物質を吸収することにより除去することができる。この吸着性物質の作用を更に詳しく説明すると、日中の太陽光(これに含有される紫外線)により光触媒の作用でNOx 等の有害物質が浄化除去されるばかりでなく夜間でも該吸着材料に有害物質が吸着され、これが日中、紫外線により分解されることにより、有害物質の浄化が行われる。これらの吸着性物質のうち、好ましくは活性炭がよい。
【0021】
本発明において、有害物質除去部材は、無機硬化性結合剤を成分とする基体用混練物を流
し込んだ後、無機硬化性結合剤、光触媒、及び平均粒径5mm〜10mmの骨材を混練して得られた表面層用混練物を流し込んで成形し、養生することにより製造される。この方法により有害物質除去部材が簡単かつ安価に製造することができる。また本発明の別の有害物質除去部材の製造方法では、前記の有害物質除去部材の製造方法において、基体用混練物を流し込んだ表面に、無機硬化性結合剤、光触媒、及び平均粒径5mm〜10mmの骨材を混練して得られ表面層用混練物を散布し、成形することにより製造される。これにより有害物質除去部材が簡単かつ安価に製造することができ、また得られた有害物質除去部材は、優れた有害物質の除去性能乃至浄化性能が得られるばかりでなく洗浄効果を高めることができる。
【0022】
本発明の製造方法において、有害物質除去部材は、無機硬化性結合剤を成分とする基体用混練物を流し込んだ後、無機硬化性結合剤、光触媒及び平均粒径5mm〜10mmの骨材を混合した表面層用混練物を流し込むことにより、基本的に製造される。また本発明の製造方法において、表面層用混練物として、無機硬化性結合剤、光触媒、及び平均粒径5mm〜10mmの骨材を混練して得られた表面層用混練物の実施の形態としては、(1)無機硬化性結合剤、光触媒、平均粒径5mm〜10mmの骨材及び水からなる混練物、()無機硬化性結合剤、光触媒、平均粒径5mm〜10mmの骨材、吸着性物質及び水からなる混練物を用いる場合が含まれる。
【0023】
また本発明の別の有害物質除去部材の製造方法において、無機硬化性結合剤、光触媒、及び平均粒径5mm〜10mmの骨材及び必要に応じて吸着性物質の混練物を散布する方法では、この混合物の実施の形態としては、(1)無機硬化性結合剤、光触媒、平均粒径5mm〜10mmの骨材及び水からなる混練物、()無機硬化性結合剤、光触媒、平均粒径5mm〜10mmの骨材、吸着性物質及び水からなる混練物を用いる場合が含まれる。
【0024】
本発明の有害物質除去部材の製造方法において、無機硬化性結合剤、光触媒、平均粒径5mm〜10mmの骨材、吸着性物質及び水の混合物を均一に混合して製造するが、これらの各成分の添加順序は特に限定されるものではない。好ましくは骨材、無機硬化性結合剤、光触媒(光触媒、吸着物質の順)がよい。本発明の有害物質除去部材は、光を照射して、空気の浄化、水の浄化をすることができる。更に、抗菌・防カビ、防汚染等の用途に使用することができる。また光触媒の量を多くすることにより光が当たらなくても抗菌・防カビ、防汚染等の用途に使用することができる。更に混練物は、板状体の表面に適用することも可能であり、これにより光触媒のコストダウンを図ることができ、いっそう経済的である。
【0025】
本発明の有害物質除去部材の各成分の重量割合は、通常の有害物質除去部材で使用される重量割合でよいが、好ましくは無機硬化性結合剤100重量部に対して、骨材50重量部〜1000重量部、光触媒5重量部〜200重量部及び水10重量部〜200重量部である。更に好ましくは無機硬化性結合剤100重量部に対して、骨材100重量部〜500重量部、光触媒10重量部〜100重量部及び水20重量部〜150重量部である。これらの範囲を越えると、実質的に有害物質除去性能がないばかりかコスト的に好ましくない。
【0026】
本発明の有害物質除去部材において、消石灰の量は、無機硬化性結合剤100重量部に対して1重量部〜50重量部であり、好ましくは無機硬化性結合剤100重量部に対して5重量部〜30重量部である。消石灰の量は、無機硬化性結合剤100重量部に対して1重量部未満のときは、有害物質の浄化性能の向上に寄与しない。また消石灰の量が、50重量部を越えると、かえって光触媒の量が相対的に減り浄化性能が落ちるので好ましくない。
【0027】
更に本発明の有害物質除去部材において、吸着性物質の量は、その種類にもよるが、無機硬化性結合剤100重量部に対して5重量部〜50重量部であり、好ましくは無機硬化性結合剤100重量部に対して10重量部〜30重量部である。吸着性物質の量は、無機硬化性結合剤100重量部に対して5重量部未満のときは、有害物質の吸着が十分行えないので、浄化性能を向上させることができない。また吸着性物質の量が、50重量部を越えると、かえって光触媒の量が相対的に減り浄化性能が落ちるので好ましくない。また酸化促進剤の量は、二酸化チタンの量に対して0.3倍〜3.0倍が好ましい。更に好ましくは二酸化チタンの量に対して0.6倍〜2.5倍がよい。更には、二酸化チタンの量に対して0.8倍〜2.1倍がよい。酸化促進剤の量が、二酸化チタンの量に対して0.3倍未満では、酸化促進効果が弱く、また酸化促進剤の量が、二酸化チタンの量に対して3.0倍を越えても酸化促進効果に変化はない。
【0028】
本発明の有害物質除去部材の製造方法において、成形手段によらずに板状基体の表面に混練物を適用する手段は、板状基体の表面に骨材、無機硬化性結合剤、光触媒物質、水及び必要に応じて吸着性物質からなる混練物を被覆する手段は、噴霧塗布法、含浸法、ディップコーティング法、スピナーコーティング法、ブレードコーティング法、ローラーコーティング法、ワイヤーバーコーティング法、リバースールコーティング法等の通常塗布技術分野において知られている被覆法が用いられる。
【0029】
本発明の有害物質除去部材の使用に際し、照射される光は、紫外線を含む光がよく、その光の波長範囲は、200nm〜400nmが好ましい。特に紫外線が好ましいが、戸外で使用するときは、太陽光で十分である。また室内での使用は、超高圧水銀灯、キセノンランプ、低圧水銀灯灯からでる紫外線を有害物質除去部材に照射する。この際、有害物質除去部材にできるだけ近づけて用いることが好ましい。この有害物質除去部材で除去可能な有害物質は、NOX 、メルカプタン類、アンモニア、硫化水素、アミン類、エチレン等が好ましく除去される。本発明において、有害物質除去部材の使用量は、有害物質の種類、光照度等を考慮して決めることができる。しかしながら、本発明では、有害物質除去部材の除去乃至浄化性能が高いので、その使用量は少なくてよい。
【0030】
【実施例】
以下に本発明を実施例を挙げて更に詳しく説明するが、本発明はこの例にのみ限定されるものではない。
【0031】
〔実施例1〕ブロック基層の配合としてポルトランドセメント100重量部、砕石195重量部、砂240重量部及び水31を混練した後、10×20cmの型枠に該混練物を入れ振動成形してコンクリート基層を成形した。ついで白色セメント100重量部に砂220重量部、二酸化チタン粉末(石原産業(株)製)25重量部及び水30重量部を加え、十分混練した後、得られた表面層用混練物を流し込んで成形し、養生した。得られた有害物質除去部材は表面に骨材含有二酸化チタン被覆層を有する(試料No.1)。更に前記の表面層用混練物に混合する砂にかえて各種の粒度を砕石を用い、前記と同様にして有害物質除去部材を作製した(試料No.2〜6)。また 同様にして骨材を含まない比較用板状体を製造した(試料No.7)。これらの有害物質除去部材を用いて、下記のNOの除去性能試験方法により試験を行った。得られた結果を表1に示す。
【0032】
〔NOの除去性能試験方法〕試験は試験体を密閉容器に入れ、入口から1ppmのNOガスを含む模擬ガスを流した。出口からでるガスの濃度を測定し、これからNOの除去率を測定した。試験は24時間行い、10分毎の除去率を平均した数値を試験結果とした。なお、この試験では、10W×3本の紫外線ランプを24時間点灯したままで試験を行った。
【0033】
【表1】

Figure 0004228247
【0034】
表1から明らかなように、本発明では、骨材を入れることにより有害物質であるNOの除去率が、比較例のものに比して向上しており、特に骨材の粒径を5mm〜10mmの時に、NOの除去効果が著しいことがわかる。
【0035】
参考例2〕実施例1に記載の試料1の表面層用混練物の白色セメントにかえてポルトランドセメントを用い、また二酸化チタン粉末に対して硝酸銀を加えた以外は、実施例1と同様にして本発明の有害物質除去部材を作製した。また比較としては、この有害物質除去部材から砂を除いたものを作製した。またこの有害物質除去部材を実施例1に記載のNOの除去性能試験方法で試験した。得られた結果を表2に示す。表2から明らかなように、比較例では、NOの除去率が47%であるのに対して、砂を添加した本発明では、NOの除去率が、54%となり、砂の添加によりNOの除去率が著しく向上することがわかる。
【0036】
【表2】
Figure 0004228247
【0037】
参考例3〕実施例1に記載の試料1の表面層用混練物の白色セメントにかえて合成珪酸カルシウム水和物を用いた以外は、実施例1と同様にして本発明の有害物質除去部材を作製した。また比較としては、この有害物質除去部材から砂を除いたものを作製した。またこの有害物質除去部材を実施例1に記載のNOの除去性能試験方法で試験した。本発明の有害物質除去部材は、比較に対して10%増のNOガスの除去効率を有するものであった。
【0038】
参考例4〕実施例1に記載の試料1の表面層用混練物に更に消石灰25重量部を加えたもの、及び実施例1に記載の試料1の表面層用混練物の二酸化チタン粉末に対して、硝酸銀を加えたものを製造する以外は、実施例1と同様にしてそれぞれ本発明の有害物質除去部材を作製した。また比較としては、この有害物質除去部材から砂を除いたものを作製した。またこの有害物質除去部材を実施例1に記載のNOの除去性能試験方法で試験した。得られた結果を表3に示す。表3から明らかなように、本発明では、比較例に対してNOの除去率が向上しているが、これは、石灰を加えることによりNOxを可溶性塩にして系外に排出するので、光触媒の浄化効果を向上させる、また石灰は、コンクリートの経時による中性化乃至酸性化を防ぐこともできるという優れた効果を奏する。
【0039】
【表3】
Figure 0004228247
【0040】
参考例5〕実施例4に記載の表3において、消石灰にかえて活性炭を用いた以外は、実施例4と同様にしてそれぞれ本発明の有害物質除去部材を作製した。また比較としては、この有害物質除去部材から砂を除いたものを作製した。またこの有害物質除去部材を下記のNOの除去性能試験方法2で試験した。得られた結果を表4に示す。表4から明らかなように、活性炭の夜間の吸着効果により間接的にNOの除去率が向上することがわかる。
【0041】
〔NO除去性能試験方法2〕試験方法1を行う場合において、紫外線ランプを2時間毎に点灯、消灯を繰り返した。したがって24時間の試験時間中、ランプが点灯していたのは12時間であった。
【0042】
【表4】
Figure 0004228247
【0043】
参考例6〕実施例4に記載の表3において、消石灰に更に活性炭を加えた以外は、実施例4と同様にしてそれぞれ本発明の有害物質除去部材を作製した。また比較としては、この有害物質除去部材から砂を除いたものを作製した。またこの有害物質除去部材を実施例5に記載のNOの除去性能試験方法2で試験した。得られた結果を表5に示す。
【0044】
【表5】
Figure 0004228247
【0045】
参考例7〜10〕実施例1に記載の表面層用混練物として、白色セメント100重量部に砂220重量部、二酸化チタン粉末(石原産業(株)製)25重量部、酸化促進剤42重量部及び水30重量部を加えて混練した表面層用混練物を製造し、この表面層用混練物の一部を取って更にこの表面層用混練物に消石灰又は/及び活性炭を表6に示されるごとき量を加えた以外は、実施例1と同様にして有害物質除去部材を製造した。またこれらの有害物質除去部材を用いてメチルメルカプタンの除去性について試験した。試験方法は、実施例5に記載のNOの除去性能試験方法2において、NOガスにかえてメチルメルカプタンを用いて同様に試験した。得られた結果を表6に示す。なお、エチレン、アセトアルデヒド、アンモニア、硫化水素につても同様に試験を行ったところ良好な除去性能を有するものであった。
【0046】
【表6】
Figure 0004228247
【0047】
【発明の効果】
本発明の有害物質除去部材は、基体上に無機硬化体、平均粒径5mm〜10mmの骨材、光触媒からなる表面層を有することを特徴とすることにより、表面層の透水係数が向上し、光触媒の露出度が増大して光吸収率を向上させることができ、更に雨水により硝酸イオンを溶かして排出することができる。その結果、優れた有害物質の除去性能乃至浄化性能が得られるばかりでなく洗浄効果を高めることができる。また前記の有害物質除去部材において、表面層に、更に酸化促進剤を含有していることにより、有害物質の除去性能乃至浄化性能をいっそう向上させることができる。
【0048】
本発明では、前記有害物質除去部材の表面層に更に吸着性物質を含有していることにより、昼間、光が当たっている状態では、有害物質は光触媒によって分解除去され、更に夜間では、有害物質は吸着性物質に吸着されて除去される。更にまた昼間になり光が当たると吸着性物質に吸着された有害物質が放出され光触媒によって分解除去される。したがって、昼夜にわたって有害物質の除去が可能となるという優れた浄化性能を有するものである。即ち光触媒物質及び吸着性物質の混合物を被覆することにより表面層で光触媒物質及び吸着性物質の両作用が昼夜交互に行われ効率よく有害物質の除去を行うことができる。
【0049】
本発明の有害物質除去部材の製造方法によれば、この方法により有害物質除去部材が簡単かつ安価に製造することができるばかりでなく、基体と表面層とが一体化され、強固に結合させることができる。またこの際、基体用混練物を流し込んだ表面に、光触媒、及び骨材の混練物を散布し、ついで成形することにより有害物質除去部材が簡単かつ安価に製造することができ、また基体と光触媒被覆物とを強固に接着することができると共にこの光触媒被覆物が表面に存在する層を形成することができるので光吸収面積が増大しかつ有害物質の接触,接触面積が増大するので、優れた有害物質の除去性能乃至浄化性能が得られるばかりでなく洗浄効果を高めることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved harmful substance removing member and a method for manufacturing the same, and more specifically, the present invention relates to a harmful substance removing member having an improved purification performance and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, attention has been focused on the fact that photocatalysts are useful for preventing or purifying the global environment while the destruction of the global environment is regarded as a problem. This photocatalyst is found to exhibit the action of decomposing and purifying organic substances when exposed to radiation such as ultraviolet rays. For example, it prevents surface contamination, and NO in the atmosphere. X Development of products applied to water purification, water purification, antibacterial / mold prevention, deodorization, etc. Specifically, JP-A-2-273514 discloses a harmful substance removing agent obtained by kneading a titanium dioxide semiconductor and clay and drying them. Japanese Patent Laid-Open No. 6-327965 discloses that a semiconductor (for example, titanium dioxide) having a band gap of 0.5 to 5 eV is dispersed in a hydrated aggregate of a hydraulic compound as a removal agent for harmful substances such as ethylene. In addition, JP-A-7-171408 discloses a photocatalyst in which photocatalyst particles are adhered to a substrate via a hardly decomposable binder. Further, JP-A-8-243402 discloses a photocatalytic material in which a part or all of titanium oxide and an oxidation accelerator are present on the surface of an inorganic cured body. These are all used to remove harmful substances.
[0003]
[Problems to be solved by the invention]
However, as described above, the harmful substance removing agent described in JP-A-2-273514 has a problem that it is necessary to use a large amount of the removing agent because the removal rate of the harmful substance is low. Although the removal efficiency of the harmful substance removing agent described in JP-A-327965 and the photocatalyst described in JP-A-7-171408 are improved, further improvement is desired. Further, the photocatalytic material described in JP-A-8-243402 has been shown to exhibit a good deodorizing effect over a long period of time by containing an oxidation accelerator, but the oxidation accelerator is expensive. There are drawbacks, and the degradation product has an acidity, which is undesirable in the environment.
[0004]
Accordingly, the present inventors have made various studies on improving the removal rate or removal efficiency of the harmful substance removing agent and the harmful substance of the photocatalyst as described above, and it is harmful to improve the light absorption rate of the photocatalyst such as a semiconductor. Addition of at least one of aggregate, slaked lime or adsorptive substance with a specific particle size to the substance remover or photocatalyst not only provides even better harmful substance removal performance, but also prevents deterioration of the harmful substance removal member The present invention has been made on the basis of this finding, and found that an excellent harmful substance removing member having no environmental destruction can be obtained.
[0005]
Accordingly, a first problem to be solved by the present invention is to provide a harmful substance removal member that has good removal performance or purification performance of harmful substances and is suitable for protecting the natural environment without deterioration over a long period of time. is there. Further, the second problem to be solved by the present invention is to remove harmful substances suitable for protecting the natural environment without being deteriorated over a long period of time, having good harmful substance removal performance or purification performance, which is easy and inexpensive to manufacture. It is providing the manufacturing method of a member.
[0006]
[Means for Solving the Problems]
The above-described problems of the present invention are achieved by the following inventions.
[0007]
(1) A harmful substance removing member having a surface layer composed of an inorganic cured body, an aggregate having an average particle diameter of 5 mm to 10 mm, and a photocatalyst on a substrate.
(2) The hazardous substance removing member as described in (1) above, wherein the surface layer further contains an oxidation accelerator.
(3) The oxidation promoter is Ni, Cr, Fe, Zn, Ti, Mn, Co, Mo, V, Sr, W, Pd, Cu, Au, Ag, Pt, La, Ce, Pr, Nd, Dy, Ho The harmful substance removing member according to the above item 1 or 2, which is a single substance of Er, Ru, Ru, Rh and Lu or at least one of these compounds.
(4) The hazardous substance removing member according to any one of (1) to (3), wherein the surface layer has a thickness of 1 mm to 20 mm.
( 5 ) The first to second items, wherein the surface layer contains an adsorbing substance. 4 The hazardous substance removing member according to any one of the items.
( 6 ) After pouring a substrate kneaded material containing an inorganic curable binder as a component, an inorganic curable binder, a photocatalyst, and an aggregate of 5 mm to 10 mm Mixed A method for producing a harmful substance removing member, wherein a kneaded material for a surface layer obtained by kneading is poured, molded, and cured.
( 7) After pouring a substrate kneaded material containing an inorganic curable binder as a component, a surface layer kneaded material obtained by kneading the inorganic curable binder, photocatalyst, 5 mm to 10 mm aggregate and adsorbing material A method for producing a harmful substance removing member, characterized by casting, molding and curing.
(8) The kneaded material for the surface layer, It is characterized by spraying instead of pouring Claim 6 or The method for producing a harmful substance removing member according to claim 7.
[0008]
Thus, the hazardous substance removing member of the present invention has an inorganic cured body, an average particle diameter on the substrate. 5mm 10 to 10 mm aggregate, characterized by having a surface layer made of photocatalyst, especially 5-10mm By mixing the aggregate, the water permeability coefficient of the surface layer is improved, the degree of exposure of the photocatalyst is increased, and the light absorption rate can be improved. Further, nitrate ions can be dissolved and discharged by rain water. As a result, not only excellent removal performance and purification performance of harmful substances can be obtained, but also the cleaning effect can be enhanced. In the harmful substance removing member of the present invention, the surface layer further contains an oxidation accelerator, so that the harmful substance removal performance or purification performance can be further improved.
[0009]
In the present invention, the thickness of the surface layer is 1 mm to 20 mm, which is an average particle diameter 5mm Combined with the use of an aggregate of 10 mm mm, the surface layer can have a photocatalytic action even if the thickness exceeds a few mm and is increased to this range, so that the removal performance of harmful substances can be improved. .
[0010]
Furthermore, because the surface layer contains an adsorptive substance, the harmful substance is decomposed and removed by the photocatalyst when it is exposed to light in the daytime, and further, the harmful substance is adsorbed and removed by the adsorbent substance at night. Is done. Furthermore, in the daytime, when exposed to light, harmful substances adsorbed on the adsorbing substance are released and decomposed and removed by the photocatalyst. Therefore, it has an excellent purification performance that enables removal of harmful substances day and night. That is, by covering the mixture of the photocatalytic substance and the adsorbing substance, the action of the photocatalytic substance and the adsorbing substance is alternately performed on the surface layer day and night, so that harmful substances can be efficiently removed.
[0011]
The harmful substance removing member of the present invention is prepared by pouring a kneaded material for a substrate containing an inorganic curable binder as a component, followed by an inorganic curable binder, a photocatalyst, and an average particle diameter. 5mm -10mm aggregate Mixed The kneaded material for the surface layer obtained by kneading is poured, then molded and cured. By this method, the harmful substance removing member can be manufactured easily and inexpensively, and the substrate and the surface layer can be integrated and firmly bonded. Further, in another method for producing a harmful substance removing member of the present invention, in the method for producing a harmful substance removing member, The kneaded material for the surface layer, Manufactured by spraying instead of pouring. As a result, the harmful substance removing member can be easily and inexpensively manufactured, and the substrate and the photocatalyst coating can be firmly bonded, and a layer having the photocatalyst coating on the surface can be formed. Since the light absorption area increases and the contact and contact area of harmful substances increase, not only excellent removal and purification performance of harmful substances can be obtained, but also the cleaning effect can be enhanced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
[0013]
The hazardous substance removing member of the present invention has an inorganic cured body and an average particle diameter on a substrate. 5mm It has a surface layer of 10 mm aggregate and photocatalyst, and examples of the substrate include inorganic materials such as ceramics, glass and concrete, and organic materials such as plastics, rubber, wood and paper. Spherical bodies, hemispherical bodies and plate-like bodies are used. The inorganic cured product used in the present invention means a material that has a very slow decomposition rate due to the photocatalytic function of the photocatalyst and is not substantially decomposed.
[0014]
Substances that can form this inorganic hardened body, so-called inorganic curable binders, include silicon compounds, phosphates, heavy phosphates, cements, lime (quick lime, slaked lime, lime plaster, lime mortar, etc.), gypsum (half Inorganic binders such as water gypsum and gypsum plaster are preferable, and cements are particularly preferable. Examples of the cement include ordinary portland cement, early-strength portland cement, moderately hot portland cement, and super early-strength portland cement. , Sulfate-resistant Portland cement, white Portland cement, blast furnace cement, fly ash cement, silica cement, alumina cement, magnesia cement, super fast cement, and the like.
[0015]
In addition, quicklime, calcium sulfate, silicate (calcium silicate, magnesium silicate, synthetic calcium silicate, synthetic magnesium silicate, etc.), magnesium carbonate (especially basic magnesium carbonate is good), calcium aluminate, calcium ferrate, celite, Examples include celite, gelenite, anorthite and dolomite. Preferred are the cements, particularly white Portland cement, calcium sulfate, and calcined gypsum.
[0016]
The synthetic calcium silicate used in the present invention is obtained from a lime raw material and a silicic acid raw material by a hydrothermal reaction, for example, zonotlite, tobermonite, foshygite, gyrolite, α-dicalcium silicate, tricalcium silicate, heele bran. Synthetic calcium silicate hydrates such as Dite, Rosenhanite, Truscotite, Lielite, Calciochondrite, Kirconite, Affilite, Quasicrystalline Calcium Silicate (CSHn), and these synthetic calcium silicate hydrates Examples thereof include synthetic calcium silicate such as wollastonite obtained by heating. What was manufactured by what kind of method the inorganic hardening body which has the above-mentioned calcium silicate as a main component can be used. If a material having a property of absorbing harmful substances such as the synthetic calcium silicate used in the present invention is used, the harmful substances can be effectively decomposed.
[0017]
The photocatalyst used in the present invention is a kind of semiconductor material, specifically, metal oxides such as tin dioxide, zinc oxide, tungsten trioxide, cerium oxide, titanium dioxide, barium titanate, and ferric oxide; Metal chalcogenites such as zinc sulfide, cadmium sulfide, lead sulfide, zinc selenide, cadmium selenide; Group IV metals such as silicon and germanium; Group III and Group V elements such as gallium phosphorus, gallium arsenide, and indium phosphorus And the compound. Of these, semiconductors such as titanium dioxide, zinc oxide, selenium oxide, and tungsten trioxide are more preferable. As said titanium dioxide, both an anatase type titanium dioxide powder and a rutile type titanium dioxide powder can be used, Preferably anatase type titanium dioxide powder is good. Titanium dioxide has a finer particle size and better toxic substance removal effect or deodorizing effect can be obtained, but usually 5 to 250 nm is preferable, and 10 to 100 nm is preferably used.
[0018]
In the present invention, examples of the oxidation promoter that can be added to the inorganic / metal-based semiconductor include at least one of transition metals, noble metals, rare earth elements, oxides, hydroxides, halides, and salts. As the salts, sulfates, nitrates, phosphates, carbonates and the like are preferable. As the oxidation accelerator, Ni, Cr, Fe, Zn, Ti, Mn, Co, Mo, V, Sr, W, Pd, Cu, Au, Ag, Pt, La, Ce, Pr, Nd, Dy, Ho, Examples thereof include at least one selected from the group consisting of simple substances of Er, Ru, Rh and Lu, oxides, hydroxides, halides and salts, and specific examples thereof include iron sulfate and silver nitrate. By using these oxidation accelerators, the harmful substance removal performance can be further improved. The combination of the semiconductor and the oxidation accelerator is preferably mixed. The semiconductor used in the present invention is used as a powder, and the semiconductor powder is mixed and dispersed in an inorganic curable binder, and applied to a substrate by means such as coating or molding. Alternatively, in the surface layer formed in the present invention, the semiconductor and the oxidation accelerator may be present inside or on the surface layer portion thereof, and preferably the semiconductor powder may be dispersed on the surface of the inorganic curable binder.
[0019]
Furthermore, as the aggregate used in the present invention, the average particle size 5mm An aggregate of 10 mm is preferable, and mixing such aggregate improves the water permeability of the surface layer, increases the degree of exposure of the photocatalyst, and improves the light absorption rate. Can be melted and discharged. Therefore, the toxic substance removing member can be durable over a long period of time. Examples of such aggregates include sand, crushed stone, silica sand, and glass. The size of this aggregate Is Particle size 5mm A particle size in the range of -10 mm is acceptable. In particular, when the NO removal rate is increased in relation to the application, 5 mm to 10 mm is preferable.
[0020]
In the present invention, an adsorptive substance can be further added to the surface layer, and specific examples include activated carbon, zeolite, magadiite, petalite and the like. Magadiite is Na 2 Si 14 O 29 nH 2 It has a chemical formula of O and is effective as an adsorptive substance. In addition, petalite is a white or gray mineral that looks like quartz and is mineralogically a silicate mineral (Li 2 OAl 2 O Three 8SiO 2 ). Excellent adsorption performance. All of these adsorptive substances are excellent in adsorption performance and can be removed by absorbing harmful substances. The action of this adsorptive substance will be described in more detail. NO during the daytime sunlight (ultraviolet rays contained therein) by the action of the photocatalyst. x In addition to purifying and removing harmful substances such as the like, harmful substances are adsorbed on the adsorbent material even at night, and the harmful substances are purified by being decomposed by ultraviolet rays during the day. Of these adsorptive substances, activated carbon is preferable.
[0021]
In the present invention, the harmful substance removing member is a mixture of a substrate kneaded material containing an inorganic curable binder.
After soaking, inorganic curable binder, photocatalyst, and average particle size 5mm -10mm aggregate Mixed Pour the kneaded material for the surface layer obtained by kneading Crowded Manufactured by molding and curing. By this method, the harmful substance removing member can be manufactured easily and inexpensively. Further, in another method for producing a harmful substance removing member of the present invention, in the method for producing a harmful substance removing member, on the surface into which the kneaded material for a substrate is poured, Inorganic curable binder, Photocatalyst and average particle size 5mm -10mm aggregate Surface layer kneaded material obtained by kneading Spray And Manufactured by molding. As a result, the harmful substance removing member can be manufactured easily and inexpensively, and the obtained harmful substance removing member can not only obtain excellent harmful substance removal performance or purification performance but also enhance the cleaning effect. .
[0022]
In the production method of the present invention, the harmful substance removing member is prepared by pouring a substrate kneaded material containing an inorganic curable binder as a component, followed by an inorganic curable binder, a photocatalyst, and an average particle size. 5mm It is basically manufactured by pouring a kneaded material for the surface layer mixed with 10 mm aggregate. In the production method of the present invention, as the kneaded material for the surface layer, an inorganic curable binder, a photocatalyst, and an aggregate having an average particle diameter of 5 mm to 10 mm Mixed As an embodiment of the kneaded material for the surface layer obtained by kneading, (1) a kneaded material comprising an inorganic curable binder, a photocatalyst, an aggregate having an average particle diameter of 5 mm to 10 mm, and water, 2 ) Inorganic curable binder, photocatalyst, bone with an average particle size of 5 mm to 10 mm Material, The case where the kneaded material which consists of an adsorptive substance and water is used is included.
[0023]
Further, in another method for producing a harmful substance removing member of the present invention, Inorganic curable binder, Photocatalyst and aggregate having an average particle diameter of 5 mm to 10 mm And admixture of adsorbent material as necessary In the method of spraying, as an embodiment of this mixture, (1) a kneaded mixture comprising an inorganic curable binder, a photocatalyst, an aggregate having an average particle diameter of 5 mm to 10 mm, and water, 2 ) Inorganic curable binder, photocatalyst, bone with an average particle size of 5 mm to 10 mm Material, Made of adsorbent and water Kneaded material Is included.
[0024]
In the method for producing a harmful substance removing member of the present invention, an inorganic curable binder, a photocatalyst, an average particle size 5mm 10mm bone Material, The mixture of the adsorbent and water is produced by uniformly mixing, but the order of addition of these components is not particularly limited. Aggregate, inorganic curable binder, and photocatalyst (in the order of photocatalyst and adsorbent) are preferable. The harmful substance removing member of the present invention can purify air and water by irradiating light. Furthermore, it can be used for antibacterial / antifungal and antifouling applications. Further, by increasing the amount of the photocatalyst, it can be used for antibacterial / antifungal and antifouling applications even when it is not exposed to light. Furthermore, the kneaded material can be applied to the surface of the plate-like body, which can reduce the cost of the photocatalyst and is more economical.
[0025]
The weight ratio of each component of the harmful substance removing member of the present invention may be the weight ratio used in a normal harmful substance removing member, but preferably 50 parts by weight of the aggregate with respect to 100 parts by weight of the inorganic curable binder. ˜1000 parts by weight, photocatalyst 5 parts by weight 200 parts by weight, and water 10 parts by weight 200 parts by weight. More preferably, they are 100 to 500 parts by weight of aggregate, 10 to 100 parts by weight of photocatalyst, and 20 to 150 parts by weight of water with respect to 100 parts by weight of the inorganic curable binder. Exceeding these ranges is not preferable in terms of cost as well as substantially no harmful substance removal performance.
[0026]
In the harmful substance removing member of the present invention, the amount of slaked lime is 1 to 50 parts by weight with respect to 100 parts by weight of the inorganic curable binder, preferably 5 parts by weight with respect to 100 parts by weight of the inorganic curable binder. Part to 30 parts by weight. When the amount of slaked lime is less than 1 part by weight with respect to 100 parts by weight of the inorganic curable binder, it does not contribute to the improvement of the purification performance of harmful substances. On the other hand, if the amount of slaked lime exceeds 50 parts by weight, the amount of photocatalyst is relatively reduced and the purification performance is deteriorated.
[0027]
Furthermore, in the harmful substance removing member of the present invention, the amount of the adsorptive substance is 5 to 50 parts by weight, preferably inorganic curable, with respect to 100 parts by weight of the inorganic curable binder, although it depends on the type. It is 10-30 weight part with respect to 100 weight part of binders. When the amount of the adsorptive substance is less than 5 parts by weight with respect to 100 parts by weight of the inorganic curable binder, the harmful substance cannot be sufficiently adsorbed, so that the purification performance cannot be improved. On the other hand, if the amount of the adsorptive substance exceeds 50 parts by weight, the amount of the photocatalyst is relatively decreased, and the purification performance is deteriorated. The amount of the oxidation accelerator is preferably 0.3 to 3.0 times the amount of titanium dioxide. More preferably, it is 0.6 to 2.5 times the amount of titanium dioxide. Further, it is preferably 0.8 to 2.1 times the amount of titanium dioxide. If the amount of the oxidation accelerator is less than 0.3 times the amount of titanium dioxide, the oxidation promotion effect is weak, and even if the amount of the oxidation accelerator exceeds 3.0 times the amount of titanium dioxide. There is no change in the oxidation promotion effect.
[0028]
In the method for producing a harmful substance removing member of the present invention, the means for applying the kneaded material to the surface of the plate-like substrate without using the molding means includes an aggregate, an inorganic curable binder, a photocatalytic substance on the surface of the plate-like substrate, Water and If necessary The means for coating the kneaded material consisting of adsorbents are the usual coating techniques such as spray coating, impregnation, dip coating, spinner coating, blade coating, roller coating, wire bar coating, reverser coating, etc. Coating methods known in the art are used.
[0029]
In the use of the harmful substance removing member of the present invention, the irradiated light is preferably light including ultraviolet rays, and the wavelength range of the light is preferably 200 nm to 400 nm. Although ultraviolet rays are particularly preferred, sunlight is sufficient when used outdoors. When used indoors, the harmful substance removing member is irradiated with ultraviolet rays emitted from an ultra-high pressure mercury lamp, a xenon lamp, or a low-pressure mercury lamp. At this time, it is preferable to use as close as possible to the harmful substance removing member. Toxic substances that can be removed by this hazardous substance removing member are NO X Mercaptans, ammonia, hydrogen sulfide, amines, ethylene and the like are preferably removed. In the present invention, the amount of the harmful substance removing member used can be determined in consideration of the type of harmful substance, light illuminance, and the like. However, in the present invention, since the removal or purification performance of the harmful substance removing member is high, the amount used may be small.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0031]
[Example 1] After blending 100 parts by weight of Portland cement, 195 parts by weight of crushed stone, 240 parts by weight of sand and 31 of water as a composition of the block base layer, the kneaded material was put into a 10 × 20 cm mold and subjected to vibration molding to concrete. A base layer was molded. Then, 220 parts by weight of sand, 25 parts by weight of titanium dioxide powder (Ishihara Sangyo Co., Ltd.) and 30 parts by weight of water were added to 100 parts by weight of white cement, and after sufficiently kneaded, the obtained kneaded material for the surface layer was poured. Molded and cured. The obtained harmful substance removing member has an aggregate-containing titanium dioxide coating layer on the surface. (Sample No. 1) . Furthermore, instead of the sand mixed in the kneaded material for the surface layer, a toxic substance removing member was produced in the same manner as described above using crushed stones having various particle sizes. (Sample Nos. 2 to 6) . Similarly, a comparative plate-like body containing no aggregate was produced. (Sample No. 7) . Using these harmful substance removal members, tests were conducted by the following NO removal performance test method. The obtained results are shown in Table 1.
[0032]
[NO removal performance test method] In the test, a specimen was placed in a sealed container, and a simulated gas containing 1 ppm of NO gas was allowed to flow from the inlet. The concentration of gas emitted from the outlet was measured, and the NO removal rate was measured from this. The test was performed for 24 hours, and a numerical value obtained by averaging the removal rates every 10 minutes was used as a test result. In this test, the test was conducted with 10 W × 3 ultraviolet lamps lit for 24 hours.
[0033]
[Table 1]
Figure 0004228247
[0034]
As is apparent from Table 1, in the present invention, the removal rate of NO, which is a harmful substance, is improved by adding aggregate, compared with that of the comparative example. It can be seen that the NO removal effect is remarkable at 10 mm.
[0035]
[ reference Example 2] The same procedure as in Example 1 was repeated except that Portland cement was used instead of the white cement of the surface layer kneaded material of Sample 1 described in Example 1, and silver nitrate was added to the titanium dioxide powder. The harmful substance removing member of the invention was produced. As a comparison, a product obtained by removing sand from this harmful substance removing member was produced. Further, this harmful substance removing member was tested by the NO removal performance test method described in Example 1. The obtained results are shown in Table 2. As is apparent from Table 2, in the comparative example, the removal rate of NO is 47%, whereas in the present invention in which sand is added, the removal rate of NO is 54%. It can be seen that the removal rate is significantly improved.
[0036]
[Table 2]
Figure 0004228247
[0037]
[ reference Example 3] The hazardous substance removing member of the present invention was prepared in the same manner as in Example 1 except that synthetic calcium silicate hydrate was used in place of the white cement of the surface layer kneaded material of Sample 1 described in Example 1. Produced. As a comparison, a product obtained by removing sand from this harmful substance removing member was produced. Further, this harmful substance removing member was tested by the NO removal performance test method described in Example 1. The harmful substance removal member of the present invention had a NO gas removal efficiency increased by 10% relative to the comparison.
[0038]
[ reference Example 4] To the kneaded material for surface layer of sample 1 described in Example 1 and 25 parts by weight of slaked lime and titanium dioxide powder of the kneaded material for surface layer of sample 1 described in Example 1 The hazardous substance removing member of the present invention was produced in the same manner as in Example 1 except that silver nitrate was added. As a comparison, a product obtained by removing sand from this harmful substance removing member was produced. Further, this harmful substance removing member was tested by the NO removal performance test method described in Example 1. The obtained results are shown in Table 3. As apparent from Table 3, in the present invention, the removal rate of NO is improved compared to the comparative example. This is because NOx is converted into a soluble salt by adding lime and discharged out of the system. In addition, lime has an excellent effect that it can also prevent neutralization or acidification of concrete over time.
[0039]
[Table 3]
Figure 0004228247
[0040]
[ reference Example 5 In Table 3 described in Example 4, harmful substance removing members of the present invention were prepared in the same manner as in Example 4 except that activated carbon was used instead of slaked lime. As a comparison, a product obtained by removing sand from this harmful substance removing member was produced. Further, this harmful substance removing member was tested by the following NO removal performance test method 2. Table 4 shows the obtained results. As is apparent from Table 4, it can be seen that the NO removal rate is indirectly improved by the night-time adsorption effect of the activated carbon.
[0041]
[NO removal performance test method 2] In performing test method 1, the UV lamp was repeatedly turned on and off every two hours. Therefore, during the test time of 24 hours, the lamp was lit for 12 hours.
[0042]
[Table 4]
Figure 0004228247
[0043]
[ reference Example 6] In Table 3 described in Example 4, harmful substance removing members of the present invention were prepared in the same manner as in Example 4 except that activated carbon was further added to slaked lime. As a comparison, a product obtained by removing sand from this harmful substance removing member was produced. Further, this harmful substance removing member was tested by the NO removal performance test method 2 described in Example 5. The results obtained are shown in Table 5.
[0044]
[Table 5]
Figure 0004228247
[0045]
[ reference Examples 7 to 10] As the kneaded material for the surface layer described in Example 1, 100 parts by weight of white cement, 220 parts by weight of sand, 25 parts by weight of titanium dioxide powder (manufactured by Ishihara Sangyo Co., Ltd.), 42 parts by weight of oxidation accelerator Further, 30 parts by weight of water is added and a kneaded product for the surface layer is produced. A part of the kneaded product for the surface layer is taken and slaked lime or / and activated carbon is further shown in Table 6 in the kneaded product for the surface layer. A hazardous substance removing member was produced in the same manner as in Example 1 except that the amount was added. Moreover, it tested about the removal property of methyl mercaptan using these harmful substance removal members. The test method was the same as in the NO removal performance test method 2 described in Example 5, except that methyl mercaptan was used instead of NO gas. The results obtained are shown in Table 6. In addition, ethylene, acetaldehyde, ammonia, and hydrogen sulfide were tested in the same manner and had good removal performance.
[0046]
[Table 6]
Figure 0004228247
[0047]
【The invention's effect】
The hazardous substance removing member of the present invention has an inorganic cured body and an average particle diameter on a substrate. 5mm By having a surface layer composed of 10 mm aggregate and photocatalyst, the water permeability coefficient of the surface layer can be improved, the degree of exposure of the photocatalyst can be increased, and the light absorption rate can be improved. Thus, nitrate ions can be dissolved and discharged. As a result, not only excellent removal performance and purification performance of harmful substances can be obtained, but also the cleaning effect can be enhanced. Further, in the above-mentioned harmful substance removing member, the surface layer further contains an oxidation accelerator, whereby the harmful substance removal performance or purification performance can be further improved.
[0048]
In the present invention, the surface layer of the harmful substance removing member is further changed. Suck By containing the adsorbing substance, the harmful substance is decomposed and removed by the photocatalyst in the daylight condition, and further, the harmful substance is adsorbed and removed by the adsorbing substance at night time. Furthermore, in the daytime, when exposed to light, harmful substances adsorbed on the adsorbing substance are released and decomposed and removed by the photocatalyst. Therefore, it has an excellent purification performance that enables removal of harmful substances day and night. That is, by covering the mixture of the photocatalytic substance and the adsorbing substance, the action of the photocatalytic substance and the adsorbing substance is alternately performed on the surface layer day and night, so that harmful substances can be efficiently removed.
[0049]
According to the method for producing a harmful substance removing member of the present invention, not only can the harmful substance removing member be produced easily and inexpensively, but also the substrate and the surface layer are integrated and firmly bonded. Can do. Further, at this time, the photocatalyst and the aggregate are put on the surface into which the kneaded material for the substrate is poured. Kneaded material The harmful substance removing member can be easily and inexpensively manufactured by spraying and molding, and the substrate and the photocatalyst coating can be firmly bonded and the photocatalyst coating is present on the surface. Since the light absorption area is increased and the contact and contact area of harmful substances are increased, not only excellent removal and purification performance of harmful substances can be obtained, but also the cleaning effect can be enhanced.

Claims (8)

基体上に無機硬化体、平均粒径5mm〜10mmの骨材、光触媒からなる表面層を有することを特徴とする有害物質除去部材。A harmful substance removing member comprising a surface layer comprising an inorganic cured body, an aggregate having an average particle diameter of 5 mm to 10 mm, and a photocatalyst on a substrate. 表面層に、更に酸化促進剤を含有していることを特徴とする請求項1に記載の有害物質除去部材。The hazardous substance removing member according to claim 1, wherein the surface layer further contains an oxidation accelerator. 酸化促進剤がNi、Cr、Fe、Zn、Ti、Mn、Co、Mo、V、Sr、W、Pd、Cu、Au、Ag、Pt、La、Ce、Pr、Nd、Dy、Ho、Er、Ru、Rh及びLuの単体又はこれらの化合物の少なくとも1種であることを特徴とする請求項1又は請求項2に記載の有害物質除去部材。The oxidation promoter is Ni, Cr, Fe, Zn, Ti, Mn, Co, Mo, V, Sr, W, Pd, Cu, Au, Ag, Pt, La, Ce, Pr, Nd, Dy, Ho, Er, The harmful substance removing member according to claim 1 or 2, wherein Ru, Rh and Lu are simple substances or at least one of these compounds. 表面層の厚みが1mm〜20mmであることを特徴とする請求項1乃至請求項3のいずれかに記載の有害物質除去部材。The toxic substance removing member according to any one of claims 1 to 3, wherein the surface layer has a thickness of 1 mm to 20 mm. 表面層に、吸着性物質を含有していることを特徴とする請求項1乃至請求項のいずれかに記載の有害物質除去部材。The harmful substance removing member according to any one of claims 1 to 4 , wherein the surface layer contains an adsorptive substance. 無機硬化性結合剤を成分とする基体用混練物を流し込んだ後、無機硬化性結合剤、光触媒、及び5mm〜10mmの骨材を混練して得られた表面層用混練物を流し込んで成形し、養生することを特徴とする有害物質除去部材の製造方法。After flushing the substrate's kneaded product to the inorganic curable binder as a component, the inorganic curable binder, the photocatalyst, and the aggregate of 5mm~10mm pouring surface layer kneaded product obtained by mixing kneaded molded And a method for producing a harmful substance removing member, characterized by being cured. 無機硬化性結合剤を成分とする基体用混練物を流し込んだ後、無機硬化性結合剤、光触媒、及び5mm〜10mmの骨材及び吸着性物質を混練して得られた表面層用混練物を流し込んで成形し、養生することを特徴とする有害物質除去部材の製造方法。After flushing the substrate's kneaded product to the inorganic curable binder as a component, the inorganic curable binder, the photocatalyst, and aggregate and the surface layer kneaded product adsorbed substance obtained by mixing kneaded in 5mm~10mm A method for producing a harmful substance removing member, wherein the material is cast, molded and cured. 表面層用混練物を、流し込むことに代えて散布することを特徴とする請求項6又は請求項7に記載の有害物質除去部材の製造方法。 The method for producing a harmful substance removing member according to claim 6 or 7, wherein the kneaded material for the surface layer is sprayed instead of being poured.
JP03019597A 1997-02-14 1997-02-14 Improved hazardous substance removing member and method of manufacturing the same Expired - Fee Related JP4228247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03019597A JP4228247B2 (en) 1997-02-14 1997-02-14 Improved hazardous substance removing member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03019597A JP4228247B2 (en) 1997-02-14 1997-02-14 Improved hazardous substance removing member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10225619A JPH10225619A (en) 1998-08-25
JP4228247B2 true JP4228247B2 (en) 2009-02-25

Family

ID=12296981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03019597A Expired - Fee Related JP4228247B2 (en) 1997-02-14 1997-02-14 Improved hazardous substance removing member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4228247B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641174B2 (en) * 2004-11-01 2011-03-02 東洋工業株式会社 Manufacturing method of transparent horizontal plate
JP5404270B2 (en) * 2009-09-11 2014-01-29 株式会社フジタ Coating material having air purification function, paving method using the coating material, and road constructed by the paving method
JP6771176B2 (en) * 2015-02-25 2020-10-21 株式会社ケープラン Mold resistant deodorant
JP6129941B1 (en) * 2015-12-04 2017-05-17 合同会社イワ建開発 Tile panel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10225619A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
Sugrañez et al. Enhanced photocatalytic degradation of NOx gases by regulating the microstructure of mortar cement modified with titanium dioxide
KR101912328B1 (en) Eco-friendly Composition of Ready Mixed Concrete in capable of reducing Scattering Dust
Wijeyawardana et al. Improvement of heavy metal removal from urban runoff using modified pervious concrete
JP2782329B2 (en) Photocatalyst material and method for producing the same
GB2425075A (en) Concrete roof tile or wall cladding element
JP4228247B2 (en) Improved hazardous substance removing member and method of manufacturing the same
Hohol et al. The effect of sulfur-and carbon-codoped TiO2 nanocomposite on the photocatalytic and mechanical properties of cement mortars
JP5069154B2 (en) Porous purification material and purification method using porous filter using the same
Murata et al. NOx-cleaning paving block
KR102246108B1 (en) Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method
Lu et al. Synthesis of ternary geopolymers using prediction for effective solidification of mercury in tailings
Franzoni et al. TiO2 in the building sector
JP3653523B2 (en) Carbonated cured body
JPH10272355A (en) Improved harmful substance-removing member
JPH10272356A (en) Improved harmful substance-removing member and its production
JP3361046B2 (en) Air purification cement products
JP3732279B2 (en) NOx purification block for paving
JP2899744B2 (en) Photocatalyst material and method for producing the same
JPH10291849A (en) Cement based hydraulic composition having nox purifying function
JPH1160315A (en) Product for air cleaning using metatitanic acid containing third component
JP2000219564A (en) Cement composition
JP2009214027A (en) Porous cleaning material and cleaning method using porous filter made with the same
JPH11263660A (en) Cement composition for shotcrete
JP4889108B2 (en) Method for producing antibacterial and antifungal deodorant inorganic composition
JP2005187324A (en) Carbonated hardened body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees