JP4227760B2 - Circular saw for metal cutting - Google Patents

Circular saw for metal cutting Download PDF

Info

Publication number
JP4227760B2
JP4227760B2 JP2002140239A JP2002140239A JP4227760B2 JP 4227760 B2 JP4227760 B2 JP 4227760B2 JP 2002140239 A JP2002140239 A JP 2002140239A JP 2002140239 A JP2002140239 A JP 2002140239A JP 4227760 B2 JP4227760 B2 JP 4227760B2
Authority
JP
Japan
Prior art keywords
circular saw
cutting
cut
rake face
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002140239A
Other languages
Japanese (ja)
Other versions
JP2003334720A (en
Inventor
国雄 内藤
敦 団野
和孝 大庫
修 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aiko Corp
Original Assignee
Aiko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aiko Corp filed Critical Aiko Corp
Priority to JP2002140239A priority Critical patent/JP4227760B2/en
Publication of JP2003334720A publication Critical patent/JP2003334720A/en
Application granted granted Critical
Publication of JP4227760B2 publication Critical patent/JP4227760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sawing (AREA)

Description

【0001】
【技術分野】
本発明は,金属製の被切断体を切断するための金属切断用丸鋸を用いた切断方法に関する。
【0002】
【従来技術】
従来より,鋼管等の金属製の被切断体を切断する丸鋸としては,図6に示すごとく,外周に沿って複数の切刃95を設けてなる円盤状の丸鋸9がある。図6及び図7に示すごとく,上記丸鋸9は先端部951から丸鋸9の中心に向けて配されたすくい面953と,上記先端部951から上記丸鋸9の回転する向きと逆向きに向けて外接円に沿うように配された逃げ面955とを有している。
【0003】
上記丸鋸9を用いて被切断体90を切断する際には,切刃95の先端の潤滑性を向上させるために,潤滑油剤を上記切刃95と被切断体90の接触部に浸入させることが行われている。しかし,上記従来の丸鋸9は,上記潤滑油剤を用いても上記切刃95の先端部951と被切断体90との間の摩擦が激しく,摩擦熱が発生する。その結果,上記先端部951付近に摩耗や熱クラックが発生し易く,丸鋸9の寿命が短くなるという問題があった。また,切断時に上記切刃95の先端部951に大きな応力がかかって突発的な欠損が起こり易く,丸鋸9の寿命にばらつきが生じてしまうという問題があった。
【0004】
このような問題を解決するために,特開2002−1614号公報には,切刃に正の外周逃げ角,0°の横逃げ角を有する外周逃げ面及び横逃げ面を設け,外周逃げ面と横逃げ面とで形成されるコーナ部に窪みを設けた金属切断用丸鋸が開示されている。このように,金属切断用丸鋸の外周逃げ面及び逃げ面の形状を制御することによって,丸鋸の耐摩耗性を向上させている。さらに,上記コーナ部に窪みを設けることにより摩擦による発熱を防止している。
また,特開2002−36028号公報には,コーティング皮膜を形成して耐摩耗性を得る方法も示されている。
【0005】
【解決しようとする課題】
しかしながら,上記の外周逃げ面及び横逃げ面を制御した方法では,耐摩耗性の向上効果がまだ充分ではなく,また,切刃に突発的な欠損を発生させ上記丸鋸の寿命にばらつきを生じさせるという問題があった。
また,上記コーティング皮膜を形成して耐摩耗性を得る方法では,コーティング費用が高く丸鋸が非常に高価となる。そのため,単なる金属切断に用いる工具としては不適である。
【0006】
本発明は,かかる従来の問題点に鑑みてなされたもので,安価で,切刃の耐摩耗性に優れ,切削性良く金属製の被切断体を切断することができると共に,寿命のばらつきの少なくできる丸鋸を用いた被切断体の切断方法を提供しようとするものである。
【0007】
【課題の解決手段】
本発明は,外周に沿って複数の切刃を設けた円盤形状を有する丸鋸を用いて,金属製の被切断体を切断する方法において,
上記切刃は,上記丸鋸をその回転軸方向から平面的に見た状態において,その先端部から上記丸鋸の略中心に向けて配されたすくい面と,上記先端部から上記丸鋸の回転する向きと逆向きに向けて配された逃げ面とを有しており,
上記すくい面は,上記切刃の上記先端部と上記丸鋸の中心とを結ぶ線を丸鋸半径線とするとき,該丸鋸半径線よりも丸鋸の回転方向に突出した突出点を有すると共に,該突出点と上記先端部とを結ぶ第1すくい面と,上記突出点から上記丸鋸の略中心方向に延びる第2すくい面とを有しており,
上記丸鋸の中心と上記突出点とを結ぶ線を基準線として,該基準線と上記第1すくい面とのなす角をα,上記基準線と上記第2すくい面とのなす角をβとし,
上記基準線と,上記丸鋸の外接円が交差する点における上記外接円に対する接線と上記逃げ面とのなす角をγとしたとき,
0°<α<20°,
0°<β<10°,
γ≧0°,
の関係を有し,
上記接線から上記突出点までの距離をw(mm)とし,かつ上記丸鋸を使用する際の1刃あたりの平均切り込み厚さをtf(mm)とすると,
切断時には,0.04≦tf≦0.15,かつtf≦w/8の関係を満足するように上記被切断体の切断を行うことを特徴とする金属製の被切断体の切断方法にある(請求項1)
【0008】
次に,本発明の作用効果につき説明する。
本発明の丸鋸は,上記すくい面に突出点を設けており,かつ上記第1すくい面と第2すくい面とを有している。そして,上記基準線と第1すくい面とのなす角をα(以下適宜第1すくい角αという),上記基準線と上記第2すくい面とのなす角をβ(以下適宜第2すくい角βという),上記接線と上記逃げ面とのなす角γ(以下適宜逃げ角γという),及び上記接線から上記突出点までの距離w(以下適宜第1すくい面幅w)を上記の範囲に限定している。
そのため,本発明の金属切断用丸鋸は,切刃の耐摩耗性に優れ,切削性良く金属製の被切断体を切断することができると共に,寿命のばらつきが少ない。
【0009】
この理由は次のように考えられる。
まず,本発明の金属切断用丸鋸は,上記の範囲の第1すくい角α及び第2すくい角βを有しているため,切断時に被切断体から発生する切粉と切刃との接触領域が上記第1すくい面に限定される。そのため,発生する切粉の形状のばらつきを抑制し,切粉の排出性を向上させることができる。また,上記αの範囲が0°<α<20°となるように第1すくい面を設定しているため,上記切粉を上記丸鋸の回転方向前方へカールするようにして押し出すことができるので,より一層切粉の排出性を向上させることができる。そのため,上記切粉が上記切刃の接触部付近に蓄積することはほとんどなく,上記接触部への潤滑油剤の浸透をスムーズにすることができる。それ故,切削性が向上し,かつ上記切刃の先端部と被切断体との摩擦を軽減させて摩耗及び熱クラックの発生を防止することができる。また,第1すくい角αを設定することにより,切刃強度が大きくなり切刃の耐欠損性が増し,丸鋸の寿命が安定化すると共に,その寿命が長くなる。
【0010】
また,上記逃げ角γをγ≧0としている。
そのため,切断時に逃げ面と被切断体との間に間隙が生じて,逃げ面側からも上記潤滑油剤をスムーズに浸透させることができる。
さらに,本発明においては,上記第1すくい面幅をw(mm)とし,かつ上記丸鋸を使用する際の1刃あたりの平均切り込み厚さ(以下適宜平均切り込み厚さという)をtf(mm)としたとき, f ≦w/8の関係を満足するように上記被切断体の切断を行う。ここで,上記第1すくい面幅wは,上記切粉と第1すくい面とが接触する接触領域である。このように, f ≦w/8、即ちw≧8×t f することにより,上記切粉と第1すくい面との接触面積が大きくなり,切粉が第1すくい面にかける単位面積あたりの負荷を小さくすることができる。それ故,上記すくい面に生じる突発的な欠損を防止し,丸鋸の寿命を安定化することができる。
【0011】
【発明の実施の形態】
本発明(請求項1)においては,上記第1すくい角α,及び第2すくい角βをそれぞれ0°<α<20°,0°<β<10°の範囲に限定している。
上記第1すくい角α,または第2すくい角βが0°以下の場合には,上記第1すくい面が切粉をすくい面に拘束しながら排出することができなくなる。一方,上記第1すくい角αが20°以上,または第2すくい角βが10°以上の場合には,丸鋸の切れ味が低下すると共に,切断時における上記先端部にかかる負荷が増大し,突発的な欠損が生じ易くなる。
【0012】
また,上記逃げ角γをγ≧0°としている。
上記逃げ角γが0°未満の場合には,切断時に上記逃げ面と被切断体との間に上記潤滑油剤を浸透させるのに充分な間隙がなくなり,潤滑油剤が浸透せず,上記切刃に摩耗及び熱クラックが発生する。
【0013】
また, f ≦w/8、即ち、上記第1すくい面幅w(mm)は,w≧8×tfとなるように設定している。
上記第1すくい面幅w(mm)が8×tf未満の場合には,上記切粉と第1すくい面との接触面積が小さくなり上記切粉が第1すくい面にかける単位面積あたりの切断負荷が大きくなる。その結果,上記すくい面に突発的な欠損が起こり易くなる。
ここで,上記第1すくい面幅wは,切粉とすくい面との摩擦域を限定する幅であり,上記丸鋸の寿命を延ばすために,各種切断条件に依存する最適な幅がある。また,上記1刃あたりの平均切り込み厚さtf(mm)は,上記切刃が単位時間あたりに単位角度回転するときに丸鋸の送り方向へ送られる距離を表し,この距離と等しい深さだけ単位時間あたりに被切断体は切断される。
また,丸鋸の切刃と切粉との接触幅が大きくなり,切粉厚さと切削抵抗とが不必要に増大することを避けるために,上記第1すくい面幅wの上限は10×tf以下であることが好ましい。
【0014】
次に,上記1刃あたりの平均切り込み厚さtf(mm)は,0.04≦tf≦0.15の範囲にあることが好ましい
この場合には,上記切粉と第1すくい面との間の単位面積あたりの切断負荷を小さくして上記丸鋸の耐久性を向上させることができると共に,上記被切断体を短時間にて能率的に切断することができる。
上記平均切り込み厚さtfが0.04未満の場合には,切り込み量の小さい切断となるため,切断が完了するまでの時間が増加し非能率的な切断になるおそれがある。一方,0.15を超える場合には,切断時の負荷が増大し丸鋸の耐久性向上効果が低下するおそれがある。
【0015】
次に,上記1刃あたりの平均切り込み厚さtf(mm)は,丸鋸の切刃数をZとし,かつ上記丸鋸を使用する際,上記丸鋸の回転数をNrpm,丸鋸の送り速度をfmm/secとするとき,
f={60/(NZ)}f
の関係を有することが好ましい(請求項)。
この場合には,上記丸鋸の第1すくい面を上記切刃数,回転数,及び送り速度に適した切刃形状を有するものとすることができる。
【0016】
次に,上記被切断体は略円柱状であって,上記丸鋸は,上記被切断体をその中心軸を中心に上記丸鋸の回転する向きと同じ向きに回転させながら切断する際に用いるものであって,
上記1刃あたりの平均切り込み厚さtfは,丸鋸の半径をR(mm),被切断体の半径をr(mm)とし,かつ,上記丸鋸を使用する際の切り込み量をt(mm),切り込み域の角度をθ,切刃が1ピッチ回転する間に金属切断体が回転する角度をχとするとき,
f=(R+r−t)sin(θ/2)・χ
の関係を有することが好ましい(請求項)。
【0017】
この場合には,上記丸鋸を略円柱状の被切断体を回転させながら切断させる方法,いわゆる回転方式の切断にも適したものとすることができる。
上記回転方式の切断は,略円柱状の被切断体をその軸方向を中心に丸鋸の回転方向と同じ方向に回転させながら切断する方法であり,特に中空部を有する被切断体,例えば鋼管等の切断に利用されるものである。このような被切断体は,該被切断体を固定したまま切断を行うと,切刃の先端が中空部に達したところで,上記切断体の内面にバリが発生するという不具合を生じるが,上記回転方式の切断は,このバリの発生を軽減することができる。また,この場合には,丸鋸径を小さくすることができるため,切断装置の小型化を図ることができ,さらに切粉の排出を容易におこなうことができる。
【0018】
次に,上記回転方式の切断において,tf=(R+r−t)sin(θ/2)・χが成り立つことを図5を用いて説明する。
図5は丸鋸7が被切断体8を切断している様子を表す概略図である。
図5より知られるごとく,丸鋸7の外接円の半径をR,被切断体8の半径をr,丸鋸7の切り込み量をt,丸鋸の切り込み域の角度をθとすると,
cosθ=(R2+L2−r2)/(2RL)(ただし,L=R+r−t)
の関係式が成り立つ。
【0019】
また,上記被切断体8が角速度ωにて回転するとき,上記丸鋸7の切刃が1ピッチ分(▲1▼→▲2▼)角度ψだけ回転する時間Tの間に,上記被切断体8が回転する角度χは,丸鋸7の回転数をN,丸鋸7の切刃の数をZとすると,χ=ω・T,T=60/(N・Z)の関係が成り立つ。
ここで,θ/2の位置での1刃あたりの平均切り込み厚さtfとすると,上記のtf=Lsin(θ/2)・χの関係式が成り立つ。
【0020】
次に,上記被切断体は,中空部を有する筒状の金属管であることが好ましい(請求項)。
この場合には,上記回転方式の切断において,上記丸鋸の効果を十分に発揮することができると共に,上記金属管の内面にバリを発生させることもなく被切断体の切断を行うことができる。
【0021】
また,上記金属管を切断する際に,いわゆるプランジ方式の切断にて,上記被切断体を回転させずに固定して上記丸鋸のみを前進させて切断することもできる。
【0022】
次に,上記丸鋸は,サーメットよりなることが好ましい(請求項)。
この場合には,上記丸鋸の耐熱性が向上して,切刃の耐摩耗性が一層向上し,上記丸鋸の寿命をさらに長くすることができる。特に,上記被切断体が軟質鋼の場合には,上記サーメットよりなる丸鋸は特に優れた効果を発揮し,寿命が長くなり,また仕上げ精度を向上させることができる。
【0023】
【実施例】
(実施例1)
次に,本発明の実施例にかかる金属切断用丸鋸につき,図1〜図5を用いて説明する。
本例では,本発明の実施例として4種類の金属切断用丸鋸(本発明品E1〜E4)と,比較のための金属切断用丸鋸(比較品C1〜C4)とを準備してその性質を比較した。本発明品E1〜E4はいずれも,図1に示すごとく,外周に沿って複数の切刃2を設けた円盤形状を有し,金属製の被切断体を切断するためのものである。
【0024】
上記切刃2は,図1〜図2に示すごとく,上記丸鋸1をその回転軸方向から平面的に見た状態において,その先端部25から上記丸鋸1の略中心に向けて配されたすくい面23と,上記先端部25から上記丸鋸1の回転する向きと逆向きに向けて配された逃げ面237とを有している。また,図1〜図3に示すごとく,上記すくい面23は,上記切刃2の上記先端部25と上記丸鋸1の中心3とを結ぶ線を丸鋸半径線32とするとき,該丸鋸半径線32よりも上記丸鋸1の回転方向に突出した突出点231を有すると共に,該突出点231と上記先端部25とを結ぶ第1すくい面233と,上記突出点231から上記丸鋸1の略中心方向に延びる第2すくい面235とを有している。
【0025】
ここで,上記丸鋸1の中心3と上記突出点231とを結ぶ線を基準線37として,該基準線37と上記第1すくい面233とのなす角をα,上記基準線37と上記第2すくい面235とのなす角をβとし,上記基準線37と,上記丸鋸1の外接円35が交差する点における上記外接円35に対する接線39と上記逃げ面237とのなす角をγ,上記接線39から上記突出点231までの距離をw(mm)とし,かつ上記丸鋸1を使用する際の1刃あたりの平均切り込み厚さをtf(mm)としたとき,本発明品E1〜E4はいずれもα=15°,β=9°,γ=9.4°であり,かつw≧8×tfの関係を有する。また,本発明品E1〜E4の丸鋸は,その半径Rの大きさがおよそR=100mmであり,その切刃数ZがZ=50刃,側面逃げ面角が約0.8°に設定されているものである。
【0026】
また,上記第1すくい面幅wの大きさを決定するために,中空部を有する上記被切断体を丸鋸の同じ方向に回転させながら切断する,いわゆる回転方式の切断方法にて上記被切断体を切断するときの上記平均切り込み厚さtfと上記被切断体の切り込み量tとの関係を調べた。
上記回転方式の切断においては,上述したように,上記平均切り込み厚さtfはtf=(R+r−t)sin(θ/2)・χという関係式で表される。本例において上記被切断体としては,後述するごとく肉厚が10mmのものを用いるから,上記切り込み量tの最大値は上記被切断体の肉厚に等しくt=10mmである。そこで,上記の式を用いて,切り込み量tが最大10mmまで変化するときの上記平均切り込み厚さtfの値を計算した。
その結果を表1に示す。
【0027】
【表1】

Figure 0004227760
【0028】
表1より知られるごとく,上記1刃あたりの平均切り込み厚さtfは,丸鋸の切り込み量t(mm)が増加するにつれて大きくなり,t=10mmのときにtf=0.10となって最大となる。そのため,t=10mmの時のtfの値,即ちtf=0.10の値を上記の関係式w≧8×tfに適用してw≧0.80とすれば,上記平均切り込み厚さtfは,すべての切り込み量tmmにおいて上記の関係式w≧8×tfを満たす。この結果から,本例において上記第1すくい面幅wは,0.80mm以上に設定すればよいことがわかる。
【0029】
そこで,以下に示すごとく,上記4種類の本発明品E1〜E4における第1すくい面幅wを次のように決定した。
本発明品E1はw=0.80mm,本発明品E2はw=1.0mm,本発明品E3はw=1.50mm,また本発明品E4はw=2.0mmに設定した。これらの第1すくい面幅wは,上記w≧8×tfの関係を満たしている。
【0030】
また,本例では,上記のごとく比較のための比較品C1〜C4を準備した。比較品C1〜C4も,本発明品E1〜E4と同条件にて,上記被切断体を切断するためのものであるが,上記本発明品E1〜E4における上記第1すくい面幅wの大きさだけを変えたものである。ここで,比較品C1はw=0.2mm,比較品C2はw=0.25〜0.30mm,比較品C3はw=0.45mm,また比較品C4はw=0.60mmに設定したものであり,これらは,いずれも上記w≧8×tfの関係を満たしていない。
【0031】
次に,上記本発明品E1〜E4及びC1〜C4の丸鋸1を用いて複数の上記被切断体4を切断してそのときの丸鋸の摩耗及び欠損状態,及び丸鋸の寿命を調べる。なお,切断時における上記丸鋸の回転数NはN=300rpmに設定した。
本例においては,図4に示すごとく,中空部45を有する上記被切断体4として0.15wt%C鋼相当の電縫鋼管を準備した。上記被切断体は,その外形φが100mmで,肉厚dがd=10mmのものである。そして,この被切断体を上記本発明品E1〜E4及び比較品C1〜C4を用いて,回転方式の切断により複数回切断した。
【0032】
上記被切断体4の切断は,図1に示すごとく,上記丸鋸1の先端部25の摩耗が進み,又は上記先端部25に突発的な欠損が生じて被切断体4の切断ができなくなるまで繰り返し,これを丸鋸寿命とした。そして,上記丸鋸寿命までの切断回数を測定し,またそのときの切刃2の先端部25の損傷状況を目視にて観察した。その結果を表2に示す。
【0033】
【表2】
Figure 0004227760
【0034】
表2より知られるごとく,本発明品E1〜E4においては,丸鋸寿命までの切断回数がいずれも1400回を超えており,比較品C1〜C4に比べて丸鋸寿命が非常に長かった。また,本発明品E1〜E4においては,上記丸鋸寿命までの切断回数にばらつきがほとんどなく,優れた安定性を示した。一方,比較品C1〜C4においては,上記丸鋸寿命のばらつきが非常に大きかった。
さらに,本発明品E1〜E4において,上記丸鋸の切刃先端部の損傷は,摩耗にとどまっているのに対し,比較品C1〜C4においては,欠損を生じているものがあった。
【0035】
このように,本発明品E1〜E4の丸鋸は,安価で,切刃の耐摩耗性に優れ,切削性良く金属製の被切断体を切断することができると共に,寿命のばらつきの少ないものであった。
【0036】
(実施例2)
本例では,実施例1の本発明品E1〜E4と同様の金属切断用丸鋸を用いて,プランジ方式の切断方法により実施例1と同様の被切断体を切断するときのための,上記第1すくい面幅wを決定する平均切り込み厚さtfの最適な大きさ及びそのときの丸鋸の送り量fの関係について検討する。
【0037】
上記プランジ方式においては,上記丸鋸を被切断体に対して前進させて切断するに当たり,被切断体を回転させずに固定して上記丸鋸のみを前進させて切断する。
【0038】
上記プランジ方式にて被切断体を切断する場合においては,上記平均切り込み厚さtfは,tf={60/(NZ)}fという関係式にて表すことができる。実施例1と同様に丸鋸の回転数N,丸鋸の刃数Z,丸鋸の送り速度fを設定すると,プランジ方式における平均切り込み厚さtfは,tf=0.009mmという値になる。この場合には,上記丸鋸の第1すくい面幅wを0.072以上に設定すればよい。
【0039】
しかしながら,丸鋸の送り速度fを実施例1と同じ大きさに設定すると,上記のごとく平均切り込み厚さtfがtf=0.009と非常に小さくなり,効率の悪い切断となってしまう。効率の良い切断を実現するためには,プランジ方式における丸鋸の送り速度fをできるだけ大きくする必要がある。
【0040】
上記プランジ方式においては,上記丸鋸の送り速度fを実施例1よりも大きく設定することにより,上記平均切り込み厚さtfを実施例1と同じ値,即ちtf=0.10mmとすることができる。従って,例えばw=0.8となるように第1すくい面幅wを決定し,かつ上記プランジ方式における丸鋸の送り速度fを回転方式の場合よりも大きくして切断を行うと,上記丸鋸は,1枚の丸鋸にて上記プランジ方式及び回転方式の両方の切断を行うことができると共に,プランジ方式においても効率的な速さで上記被切断体を切断することができるものとなる。そして,上記プランジ方式及び回転方式においても,切刃の耐摩耗性に優れ,切削性良く金属製の被切断体を切断することができると共に,寿命のばらつきの少ないという効果を充分に発揮することができる。
【図面の簡単な説明】
【図1】実施例1にかかる,丸鋸の全体を示す平面図。
【図2】実施例1にかかる,丸鋸の切刃部分の拡大平面図。
【図3】実施例1にかかる,丸鋸の切刃部分の拡大斜視図。
【図4】実施例1にかかる,被切断体を示す説明図
【図5】回転方式により丸鋸で被切断体を切断する際の概略を示す平面概略図。
【図6】従来の丸鋸の全体を示す平面図。
【図7】従来の丸鋸の切刃部分の拡大平面図。
【符号の説明】
1...丸鋸,
2...切刃
25...先端部,
23...すくい面,
231...突出点,
233...第1すくい面,
235...第2すくい面,
237...逃げ面,
4...被切断体,[0001]
【Technical field】
The present invention relates to a cutting method using a metal cutting circular saw for cutting a metal workpiece.
[0002]
[Prior art]
Conventionally, as a circular saw for cutting a metal workpiece such as a steel pipe, there is a disk-shaped circular saw 9 provided with a plurality of cutting edges 95 along the outer periphery as shown in FIG. As shown in FIGS. 6 and 7, the circular saw 9 has a rake face 953 arranged from the tip 951 toward the center of the circular saw 9, and a direction opposite to the rotating direction of the circular saw 9 from the tip 951. And a flank 955 arranged along the circumscribed circle.
[0003]
When cutting the workpiece 90 using the circular saw 9, in order to improve the lubricity of the tip of the cutting blade 95, a lubricant is allowed to enter the contact portion between the cutting blade 95 and the workpiece 90. Things have been done. However, in the conventional circular saw 9, even when the lubricant is used, friction between the tip 951 of the cutting blade 95 and the workpiece 90 is intense and frictional heat is generated. As a result, there is a problem that wear and heat cracks are likely to occur near the tip 951 and the life of the circular saw 9 is shortened. In addition, there is a problem that a large stress is applied to the tip portion 951 of the cutting blade 95 at the time of cutting, so that sudden breakage easily occurs, and the life of the circular saw 9 varies.
[0004]
In order to solve such a problem, Japanese Patent Laid-Open No. 2002-1614 discloses that a cutting edge is provided with an outer peripheral flank and a side flank having a positive outer flank angle and a lateral flank angle of 0 °. And a circular saw for metal cutting in which a recess is provided in a corner portion formed by a lateral relief surface. In this way, the wear resistance of the circular saw is improved by controlling the outer peripheral flank and the shape of the flank of the metal cutting circular saw. Furthermore, heat generation due to friction is prevented by providing a recess in the corner portion.
Japanese Patent Application Laid-Open No. 2002-36028 also discloses a method for obtaining wear resistance by forming a coating film.
[0005]
[Problems to be solved]
However, the above-described method of controlling the outer flank and lateral flank is not yet sufficient in improving the wear resistance, and causes a sudden breakage in the cutting edge, resulting in variations in the life of the circular saw. There was a problem of letting.
Further, in the method for obtaining the wear resistance by forming the coating film, the coating cost is high and the circular saw becomes very expensive. Therefore, it is not suitable as a tool used for simple metal cutting.
[0006]
The present invention has been made in view of such conventional problems, and is inexpensive, excellent in wear resistance of the cutting edge, can cut a metal workpiece with good machinability, and has a variation in life. using low Kudekiru circular saw is intended to provide a method for cutting a object to be cut.
[0007]
[Means for solving problems]
The present invention relates to a method of cutting a metal workpiece using a circular saw having a disk shape provided with a plurality of cutting edges along the outer periphery.
The cutting blade includes a rake face arranged from the tip of the circular saw toward the approximate center of the circular saw in a state of viewing the circular saw from the direction of the rotation axis, and the circular saw from the tip. Having a flank face and a flank face oriented in the opposite direction;
The rake face has a protruding point that protrudes in the rotational direction of the circular saw from the circular saw radial line when a line connecting the tip of the cutting edge and the center of the circular saw is a circular saw radial line. And a first rake face connecting the protruding point and the tip, and a second rake face extending from the protruding point in a substantially central direction of the circular saw,
A line connecting the center of the circular saw and the protruding point is defined as a reference line, an angle formed by the reference line and the first rake face is α, and an angle formed by the reference line and the second rake face is β. ,
When the angle between the tangent to the circumscribed circle and the flank at the point where the reference line intersects the circumscribed circle of the circular saw is γ,
0 ° <α <20 °,
0 ° <β <10 °,
γ ≧ 0 °,
Have the relationship
When the distance from the tangent to the protruding point is w (mm) and the average cutting thickness per blade when using the circular saw is t f (mm),
A method for cutting a metal cut object, wherein the cut object is cut so as to satisfy the relationship of 0.04 ≦ t f ≦ 0.15 and t f ≦ w / 8 at the time of cutting. (Claim 1) .
[0008]
Next, the effects of the present invention will be described.
The circular saw of the present invention has a protruding point on the rake face and has the first rake face and the second rake face. The angle formed between the reference line and the first rake face is α (hereinafter referred to as the first rake angle α as appropriate), and the angle formed between the reference line and the second rake face is defined as β (hereinafter referred to as the second rake angle β as appropriate). The angle γ formed by the tangent and the flank (hereinafter referred to as the flank angle γ) and the distance w from the tangent to the protruding point (hereinafter appropriately the first rake face width w) are limited to the above ranges. is doing.
Therefore, the circular saw for metal cutting according to the present invention is excellent in wear resistance of the cutting blade, can cut a metal workpiece with good machinability, and has little variation in life.
[0009]
The reason is considered as follows.
First, the circular saw for metal cutting according to the present invention has the first rake angle α and the second rake angle β in the above-mentioned range, so that the contact between the chips generated from the object to be cut and the cutting edge at the time of cutting. The region is limited to the first rake face. Therefore, the variation in the shape of the generated chips can be suppressed and the dischargeability of the chips can be improved. Further, since the first rake face is set so that the range of α is 0 ° <α <20 °, the chips can be pushed out by curling forward in the rotational direction of the circular saw. Therefore, the chip discharge can be further improved. Therefore, the chip hardly accumulates in the vicinity of the contact portion of the cutting blade, and the lubricant can smoothly penetrate into the contact portion. Therefore, the machinability is improved and the friction between the tip of the cutting edge and the object to be cut can be reduced to prevent the occurrence of wear and thermal cracks. In addition, by setting the first rake angle α, the cutting edge strength is increased, the fracture resistance of the cutting edge is increased, the life of the circular saw is stabilized, and the life thereof is extended.
[0010]
The clearance angle γ is set to γ ≧ 0.
Therefore, a gap is generated between the flank and the object to be cut at the time of cutting, so that the lubricant can smoothly penetrate from the flank.
Further, in the present invention, the first rake face width is w (mm), and the average cutting thickness per blade when using the circular saw (hereinafter referred to as the average cutting thickness as appropriate) is t f ( mm), the object to be cut is cut so as to satisfy the relationship of t f ≦ w / 8 . Here, the first rake face width w is a contact area where the chips and the first rake face contact. Thus, by the t f ≦ w / 8, i.e. w ≧ 8 × t f, the contact area between the chips and the first rake face is increased, unit area chips places on the first rake face The load per hit can be reduced. Therefore, it is possible to prevent a sudden loss occurring on the rake face and to stabilize the life of the circular saw.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention (Claim 1), the first rake angle α and the second rake angle β are limited to the ranges of 0 ° <α <20 ° and 0 ° <β <10 °, respectively.
When the first rake angle α or the second rake angle β is 0 ° or less, the first rake face cannot discharge the chips while restricting the chips to the rake face. On the other hand, when the first rake angle α is 20 ° or more or the second rake angle β is 10 ° or more, the sharpness of the circular saw is reduced and the load applied to the tip during cutting increases. Sudden loss tends to occur.
[0012]
The clearance angle γ is set to γ ≧ 0 °.
When the clearance angle γ is less than 0 °, there is no gap sufficient to allow the lubricant to penetrate between the relief surface and the object to be cut at the time of cutting, and the lubricant does not penetrate. Wear and thermal cracks.
[0013]
Also, t f ≦ w / 8, i.e., the first rake face width w (mm) is set to be w ≧ 8 × t f.
When the first rake face width w (mm) is less than 8 × t f , the contact area between the chips and the first rake face becomes small, and the chips per unit area that the chips apply to the first rake face. Cutting load increases. As a result, sudden defects on the rake face are likely to occur.
Here, the first rake face width w is a width that limits the frictional area between the chip and the rake face, and has an optimum width depending on various cutting conditions in order to extend the life of the circular saw. The average cutting thickness t f (mm) per blade represents the distance sent in the feed direction of the circular saw when the cutting blade rotates by a unit angle per unit time, and the depth equal to this distance. Only the unit to be cut is cut per unit time.
In order to avoid an increase in the contact width between the cutting edge of the circular saw and the chip, and an unnecessary increase in the chip thickness and cutting resistance, the upper limit of the first rake face width w is 10 × t. It is preferably f or less.
[0014]
Next, the average cutting thickness t f (mm) per blade is preferably in the range of 0.04 ≦ t f ≦ 0.15 .
In this case, the cutting load per unit area between the chip and the first rake face can be reduced to improve the durability of the circular saw, and the object to be cut can be removed in a short time. Can be cut efficiently.
Above in the case of less than the average cut thickness t f is 0.04, since the depth of cut of a small cut, there is a possibility that the time until the cutting is complete is increased inefficient cleavage. On the other hand, when it exceeds 0.15, the load at the time of cutting increases, and the durability improving effect of the circular saw may be reduced.
[0015]
Next, the average cutting thickness t f (mm) per blade is Z, where the number of cutting edges of the circular saw is Z, and when the circular saw is used, the rotational speed of the circular saw is N rpm, When the feed rate is fmm / sec,
t f = {60 / (NZ)} f
It is preferable to have the relationship (Claim 2 ).
In this case, the first rake face of the circular saw can have a cutting edge shape suitable for the number of cutting edges, the number of rotations, and the feed speed.
[0016]
Next, the object to be cut has a substantially cylindrical shape, and the circular saw is used when cutting the object to be cut while rotating the object to be cut around the central axis in the same direction as the circular saw rotates. And
The average cutting thickness t f per blade is defined as R (mm) for the radius of the circular saw, r (mm) for the radius of the object to be cut, and t ( mm), θ is the angle of the incision area, and χ is the angle of rotation of the metal cutting body while the cutting blade rotates by 1 pitch
t f = (R + r- t) sin (θ / 2) · χ
It is preferable to have the relationship (Claim 3 ).
[0017]
In this case, it is possible to make the circular saw suitable for a method of cutting a substantially cylindrical workpiece while rotating a so-called rotary method.
The above-mentioned rotation method is a method of cutting a substantially cylindrical object to be cut while rotating in the same direction as the rotation direction of the circular saw around its axial direction. It is used for cutting such as. When such a cut object is cut while the cut object is fixed, there is a problem that burrs are generated on the inner surface of the cut object when the tip of the cutting blade reaches the hollow portion. Rotational cutting can reduce the occurrence of this burr. In this case, since the diameter of the circular saw can be reduced, the cutting device can be reduced in size and the chips can be easily discharged.
[0018]
Next, it will be described with reference to FIG. 5 that t f = (R + rt) sin (θ / 2) · χ holds in the above-described rotation method cutting.
FIG. 5 is a schematic view showing a state where the circular saw 7 is cutting the workpiece 8.
As can be seen from FIG. 5, if the radius of the circumscribed circle of the circular saw 7 is R, the radius of the object 8 to be cut is r, the cutting amount of the circular saw 7 is t, and the angle of the circular saw cutting area is θ.
cos θ = (R 2 + L 2 −r 2 ) / (2RL) (where L = R + r−t)
The following relational expression holds.
[0019]
Further, when the object 8 is rotated at an angular velocity ω, the object to be cut is cut during a time T in which the cutting edge of the circular saw 7 is rotated by one pitch ((1) → (2)) angle ψ. The angle χ at which the body 8 rotates has the relationship χ = ω · T, T = 60 / (N · Z), where N is the number of rotations of the circular saw 7 and Z is the number of cutting edges of the circular saw 7. .
Here, assuming that the average cutting thickness t f per blade at the position of θ / 2, the relational expression of t f = Lsin (θ / 2) · χ is established.
[0020]
Then, the object to be cut is preferably a cylindrical metal tube having a hollow portion (claim 4).
In this case, in the cutting of the rotation method, the effect of the circular saw can be sufficiently exerted, and the object to be cut can be cut without generating burrs on the inner surface of the metal tube. .
[0021]
Further, when cutting the metal tube, it is also possible to cut the metal pipe by moving the circular saw forward by fixing the object to be cut without rotating by so-called plunge type cutting.
[0022]
Then, the circular saw is preferably made of a cermet (claim 5).
In this case, the heat resistance of the circular saw is improved, the wear resistance of the cutting blade is further improved, and the life of the circular saw can be further extended. In particular, when the object to be cut is soft steel, the circular saw made of the cermet exhibits a particularly excellent effect, extends its life, and can improve the finishing accuracy.
[0023]
【Example】
Example 1
Next, a circular saw for metal cutting according to an embodiment of the present invention will be described with reference to FIGS.
In this example, four kinds of metal cutting circular saws (invention products E1 to E4) and metal cutting circular saws for comparison (comparative products C1 to C4) are prepared as examples of the present invention. The properties were compared. As shown in FIG. 1, each of the products E1 to E4 of the present invention has a disk shape provided with a plurality of cutting edges 2 along the outer periphery, and is for cutting a metal object.
[0024]
As shown in FIGS. 1 to 2, the cutting blade 2 is arranged from the tip 25 toward the substantial center of the circular saw 1 in a state where the circular saw 1 is viewed in plan view from the rotational axis direction. It has a scooping surface 23 and a flank 237 arranged from the tip 25 toward the direction opposite to the direction of rotation of the circular saw 1. As shown in FIGS. 1 to 3, the rake face 23 has a circular saw radius line 32 when a line connecting the tip 25 of the cutting blade 2 and the center 3 of the circular saw 1 is a circular saw radius line 32. The circular saw 1 has a protruding point 231 that protrudes in the rotation direction of the circular saw 1, a first rake face 233 that connects the protruding point 231 and the tip 25, and the circular saw from the protruding point 231. 1 and a second rake face 235 extending substantially in the center direction.
[0025]
Here, a line connecting the center 3 of the circular saw 1 and the protruding point 231 is set as a reference line 37, an angle formed by the reference line 37 and the first rake face 233 is α, the reference line 37 and the first The angle formed by the two rake surfaces 235 is β, and the angle formed by the reference line 37 and the tangent line 39 to the circumscribed circle 35 and the flank 237 at the point where the circumscribed circle 35 of the circular saw 1 intersects is γ, the distance from the tangent line 39 to the protruding point 231 and w (mm), and an average cut thickness per blade when using the circular saw 1 when the t f (mm), present invention product E1 -E4 are all α = 15 °, β = 9 °, γ = 9.4 °, and w ≧ 8 × t f . The circular saws of the present invention products E1 to E4 have a radius R of about R = 100 mm, the number of cutting edges Z is set to Z = 50, and the side flank angle is set to about 0.8 °. It is what has been.
[0026]
Further, in order to determine the size of the first rake face width w, the object to be cut is cut by a so-called rotational cutting method in which the object to be cut having a hollow portion is cut while being rotated in the same direction of a circular saw. The relationship between the average cut thickness t f when cutting the body and the cut amount t of the cut object was examined.
In the rotation type cutting, as described above, the average cut thickness t f is expressed by the relational expression t f = (R + rt) sin (θ / 2) · χ. In this example, the object to be cut has a thickness of 10 mm as will be described later. Therefore, the maximum value of the cut amount t is equal to the wall thickness of the object to be cut, and t = 10 mm. Therefore, using the above equation, the value of the average cut thickness t f when the cut amount t changes to a maximum of 10 mm was calculated.
The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004227760
[0028]
As is known from Table 1, the average cutting thickness t f per blade increases as the cutting amount t (mm) of the circular saw increases, and becomes t f = 0.10 when t = 10 mm. And become the maximum. Therefore, if the value of t f when t = 10 mm, that is, the value of t f = 0.10 is applied to the above relational expression w ≧ 8 × t f and w ≧ 0.80, the average cutting thickness is obtained. is t f satisfy all of the above relation in the depth of cut tmm w ≧ 8 × t f. From this result, it can be seen that the first rake face width w in this example may be set to 0.80 mm or more.
[0029]
Therefore, as shown below, the first rake face width w in the above-described four types of the present invention products E1 to E4 was determined as follows.
The inventive product E1 was set to w = 0.80 mm, the inventive product E2 was set to w = 1.0 mm, the inventive product E3 was set to w = 1.50 mm, and the inventive product E4 was set to w = 2.0 mm. These first rake face widths w satisfy the relationship of w ≧ 8 × t f .
[0030]
In this example, comparative products C1 to C4 for comparison were prepared as described above. Comparative products C1 to C4 are also used for cutting the object to be cut under the same conditions as the products E1 to E4 of the present invention, but the first rake face width w of the products E1 to E4 of the present invention is large. It is just a change. Here, the comparative product C1 was set to w = 0.2 mm, the comparative product C2 was set to w = 0.25 to 0.30 mm, the comparative product C3 was set to w = 0.45 mm, and the comparative product C4 was set to w = 0.60 mm. None of these satisfy the above relationship of w ≧ 8 × t f .
[0031]
Next, using the circular saws 1 of the present invention products E1 to E4 and C1 to C4, a plurality of the workpieces 4 are cut, and the wear and chipped state of the circular saw and the life of the circular saw are examined. . The rotational speed N of the circular saw at the time of cutting was set to N = 300 rpm.
In this example, as shown in FIG. 4, an ERW steel pipe equivalent to 0.15 wt% C steel was prepared as the above-described workpiece 4 having the hollow portion 45. The object to be cut has an outer diameter φ of 100 mm and a thickness d of d = 10 mm. And this to-be-cut body was cut | disconnected several times by the cutting | disconnection of a rotation system using the said invention products E1-E4 and the comparative products C1-C4.
[0032]
As shown in FIG. 1, the cutting of the object 4 to be cut is caused by the wear of the tip 25 of the circular saw 1, or the tip 25 is suddenly broken and cannot be cut. This was repeated until the life of the circular saw was reached. And the frequency | count of a cutting | disconnection until the said circular saw lifetime was measured, and the damage condition of the front-end | tip part 25 of the cutting blade 2 at that time was observed visually. The results are shown in Table 2.
[0033]
[Table 2]
Figure 0004227760
[0034]
As is known from Table 2, in the products E1 to E4 of the present invention, the number of cuts until the circular saw life exceeded 1400 times, and the circular saw life was much longer than that of the comparative products C1 to C4. In the products E1 to E4 of the present invention, there was almost no variation in the number of cuts until the circular saw life, and excellent stability was shown. On the other hand, in the comparative products C1 to C4, the variation in the circular saw life was very large.
Further, in the products E1 to E4 of the present invention, the damage at the tip of the circular saw was only worn, whereas in the comparative products C1 to C4, there were some defects.
[0035]
As described above, the circular saws of the present invention products E1 to E4 are inexpensive, have excellent cutting edge wear resistance, can cut a metal workpiece with good machinability, and have little variation in life. Met.
[0036]
(Example 2)
In this example, using the same metal cutting circular saw as that of the present invention products E1 to E4 of Example 1, the above-mentioned for cutting the object to be cut similar to Example 1 by the plunge method cutting method, The relationship between the optimum size of the average cut thickness t f that determines the first rake face width w and the feed amount f of the circular saw at that time will be examined.
[0037]
In the plunge system, when the circular saw is advanced with respect to the object to be cut and cut, the object to be cut is fixed without being rotated and only the circular saw is advanced and cut.
[0038]
When the object to be cut is cut by the plunge method, the average cut thickness t f can be expressed by the relational expression t f = {60 / (NZ)} f. As in the first embodiment, when the rotational speed N of the circular saw, the number of blades Z of the circular saw, and the feed speed f of the circular saw are set, the average cutting thickness t f in the plunge method becomes t f = 0.009 mm. Become. In this case, the first rake face width w of the circular saw may be set to 0.072 or more.
[0039]
However, setting the feed rate f of the circular saw to the same size as in Example 1, an average cut thickness t f as described above is very small as t f = 0.009, becomes inefficient cleavage . In order to realize efficient cutting, it is necessary to increase the feed speed f of the circular saw in the plunge system as much as possible.
[0040]
Above in plunge method, by setting higher than the feed rate f of Example 1 above a circular saw, the average cut thickness t f the same value as in Example 1, i.e., be a t f = 0.10 mm Can do. Therefore, for example, when the first rake face width w is determined so that w = 0.8, and the cutting speed is set to be larger than that in the rotary method in the plunge method, the circular sword surface is cut. The saw can cut both the plunge method and the rotary method with a single circular saw, and can cut the object to be cut at an efficient speed even in the plunge method. . In the above plunge method and rotation method as well, the cutting edge is excellent in wear resistance, can cut a metal workpiece with good machinability, and exhibits the effect that there is little variation in life. Can do.
[Brief description of the drawings]
FIG. 1 is a plan view showing an entire circular saw according to a first embodiment;
FIG. 2 is an enlarged plan view of a cutting edge portion of a circular saw according to the first embodiment.
FIG. 3 is an enlarged perspective view of a cutting edge portion of a circular saw according to the first embodiment.
FIG. 4 is an explanatory view showing the object to be cut according to Example 1. FIG. 5 is a schematic plan view showing an outline when the object to be cut is cut with a circular saw by a rotating method.
FIG. 6 is a plan view showing the whole of a conventional circular saw.
FIG. 7 is an enlarged plan view of a cutting edge portion of a conventional circular saw.
[Explanation of symbols]
1. . . Circular saw,
2. . . Cutting edge 25. . . Tip,
23. . . Rake face,
231. . . Protruding point,
233. . . First rake face,
235. . . Second rake face,
237. . . Flank,
4). . . Object to be cut,

Claims (5)

外周に沿って複数の切刃を設けた円盤形状を有する丸鋸を用いて,金属製の被切断体を切断する方法において,
上記切刃は,上記丸鋸をその回転軸方向から平面的に見た状態において,その先端部から上記丸鋸の略中心に向けて配されたすくい面と,上記先端部から上記丸鋸の回転する向きと逆向きに向けて配された逃げ面とを有しており,
上記すくい面は,上記切刃の上記先端部と上記丸鋸の中心とを結ぶ線を丸鋸半径線とするとき,該丸鋸半径線よりも丸鋸の回転方向に突出した突出点を有すると共に,該突出点と上記先端部とを結ぶ第1すくい面と,上記突出点から上記丸鋸の略中心方向に延びる第2すくい面とを有しており,
上記丸鋸の中心と上記突出点とを結ぶ線を基準線として,該基準線と上記第1すくい面とのなす角をα,上記基準線と上記第2すくい面とのなす角をβとし,
上記基準線と,上記丸鋸の外接円が交差する点における上記外接円に対する接線と上記逃げ面とのなす角をγとしたとき,
0°<α<20°,
0°<β<10°,
γ≧0°,
の関係を有し,
上記接線から上記突出点までの距離をw(mm)とし,かつ上記丸鋸を使用する際の1刃あたりの平均切り込み厚さをtf(mm)とすると,
切断時には,0.04≦tf≦0.15,かつtf≦w/8の関係を満足するように上記被切断体の切断を行うことを特徴とする金属製の被切断体の切断方法。
In a method of cutting a metal workpiece using a circular saw having a disk shape provided with a plurality of cutting edges along the outer periphery,
The cutting blade includes a rake face arranged from the tip of the circular saw toward the approximate center of the circular saw in a state of viewing the circular saw from the direction of the rotation axis, and the circular saw from the tip. Having a flank face and a flank face oriented in the opposite direction;
The rake face has a protruding point that protrudes in the rotational direction of the circular saw from the circular saw radial line when a line connecting the tip of the cutting edge and the center of the circular saw is a circular saw radial line. And a first rake face connecting the protruding point and the tip, and a second rake face extending from the protruding point in a substantially central direction of the circular saw,
A line connecting the center of the circular saw and the protruding point is defined as a reference line, an angle formed by the reference line and the first rake face is α, and an angle formed by the reference line and the second rake face is β. ,
When the angle between the tangent to the circumscribed circle and the flank at the point where the reference line intersects the circumscribed circle of the circular saw is γ,
0 ° <α <20 °,
0 ° <β <10 °,
γ ≧ 0 °,
Have the relationship
When the distance from the tangent to the protruding point is w (mm) and the average cutting thickness per blade when using the circular saw is t f (mm),
A method for cutting a metal cut object, wherein the cut object is cut so as to satisfy the relationship of 0.04 ≦ t f ≦ 0.15 and t f ≦ w / 8 at the time of cutting. .
請求項1において,上記1刃あたりの平均切り込み厚さtfは,丸鋸の切刃数をZとし,かつ上記丸鋸を使用する際,上記丸鋸の回転数をNrpm,丸鋸の送り速度をfmm/secとするとき,
f={60/(NZ)}f
の関係を有することを特徴とする金属製の被切断体の切断方法。
In claim 1, the average cutting thickness t f per blade is Z, and when the circular saw is used, the rotational speed of the circular saw is Nrpm, and the circular saw feed When the speed is fmm / sec,
t f = {60 / (NZ)} f
A method for cutting a metal object, characterized by having the following relationship:
請求項1において,上記被切断体は略円柱状であって,上記丸鋸は,上記被切断体をその中心軸を中心に上記丸鋸の回転する向きと同じ向きに回転させながら切断する際に用いるものであって,
上記1刃あたりの平均切り込み厚さtf(mm)は,丸鋸の半径をR(mm),被切断体の半径をr(mm)とし,かつ,上記丸鋸を使用する際の切り込み量をt(mm),切り込み域の角度をθ,切刃が1ピッチ回転する間に金属切断体が回転する角度をχとするとき,
f=(R+r−t)sin(θ/2)・χ
の関係を有することを特徴とする金属製の被切断体の切断方法。
2. The cutting object according to claim 1, wherein the object to be cut is substantially cylindrical, and the circular saw is cut while rotating the object to be cut about the central axis in the same direction as the circular saw rotates. Used for
The average cutting thickness t f (mm) per blade is the radius of the circular saw R (mm), the radius of the object to be cut is r (mm), and the amount of cutting when using the circular saw Is t (mm), the angle of the cutting area is θ, and the angle of rotation of the metal cutting body while the cutting blade rotates by 1 pitch is χ,
t f = (R + rt) sin (θ / 2) · χ
A method for cutting a metal object, characterized by having the following relationship:
請求項3において,上記被切断体は,中空部を有する筒状の金属管であることを特徴とする金属製の被切断体の切断方法。  4. The method for cutting a metal cut object according to claim 3, wherein the cut object is a cylindrical metal tube having a hollow portion. 請求項1〜4のいずれか1項において,上記丸鋸は,サーメットよりなることを特徴とする金属製の被切断体の切断方法 5. The method for cutting a metal workpiece according to claim 1, wherein the circular saw is made of cermet .
JP2002140239A 2002-05-15 2002-05-15 Circular saw for metal cutting Expired - Fee Related JP4227760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140239A JP4227760B2 (en) 2002-05-15 2002-05-15 Circular saw for metal cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140239A JP4227760B2 (en) 2002-05-15 2002-05-15 Circular saw for metal cutting

Publications (2)

Publication Number Publication Date
JP2003334720A JP2003334720A (en) 2003-11-25
JP4227760B2 true JP4227760B2 (en) 2009-02-18

Family

ID=29701168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140239A Expired - Fee Related JP4227760B2 (en) 2002-05-15 2002-05-15 Circular saw for metal cutting

Country Status (1)

Country Link
JP (1) JP4227760B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954178B1 (en) * 2009-09-09 2010-04-20 손용학 The spray nozzle van and the cut system which processes this

Also Published As

Publication number Publication date
JP2003334720A (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US7862262B2 (en) Multi-flute ball endmill for airfoil machining
US10960476B2 (en) Tipped circular saw blade
JP2006212744A (en) End mill
US5597269A (en) Cutting tool for honeycomb core
JP6879668B2 (en) Cutting method
JP4125909B2 (en) Square end mill
JP3988659B2 (en) Drill
JP2002018629A (en) Cutting tool
JP3957230B2 (en) Ball end mill
JP4227760B2 (en) Circular saw for metal cutting
JP3754010B2 (en) Ball end mill
US20220001464A1 (en) Method of producing drill
JPS59166405A (en) Drill
JP2001212711A (en) Formed milling cutter for rough cutting
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP2018126842A (en) Cutting tool
JP4645042B2 (en) Radius end mill
JPH046487B2 (en)
JP2004202622A (en) Ball end mill
JP2003275917A (en) Cutting edge exchangeable rotary tool and throw-away insert
JP3786904B2 (en) Total rotary cutting tool
JP3354905B2 (en) Form milling for rough cutting
JP7280636B2 (en) Cutting tools
CN216096763U (en) Circular saw blade with cutter head
JP2010173056A (en) Roughening end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees