JP3786904B2 - Total rotary cutting tool - Google Patents

Total rotary cutting tool Download PDF

Info

Publication number
JP3786904B2
JP3786904B2 JP2002224218A JP2002224218A JP3786904B2 JP 3786904 B2 JP3786904 B2 JP 3786904B2 JP 2002224218 A JP2002224218 A JP 2002224218A JP 2002224218 A JP2002224218 A JP 2002224218A JP 3786904 B2 JP3786904 B2 JP 3786904B2
Authority
JP
Japan
Prior art keywords
axis
outer peripheral
cutting edge
flank
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002224218A
Other languages
Japanese (ja)
Other versions
JP2004058262A (en
Inventor
清志 都築
直己 建部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2002224218A priority Critical patent/JP3786904B2/en
Publication of JP2004058262A publication Critical patent/JP2004058262A/en
Application granted granted Critical
Publication of JP3786904B2 publication Critical patent/JP3786904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は回転切削工具に係り、特に、軸方向において外周切れ刃の刃先径が連続的に変化している総形回転切削工具の改良に関するものである。
【0002】
【従来の技術】
軸方向において刃先径が連続的に変化している外周切れ刃を有し、軸心まわりに回転駆動されつつ軸心と直角な方向へ移動させられることにより、外周切れ刃の回転軌跡に対応する形状の切削加工、例えば溝加工などを行う総形回転切削工具が、特開平11−245112号公報などに記載されている。このような総形回転切削工具の外周切れ刃の逃げ面は、工具を軸心まわりに回転させながら研削砥石を相対的に接近させることによって設けられ、刃先から連続して周方向に形成されているのが普通で、例えば図6に示すように、外周切れ刃100を軸心まわりに展開した状態において、径寸法が一定の直線Dに対して逃げ面102の径寸法が一定の逃げ角α(°)で直線的に小さくなるようにするか、或いは刃先104からの回転角度θ(°)に対して逃げ寸法δ(θ)が直線的に増加するようになっている。前者は、刃先104からの距離に応じて逃げ寸法δが決まるため、所定の回転角度θ(例えば90°)における逃げ寸法δ(θ)は刃先径の寸法変化に伴って変化し、刃先径が小さい程同じ回転角度θにおける逃げ寸法δ(θ)は小さくなるのに対し、後者は、刃先104からの回転角度θ(例えば90°)における逃げ寸法δ(θ)が、刃先径の寸法変化に拘らず一定である。
【0003】
【発明が解決しようとする課題】
しかしながら、このように工具を軸心まわりに回転させながら研削砥石を相対的に接近させて外周切れ刃の逃げ面を形成しても、外周切れ刃の回転軌跡の軸心を含む断面において軸心に対する傾斜角度が60°以上の急傾斜部では軸方向の逃げ量が小さくなって切れ味が低下し、工具寿命が損なわれることがあった。例えば図2の(b) は、工具の軸心に対する傾斜角度Φが60°以上の急傾斜部において、周方向に所定の逃げ面加工を行った場合の軸方向の逃げ量(逃げ角)の一例を示す図で、傾斜角度Φが大きい程軸方向逃げ量は小さくなり、上記問題が顕著になる。図2の軸方向の逃げ量は、図6と同様に軸心まわりに展開した場合の逃げ角である。
【0004】
なお、周方向の逃げ量を大きくすれば軸方向の逃げ量も大きくなるが、上記のように傾斜角度Φが60°以上の急傾斜部では、周方向の逃げ量を大きくするだけで軸方向の逃げ量を十分に確保することは難しい。
【0005】
本発明は以上の事情を背景として為されたもので、その目的とするところは、軸心に対する傾斜角度Φが大きい部分でも所定の切れ味が得られるようにして工具寿命を向上させることにある。
【0006】
【課題を解決するための手段】
かかる目的を達成するために、第1発明は、軸方向において刃先径が連続的に変化している外周切れ刃を有し、軸心まわりに回転駆動されることによりその外周切れ刃の回転軌跡に対応する形状の切削加工を行う総形回転切削工具において、前記外周切れ刃のうち、前記回転軌跡の軸心を含む断面においてその軸心に対する傾斜角度が60°以上で90°より小さい所定の急傾斜部には、軸方向成分を含む方向へ研削砥石を相対移動させて逃げ面加工が施されていることを特徴とする。
【0007】
第2発明は、軸方向において刃先径が連続的に変化している外周切れ刃を有し、軸心まわりに回転駆動されることによりその外周切れ刃の回転軌跡に対応する形状の切削加工を行う総形回転切削工具において、前記外周切れ刃のうち、前記回転軌跡の軸心を含む断面において所定の曲率半径で湾曲した円弧部であって、軸心と平行な方向から±30°以下の中心角の所定の急傾斜部には、軸方向成分を含む方向へ研削砥石を相対移動させて逃げ面加工が施されていることを特徴とする。
【0008】
第3発明は、第1発明または第2発明の総形回転切削工具において、前記逃げ面加工は、軸心まわりに展開した状態での軸方向の逃げ量が30′〜10°の範囲内となるように施されていることを特徴とする。
【0009】
【発明の効果】
第1発明の総形回転切削工具においては、軸心に対する傾斜角度が60°以上で90°より小さい所定の急傾斜部には、軸方向成分を含む方向へ研削砥石を相対移動させて逃げ面加工が施されているため、軸方向の逃げ量を十分に確保することが容易に可能で、その急傾斜部の切れ味が向上して工具寿命が長くなる。
【0010】
第2発明は、外周切れ刃が円弧部を有する場合で、その円弧部の軸心と平行な方向からの中心角が±30°以下の急傾斜部、すなわち円弧の接線の軸心に対する傾斜角度が60°以上の部分には、軸方向成分を含む方向へ研削砥石を相対移動させて逃げ面加工が施されているため、実質的に第1発明と同様の効果が得られる。
【0011】
第3発明では、軸方向の逃げ量が30′〜10°の範囲内となるように逃げ面加工が施されるため、外周切れ刃の形状(フォーム)を損なうことなく切れ味を向上させることができる。すなわち、急傾斜部の傾斜角度によっても異なるが、一般に軸方向の逃げ量が30′より小さいと切れ味の向上効果が十分に得られず、10°より大きくなると外周切れ刃の形状を損なう可能性があるのである。
【0012】
【発明の実施の形態】
本発明の総形回転切削工具は、軸心まわりに回転駆動されつつ軸心と交差する方向へ被削材に対して相対移動させられることにより、刃先の回転軌跡に対応する形状の溝加工や側面加工を行うが、特に軸心に対して直角な方向へ相対移動させられる場合に好適に適用される。
【0013】
第1発明では傾斜角度が60°以上の総ての急傾斜部に適用することが望ましいが、傾斜角度が75°以上などの一部に適用するだけでも良く、逆に傾斜角度が60°以下の部分を含んでいても良い。第2発明は、実質的に第1発明の一実施態様に相当し、軸心と平行な方向から±30°以下の総ての急傾斜部に適用することが望ましいが、±15°以下などの一部に適用するだけでも良く、逆に中心角が±30°以上の部分を含んでいても良い。軸心と平行な方向からの中心角の±は、軸心と平行な直線に対して、軸心に接近する方向および軸心から離間する方向の両方を含む趣旨である。
【0014】
第2発明は円弧部に関するものであるが、第1発明の実施に際しては、軸方向において径寸法が直線的に変化している直線部など、種々の形状に適用される。なお、この直線部や第2発明の円弧部は、外周切れ刃の回転軌跡の軸心を含む断面における形状で、言い換えれば軸方向における外周切れ刃の径寸法変化の形状であり、外周切れ刃そのものが直線や円弧である必要はない。
【0015】
第1発明、第2発明の逃げ面加工は、工具の軸方向成分を含む方向へ研削砥石を相対移動させて逃げ面を研削加工するもので、例えば工具を軸心まわりに回転させつつ研削砥石を軸方向へ移動させて逃げ面加工が行われ、工具の回転速度に対する研削砥石の軸方向の移動速度によって軸方向の逃げ量が適宜定められる。研削砥石を軸方向へ相対移動させながら工具に接近させることにより、軸方向および周方向に所定の逃げを設けることもできる。この軸方向成分を含む方向の相対移動による逃げ面加工は、例えば急傾斜部を含めて総ての外周切れ刃に周方向の逃げ面加工を行った後に、所定の急傾斜部にだけ行うようにしても良いが、急傾斜部については周方向の逃げ面加工を行うことなく軸方向成分を含む方向の逃げ面加工を行うだけでも良い。
【0016】
外周切れ刃の逃げ面は、急傾斜部か否かに拘らず所定のマージンを残して設けるようにしても良いが、マージン無しで逃げ面を設けることも可能である。
【0017】
【実施例】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である総形回転切削工具10を説明する図で、(a) は先端の刃部を示す一部を切り欠いた正面図、(b) は(a) におけるB−B断面図、(c) は先端側から見た底面図である。この総形回転切削工具10は、軸心Sまわりに4本の切屑排出溝12が設けられているとともに、その切屑排出溝12に沿って4枚の外周切れ刃14、およびその外周切れ刃14に連続する底刃16が設けられている。それ等の外周切れ刃14および底刃16は、総形回転切削工具10が図示しないシャンク側から見て右まわりに回転駆動されることにより切削加工を行うもので、切屑排出溝12は、切屑がシャンク側へ良好に排出されるように右まわりに約430mm程度のリードで捩じれており、外周切れ刃14は軸心まわりに捩じれた捩れ刃である。
【0018】
図1の(a) は、軸心Sの左半分を断面で示した図で、両側の外形線は、外周切れ刃14の回転軌跡を表しており、その回転軌跡の軸心Sを含む断面形状に相当し、軸心Sに対して直角な方向へ被削材に対して相対移動させられることにより、その回転軌跡と同じ形状の溝加工、或いは側面加工が施される。外周切れ刃14は、軸方向の先端部分に刃先径が連続的に増大して滑らかに外周側へ膨出させられた膨出部20を備えており、その膨出部20の底刃16側には、上記回転軌跡の軸心Sを含む断面形状(図1(a) の形状)において所定の曲率半径で湾曲した円弧形状の円弧部22が設けられ、底刃16に滑らかに接続されている。なお、上記膨出部20の最大径寸法は約20mmである。
【0019】
上記外周切れ刃14には、総形回転切削工具10を軸心Sまわりに回転させつつ研削砥石を接近させることにより、膨出部20および円弧部22を含めて周方向に逃げ面加工が施されており、マージン無しで外周切れ刃14に連続して外周逃げ面24が形成されている。この外周逃げ面24の周方向の逃げ量は、回転角度θ=90°当たり1.6mm(1.6/90°)であるが、円弧部22のうち軸心Sと平行な方向から中心角σが±30°以下、すなわち円弧の接線と軸心Sとの傾斜角度が60°以下の急傾斜部22aでは、総形回転切削工具10を軸心Sまわりに回転させつつ研削砥石を接近させると同時に軸方向へ移動させることにより、軸方向成分を含む方向に逃げ面加工が施され、軸心Sまわりに展開した状態での軸方向の逃げ量(逃げ角)が30′〜10°の範囲内となるように、例えば回転角度θ=25°当たり0.09mm(0.09/25°)程度で軸方向へ逃げる急傾斜部逃げ面30が形成されている。また、底刃16には、刃先から所定の幅寸法(例えば2mm程度)の部分に4°〜6°程度の逃げ角で底刃二番逃げ面26が設けられているとともに、その底刃二番逃げ面26に連続して11°〜13°程度の逃げ角で底刃三番逃げ面28が形成されている。底刃16はまた、1°〜1°30′程度の中凹角で軸心S側へ向かうに従って凹むように後退させられている。
【0020】
このような本実施例の総形回転切削工具10においては、外周切れ刃14の円弧部22のうち軸心Sと平行な方向からの中心角σが±30°以下、すなわち円弧の接線の軸心Sに対する傾斜角度Φが60°以上の急傾斜部22aには、総形回転切削工具10を軸心Sまわりに回転させつつ研削砥石を軸方向へ移動させることにより所定の急傾斜部逃げ面30が形成されているため、軸方向の逃げ量を十分に確保することが容易に可能で、その急傾斜部22aの切れ味が向上して工具寿命が長くなる。
【0021】
また、急傾斜部逃げ面30は、軸方向の逃げ量が30′〜10°の範囲内となるように設けられているため、外周切れ刃14の形状(フォーム)を損なうことなく切れ味を向上させることができる。すなわち、急傾斜部22aの傾斜角度Φによって異なるが、一般に軸方向の逃げ量が30′より小さいと切れ味の向上効果が十分に得られず、10°より大きくなると外周切れ刃14の形状を損なう可能性があるのである。
【0022】
図2(a) は、軸心Sに対する傾斜角度Φが60°以上の種々の急傾斜部において、前記急傾斜部逃げ面30と同様に総形回転切削工具10を軸心Sまわりに回転させつつ研削砥石を接近させると同時に軸方向へ移動させることにより、軸方向成分を含む方向に逃げ面加工を行って、軸方向の逃げ量(逃げ角)が10°の急傾斜部逃げ面を形成した場合と、前記急傾斜部逃げ面30以外の外周逃げ面24のように回転角度θ=90°当たり1.6mm(1.6/90°)で周方向に逃げ面加工行った場合(同図(b) と同じ)とを比較し、30′を下限として軸方向の逃げ量の増加分を表した図である。かかる図2(a) において、領域Aは傾斜角度Φが75°以上すなわち中心角σが±15°以下の部分で、領域Bは傾斜角度Φが60°〜75°すなわち中心角σが±15°〜30°の部分であり、領域Aでは軸方向の逃げ量の増加幅が大きく、外周切れ刃の切れ味の向上効果が顕著となり、この傾斜角度Φが75°以上の部分にだけ急傾斜部逃げ面を形成するようにしても良い。また、軸方向の逃げ量は10°より小さくても良く、領域Aでは5°程度以下であっても十分な切れ味向上効果が得られる。
【0023】
因みに、軸方向の逃げ量が5°程度となるように前記急傾斜部22aに逃げ面加工が施された総形回転切削工具10を用いて、図3に示すように溝底の幅広部の寸法W1≒20mm、ストレート部の寸法W2≒12mm、溝深さd≒16.5mmの溝40を、長さ寸法L≒90mmの被削材42に対して以下の加工条件で切削加工を行ったところ、切削長さが3600mm(40溝)になっても逃げ面摩耗等による異音や振動、仕上げ面不良が許容範囲内で、継続使用が可能であった。また、今回の試験では送り速度が10mm/minであるが、2倍の20mm/minで切削加工を行うことも可能で、工具寿命による工具交換の減少と相まって加工能率を大幅に向上させることができる。これに対し、急傾斜部22aも含めて外周切れ刃14に周方向の逃げ面加工のみを行った従来品では、25溝(切削長さ2250mm)でカッターマークやバリ等の仕上げ面不良により工具寿命となり、本発明品によれば工具寿命が大幅に向上することが判る。
(加工条件)
機械:横型専用機
被削材:SNCM材(ニッケルクロムモリブデン鋼)
切削油:不水溶性切削油
回転速度:300min-1
切削速度:18.4m/min(大径部)
送り:10mm/min(0.033mm/rev)
【0024】
次に、本発明の他の実施例を説明する。
図4の総形回転切削工具50は、軸心Sまわりに4本の切屑排出溝52が設けられているとともに、その切屑排出溝52に沿って4枚の外周切れ刃54、およびその外周切れ刃54に連続する底刃56が設けられている。それ等の外周切れ刃54および底刃56は、総形回転切削工具50が図示しないシャンク側から見て右まわりに回転駆動されることにより切削加工を行うもので、切屑排出溝52は、切屑がシャンク側へ良好に排出されるように右まわりに約400mm程度のリードで捩じれており、外周切れ刃54は軸心まわりに捩じれた捩れ刃である。図4の(a) は、軸心Sの左半分を断面で示した図で、両側の外形線は、外周切れ刃54の回転軌跡を表しており、その回転軌跡の軸心Sを含む断面形状に相当する一方、(b) は先端側から見た底面図であり、上記外周切れ刃54は、上記回転軌跡の軸心Sを含む断面形状(図4(a) の形状)において所定の曲率半径で湾曲した円弧形状の円弧部58、60を備えている。
【0025】
そして、上記外周切れ刃54には、円弧部58、60を含めて総形回転切削工具50を軸心Sまわりに回転させつつ研削砥石を接近させることにより周方向に逃げ面加工が施されている一方、円弧部58、60のうち軸心Sと平行な方向から中心角σが±30°以下、すなわち円弧の接線と軸心Sとの傾斜角度が60°以下の急傾斜部58a、60aには、それぞれ総形回転切削工具50を軸心Sまわりに回転させつつ研削砥石を接近させると同時に軸方向へ移動させることにより、軸方向成分を含む方向に逃げ面加工が施され、軸心Sまわりに展開した状態での軸方向の逃げ量(逃げ角)が30′〜10°の範囲内の急傾斜部逃げ面が設けられている。
【0026】
本実施例においても、外周切れ刃54の円弧部58、60のうち軸心Sと平行な方向からの中心角σが±30°以下、すなわち円弧の接線の軸心Sに対する傾斜角度が60°以上の急傾斜部58a、60aには、軸方向成分を含む方向に逃げ面加工が施されて軸方向に所定の逃げ量を有する急傾斜部逃げ面が設けられているため、前記実施例と同様の作用効果が得られる。
【0027】
また、図5は、外周切れ刃70の回転軌跡の軸心Sを含む断面形状(図5の形状)において軸心Sに対する傾斜角度Φが60°以上、実施例では75°以上の直線状の急傾斜部72、74を有する場合で、このような直線状の急傾斜部72、74についても、工具を軸心Sまわりに回転させつつ研削砥石を接近させると同時に軸方向へ移動させて逃げ面加工が施され、軸方向の逃げ量(逃げ角)が30′〜10°の範囲内の急傾斜部逃げ面が設けられることにより、前記実施例と同様の作用効果が得られる。
【0028】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である総形回転切削工具を説明する図で、(a) は先端の刃部を示す一部を切り欠いた正面図、(b) は(a) におけるB−B断面図、(c) は先端側から見た底面図である。
【図2】軸心に対する傾斜角度Φと軸方向の逃げ量との関係を示す図で、(a) は軸方向成分を含む方向へ逃げ面加工を施した場合で、(b) は周方向の逃げ面加工のみを施した場合である。
【図3】本発明の効果を確認するために行った溝加工の形状を説明する図である。
【図4】本発明の別の実施例を説明する図で、(a) は先端の刃部を示す一部を切り欠いた正面図、(b) は先端側から見た底面図である。
【図5】本発明の更に別の実施例を説明する図で、直線状の急傾斜部を備えている場合である。
【図6】外周切れ刃の逃げ面を説明する図である。
【符号の説明】
10、50:総形回転切削工具 14、54、70:外周切れ刃 22、58、60:円弧部 22a、58a、60a、72、74:急傾斜部 σ:中心角 Φ:傾斜角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary cutting tool, and more particularly to an improvement of a general rotary cutting tool in which the edge diameter of an outer peripheral cutting edge continuously changes in the axial direction.
[0002]
[Prior art]
Corresponding to the rotation trajectory of the outer peripheral cutting edge by having an outer peripheral cutting edge whose cutting edge diameter continuously changes in the axial direction and being moved in a direction perpendicular to the axial center while being driven to rotate around the axial center. Japanese Patent Application Laid-Open No. 11-245112 discloses a general-purpose rotary cutting tool for performing shape cutting, for example, grooving. The flank of the outer peripheral cutting edge of such a general rotary cutting tool is provided by relatively approaching the grinding wheel while rotating the tool around the axis, and is continuously formed in the circumferential direction from the cutting edge. For example, as shown in FIG. 6, in the state where the outer peripheral cutting edge 100 is developed around the axis, the clearance angle α with a constant diameter of the flank 102 with respect to the straight line D with a constant diameter is provided. The clearance dimension δ (θ) increases linearly with respect to the rotation angle θ (°) from the blade edge 104, or linearly decreases at (°). In the former, since the clearance dimension δ is determined according to the distance from the blade edge 104, the clearance dimension δ (θ) at a predetermined rotation angle θ (for example, 90 °) changes with the dimensional change of the blade edge diameter, and the blade edge diameter becomes smaller. The smaller the smaller the clearance dimension δ (θ) at the same rotation angle θ, whereas the latter, the clearance dimension δ (θ) at the rotation angle θ (for example, 90 °) from the blade edge 104 is a dimensional change in the blade edge diameter. Regardless, it is constant.
[0003]
[Problems to be solved by the invention]
However, even if the grinding wheel is relatively approached while the tool is rotated about the axis as described above to form the flank of the outer peripheral cutting edge, the axial center in the cross section including the axis of the rotation trajectory of the outer peripheral cutting edge. In a steeply inclined portion with an inclination angle of 60 ° or more with respect to the axial direction, the axial relief amount becomes small, the sharpness is lowered, and the tool life may be impaired. For example, FIG. 2 (b) shows the amount of axial clearance (flank angle) when a predetermined flank machining is performed in the circumferential direction at a steeply inclined portion with an inclination angle Φ of 60 ° or more with respect to the tool axis. In the figure showing an example, the larger the inclination angle Φ, the smaller the axial clearance becomes, and the above problem becomes remarkable. The amount of relief in the axial direction of FIG. 2 is a relief angle when deployed around the axis as in FIG.
[0004]
Increasing the circumferential clearance increases the axial clearance as well. However, as described above, in a steeply inclined portion with an inclination angle Φ of 60 ° or more, the axial direction can be increased by simply increasing the circumferential clearance. It is difficult to secure a sufficient amount of escape.
[0005]
The present invention has been made against the background described above, and its object is to improve the tool life by obtaining a predetermined sharpness even in a portion where the inclination angle Φ with respect to the axis is large.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the first invention has an outer peripheral cutting edge whose cutting edge diameter continuously changes in the axial direction, and is rotated around the axis to rotate the outer peripheral cutting edge. In the full-form rotary cutting tool that performs a cutting process corresponding to the shape of the outer peripheral cutting edge, a cross-section including the axis of the rotation locus of the outer peripheral cutting edge has a predetermined inclination angle of 60 ° or more and less than 90 °. The steeply inclined portion is characterized in that flank machining is performed by relatively moving a grinding wheel in a direction including an axial component.
[0007]
The second invention has an outer peripheral cutting edge whose cutting edge diameter continuously changes in the axial direction, and is driven to rotate around the axis to perform a cutting process corresponding to the rotation trajectory of the outer peripheral cutting edge. In the overall rotary cutting tool to be performed, the outer peripheral cutting edge is an arc portion curved with a predetermined radius of curvature in a cross section including the axis of the rotation locus, and is ± 30 ° or less from a direction parallel to the axis. A predetermined steep slope portion having a central angle is characterized in that flank machining is performed by relatively moving a grinding wheel in a direction including an axial component.
[0008]
According to a third aspect of the present invention, in the overall rotary cutting tool according to the first or second aspect of the present invention, the flank machining is performed within a range where the axial flank amount is 30 ′ to 10 ° when the flank surface is unfolded around the axis. It is characterized by being applied.
[0009]
【The invention's effect】
In the overall rotary cutting tool according to the first aspect of the present invention, the grinding wheel is relatively moved in a direction including the axial direction component at a predetermined steeply inclined portion having an inclination angle with respect to the axis of 60 ° or more and less than 90 °, and the flank face Since the machining is performed, it is possible to easily secure a sufficient amount of axial relief, and the sharpness of the steeply inclined portion is improved, resulting in a longer tool life.
[0010]
The second invention is a case where the outer peripheral cutting edge has an arc portion, and the central angle from the direction parallel to the axis of the arc portion is ± 30 ° or less, that is, the inclination angle with respect to the axis of the arc tangent Since the flank machining is performed by moving the grinding wheel relatively in the direction including the axial direction component at a portion of 60 ° or more, substantially the same effect as the first invention is obtained.
[0011]
In the third invention, the flank face is processed so that the axial flank amount is in the range of 30 ′ to 10 °, so that the sharpness can be improved without impairing the shape (form) of the outer peripheral cutting edge. it can. That is, although it depends on the inclination angle of the steeply inclined portion, generally, if the axial clearance is smaller than 30 ', the effect of improving the sharpness cannot be obtained sufficiently, and if it exceeds 10 °, the shape of the outer peripheral cutting edge may be impaired. There is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The general-purpose rotary cutting tool of the present invention is driven to rotate around the shaft center and is relatively moved with respect to the work material in a direction intersecting the shaft center. Although the side surface processing is performed, it is preferably applied particularly when the relative movement is performed in a direction perpendicular to the axis.
[0013]
In the first invention, it is desirable to apply to all steeply inclined portions having an inclination angle of 60 ° or more, but it may be applied only to a part such as an inclination angle of 75 ° or more. Conversely, the inclination angle is 60 ° or less. May be included. The second invention substantially corresponds to an embodiment of the first invention, and is preferably applied to all steeply inclined portions of ± 30 ° or less from a direction parallel to the axis, but ± 15 ° or less, etc. May be applied only to a part of the angle, and conversely, a part having a central angle of ± 30 ° or more may be included. The center angle ± from the direction parallel to the axis is intended to include both the direction approaching the axis and the direction away from the axis with respect to the straight line parallel to the axis.
[0014]
The second invention relates to the arc portion, but when the first invention is carried out, the invention is applied to various shapes such as a straight portion whose diameter dimension changes linearly in the axial direction. The straight line portion and the arc portion of the second invention have a shape in a cross section including the axis of the rotation locus of the outer peripheral cutting edge, in other words, a shape of a change in the radial dimension of the outer peripheral cutting edge in the axial direction. It does not have to be a straight line or an arc.
[0015]
The flank machining of the first invention and the second invention grinds the flank by relatively moving the grinding wheel in a direction including the axial component of the tool. For example, the grinding wheel is rotated while rotating the tool around the axis. Is moved in the axial direction to perform flank machining, and the axial clearance is appropriately determined by the moving speed of the grinding wheel in the axial direction relative to the rotational speed of the tool. A predetermined relief can also be provided in the axial direction and the circumferential direction by moving the grinding wheel closer to the tool while relatively moving in the axial direction. The flank machining by relative movement in the direction including the axial direction component is performed only on a predetermined steep slope after the circumferential flank machining is performed on all outer peripheral cutting edges including the steep slope, for example. However, for the steeply inclined portion, the flank machining in the direction including the axial direction component may be performed without performing the flank machining in the circumferential direction.
[0016]
The flank of the outer peripheral cutting edge may be provided leaving a predetermined margin regardless of whether or not it is a steeply inclined portion, but it is also possible to provide the flank without a margin.
[0017]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining a general rotary cutting tool 10 according to an embodiment of the present invention, in which (a) is a front view with a part cut away showing a blade part at the tip, and (b) is (a). BB sectional drawing in (b), (c) is the bottom view seen from the front end side. The total rotary cutting tool 10 is provided with four chip discharge grooves 12 around the axis S, and four outer peripheral cutting edges 14 along the chip discharge grooves 12 and the outer peripheral cutting edges 14. A bottom blade 16 is provided continuously. The outer peripheral cutting edge 14 and the bottom cutting edge 16 perform cutting by rotating the general-purpose rotary cutting tool 10 clockwise as viewed from the shank side (not shown). Is twisted clockwise with a lead of about 430 mm so that the swarf is well discharged to the shank side, and the outer peripheral cutting edge 14 is a torsional blade twisted about the axis.
[0018]
FIG. 1A is a cross-sectional view of the left half of the axis S. The outlines on both sides represent the rotation trajectory of the outer peripheral cutting edge 14, and the cross section including the axis S of the rotation trajectory. Corresponding to the shape, by being relatively moved with respect to the work material in a direction perpendicular to the axis S, groove processing or side surface processing of the same shape as the rotation trajectory is performed. The outer peripheral cutting edge 14 is provided with a bulging portion 20 that has a blade tip diameter that continuously increases at the tip end portion in the axial direction and smoothly bulges toward the outer peripheral side. Is provided with an arc-shaped arc portion 22 which is curved with a predetermined curvature radius in a cross-sectional shape including the axis S of the rotation locus (the shape of FIG. 1A), and is smoothly connected to the bottom blade 16. Yes. The maximum diameter of the bulging portion 20 is about 20 mm.
[0019]
The outer peripheral cutting edge 14 is subjected to flank machining in the circumferential direction including the bulging portion 20 and the circular arc portion 22 by rotating the general-purpose rotary cutting tool 10 around the axis S while approaching the grinding wheel. The outer peripheral flank 24 is formed continuously with the outer peripheral cutting edge 14 without a margin. The circumferential clearance of the outer peripheral flank 24 is 1.6 mm (1.6 / 90 °) per rotation angle θ = 90 °, but the central angle from the direction parallel to the axis S in the arc portion 22. In the steeply inclined portion 22a where σ is ± 30 ° or less, that is, the inclination angle between the arc tangent and the shaft center S is 60 ° or less, the grinding wheel is moved closer to the entire rotary cutting tool 10 around the shaft S. At the same time, by moving in the axial direction, flank machining is performed in the direction including the axial component, and the axial flank amount (flank angle) in the state of being developed around the axis S is 30 ′ to 10 °. For example, a steeply inclined portion flank 30 that escapes in the axial direction at a rotational angle θ = 25 ° of about 0.09 mm (0.09 / 25 °) is formed so as to be within the range. Further, the bottom blade 16 is provided with a bottom blade second relief surface 26 at a clearance angle of about 4 ° to 6 ° at a predetermined width dimension (for example, about 2 mm) from the blade edge. A bottom blade third flank 28 is formed continuously with the flank 26 at a flank angle of about 11 ° to 13 °. The bottom blade 16 is also retracted so as to be recessed toward the axis S side with a concave angle of about 1 ° to 1 ° 30 ′.
[0020]
In the overall rotary cutting tool 10 of this embodiment, the central angle σ from the direction parallel to the axis S of the arc portion 22 of the outer peripheral cutting edge 14 is ± 30 ° or less, that is, the axis of the arc tangent For the steeply inclined portion 22a having an inclination angle Φ with respect to the center S of 60 ° or more, the grinding wheel is moved in the axial direction while rotating the general-purpose rotary cutting tool 10 around the axis S, thereby causing a predetermined steeply inclined portion flank. Since 30 is formed, it is possible to easily secure a sufficient amount of axial relief, and the sharpness of the steeply inclined portion 22a is improved, resulting in a longer tool life.
[0021]
Further, since the steeply inclined portion flank 30 is provided so that the axial flank amount is within a range of 30 'to 10 °, the sharpness is improved without impairing the shape (foam) of the outer peripheral cutting edge 14. Can be made. That is, although it differs depending on the inclination angle Φ of the steeply inclined portion 22a, generally, if the axial relief is smaller than 30 ', the effect of improving the sharpness cannot be obtained sufficiently, and if it exceeds 10 °, the shape of the outer peripheral cutting edge 14 is impaired. There is a possibility.
[0022]
FIG. 2 (a) shows that, in various steep portions having an inclination angle Φ of 60 ° or more with respect to the axis S, the general rotary cutting tool 10 is rotated around the axis S in the same manner as the steep slope flank 30. By moving the grinding wheel closer while moving it in the axial direction, the flank face is processed in the direction including the axial component to form a steeply inclined flank face with a 10 degree axial flank (flank angle). And when the flank machining is performed in the circumferential direction at a rotation angle θ = 1.6 mm (1.6 / 90 °) per 90 ° as in the outer flank 24 other than the steeply inclined flank 30 (same as above) FIG. 6 is a diagram showing an increase in the axial clearance with 30 ′ as a lower limit. In FIG. 2A, the region A is a portion where the inclination angle Φ is 75 ° or more, that is, the central angle σ is ± 15 ° or less, and the region B is 60 ° to 75 °, that is, the central angle σ is ± 15. In the region A, there is a large increase in the amount of axial clearance, and the effect of improving the sharpness of the outer peripheral cutting edge becomes remarkable, and the steeply inclined portion only in the portion where the inclination angle Φ is 75 ° or more. A flank may be formed. Further, the axial relief may be smaller than 10 °, and in the region A, a sufficient sharpness improving effect can be obtained even if it is about 5 ° or less.
[0023]
Incidentally, using the general rotary cutting tool 10 in which the flank machining is performed on the steeply inclined portion 22a so that the axial relief amount is about 5 °, as shown in FIG. A groove 40 having a dimension W1≈20 mm, a straight part dimension W2≈12 mm, and a groove depth d≈16.5 mm was cut on the work material 42 having a length L≈90 mm under the following processing conditions. However, even when the cutting length is 3600 mm (40 grooves), the noise and vibration due to flank wear and the like, and the finished surface failure are within the allowable range and can be used continuously. Also, in this test, the feed rate is 10 mm / min, but it is possible to cut at twice the 20 mm / min, which can greatly improve the machining efficiency coupled with the decrease in tool replacement due to the tool life. it can. On the other hand, in the conventional product in which only the circumferential flank machining is performed on the outer peripheral cutting edge 14 including the steeply inclined portion 22a, the tool has a 25 groove (cutting length 2250 mm) and the finished surface such as a cutter mark or a burr is defective. It can be seen that the tool life is greatly improved according to the present invention.
(Processing conditions)
Machine: Horizontal dedicated machine material: SNCM material (nickel chrome molybdenum steel)
Cutting oil: Water-insoluble cutting oil Rotational speed: 300 min -1
Cutting speed: 18.4 m / min (large diameter part)
Feed: 10mm / min (0.033mm / rev)
[0024]
Next, another embodiment of the present invention will be described.
4 is provided with four chip discharge grooves 52 around an axis S, four outer peripheral cutting edges 54 along the chip discharge grooves 52, and the outer peripheral cutting. A bottom blade 56 continuous with the blade 54 is provided. The outer peripheral cutting edge 54 and the bottom cutting edge 56 perform cutting by rotating the general-purpose rotary cutting tool 50 clockwise when viewed from the shank side (not shown). Is twisted with a lead of about 400 mm in the clockwise direction so as to be discharged well to the shank side, and the outer peripheral cutting edge 54 is a twisting blade twisted around the axis. FIG. 4A is a cross-sectional view of the left half of the axis S, and the outlines on both sides represent the rotation trajectory of the outer peripheral cutting edge 54, and the cross section including the axis S of the rotation trajectory. On the other hand, (b) is a bottom view as viewed from the front end side, and the outer peripheral cutting edge 54 has a predetermined cross-sectional shape (the shape of FIG. 4 (a)) including the axis S of the rotation locus. Arc-shaped arc portions 58 and 60 curved with a radius of curvature are provided.
[0025]
The outer peripheral cutting edge 54 is subjected to flank machining in the circumferential direction by causing the grinding wheel to approach while rotating the general rotary cutting tool 50 around the axis S including the arc portions 58 and 60. On the other hand, of the arc portions 58 and 60, the steeply inclined portions 58a and 60a whose center angle σ is ± 30 ° or less from the direction parallel to the axis S, that is, the inclination angle between the arc tangent and the axis S is 60 ° or less. The flank machining is performed in the direction including the axial component by moving the grinding wheel close to the axis while simultaneously rotating the general rotary cutting tool 50 around the axis S and moving it in the axial direction. A steeply inclined flank face is provided in which the axial flank amount (flank angle) in the state of being developed around S is in the range of 30 ′ to 10 °.
[0026]
Also in this embodiment, the central angle σ from the direction parallel to the axis S of the arc portions 58 and 60 of the outer peripheral cutting edge 54 is ± 30 ° or less, that is, the inclination angle of the arc tangent to the axis S is 60 °. The above steeply inclined portions 58a and 60a are provided with steeply inclined portion flank surfaces that are flank processed in a direction including an axial component and have a predetermined flank amount in the axial direction. Similar effects can be obtained.
[0027]
FIG. 5 is a cross-sectional shape including the axis S of the rotation trajectory of the outer peripheral cutting edge 70 (the shape shown in FIG. 5). The inclination angle Φ with respect to the axis S is 60 ° or more. In the case of having the steeply inclined portions 72 and 74, the linear steeply inclined portions 72 and 74 are also moved by moving the tool around the axis S while moving the grinding wheel in the axial direction and escaping. Surface machining is performed, and a steeply inclined flank surface having an axial flank amount (flank angle) in the range of 30 ′ to 10 ° is provided, so that the same operational effects as in the above embodiment can be obtained.
[0028]
As mentioned above, although the Example of this invention was described in detail based on drawing, these are one embodiment to the last, and this invention is implemented in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. be able to.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram for explaining an overall rotary cutting tool according to an embodiment of the present invention, in which (a) is a front view with a part cut away showing a blade portion at the tip, and (b) is a diagram in (a). BB sectional drawing, (c) is the bottom view seen from the front end side.
FIG. 2 is a diagram showing the relationship between the tilt angle Φ with respect to the shaft center and the amount of relief in the axial direction. (A) is the case where flank machining is performed in the direction including the axial component, and (b) is the circumferential direction. This is a case where only the flank machining is applied.
FIG. 3 is a diagram for explaining the shape of grooving performed to confirm the effect of the present invention.
FIGS. 4A and 4B are diagrams for explaining another embodiment of the present invention, in which FIG. 4A is a front view with a part cut away showing a blade part at the tip, and FIG. 4B is a bottom view seen from the tip side.
FIG. 5 is a diagram for explaining still another embodiment of the present invention, in which a straight steeply inclined portion is provided.
FIG. 6 is a view for explaining a flank face of an outer peripheral cutting edge.
[Explanation of symbols]
10, 50: Total shape rotary cutting tool 14, 54, 70: Peripheral cutting edge 22, 58, 60: Arc part 22a, 58a, 60a, 72, 74: Steeply inclined part σ: Center angle Φ: Inclined angle

Claims (3)

軸方向において刃先径が連続的に変化している外周切れ刃を有し、軸心まわりに回転駆動されることにより該外周切れ刃の回転軌跡に対応する形状の切削加工を行う総形回転切削工具において、
前記外周切れ刃のうち、前記回転軌跡の軸心を含む断面において該軸心に対する傾斜角度が60°以上で90°より小さい所定の急傾斜部には、軸方向成分を含む方向へ研削砥石を相対移動させて逃げ面加工が施されている
ことを特徴とする総形回転切削工具。
A complete rotary cutting that has an outer peripheral cutting edge whose cutting edge diameter changes continuously in the axial direction, and performs a cutting process corresponding to the rotation trajectory of the outer peripheral cutting edge by being driven to rotate around the axis. In the tool,
Among the outer peripheral cutting edges, in a cross-section including the axis of the rotation locus, a predetermined sharply inclined portion having an inclination angle with respect to the axis of 60 ° or more and less than 90 ° is provided with a grinding wheel in a direction including an axial component. A complete rotary cutting tool characterized in that the flank machining is performed by relative movement.
軸方向において刃先径が連続的に変化している外周切れ刃を有し、軸心まわりに回転駆動されることにより該外周切れ刃の回転軌跡に対応する形状の切削加工を行う総形回転切削工具において、
前記外周切れ刃のうち、前記回転軌跡の軸心を含む断面において所定の曲率半径で湾曲した円弧部であって、軸心と平行な方向から±30°以下の中心角の所定の急傾斜部には、軸方向成分を含む方向へ研削砥石を相対移動させて逃げ面加工が施されている
ことを特徴とする総形回転切削工具。
A complete rotary cutting that has an outer peripheral cutting edge whose cutting edge diameter changes continuously in the axial direction, and performs a cutting process corresponding to the rotation trajectory of the outer peripheral cutting edge by being driven to rotate around the axis. In the tool,
Of the outer peripheral cutting edge, a circular arc portion curved with a predetermined radius of curvature in a cross section including the axis of the rotation locus, and a predetermined steeply inclined portion having a central angle of ± 30 ° or less from a direction parallel to the axis Is a general-purpose rotary cutting tool characterized in that flank machining is performed by relatively moving a grinding wheel in a direction including an axial component.
前記逃げ面加工は、軸心まわりに展開した状態での軸方向の逃げ量が30′〜10°の範囲内となるように施されている
ことを特徴とする請求項1または2に記載の総形回転切削工具。
The flank machining is performed such that an axial flank amount in a state of being developed around an axis is within a range of 30 'to 10 °. A complete rotary cutting tool.
JP2002224218A 2002-07-31 2002-07-31 Total rotary cutting tool Expired - Lifetime JP3786904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224218A JP3786904B2 (en) 2002-07-31 2002-07-31 Total rotary cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224218A JP3786904B2 (en) 2002-07-31 2002-07-31 Total rotary cutting tool

Publications (2)

Publication Number Publication Date
JP2004058262A JP2004058262A (en) 2004-02-26
JP3786904B2 true JP3786904B2 (en) 2006-06-21

Family

ID=31943753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224218A Expired - Lifetime JP3786904B2 (en) 2002-07-31 2002-07-31 Total rotary cutting tool

Country Status (1)

Country Link
JP (1) JP3786904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706854A (en) * 2012-10-01 2014-04-09 李仕清 Composite milling cutter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011111068B4 (en) * 2011-08-18 2017-03-02 Audi Ag Method for milling a workpiece
JP5937925B2 (en) * 2012-08-29 2016-06-22 国立大学法人名古屋大学 Trimming method of composite material molding using milling tool
JP2016129932A (en) * 2016-04-25 2016-07-21 国立大学法人名古屋大学 Milling tool used for trimming composite material molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706854A (en) * 2012-10-01 2014-04-09 李仕清 Composite milling cutter

Also Published As

Publication number Publication date
JP2004058262A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
TWI408019B (en) Cutter for chamfering
JP4986854B2 (en) Spiral groove end mill with multi-section cutting surface
CA2679762C (en) End mill
CN104907611B (en) Rotary tool, in particular drilling tool, and method for producing a rotary tool
WO2016043098A1 (en) Drill
JP2008279547A (en) Groove working method and formed rotary cutting tool
JPH11500670A (en) Ball nose end mill
WO2015104732A1 (en) End mill
WO2019044791A1 (en) Tapered reamer
JP4677722B2 (en) 3-flute ball end mill
JP4125909B2 (en) Square end mill
EP1330339B1 (en) Method and apparatus for making a cutting tool having a plurality of margins
JP3786904B2 (en) Total rotary cutting tool
JP2015062978A (en) Ball end mill
JP2006000985A (en) Cutting tool
JP5021882B2 (en) Method and apparatus for manufacturing a cutting tool having a groove
JP4489417B2 (en) Method for manufacturing rotary cutting tool for roughing
TWI352637B (en)
JP3711218B2 (en) Roughing end mill
JP2003053619A (en) Serrated ball end mill insert tool
JP2003275913A (en) Drill
JP7419060B2 (en) ball end mill
JP3474550B2 (en) End mill
EP3073815B1 (en) Cutting tooth for a stump cutting apparatus
JP2008044040A (en) Rotary cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Ref document number: 3786904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150331

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term