JP4227388B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4227388B2
JP4227388B2 JP2002293559A JP2002293559A JP4227388B2 JP 4227388 B2 JP4227388 B2 JP 4227388B2 JP 2002293559 A JP2002293559 A JP 2002293559A JP 2002293559 A JP2002293559 A JP 2002293559A JP 4227388 B2 JP4227388 B2 JP 4227388B2
Authority
JP
Japan
Prior art keywords
steel sheet
condensing
mirror
oriented electrical
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002293559A
Other languages
Japanese (ja)
Other versions
JP2004124226A (en
Inventor
辰彦 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002293559A priority Critical patent/JP4227388B2/en
Publication of JP2004124226A publication Critical patent/JP2004124226A/en
Application granted granted Critical
Publication of JP4227388B2 publication Critical patent/JP4227388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気特性の優れた方向性電磁鋼板の製造装置と製造方法に係わる。
【0002】
【従来の技術】
従来、方向性電磁鋼板の製造方法において、鋼板表面にグラス皮膜を形成し、更に絶縁コーティングを施した後に鋼板表面に力学的応力歪みを導入し、局所的還流磁区を形成することで180 °磁区を細分化し、鉄損を減少させる方法が種々提案されてきた。
【0003】
これらの方法は、例えば、特許文献1や特許文献2等に開示されるような、鋼板表面のグラス皮膜をパルスレーザにより蒸発飛散させ、その反力により歪みを導入する方法と、特許文献3、特許文献4、特許文献5、特許文献6等に開示されているような、鋼板表面の急加熱・急冷により歪みを導入し、グラス皮膜に損傷を与えない方法の二つの方法に大別される。特に後者の方法では、レーザ照射の後に錆防止と絶縁のための再コーティングを行う必要がないという利点を有する。
【0004】
前者の照射痕が発生する方法では、レーザビームは一般にφ0.5mm以下の微小スポットに集光され、高いパワー密度により表面皮膜を蒸発飛散させる。後者の方法では、一般にレーザビームはビームの走査線方向に長軸を持つ、例えば0.35mm×10mm程度の長楕円形状に集光され、パワー密度は低く抑えることにより表面皮膜の蒸発を抑制し、熱歪みを与えている。従って、集光形状が大きく異なるため、これら二つの手法を同じ生産設備で切り替えて行うレーザ照射装置は従来になかった。
【0005】
また、これらの二つの手法で製造された方向性電磁鋼板の特徴的な磁気特性についての知見に乏しく、そのため異なる製造方法の生産設備を独立に持つという要求も発想もなく、ましては同じ生産設備で共有するという発想はなかった。
【0006】
【特許文献1】
特公昭58−26405号公報
【特許文献2】
特開平6−57333号公報
【特許文献3】
米国特許第4,645,547号公報
【特許文献4】
特公昭62−49322号公報
【特許文献5】
特公平5−32881号公報
【特許文献6】
特開平10−204533号公報
【0007】
【発明が解決しようとする課題】
本発明は、レーザ照射により磁気特性を改善する方向性電磁鋼板の製造技術において、二つ以上の異なるレーザ照射方法を単一の装置で実現し、表面照射痕と磁気特性を制御可能な方向性電磁鋼板の製造装置と方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、鋼板の圧延方向に対して垂直で、且つ一定間隔でレーザビームを走査照射して鉄損特性を改善する方向性電磁鋼板の製造方法であって鋼板上のレーザ集光ビーム形状を、圧延方向集光径を一定に維持したまま、走査線方向の集光ビーム径を変更し、磁歪λp−pの磁束密度依存性を制御することを特徴とする方向性電磁鋼板の製造方法、である。
【0009】
また、本発明は、鋼板の用途がトランスであり、トランスの設計磁束密度が1.7T以下であるか、あるいは、1.7T超であるかにより、走査線方向の集光ビーム径を変更することを特徴とする方向性電磁鋼板の製造方法、である。
さらにまた、本発明は、レーザビーム集光装置として、ミラー切替え装置を備えた2枚以上の集光焦点距離の異なるビーム走査方向集光円柱ミラーまたはレンズと、ビーム走査平面ミラーと、走査集光ミラーまたはレンズと、圧延方向集光円柱ミラーまたはレンズとを備え、前記2枚以上の集光焦点距離の異なるビーム走査方向集光円柱ミラーまたはレンズを切り替えて走査線方向の集光ビーム径を変更することを特徴とする方向性電磁鋼板の製造方法、である。
【0010】
【発明の実施の形態・実施例】
以下に実施例を用いて、本発明を詳細に説明する。
【0011】
本発明者らは、主に表面のレーザ照射痕の有無で特徴づけられる、表1に示す二つのレーザ照射条件にて製造された方向性電磁鋼板の磁気特性を詳細に解析した。その結果、表1に示すように双方ともレーザ照射後の周波数50Hzの交番磁界1.7Tにおける鉄損W17/50は同等であることが判明した。一方で、磁歪特性は磁束密度Bmによって、それぞれの条件で特徴的であることを発見した。
【0012】
図3は表1に示す二つのレーザ照射条件で製造された方向性電磁鋼板の磁束密度Bmと磁歪λp-pの測定結果である。なお、この結果は後述する図1の本発明の装置を用いて得られた結果である。λp-pは磁束密度Bmにおける圧延方向の鋼板伸縮率(=圧延方向鋼板伸縮量/鋼板長さ)に相当し、交番磁界の下では周期的な伸縮によりトランスの騒音に大きく影響するパラメータである。図3に示すように、磁歪照射痕が発生した条件1ではλp-pの値は、1.7T以下の中低磁場で比較的小さく、1.7T以上の高磁場では大きい。一方、表面照射痕の発生しない条件2では、その傾向が逆転することがわかった。従って、照射方法によって磁歪特性を制御することが可能であり、その結果、トランスの設計磁束密度にあわせて、低い磁歪特性をもつ電磁鋼板の製品供給が可能となる。
【0013】
また表1に示すように、ビームの圧延方向径は固定のままで、ビーム走査方向の集光径を変えることで、鋼板表面のレーザエネルギー密度が増減し、表面照射痕の有無が決まる。外観上、周期的な表面照射痕の有無もまた製品性能を表す一つの重要な特徴である。例えば、レーザ照射され鉄損特性が改善された製品か否かを容易に判別するための目印として利用可能である。従って、磁気特性、外観を用途にあわせて製造できるこれらの異なる照射方法をすべて持つことの利点は大きく、更にそれが一つのレーザ照射装置で実現できれば、設備の簡略化も可能となる。
【0014】
【表1】

Figure 0004227388
【0015】
そこで、同じレーザ出力特性でも、照射ビーム形状により磁歪特性を制御できる点に着目し、本発明では、最小限の光学素子の切り替えで、特に板幅方向、すなわちビームの走査線方向径を変更し、同一の装置で製造方法を変更する装置を考案した。
【0016】
図1は本発明の実施例の模式図である。図示されないパルス発振CO2レーザより出力されたレーザビーム1はほぼ真円形状をしており、まず走査線方向集光円柱ミラー2により走査線方向のみ反射集光される。ここでミラー2として焦点距離の異なる2枚の円柱ミラーを備えており、ミラー切り替え装置3による水平移動により切り替えが可能である。2枚の円柱ミラーの実効焦点距離はfs1およびfs2である。尚、実効焦点距離は、ビームの反射角と円柱ミラーの曲率半径で決まる値である。ミラー2からの反射ビームは回転多角形ミラーからなる走査平面ミラー4により、圧延方向に概垂直な方向に走査される。その後、1枚の放物面ミラーからなる走査集光ミラー5により、圧延方向と走査線方向の双方が集光され反射される。放物面ミラー5の焦点距離はfpである。最後に実効焦点距離frをもつ圧延方向集光円柱ミラー6により、更に圧延方向に集光され、方向性鋼板7に走査照射される。ここで照射集光形はビーム走査方向幅dsおよび圧延方向幅drである。また、各照射点の間隔Psは走査速度とレーザパルスの繰り返し周波数により決定される。ここで走査線方向集光円柱ミラー2の集光方向と圧延方向集光円柱ミラー6の集光方向は互いに直交するように配置されており、従って、互いの集光性に影響することはない。よって、この構成では、走査線方向の集光径dsは、ミラー2、5の焦点距離fs1またはfs2とfpの組み合わせにより決定され、圧延方向の集光径drはミラー5、6の焦点距離fpとfrにより決定される。従って、本装置ではミラー2を切り替えることで、走査線方向の集光径dsのみを変更することが可能である。
【0017】
図2は実施例として行った二つの照射条件における圧延方向および走査線方向のビーム伝搬・集光特性の計算結果である。条件1としてfs1=1300mm、条件2としてfs2=400mm、条件1,2の共通条件としてfp=380mm、fr=200mmである。ここでビーム伝搬・集光特性はレーザ装置のリアミラーを起点としたビーム伝搬距離とビーム直径の関係である。図2の計算結果より本実施例では、ミラー2の切り替えにより、dsは条件1にて0.3mm、条件2にて10mmに集光されていることがわかった。この際、圧延方向の集光径drは双方とも0.20mmであった。この二つの集光条件にて、表1に示す他の照射条件を設定して厚さ0.23mmの方向性電磁鋼板にレーザ照射を行い、表面照射痕と磁歪特性を比較したところ前述した表1および図3の結果が得られたものである。
【0018】
また本発明は、複数の鋼板コイルを溶接にて接合して、連続してレーザ照射を行い、磁気特性を改善する生産設備へ適用できる。この際、鋼板コイル毎に磁気特性、または表面照射痕の有無を制御したい場合は、鋼板の移動方向に対してレーザ照射部の上流にコイルの溶接点検知装置を設置し、溶接点を検出した時間、検出位置とレーザ照射位置との距離、鋼板移動速度から、走査線方向集光円柱ミラー2を切り替えるタイミングを計算し、連続するコイルの溶接点前後で照射条件を変更すればよい。
【0019】
なお、本実施例では走査線方向集光円柱ミラーとして集光距離の異なる2枚のミラー切り替えの場合を示したが、必要によって2枚以上のミラーを使用してもよく、また集光ミラーの代わりにレンズを用いてもかまわない。更に走査平面ミラーとして振動ミラー、走査集光ミラーとしてfθレンズを用いてもかまわない。
【0020】
【発明の効果】
本発明によれば、同一のレーザ照射設備により、異なる照射条件にてレーザビームを照射する装置が実現され、方向性電磁鋼板を用途に合わせた磁気特性にて製造することが可能となる。
【図面の簡単な説明】
【図1】本発明による装置構成の説明図である。
【図2】本発明の実施例の条件にて得られる、ビーム伝搬・集光形状の計算結果を示す図である。
【図3】本発明の装置、および方法で製造された方向性電磁鋼板の磁歪特性を示す図である。
【符号の説明】
1…レーザビーム
2…走査方向集光円柱ミラー
3…ミラー切り替え装置
4…ビーム走査平面ミラー
5…走査集光ミラー
6…圧延方向集光円柱ミラー
7…方向性電磁鋼板
fs1、fs2…走査方向集光円柱ミラーの実効焦点距離
fp…走査集光ミラーの焦点距離
fr…圧延方向集光円柱ミラーの実効焦点距離
ds…集光ビームの走査線方向径
dr…集光ビームの圧延方向径
Ps…走査線方向の各照射点間隔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing apparatus and a manufacturing method for a grain-oriented electrical steel sheet having excellent magnetic properties.
[0002]
[Prior art]
Conventionally, in a method for producing grain-oriented electrical steel sheets, a 180 ° magnetic domain is formed by forming a glass film on the steel sheet surface, further applying an insulating coating, and then introducing mechanical stress strain on the steel sheet surface to form local reflux magnetic domains. Various methods have been proposed to reduce the iron loss.
[0003]
These methods include, for example, a method in which a glass film on the surface of a steel plate is evaporated and scattered by a pulse laser as disclosed in Patent Document 1 and Patent Document 2, and distortion is introduced by the reaction force, and Patent Document 3, As disclosed in Patent Document 4, Patent Document 5, Patent Document 6, etc., it is roughly divided into two methods of introducing strain by rapid heating / cooling of the steel sheet surface and not damaging the glass film. . In particular, the latter method has an advantage that it is not necessary to perform re-coating for preventing rust and insulating after laser irradiation.
[0004]
In the former method in which an irradiation mark is generated, the laser beam is generally focused on a minute spot of φ0.5 mm or less, and the surface film is evaporated and scattered by a high power density. In the latter method, the laser beam is generally condensed into an elliptical shape having a major axis in the beam scanning direction, for example, about 0.35 mm × 10 mm, and the evaporation of the surface film is suppressed by keeping the power density low, Thermal distortion is applied. Therefore, since the condensing shapes are greatly different, there has never been a laser irradiation apparatus that switches these two methods at the same production facility.
[0005]
In addition, there is little knowledge about the characteristic magnetic properties of grain-oriented electrical steel sheets manufactured by these two methods, so there is no need to think of having independent production facilities of different production methods, or even the same production facilities. There was no idea to share with.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 58-26405 [Patent Document 2]
JP-A-6-57333 [Patent Document 3]
US Pat. No. 4,645,547 [Patent Document 4]
Japanese Patent Publication No. 62-49322 [Patent Document 5]
Japanese Patent Publication No. 5-32881 [Patent Document 6]
Japanese Patent Laid-Open No. 10-204533
[Problems to be solved by the invention]
The present invention is a technology for manufacturing grain-oriented electrical steel sheets that improves magnetic properties by laser irradiation. It realizes two or more different laser irradiation methods with a single device, and can control surface irradiation marks and magnetic properties. An object of the present invention is to provide an electromagnetic steel sheet manufacturing apparatus and method.
[0008]
[Means for Solving the Problems]
The present invention, in approximate vertical to the rolling direction of the steel sheet, and with at approximate regular intervals method of manufacturing a grain-oriented electrical steel sheet with a laser beam scanning irradiation to improve the core loss property, the condensed laser light on the steel sheet The grain shape of the grain- oriented electrical steel sheet is characterized by controlling the dependence of the magnetostriction λp-p on the magnetic flux density by changing the focused beam diameter in the scanning line direction while maintaining the focused beam diameter in the rolling direction constant . Manufacturing method .
[0009]
In the present invention, the use of the steel sheet is a transformer, and the focused beam diameter in the scanning line direction is changed depending on whether the design magnetic flux density of the transformer is 1.7 T or less or more than 1.7 T. It is a manufacturing method of the grain-oriented electrical steel sheet characterized by the above-mentioned.
Furthermore, the present invention provides a laser beam condensing device that includes two or more condensing focal length beam scanning direction condensing cylindrical mirrors or lenses having a mirror switching device, a beam scanning plane mirror, and scanning condensing. A mirror or lens and a rolling direction condensing cylindrical mirror or lens are provided, and the condensing beam diameter in the scanning line direction is changed by switching between the two or more beam condensing cylindrical mirrors or lenses having different condensing focal lengths. A method for producing a grain-oriented electrical steel sheet, characterized in that:
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using examples.
[0011]
The inventors analyzed in detail the magnetic properties of grain-oriented electrical steel sheets manufactured under the two laser irradiation conditions shown in Table 1, which are mainly characterized by the presence or absence of laser irradiation traces on the surface. As a result, as shown in Table 1, it was found that the iron loss W17 / 50 in the alternating magnetic field 1.7T with the frequency of 50 Hz after the laser irradiation is equivalent. On the other hand, it has been found that the magnetostrictive characteristics are characteristic in each condition depending on the magnetic flux density Bm.
[0012]
FIG. 3 shows the measurement results of the magnetic flux density Bm and magnetostriction λp-p of grain-oriented electrical steel sheets manufactured under the two laser irradiation conditions shown in Table 1. This result is obtained using the apparatus of the present invention shown in FIG. λp-p corresponds to the steel sheet expansion / contraction ratio in the rolling direction at the magnetic flux density Bm (= the amount of steel sheet expansion / contraction in the rolling direction / steel plate length), and is a parameter that greatly affects transformer noise due to periodic expansion / contraction under an alternating magnetic field. . As shown in FIG. 3, under condition 1 where magnetostriction irradiation marks are generated, the value of λp-p is relatively small at medium and low magnetic fields of 1.7 T or less and large at high magnetic fields of 1.7 T or more. On the other hand, it was found that the condition was reversed in Condition 2 where no surface irradiation trace was generated. Therefore, it is possible to control the magnetostriction characteristics by the irradiation method, and as a result, it is possible to supply products of electrical steel sheets having low magnetostriction characteristics in accordance with the design magnetic flux density of the transformer.
[0013]
Further, as shown in Table 1, by changing the condensing diameter in the beam scanning direction while the beam rolling direction diameter remains fixed, the laser energy density on the steel sheet surface increases or decreases, and the presence or absence of surface irradiation traces is determined. In terms of appearance, the presence or absence of periodic surface irradiation marks is also an important feature representing product performance. For example, it can be used as a mark for easily discriminating whether or not the product is improved in iron loss characteristics by laser irradiation. Therefore, the advantage of having all these different irradiation methods that can be manufactured in accordance with the application in terms of magnetic properties and appearance is great, and if it can be realized with one laser irradiation apparatus, the equipment can be simplified.
[0014]
[Table 1]
Figure 0004227388
[0015]
Therefore, paying attention to the fact that the magnetostriction characteristics can be controlled by the irradiation beam shape even with the same laser output characteristics, the present invention changes the plate width direction, that is, the beam scanning line diameter in particular, with minimal switching of optical elements. The device which changes the manufacturing method with the same device was devised.
[0016]
FIG. 1 is a schematic diagram of an embodiment of the present invention. A laser beam 1 output from a pulse oscillation CO 2 laser (not shown) has a substantially perfect circle shape, and is first reflected and condensed only in the scanning line direction by the scanning line direction condensing cylindrical mirror 2. Here, the mirror 2 includes two cylindrical mirrors having different focal lengths, and can be switched by horizontal movement by the mirror switching device 3. The effective focal lengths of the two cylindrical mirrors are fs1 and fs2. The effective focal length is a value determined by the reflection angle of the beam and the radius of curvature of the cylindrical mirror. The reflected beam from the mirror 2 is scanned in a direction substantially perpendicular to the rolling direction by a scanning plane mirror 4 comprising a rotating polygon mirror. Thereafter, both the rolling direction and the scanning line direction are condensed and reflected by the scanning condensing mirror 5 composed of a single parabolic mirror. The focal length of the parabolic mirror 5 is fp. Finally, the light is further condensed in the rolling direction by the rolling direction condensing cylindrical mirror 6 having the effective focal length fr, and the directional steel plate 7 is scanned and irradiated. Here, the irradiation condensing type is a beam scanning direction width ds and a rolling direction width dr. Further, the interval Ps between the irradiation points is determined by the scanning speed and the repetition frequency of the laser pulse. Here, the condensing direction of the condensing column mirror 2 in the scanning line and the condensing direction of the condensing column mirror 6 in the rolling direction are arranged so as to be orthogonal to each other, and thus the mutual condensing property is not affected. . Therefore, in this configuration, the condensing diameter ds in the scanning line direction is determined by a combination of the focal length fs1 or fs2 of the mirrors 2 and 5 and fp, and the condensing diameter dr in the rolling direction is the focal length fp of the mirrors 5 and 6. And determined by fr. Therefore, in this apparatus, it is possible to change only the condensing diameter ds in the scanning line direction by switching the mirror 2.
[0017]
FIG. 2 shows the calculation results of the beam propagation / condensing characteristics in the rolling direction and the scanning line direction under the two irradiation conditions performed as an example. Condition 1 is fs1 = 1300 mm, condition 2 is fs2 = 400 mm, conditions 1 and 2 are common conditions: fp = 380 mm, fr = 200 mm. Here, the beam propagation / condensing characteristics are the relationship between the beam propagation distance starting from the rear mirror of the laser device and the beam diameter. From the calculation result of FIG. 2, it was found that in this example, ds was condensed to 0.3 mm under condition 1 and 10 mm under condition 2 by switching the mirror 2. At this time, the condensed diameter dr in the rolling direction was both 0.20 mm. Under these two condensing conditions, the other irradiation conditions shown in Table 1 were set and laser irradiation was performed on a 0.23 mm-thick grain oriented electrical steel sheet, and the surface irradiation marks and magnetostriction characteristics were compared. And the result of FIG. 3 was obtained.
[0018]
Further, the present invention can be applied to a production facility in which a plurality of steel plate coils are joined by welding and laser irradiation is continuously performed to improve magnetic characteristics. At this time, if it is desired to control the magnetic properties or presence / absence of surface irradiation traces for each steel plate coil, a welding point detection device for the coil is installed upstream of the laser irradiation part in the moving direction of the steel plate to detect the welding point. The timing of switching the scanning line direction condensing cylindrical mirror 2 may be calculated from the time, the distance between the detection position and the laser irradiation position, and the steel plate moving speed, and the irradiation conditions may be changed before and after the welding point of the continuous coil.
[0019]
In the present embodiment, the case of switching two mirrors with different condensing distances as the condensing cylindrical mirror in the scanning line direction is shown. However, if necessary, two or more mirrors may be used. A lens may be used instead. Furthermore, an oscillating mirror may be used as the scanning plane mirror, and an fθ lens may be used as the scanning condensing mirror.
[0020]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the apparatus which irradiates a laser beam on different irradiation conditions by the same laser irradiation equipment is implement | achieved, and it becomes possible to manufacture a grain-oriented electrical steel sheet with the magnetic characteristic matched to a use.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus configuration according to the present invention.
FIG. 2 is a diagram showing calculation results of beam propagation / condensation shapes obtained under the conditions of the embodiment of the present invention.
FIG. 3 is a diagram showing magnetostriction characteristics of grain-oriented electrical steel sheets manufactured by the apparatus and method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laser beam 2 ... Scanning direction condensing cylindrical mirror 3 ... Mirror switching apparatus 4 ... Beam scanning plane mirror 5 ... Scanning condensing mirror 6 ... Rolling direction condensing cylindrical mirror 7 ... Directional electrical steel plate
fs1, fs2 ... Effective focal length of scanning direction condensing cylindrical mirror
fp: Focal length of the scanning collector mirror
fr: Effective focal length of condensing cylindrical mirror in rolling direction
ds: Diameter of the focused beam in the scanning line direction
dr: Diameter of the focused beam in the rolling direction
Ps: Distance between each irradiation point in the scanning line direction

Claims (3)

鋼板の圧延方向に対して垂直で、且つ一定間隔でレーザビームを走査照射して鉄損特性を改善する方向性電磁鋼板の製造方法であって
鋼板上のレーザ集光ビーム形状を、圧延方向集光径を一定に維持したまま、走査線方向の集光ビーム径を変更し、磁歪λp−pの磁束密度依存性を制御することを特徴とする方向性電磁鋼板の製造方法
In approximate perpendicular to the rolling direction of the steel sheet, and at approximate regular intervals method of manufacturing a grain-oriented electrical steel sheet with a laser beam scanning irradiation to improve the iron loss property,
The shape of the laser focused beam on the steel sheet is characterized by changing the focused beam diameter in the scanning line direction while maintaining the focused beam diameter in the rolling direction to control the magnetic flux density dependence of the magnetostriction λp-p. A method for producing a grain-oriented electrical steel sheet.
鋼板の用途がトランスであり、トランスの設計磁束密度が1.7T以下であるか、あるいは、1.7T超であるかにより、走査線方向の集光ビーム径を変更することを特徴とする請求項1記載の方向性電磁鋼板の製造方法。 Steel applications are trans, claims, characterized in that the design flux density of the transformer or less than 1.7T, or by either a 1.7T greater, change the condensed beam diameter of the scanning line direction The manufacturing method of the grain-oriented electrical steel sheet of claim | item 1 . レーザビーム集光装置として、ミラー切替え装置を備えた2枚以上の集光焦点距離の異なるビーム走査方向集光円柱ミラーまたはレンズと、ビーム走査平面ミラーと、走査集光ミラーまたはレンズと、圧延方向集光円柱ミラーまたはレンズとを備え、前記2枚以上の集光焦点距離の異なるビーム走査方向集光円柱ミラーまたはレンズを切り替えて走査線方向の集光ビーム径を変更することを特徴とする請求項1または2記載の方向性電磁鋼板の製造方法。 As a laser beam condensing device, two or more beam scanning direction condensing cylindrical mirrors or lenses provided with a mirror switching device, a beam scanning plane mirror, a scanning condensing mirror or lens, and a rolling direction and a condensing cylinder mirror or lens, characterized that you change the focused beam diameter of the scanning line direction by switching the two or more light collecting a different focal length beam scanning direction condenser cylinder mirror or a lens The manufacturing method of the grain-oriented electrical steel sheet according to claim 1 or 2.
JP2002293559A 2002-10-07 2002-10-07 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4227388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293559A JP4227388B2 (en) 2002-10-07 2002-10-07 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293559A JP4227388B2 (en) 2002-10-07 2002-10-07 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2004124226A JP2004124226A (en) 2004-04-22
JP4227388B2 true JP4227388B2 (en) 2009-02-18

Family

ID=32284429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293559A Expired - Fee Related JP4227388B2 (en) 2002-10-07 2002-10-07 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4227388B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919617B2 (en) * 2010-08-06 2016-05-18 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5429213B2 (en) * 2011-02-23 2014-02-26 新日鐵住金株式会社 Method for producing unidirectional electrical steel sheet with excellent iron loss characteristics
KR20130140902A (en) * 2011-06-01 2013-12-24 신닛테츠스미킨 카부시키카이샤 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
KR101711853B1 (en) * 2014-12-24 2017-03-03 주식회사 포스코 Method for forming groove of steel surface, and thr device
CN115044757B (en) * 2022-06-22 2024-01-02 首钢智新迁安电磁材料有限公司 Automatic adjusting device for focus of parabolic mirror for laser scoring

Also Published As

Publication number Publication date
JP2004124226A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
CA1208300A (en) Apparatus and process for laser treating sheet material
EP1953249B1 (en) Production method and production system of directional electromagnetic steel plate having excellent magnetic characteristics
KR101681822B1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
KR101060746B1 (en) How to improve the magnetic properties of oriented electrical steel sheet
US4535218A (en) Laser scribing apparatus and process for using
JP4846429B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
KR101998934B1 (en) Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
CN1083895C (en) Grain-oriented electrical steel sheet having excellent magnetic characteristics, its mfg. method and its mfg. device
CN101896626B (en) Method for manufacturing grain-oriented electromagnetic steel sheet whose magnetic domains are controlled by laser beam application
CN101171651A (en) Low core loss grain-oriented electrical steel sheet and method for producing the same
KR20090064419A (en) Unidirectional magnetic steel sheet excellent in iron loss characteristic
KR20050115285A (en) Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
US20090320524A1 (en) Glass sheet cutting by laser-guided gyrotron beam
JP4091749B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JP4227388B2 (en) Method for producing grain-oriented electrical steel sheet
KR100479213B1 (en) Grain-oriented electrical steel sheet excellent in magnetic properties
JP2011511152A (en) Apparatus and method for refining magnetic domains of electrical steel sheet
JPS6383227A (en) Improvement of iron loss value of electrical steel sheet
JP6482671B2 (en) Method and apparatus for forming grooves on steel sheet surface
JPS5819440A (en) Method for improving watt loss characteristic of electromagnetic steel pipe
JP4598321B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JPH0790385A (en) Grain-oriented silicon steel sheet excellent in magnetic property
KR101051746B1 (en) Magnetic micronization method of electrical steel sheet and magnetic micronized steel sheet
JPH10298654A (en) Manufacturing equipment for grain oriented silicon steel sheet excellent in magnetic property
CN114854967A (en) Laser-scored high-magnetic-induction oriented silicon steel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4227388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees