JP4091749B2 - Oriented electrical steel sheet with excellent magnetic properties - Google Patents

Oriented electrical steel sheet with excellent magnetic properties Download PDF

Info

Publication number
JP4091749B2
JP4091749B2 JP2001114410A JP2001114410A JP4091749B2 JP 4091749 B2 JP4091749 B2 JP 4091749B2 JP 2001114410 A JP2001114410 A JP 2001114410A JP 2001114410 A JP2001114410 A JP 2001114410A JP 4091749 B2 JP4091749 B2 JP 4091749B2
Authority
JP
Japan
Prior art keywords
steel sheet
irradiation
laser
magnetic domain
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001114410A
Other languages
Japanese (ja)
Other versions
JP2002012918A (en
Inventor
辰彦 坂井
直也 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001114410A priority Critical patent/JP4091749B2/en
Publication of JP2002012918A publication Critical patent/JP2002012918A/en
Application granted granted Critical
Publication of JP4091749B2 publication Critical patent/JP4091749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レーザビームの照射により磁気特性を改善した方向性電磁鋼板に関するものである。
【0002】
【従来の技術】
従来、方向性電磁鋼板の製造方法において、鋼板表面にグラス皮膜を形成し、更に絶縁コーティングを施した後に鋼板表面に力学的応力歪みを導入し、局所的還流磁区を形成することで180 °磁区を細分化し、鉄損を減少させる方法が種々提案されてきた。中でも特開昭55-18566号公報に開示されるように、鋼板の表面にパルスYAG レーザビームを集光照射して、被照射部での皮膜の蒸発反力により歪みを導入する方法は、鉄損改善効果が大きく、且つ非接触加工であることから信頼性・制御性も高い優れた方向性電磁鋼板の製造法である。
【0003】
この手法では鋼板表面の絶縁皮膜が破壊され、地鉄が露出したレーザ照射痕が発生する。従って、レーザ照射の後に錆防止と絶縁のためのコーティングを再度行わなければならない。そこで更に進んだ方法として、皮膜の損傷を抑えて歪みを導入する技術が種々考案され、米国特許第4,645,547号公報、特公昭62-49322号公報、特公平5-32881号公報、特開平10-204533号公報等に開示されている。また、レーザ照射方法としては上記米国特許の一実施例中に、鋼板両面の相対する位置にレーザを照射した例が開示されているが、これは片面からのみの照射例に比べて特に優れた鉄損改善を示すものではなかった。
【0004】
ここでレーザ照射による鉄損改善の原理は次のように説明される。方向性電磁鋼板の鉄損は異常渦電流損とヒステリシス損に分離される。鋼板にレーザを照射すると皮膜の蒸発反力、あるいは急加熱・急冷により表層に応力歪みが発生する。この歪みを源にしてその幅とほぼ同程度の幅を持つ還流磁区が発生し、ここでの静磁エネルギーを最小化にするように180 ゜磁区が細分化される。その結果、180 ゜磁区幅に比例した渦電流損が減少し鉄損が低下する。一方で、歪みが導入されるとヒステリシス損は増大する。すなわちレーザによる鉄損低減とは図11に模式図に示すように歪み量の増大に伴う渦電流損の減少とヒステリシス損増加の中で、それらの和である鉄損を最小化させる最適応力歪みを付与することにある。従って、渦電流損を十分を低下させ、且つヒステリシス損の増大を極力抑制することが理想的であり、そのような方向性電磁鋼板を実現することが望まれていた。
【0005】
また、鉄損と並び方向性電磁鋼板の重要な磁気特性パラメータである磁歪は電磁鋼板をトランスの鉄芯に成形した際の騒音発生に影響する。外部磁界を印加した場合、還流磁区は磁界方向に伸縮するため磁歪を増大させる。従って、還流磁区を形成することで鉄損の低減は図れるものの磁歪を増大させる可能性があるという欠点があった。
【0006】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、レーザ照射により磁気特性を改善した方向性電磁鋼板として、効率的に鉄損改善効果が最大化され、また磁歪増加を極力抑制した方向性電磁鋼板を提供することにある。また、特にレーザ照射後に被照射部に鋼板地鉄が露出せず、再コートが不要な方向性電磁鋼板にて、より高い磁気特性を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、鋼板両面の対になる位置にレーザビームを照射して細い還流磁区を形成することで磁気特性を改善した方向性電磁鋼板において、当該還流磁区の圧延方向幅が0.3mm以下であり、且つ対になる両面の還流磁区位置の圧延方向のずれ量が当該還流磁区の圧延方向幅以下であり、還流磁区が厚板方向に貫通することを特徴とする方向性電磁鋼板である。また、鋼板表面にレーザ照射痕があることを特徴とする方向性電磁鋼板である。更に、鋼板表面のレーザ被照射部にレーザ照射痕が発生していないことを特徴とする方向性電磁鋼板である。
【0008】
【発明の実施の形態】
以下、実施例を用いて本発明の実施の形態と効果を説明する。
<実施例1>
まず、両面からレーザを照射して鉄損を改善した電磁鋼板において、片面照射よりも高い鉄損改善率が得られる範囲について説明する。実施例1はレーザビームを微小円形に集光し、比較的高いパルスエネルギー密度のレーザパルスの照射により鋼板表面の皮膜を蒸発飛散させその応力歪みにより鉄損を改善した電磁鋼板である。
【0009】
図8は片面のみにレーザを照射する電磁鋼板の製造装置の説明図である。レーザビーム1は図示されないQスイッチパルスCO2 レーザから出力され、全反射ミラー2、スキャンミラー3を経由して、fθレンズ4によりスキャン集光、照射される。スキャン方向は電磁鋼板の圧延方向にほぼ垂直な方向である。レーザビームの集光形状はほぼ円形であり、レンズのフォーカス調整によって集光直径dを0.2〜0.6mmの範囲で変更した。線状照射の圧延方向ピッチPlは6.5mmである。レーザパルス繰り返し周波数は90kHz であり、スキャン速度の調整により板幅方向照射ピッチPcは照射ビーム径とほぼ同等に選んだ。従って板幅方向にはレーザ照射痕はほぼ接するように並んでいる。図9はレーザ照射痕の模式図である。パルスエネルギーEpは4〜10mJで調整し、集光ビーム径dの制御と合わせて照射エネルギー密度Edを制御した。ここで照射エネルギー密度 Edは集光ビーム面積をSとすると次式である。
Ed=Ep/S(mJ/mm2)
図7は本発明に関わる両面にレーザを照射した電磁鋼板の製造装置の説明図である。レーザビーム1は図示されないQスイッチパルスCO2 レーザから出力され、ビームスプリッター5により二分割され、それぞれ独立した集光装置で表裏面のほぼ相対する位置に照射される。各面に照射されるレーザパルスエネルギーはそれぞれ2〜5mJの範囲で制御される。その他の照射条件は図8にて説明した条件と同じである。表面と裏面の照射位置の圧延方向の調整は図示されない移動テーブルにて微調整した。
【0010】
これらの装置を用いて板厚0.23mmの方向性電磁鋼板にレーザ照射を行い、レーザ照射部に発生する応力歪みを起点とした還流磁区の圧延方向幅Wcdと磁界1.7T、50Hzにおける鉄損改善率の関係を調べた。鉄損改善率ηは次式で表される。
η=[(レーザ照射前鉄損−レーザ照射後鉄損)/レーザ照射前鉄損]×100 (%)
また還流磁区幅は磁区観察用電子顕微鏡にて観察した。
【0011】
図2は片面レーザ照射と両面レーザ照射の場合のWcdと鉄損改善率の関係である。片面レーザ照射ではパルスエネルギーを8mJに固定し、集光ビーム径を0.2〜0.6mmに変更した。両面への照射では各面への照射エネルギーを各々4mJに固定し、同じく集光ビーム径は0.2〜0.6mmに変更した。Wcdと照射ビーム径dの関係も図中に示す。両面で対になる還流磁区の圧延方向のズレ量はすべて0mmである。両面照射ではビーム径にほぼ比例したWcdが得られるが、片面照射では集光系を小さくしても得られるWcdは0.27mm以下には減少しなかった。これはエネルギー密度Edが大きくなると皮膜蒸発時に発生するプラズマが高温になり、また空間的に大きくなるためプラズマを二次熱源にした応力歪み範囲が増大し、ビーム径よりも広く大きな応力歪みが発生するためである。その結果、ヒステリシス損が過大となり鉄損改善率は低下するものである。
【0012】
還流磁区幅Wcdが0.3mm以上の領域においては鉄損改善率を片面、両面照射で比較すると、片面照射の場合に多少高い改善率を示す。片面照射では照射ビーム径が増加した分、エネルギー密度が下がる。その結果、過大なプラズマ効果もなくなり、ヒステリシス損増加が抑制され、高い鉄損改善がなされるものである。一方、両面照射の場合は片面当たりの応力歪みは小さいものの、両面を合計すると比較的大きな歪みが導入されて、片面照射の場合に比べヒステリシス損増加の影響が比較的大きく、鉄損改善率は低下すると考えられる。
【0013】
一方、Wcdが0.3mm以下の領域では歪み幅は小さく、ヒステリシス損の増加量は小さい。同時に片面を起点とした還流磁区も浅く、渦電流損低減効果も減少している。しかし、両面からの還流磁区が板厚方向の浸透深さを補うため、結果的に板厚を貫く十分な還流磁区が形成される。すなわち圧延方向に狭く、板厚方向に深い還流磁区が形成される結果、渦電流損は十分低減され、同時にヒステリシス損の増加は極力抑制されている。
【0014】
片面照射において幅0.3mm以下の還流磁区形成を試みた。狭い還流磁区幅を形成するには二次熱源となる過大なプラズマを抑制するため、エネルギー密度Edを低下させるしかない。そこで集光ビーム径の縮小に合わせてパルスエネルギーも減少させ、エネルギー密度Edを両面照射とほぼ同じにそろえた。この場合のWcdと鉄損改善率の関係を両面照射の結果と比較した。結果は図3である。Wcdと照射ビーム径dの関係も図中に示す。片面照射にてビーム径が0.3mm以下でもほぼビーム径並の還流磁区幅が得られた。両面照射の特性は図2に示した結果と同じデータである。
【0015】
Wcdが0.3mm以下では、やはり両面照射の方が高い鉄損改善率を示す。この比較では、エネルギー密度が同じであるため、片面当たりの応力歪みも還流磁区も同じである。両面照射では両面からの還流磁区が板厚方向の浸透深さを補うため、渦電流損低減効果が高い。一方、片面照射ではその効果はなく、その結果、鉄損改善率も低い。Wcdが0.3mm以上の範囲では前述の説明通り、両面に応力歪みを導入した場合、比較的ヒステリシス損の増大影響が大きく、片面照射の方が両面照射に比べ、多少高い鉄損改善率を示す。
【0016】
次に、表裏面で対になる還流磁区の圧延方向位置ずれについて最適な範囲を説明する。図1は本発明の電磁鋼板の模式図であり、還流磁区の位置ずれを説明する図である。各面の応力歪みaを基点とする還流磁区bの幅はWcdであり、|△L|は各面の還流磁区中心のずれ量の絶対値であり、また還流磁区の圧延方向の等価的幅はWcd’で定義される。図4は両面照射にてレーザビーム径を0.3mmに集光し、Wcdが0.3mmの場合、位置ズレ量|△L|を0〜0.6mmまで変化させた時の|△L|/Wcdと磁歪比λ’の関係である。ここで磁歪比λ’は|△L|>0の時の磁歪λと|△L|=0の時の磁歪λ0との比である。|△L|の増加により磁歪は増加するが|△L|/Wcd>1の範囲にて、すなわち還流磁区の磁歪の増加が顕著である。これは磁歪の原因となる還流磁区の等価幅Wcd’の増大によるものである。
【0017】
また、図5は|△L|/Wcdと鉄損改善率比η’の関係である。ここでη’は|△L|=0の時の鉄損改善率η0と|△L|>0の時の鉄損改善率ηの比である。これより|△L|/Wcd>1の範囲にて鉄損改善率は大きく減少する。これは両面からの還流磁区がその浸透深さを補う効果がなくなるため、その結果鉄損改善効果が減少するものである。
【0018】
このように、本発明による電磁鋼板では形成される還流磁区の圧延方向幅でのずれ|△L|を還流磁区幅Wcd以下にすることで磁歪、鉄損双方の観点で優れた特性が得られる。
<実施例2>
次に、鋼板表面にレーザ照射痕が発生しない照射方法による実施例を説明する。鋼板表面にレーザ照射痕が発生しない照射方法では表面グラス被膜と絶縁コーティングが蒸発飛散する温度以下での急加熱・急冷により応力歪みを付与する。従ってレーザビームの集光面積は実施例1に比べて大きくなり、エネルギー密度は1/20〜1/30にする必要がある。
【0019】
図10は鋼板表面にレーザ照射痕が発生しない照射方法における照射ビーム形状の説明図である。レーザビームは板幅方向に長軸を持つ楕円に集光される。ここで集光レーザビームの圧延方向幅をdl、板幅方向幅はdcである。レーザビームの照射装置は図7、8と同じ装置であるが、ビームの伝搬途中に図示されない円柱レンズを挿入し、fθレンズ4のフォーカス調整と円柱レンズの焦点距離の変更にて集光ビームの楕円形状を制御した。レーザパルス繰り返し周波数は90kHz であり、スキャン速度を調整することで板幅方向の照射ピッチPcを変更した。
【0020】
本実施例ではレーザビーム集光形状はdl=0.2〜0.6mm 、dc=4.0〜10.0mm の組み合わせであり、また照射位置の圧延方向ピッチはPl=6.5mmである。C方向照射ピッチは0.5mmである。
図6は表面に照射痕の発生しない照射方法における、片面のみのレーザ照射と両面へのレーザ照射の場合のWcdと鉄損改善率の関係である。片面のみのレーザ照射ではパルスエネルギーを8mJに固定し、L方向集光ビーム径dlを0.2〜0.6mmに変更し、C方向ビーム径dcは各dlにおいて表面照射痕が発生しない範囲内の最小値に選んだ。両面への照射では各面への照射エネルギーを各々4mJに固定し、同じく集光ビーム径は0.2〜0.6mmに変更し、dcも照射痕の発生しない範囲内の最小値に選んだ。両面で対になる還流磁区の圧延方向のズレ量はすべて0mmである。なお、Wcdと圧延方向照射ビーム径dlの関係も図中に示す。
【0021】
片面、両面照射ともに観測された還流磁区幅Wcdは集光ビーム径dlとほぼ一致した。これは表面皮膜が蒸発しない程度の低いエネルギー密度であるため、二次熱源となるプラズマ発生は少なく、従って応力歪み幅もビーム径にほぼ一致しているためと考えられる。
この結果より、鋼板表面に照射痕の発生しない照射方法においても図3と同様にWcdが0.3mm以下で両面に還流磁区を形成した鋼板が、片面のみに形成した場合に比べ高い鉄損改善率を示す。またその向上代は皮膜を蒸発させる場合に比べ顕著であった。これは急加熱・急冷による応力歪みは蒸発反力による歪みに比べ若干弱いため、両面から還流磁区生成を行う効果がより顕著になるためである。
【0022】
以下に本発明の両面から歪みを付与し、幅0.3mm以下の還流磁区を形成した電磁鋼板と従来の片面からのみ照射した電磁鋼板との違いを区別する方法について説明する。還流磁区幅の確認は磁区観察用電子顕微鏡により判別可能である。両面から歪みを導入しているか否かの判断は、以下の方法で判別可能である。
還流磁区は各面の表層部の応力歪みを基点にして発生しているため、歪みの発生している極表層部をエッチングで除去することで、それを基点にする還流磁区も消失する。両面から歪みを付与している本発明の鋼板は片面の表層を除去しても他方の面から発生した還流磁区は残存する。一方、片面のみからの歪み付与の場合、どちらか一方の面の表層部除去により還流磁区が完全に消滅する。従って、表面照射痕が見えない場合も両面から還流磁区を形成しているか否かは判別可能である。
【0023】
なお、本発明の実施例ではQスイッチパルスCO2レーザを照射して還流磁区を形成したが、本発明の範囲の還流磁区を形成できれば連続波レーザも使用可能であり、またCO2レーザ以外のレーザの使用してもよい。
【0024】
【発明の効果】
以上に説明したように、本発明の方向性電磁鋼板では両面から応力歪みを付与することにより還流磁区を形成し、その圧延方向幅が0.3mm以下であり、且つその圧延方向の位置ずれ量が圧延方向幅以下であることで、従来に比べ高い鉄損改善効果と低磁歪化がなされるという利点を有する。また本発明は表面照射痕の発生する有無に関わらず高い鉄損改善効果を有するものである。
【図面の簡単な説明】
【図1】本発明の方向性電磁鋼板の断面の説明図であり、また還流磁区形成位置のずれの説明図である。
【図2】レーザ照射による被膜蒸発反力にて鉄損を改善した方向性電磁鋼板にて、本発明に関わる両面からレーザを照射した電磁鋼板と片面からのみレーザを照射した電磁鋼板の還流磁区幅と鉄損改善率の関係の説明図である。
【図3】レーザ照射による被膜蒸発反力にて鉄損を改善した方向性電磁鋼板にて、本発明に関わる両面からレーザを照射した電磁鋼板と片面からのみレーザを照射し、集光ビーム径と還流磁区幅がほぼ一致するようにエネルギー密度を制御した場合の電磁鋼板の還流磁区幅と鉄損改善率の関係の説明図である。
【図4】本発明にかかわる電磁鋼板における表裏面の還流磁区位置のズレと磁歪比の関係である。
【図5】本発明にかかわる電磁鋼板における表裏面の還流磁区位置のズレと鉄損改善率比の関係である。
【図6】レーザ照射による鋼板表面の急加熱・急冷にて鉄損を改善し、表面にレーザ照射痕のない方向性電磁鋼板にて、本発明に関わる両面からレーザを照射した電磁鋼板と片面からのみレーザを照射した電磁鋼板の還流磁区幅と鉄損改善率の関係の説明図である。
【図7】本発明の電磁鋼板の製造方法の一実施例である。
【図8】片面からのレーザ照射による電磁鋼板の鉄損改善方法の一実施例である。
【図9】レーザ照射による被膜蒸発反力にて鉄損を改善する照射方法での照射痕の模式図である。
【図10】レーザ照射による鋼板表面の急加熱・急冷にて鉄損を改善しする場合の照射ビーム形状の模式図である。
【図11】レーザ照射による応力歪み、異常渦電流損ヒステリシス損との関係を示す図である。
【符号の説明】
a…応力歪み領域
b…還流磁区
c…180 ゜磁区
1…レーザビーム
2…全反射ミラー
3…スキャンミラー
4…fθレンズ
5…ビームスプリッター
6…電磁鋼板
Ed…パルスエネルギー密度
Ep…パルスエネルギー
S…集光ビーム面積
Wcd…還流磁区幅
Wcd’…還流磁区の等価幅
△L…表裏面還流磁区の形成位置のズレ
η…鉄損改善率
η’…鉄損改善率比
λ…磁歪
λ’…磁歪比
Pl…還流磁区の圧延方向の形成ピッチdl
dl…楕円集光レーザビーム圧延方向幅
dc…楕円集光レーザビームの板幅方向幅
d…円形集光レーザビームの直径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grain-oriented electrical steel sheet having improved magnetic properties by irradiation with a laser beam.
[0002]
[Prior art]
Conventionally, in a method for producing grain-oriented electrical steel sheets, a 180 ° magnetic domain is formed by forming a glass film on the steel sheet surface, further applying an insulating coating, and then introducing mechanical stress strain on the steel sheet surface to form local reflux magnetic domains. Various methods have been proposed to reduce the iron loss. In particular, as disclosed in Japanese Patent Application Laid-Open No. 55-18566, a method of focusing and irradiating a surface of a steel sheet with a pulsed YAG laser beam and introducing strain by an evaporation reaction force of a film at an irradiated portion is an iron method. This is a method for producing an excellent grain-oriented electrical steel sheet that has a large loss improvement effect and high reliability and controllability because of non-contact processing.
[0003]
In this method, the insulating film on the surface of the steel sheet is broken, and a laser irradiation mark is generated in which the ground iron is exposed. Therefore, the coating for preventing rust and insulation must be performed again after the laser irradiation. Therefore, as a further advanced method, various techniques for introducing strain while suppressing damage to the coating have been devised, such as US Pat. No. 204533, etc. In addition, as an example of the laser irradiation method, an example in which the laser is irradiated to the opposite positions on both sides of the steel sheet is disclosed in one embodiment of the above-mentioned U.S. patent, which is particularly superior to the irradiation example from only one side. It did not indicate an improvement in iron loss.
[0004]
Here, the principle of iron loss improvement by laser irradiation is explained as follows. The iron loss of grain-oriented electrical steel sheet is separated into abnormal eddy current loss and hysteresis loss. When a steel sheet is irradiated with a laser, stress distortion occurs on the surface layer due to the evaporation reaction force of the film or rapid heating / cooling. A reflux magnetic domain having a width almost equal to the width is generated from this strain, and the 180 ° magnetic domain is subdivided so as to minimize the magnetostatic energy. As a result, the eddy current loss proportional to the 180 ° magnetic domain width decreases and the iron loss decreases. On the other hand, the hysteresis loss increases when strain is introduced. In other words, the iron loss reduction by the laser is the optimum stress strain that minimizes the iron loss that is the sum of the decrease in eddy current loss and the increase in hysteresis loss as the amount of strain increases as shown in the schematic diagram of FIG. Is to give. Therefore, it is ideal to sufficiently reduce the eddy current loss and suppress the increase in hysteresis loss as much as possible, and it has been desired to realize such a grain-oriented electrical steel sheet.
[0005]
Magnetostriction, which is an important magnetic property parameter of grain-oriented electrical steel sheets along with iron loss, affects the generation of noise when the electrical steel sheets are formed on the iron core of a transformer. When an external magnetic field is applied, the return magnetic domain expands and contracts in the magnetic field direction, thereby increasing magnetostriction. Therefore, although the iron loss can be reduced by forming the reflux magnetic domain, there is a drawback that the magnetostriction may be increased.
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a grain-oriented electrical steel sheet that effectively maximizes the iron loss improvement and suppresses an increase in magnetostriction as much as possible, as a grain-oriented electrical steel sheet with improved magnetic properties by laser irradiation. There is. It is another object of the present invention to provide higher magnetic properties with a grain-oriented electrical steel sheet that does not require re-coating because the steel plate iron is not exposed to the irradiated portion after laser irradiation.
[0007]
[Means for Solving the Problems]
The present invention is a grain-oriented electrical steel sheet that has improved magnetic properties by irradiating a laser beam to a pair of positions on both sides of the steel sheet to form a thin reflux magnetic domain, and the rolling direction width of the reflux magnetic domain is 0.3 mm or less. and the amount of deviation of the rolling direction of the closure domain positions of both sides in a pair is the rolling direction width hereinafter of the closure domains, in oriented electrical steel sheet towards you, characterized in that the closure domains penetrate the plank direction is there. It is also oriented electrical steel sheet towards you, it characterized in that there is a laser irradiation signatures on the surface of the steel sheet. Furthermore, the grain-oriented electrical steel sheet is characterized in that no laser irradiation trace is generated in the laser irradiated portion on the steel sheet surface.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments and effects of the present invention will be described using examples.
<Example 1>
First, the range in which the iron loss improvement rate higher than that of single-sided irradiation can be obtained in the electromagnetic steel sheet in which the iron loss is improved by irradiating laser from both sides will be described. Example 1 is an electrical steel sheet in which a laser beam is condensed into a minute circle, a film on the steel sheet surface is evaporated and scattered by irradiation with a laser pulse having a relatively high pulse energy density, and the iron loss is improved by the stress distortion.
[0009]
FIG. 8 is an explanatory diagram of an apparatus for manufacturing an electromagnetic steel sheet that irradiates a laser only on one side. The laser beam 1 is output from a Q switch pulse CO 2 laser (not shown), and is scanned and condensed and irradiated by an fθ lens 4 via a total reflection mirror 2 and a scan mirror 3. The scanning direction is a direction substantially perpendicular to the rolling direction of the electrical steel sheet. The condensing shape of the laser beam was almost circular, and the condensing diameter d was changed in the range of 0.2 to 0.6 mm by adjusting the focus of the lens. The rolling direction pitch Pl of the linear irradiation is 6.5 mm. The laser pulse repetition frequency was 90 kHz, and the irradiation pitch Pc in the plate width direction was selected to be almost equal to the irradiation beam diameter by adjusting the scanning speed. Accordingly, the laser irradiation traces are arranged so as to be almost in contact with each other in the plate width direction. FIG. 9 is a schematic diagram of laser irradiation traces. The pulse energy Ep was adjusted to 4 to 10 mJ, and the irradiation energy density Ed was controlled together with the control of the focused beam diameter d. Here, the irradiation energy density Ed is expressed by the following equation where S is the focused beam area.
Ed = Ep / S (mJ / mm2)
FIG. 7 is an explanatory view of an apparatus for producing an electrical steel sheet in which laser is irradiated on both sides according to the present invention. The laser beam 1 is output from a Q-switch pulse CO2 laser (not shown), divided into two by a beam splitter 5, and irradiated to substantially opposite positions on the front and back surfaces by independent light collecting devices. The laser pulse energy applied to each surface is controlled in the range of 2 to 5 mJ. Other irradiation conditions are the same as those described with reference to FIG. Adjustment of the rolling direction of the irradiation position of the front surface and the back surface was finely adjusted with a moving table (not shown).
[0010]
Using these devices, laser irradiation was performed on 0.23 mm thick directional electrical steel sheets, and the iron loss was improved in the rolling direction width Wcd and the magnetic field 1.7 T, 50 Hz of the reflux magnetic domain starting from the stress strain generated in the laser irradiated part. The relationship between rates was examined. The iron loss improvement rate η is expressed by the following equation.
η = [(iron loss before laser irradiation−iron loss after laser irradiation) / iron loss before laser irradiation] × 100 (%)
The reflux magnetic domain width was observed with an electron microscope for magnetic domain observation.
[0011]
FIG. 2 shows the relationship between Wcd and iron loss improvement rate in the case of single-sided laser irradiation and double-sided laser irradiation. In single-sided laser irradiation, the pulse energy was fixed at 8 mJ, and the focused beam diameter was changed to 0.2 to 0.6 mm. For irradiation on both sides, the irradiation energy on each side was fixed at 4 mJ, and the focused beam diameter was changed to 0.2 to 0.6 mm. The relationship between Wcd and irradiation beam diameter d is also shown in the figure. The deviations in the rolling direction of the reflux magnetic domains that are paired on both sides are all 0 mm. With double-sided irradiation, Wcd almost proportional to the beam diameter was obtained, but with single-sided irradiation, Wcd obtained even when the condensing system was made small did not decrease to 0.27 mm or less. This is because when the energy density Ed increases, the plasma generated when the film evaporates becomes high temperature, and because it becomes spatially large, the stress strain range using the plasma as a secondary heat source increases, and a stress strain that is larger than the beam diameter is generated. It is to do. As a result, the hysteresis loss becomes excessive, and the iron loss improvement rate decreases.
[0012]
In the region where the reflux magnetic domain width Wcd is 0.3 mm or more, when the iron loss improvement rate is compared between single-sided and double-sided irradiation, the single-sided irradiation shows a somewhat higher improvement rate. In single-sided irradiation, the energy density decreases as the irradiation beam diameter increases. As a result, an excessive plasma effect is eliminated, an increase in hysteresis loss is suppressed, and a high iron loss improvement is achieved. On the other hand, although the stress strain per one side is small in the case of double-sided irradiation, a relatively large strain is introduced when both sides are added, and the effect of increasing the hysteresis loss is relatively large compared to the case of single-sided irradiation, and the iron loss improvement rate is It is thought to decline.
[0013]
On the other hand, in the region where Wcd is 0.3 mm or less, the distortion width is small and the increase in hysteresis loss is small. At the same time, the reflux magnetic domain starting from one side is shallow, and the effect of reducing eddy current loss is reduced. However, since the return magnetic domains from both sides supplement the penetration depth in the plate thickness direction, a sufficient return magnetic domain penetrating the plate thickness is formed as a result. That is, as a result of the formation of a reflux magnetic domain that is narrow in the rolling direction and deep in the thickness direction, the eddy current loss is sufficiently reduced, and at the same time, the increase in hysteresis loss is suppressed as much as possible.
[0014]
Attempts were made to form a reflux domain with a width of 0.3 mm or less in single-sided irradiation. In order to form a narrow reflux magnetic domain width, there is no choice but to reduce the energy density Ed in order to suppress an excessive plasma serving as a secondary heat source. Therefore, the pulse energy was reduced in accordance with the reduction of the focused beam diameter, and the energy density Ed was made almost the same as the double-sided irradiation. The relationship between Wcd and iron loss improvement rate in this case was compared with the result of double-sided irradiation. The result is shown in FIG. The relationship between Wcd and irradiation beam diameter d is also shown in the figure. Even with a beam diameter of 0.3 mm or less, a reflux domain width almost equal to the beam diameter was obtained by single-sided irradiation. The characteristics of double-sided irradiation are the same data as the results shown in FIG.
[0015]
When Wcd is 0.3 mm or less, double-sided irradiation shows a higher iron loss improvement rate. In this comparison, since the energy density is the same, the stress strain per one side and the reflux magnetic domain are the same. In double-sided irradiation, the reflux magnetic domains from both sides supplement the penetration depth in the plate thickness direction, so the effect of reducing eddy current loss is high. On the other hand, single-sided irradiation has no effect, and as a result, the iron loss improvement rate is low. In the range of Wcd of 0.3 mm or more, as described above, when stress strain is introduced on both sides, the effect of increasing hysteresis loss is relatively large, and single-sided irradiation shows a slightly higher iron loss improvement rate than double-sided irradiation. .
[0016]
Next, an optimum range for the positional deviation in the rolling direction of the reflux magnetic domains that are paired on the front and back surfaces will be described. FIG. 1 is a schematic diagram of an electrical steel sheet according to the present invention, and is a diagram for explaining a positional deviation of a return magnetic domain. The width of the reflux magnetic domain b based on the stress strain a of each surface is Wcd, | ΔL | is the absolute value of the deviation amount of the center of the reflux magnetic domain on each surface, and the equivalent width of the reflux magnetic domain in the rolling direction. Is defined by Wcd ′. FIG. 4 shows that when the laser beam diameter is focused to 0.3 mm by double-sided irradiation and Wcd is 0.3 mm, | ΔL | / Wcd when the positional deviation amount | ΔL | is changed from 0 to 0.6 mm. This is the relationship of the magnetostriction ratio λ ′. Here, the magnetostriction ratio λ ′ is the ratio between the magnetostriction λ when | ΔL |> 0 and the magnetostriction λ0 when | ΔL | = 0. The magnetostriction increases with the increase of | ΔL |, but in the range of | ΔL | / Wcd> 1, that is, the increase in magnetostriction of the reflux magnetic domain is remarkable. This is due to an increase in the equivalent width Wcd ′ of the reflux magnetic domain that causes magnetostriction.
[0017]
FIG. 5 shows the relationship between | ΔL | / Wcd and the iron loss improvement rate ratio η ′. Here, η ′ is the ratio between the iron loss improvement rate η0 when | ΔL | = 0 and the iron loss improvement rate η when | ΔL |> 0. As a result, the iron loss improvement rate greatly decreases in the range of | ΔL | / Wcd> 1. This is because the return magnetic domain from both sides has no effect of compensating the penetration depth, and as a result, the iron loss improvement effect is reduced.
[0018]
As described above, in the electrical steel sheet according to the present invention, by setting the deviation | ΔL | in the rolling direction width of the reflux magnetic domain to be formed to be equal to or less than the reflux magnetic domain width Wcd, excellent characteristics can be obtained in terms of both magnetostriction and iron loss. .
<Example 2>
Next, an embodiment using an irradiation method in which laser irradiation traces are not generated on the steel sheet surface will be described. In an irradiation method in which no laser irradiation trace is generated on the surface of the steel sheet, stress strain is imparted by rapid heating / cooling below the temperature at which the surface glass coating and insulating coating evaporate and scatter. Therefore, the condensing area of the laser beam is larger than that in the first embodiment, and the energy density needs to be 1/20 to 1/30.
[0019]
FIG. 10 is an explanatory diagram of an irradiation beam shape in an irradiation method in which laser irradiation traces are not generated on the steel sheet surface. The laser beam is focused on an ellipse having a long axis in the plate width direction. Here, the width in the rolling direction of the focused laser beam is dl, and the width in the plate width direction is dc. The laser beam irradiation device is the same as that shown in FIGS. 7 and 8, but a cylindrical lens (not shown) is inserted in the course of beam propagation, and the focus of the focused beam is adjusted by adjusting the focus of the fθ lens 4 and changing the focal length of the cylindrical lens. The ellipse shape was controlled. The laser pulse repetition frequency was 90 kHz, and the irradiation pitch Pc in the plate width direction was changed by adjusting the scan speed.
[0020]
In this embodiment, the laser beam condensing shape is a combination of dl = 0.2 to 0.6 mm and dc = 4.0 to 10.0 mm, and the rolling direction pitch at the irradiation position is Pl = 6.5 mm. The C direction irradiation pitch is 0.5 mm.
FIG. 6 shows the relationship between Wcd and the iron loss improvement rate in the case of laser irradiation on only one surface and laser irradiation on both surfaces in an irradiation method in which no irradiation mark is generated on the surface. In single-sided laser irradiation, the pulse energy is fixed at 8 mJ, the L-direction focused beam diameter dl is changed to 0.2 to 0.6 mm, and the C-direction beam diameter dc is the minimum value within the range where no surface irradiation trace is generated at each dl. I chose. In the irradiation on both sides, the irradiation energy on each side was fixed at 4 mJ, the diameter of the focused beam was changed to 0.2 to 0.6 mm, and dc was selected to be the minimum value within the range where no irradiation marks were generated. The deviations in the rolling direction of the reflux magnetic domains that are paired on both sides are all 0 mm. The relationship between Wcd and rolling direction irradiation beam diameter dl is also shown in the figure.
[0021]
The reflux domain width Wcd observed for both single-sided and double-sided irradiation almost coincided with the focused beam diameter dl. This is probably because the energy density is low enough that the surface film does not evaporate, so that there is little plasma generation as a secondary heat source, and therefore the stress strain width almost matches the beam diameter.
From this result, even in the irradiation method in which the irradiation mark does not occur on the steel sheet surface, the iron loss improvement rate is higher than that in the case where the steel sheet having the Wcd of 0.3 mm or less and the reflux magnetic domain formed on both surfaces is formed on only one surface as in FIG. Indicates. Moreover, the improvement allowance was remarkable compared with the case where a film | membrane is evaporated. This is because the stress strain due to rapid heating / cooling is slightly weaker than the strain due to evaporation reaction force, and the effect of generating reflux magnetic domains from both sides becomes more remarkable.
[0022]
In the following, a method for distinguishing the difference between an electromagnetic steel sheet imparted with strain from both sides of the present invention and having a reflux magnetic domain having a width of 0.3 mm or less and a conventional electromagnetic steel sheet irradiated only from one side will be described. The confirmation of the reflux magnetic domain width can be made with a magnetic domain observation electron microscope. Whether or not distortion is introduced from both sides can be determined by the following method.
Since the reflux magnetic domain is generated based on the stress strain of the surface layer portion of each surface, the reflux magnetic domain based on this is also eliminated by removing the strained extreme surface layer portion by etching. In the steel sheet of the present invention imparted with strain from both sides, the reflux magnetic domain generated from the other side remains even if the surface layer on one side is removed. On the other hand, in the case of applying strain from only one surface, the reflux magnetic domain is completely extinguished by removing the surface layer portion of one of the surfaces. Therefore, even when the surface irradiation trace is not visible, it is possible to determine whether or not the reflux magnetic domain is formed from both sides.
[0023]
In the embodiment of the present invention, the return magnetic domain was formed by irradiating the Q-switched pulse CO2 laser. However, if the return magnetic domain within the range of the present invention can be formed, a continuous wave laser can be used, and a laser other than the CO2 laser can be used. May be used.
[0024]
【The invention's effect】
As described above, in the grain-oriented electrical steel sheet of the present invention, a reflux magnetic domain is formed by applying stress strain from both sides, the width in the rolling direction is 0.3 mm or less, and the amount of positional deviation in the rolling direction is By being below the width in the rolling direction, there is an advantage that a higher iron loss improvement effect and lower magnetostriction can be achieved than in the prior art. In addition, the present invention has a high iron loss improvement effect regardless of the presence or absence of surface irradiation marks.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a cross section of a grain-oriented electrical steel sheet according to the present invention and an explanatory view of a deviation of a reflux magnetic domain formation position.
FIG. 2 shows a directional electrical steel sheet whose iron loss has been improved by the film evaporation reaction force by laser irradiation. The magnetic steel sheet irradiated with laser from both sides according to the present invention and the reflux magnetic domain of the electromagnetic steel sheet irradiated with laser only from one side. It is explanatory drawing of the relationship between a width | variety and an iron loss improvement rate.
FIG. 3 shows a grain-oriented electrical steel sheet that has improved iron loss due to the film evaporation reaction force caused by laser irradiation. The magnetic steel sheet is irradiated with laser from both sides according to the present invention. It is explanatory drawing of the relationship between the return magnetic domain width | variety of an electromagnetic steel plate, and an iron loss improvement rate at the time of controlling an energy density so that a return magnetic domain width | variety substantially corresponds.
FIG. 4 shows the relationship between the deviation of the position of the reflux magnetic domains on the front and back surfaces of the magnetic steel sheet according to the present invention and the magnetostriction ratio.
FIG. 5 shows the relationship between the deviation of the reflux magnetic domain positions on the front and back surfaces of the electrical steel sheet according to the present invention and the iron loss improvement ratio.
[Fig. 6] A steel sheet and a single-sided steel sheet that have been improved in iron loss by rapid heating / cooling of the steel sheet surface by laser irradiation, and are irradiated with laser from both sides according to the present invention. It is explanatory drawing of the relationship between the return magnetic domain width | variety and iron loss improvement rate of the electromagnetic steel plate which irradiated the laser only from.
FIG. 7 is an example of a method for producing an electrical steel sheet according to the present invention.
FIG. 8 is an example of a method for improving iron loss of an electromagnetic steel sheet by laser irradiation from one side.
FIG. 9 is a schematic view of an irradiation mark in an irradiation method for improving iron loss by a film evaporation reaction force caused by laser irradiation.
FIG. 10 is a schematic diagram of an irradiation beam shape in a case where iron loss is improved by rapid heating / cooling of a steel sheet surface by laser irradiation.
FIG. 11 is a diagram showing a relationship between stress distortion caused by laser irradiation and abnormal eddy current loss hysteresis loss.
[Explanation of symbols]
a ... stress strain region b ... reflux magnetic domain c ... 180 ° magnetic domain 1 ... laser beam 2 ... total reflection mirror 3 ... scan mirror 4 ... fθ lens 5 ... beam splitter 6 ... electromagnetic steel plate
Ed ... Pulse energy density
Ep ... Pulse energy S ... Condensed beam area Wcd ... Reflux magnetic domain width Wcd '... Equivalent width of return magnetic domain ΔL ... Deviation of formation position of front and back return magnetic domains η ... Iron loss improvement rate η' ... Iron loss improvement rate ratio λ ... magnetostriction λ '... magnetostriction ratio
Pl ... Formation pitch dl in the rolling direction of the reflux magnetic domain
dl… Ellipse focused laser beam rolling width
dc: The width of the elliptical focused laser beam in the plate width direction d: Diameter of the circular focused laser beam

Claims (3)

鋼板両面の対になる位置にレーザビームを照射して細い還流磁区を形成することで磁気特性を改善した方向性電磁鋼板において、当該還流磁区の圧延方向幅が0.3mm以下であり、且つ対になる両面の還流磁区位置の圧延方向のずれ量が当該還流磁区の圧延方向幅以下であり、還流磁区が厚板方向に貫通することを特徴とする方向性電磁鋼板。In a grain-oriented electrical steel sheet that has improved magnetic properties by irradiating a laser beam to a pair of steel plates on both sides to form a thin reflux magnetic domain, the rolling direction width of the reflux magnetic domain is 0.3 mm or less, and the pair der rolling direction width following the rolling direction of the deviation amount is the reflux magnetic domain of the closure domain positions of both sides made is, oriented electrical steel sheet towards you, characterized in that the closure domains penetrate the plank direction. 鋼板表面にレーザ照射痕があることを特徴とする請求項1記載の方向性電磁鋼板。Oriented electrical steel sheets towards according to claim 1, wherein there are laser irradiation signatures on the surface of the steel sheet. 鋼板表面のレーザ被照射部にレーザ照射痕が発生していないことを特徴とする請求項1記載の方向性電磁鋼板。Oriented electrical steel sheet towards the claim 1, wherein the laser irradiation signatures does not occur in the laser irradiated portion of the steel sheet surface.
JP2001114410A 2000-04-24 2001-04-12 Oriented electrical steel sheet with excellent magnetic properties Expired - Fee Related JP4091749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114410A JP4091749B2 (en) 2000-04-24 2001-04-12 Oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-123250 2000-04-24
JP2000123250 2000-04-24
JP2001114410A JP4091749B2 (en) 2000-04-24 2001-04-12 Oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2002012918A JP2002012918A (en) 2002-01-15
JP4091749B2 true JP4091749B2 (en) 2008-05-28

Family

ID=26590688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114410A Expired - Fee Related JP4091749B2 (en) 2000-04-24 2001-04-12 Oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4091749B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094218A1 (en) 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same
WO2013099272A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
WO2013099274A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
KR20170068557A (en) 2014-10-23 2017-06-19 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and process for producing same
US10631553B2 (en) 2012-06-15 2020-04-28 Gelato Fresco, Inc. Process and composition for making an alcohol-containing frozen comestible
US10716318B2 (en) 2010-08-10 2020-07-21 Gelato Fresco, Inc. Alcohol containing frozen dessert product

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676936B1 (en) * 2003-03-19 2007-02-02 신닛뽄세이테쯔 카부시키카이샤 Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
JP4705382B2 (en) * 2005-02-25 2011-06-22 新日本製鐵株式会社 Unidirectional electrical steel sheet and manufacturing method thereof
WO2009082155A1 (en) * 2007-12-26 2009-07-02 Posco Apparatus and method for refining magnetic domain of electrical steel sheet
KR101037160B1 (en) 2008-09-25 2011-05-26 주식회사 포스코 Apparatus and method for miniaturizing magnetic domain with electromagnetic steel plate
KR101051746B1 (en) * 2008-11-25 2011-07-25 주식회사 포스코 Magnetic micronization method of electrical steel sheet and magnetic micronized steel sheet
JP5998424B2 (en) * 2010-08-06 2016-09-28 Jfeスチール株式会社 Oriented electrical steel sheet
DE102011000712A1 (en) * 2011-02-14 2012-08-16 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented flat steel product
RU2569269C1 (en) 2011-09-28 2015-11-20 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electric steel plates, and method of its manufacturing
RU2611457C2 (en) 2012-10-31 2017-02-22 ДжФЕ СТИЛ КОРПОРЕЙШН Texture sheet of electric steel and method of its production
JP6620566B2 (en) * 2016-01-20 2019-12-18 日本製鉄株式会社 Directional electrical steel sheet, method for manufacturing directionally oriented electrical steel sheet, iron core for transformer or reactor, and noise evaluation method
US11387025B2 (en) 2017-02-28 2022-07-12 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor
CN111902894A (en) * 2018-03-30 2020-11-06 杰富意钢铁株式会社 Iron core for transformer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4319715B2 (en) * 1998-10-06 2009-08-26 新日本製鐵株式会社 Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716318B2 (en) 2010-08-10 2020-07-21 Gelato Fresco, Inc. Alcohol containing frozen dessert product
WO2013094218A1 (en) 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same
US10020101B2 (en) 2011-12-22 2018-07-10 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing same
WO2013099272A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
WO2013099274A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and method for ameliorating iron losses therein
EP3037568A1 (en) 2011-12-28 2016-06-29 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
US10062483B2 (en) 2011-12-28 2018-08-28 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
US10395806B2 (en) 2011-12-28 2019-08-27 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing the same
US10631553B2 (en) 2012-06-15 2020-04-28 Gelato Fresco, Inc. Process and composition for making an alcohol-containing frozen comestible
KR20170068557A (en) 2014-10-23 2017-06-19 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and process for producing same
US11225698B2 (en) 2014-10-23 2022-01-18 Jfe Steel Corporation Grain-oriented electrical steel sheet and process for producing same

Also Published As

Publication number Publication date
JP2002012918A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP4091749B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JP4319715B2 (en) Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof
JP6293067B2 (en) Oriented electrical steel sheet with low iron loss and high magnetic flux density
RU2509813C1 (en) Electric sheet steel with oriented grain structure
RU2509163C1 (en) Texture sheet of electric steel and method of its production
EP0897016A1 (en) Grain-oriented electrical steel sheet having excellent magnetic characteristics, its manufacturing method and its manufacturing device
KR100479213B1 (en) Grain-oriented electrical steel sheet excellent in magnetic properties
RU2746618C1 (en) Method for producing textured silicon steel with low loss in iron by annealing for stress relief
JPH0151527B2 (en)
EP1880396A1 (en) Low core loss grain-oriented electrical steel sheet and method for producing the same
JP2007277644A (en) Manufacturing method of grain oriented electric steel plate having excellent magnetic characteristic
JP3482340B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
RU2749826C1 (en) Electrical anisotropic steel sheet
CN111542622B (en) Oriented electrical steel sheet and method for refining magnetic domain thereof
JP6838321B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN107690368B (en) Method and device for forming groove on surface of steel plate
JP4598321B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JP2006117964A (en) Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JP2023507438A (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
CN113584279A (en) Stress-relief-resistant annealed notch oriented silicon steel and manufacturing method thereof
KR101626598B1 (en) Method for refining magnetic domain of oriented electrical steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R151 Written notification of patent or utility model registration

Ref document number: 4091749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees