JP4226963B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP4226963B2
JP4226963B2 JP2003191925A JP2003191925A JP4226963B2 JP 4226963 B2 JP4226963 B2 JP 4226963B2 JP 2003191925 A JP2003191925 A JP 2003191925A JP 2003191925 A JP2003191925 A JP 2003191925A JP 4226963 B2 JP4226963 B2 JP 4226963B2
Authority
JP
Japan
Prior art keywords
switching element
voltage
load
diode
smoothing capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003191925A
Other languages
Japanese (ja)
Other versions
JP2005027460A (en
Inventor
伸夫 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003191925A priority Critical patent/JP4226963B2/en
Publication of JP2005027460A publication Critical patent/JP2005027460A/en
Application granted granted Critical
Publication of JP4226963B2 publication Critical patent/JP4226963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、車両用補助電源装置等に使用する降圧チョッパを用いた電力変換装置に関するものである。
【0002】
【従来の技術】
従来の電力変換装置としては、例えば、車両用の補助電源装置用として、チョッパ用スイッチング素子と入力用フィルタコンデンサ及び出力用フィルタコンデンサとを有し高圧直流電源から供給される電圧を降圧するチョッパ回路と、入力用フィルタコンデンサの両端の電圧を検出する電圧検出手段と、この電圧検出手段で検出した検出電圧が所定値以上のときは入力用フィルタコンデンサの電荷を放電する放電手段を備えており、直流電源電圧が上昇した場合においても、入力側に設けた高速度遮断器を一旦オフすることなく、連続して運転することができる補助電源装置が示されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平7−31135号公報(第2−3頁、図1)
【0004】
【発明が解決しようとする課題】
上記のような従来の電力変換装置は、直流入力電圧が上昇した場合のチョッパ回路の保護については示されているが、例えばGTOで構成するチョッパ用スイッチング素子の駆動回路でのOFF制御遅れや不点弧などの不良動作発生時、またはスイッチング素子の短絡モードでの破損時に、スイッチング素子の出力側に設けたチョッパ用直流リアクトルが飽和するとチョッパ出力側負荷に直流入力電圧がそのまま印加される等の恐れがあった。このための保護装置としては、負荷と並列に過電圧保護用抵抗や過電圧保護用サイリスタを用いた保護回路を設け、出力電圧が所定レベルを超えた場合は、過電圧保護用サイリスタのゲートにON信号を入力し、負荷を短絡保護する構成が知られている。しかしながらそのような対策を施しても、上記のような不具合時には入力側電圧がそのまま負荷側に印加されるので、チョッパ出力側の機器絶縁設計レベルを入力直流電圧に合わせる必要があり、相当の絶縁寸法が必要となる。このため、出力用フィルタコンデンサや過電圧保護用の抵抗及びサイリスタの寸法が大きくなっていた。また、過電圧ストレスがかかると機器の絶縁信頼性が落ちる等の問題点があった。
【0005】
この発明は、上記のような問題点を解消するためになされたもので、スイッチング素子の不具合時にも出力用フィルタコンデンサ及び負荷の絶縁レベルを低減でき、過電圧保護用抵抗及び過電圧保護用サイリスタ等の保護回路を不要にできる電力変換装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係わる電力変換装置は、スイッチング素子と環流用ダイオードとを有する降圧チョッパ回路により直流電源からの入力を受けて負荷に直流電力を供給する電力変換装置において、出力側に設けた単巻変圧器の直列巻線と分路巻線とを環流用ダイオードに並列に接続し、分路巻線の一方の端子である中間端子にダイオードのアノードを接続し、ダイオードのカソードと分路巻線の他方の端子との間に平滑用コンデンサを接続し、平滑用コンデンサに並列に負荷を接続するように構成し、スイッチング素子のオン時間の最大値を限定する制御回路を備えて、単巻変圧器が飽和するのを防止するようにしたものである。
【0007】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1による電力変換装置を示す回路図であり、図2は図1の回路動作を示す電圧電流波形図、図3は図1のスイッチング素子がオフ動作時(図2のモード2)における等価回路図である。図1において、直流電力を供給する直流架線1からパンタグラフ2および高速遮断器3を介して直流電力を入力する。入力した直流電力を降圧して直流出力を得るため、例えばGTOからなるスイッチング素子4と環流用ダイオード5とを有する降圧チョッパ回路を設け、スイッチング素子4をON/OFF制御する。スイッチング素子4の出力側には単巻変圧器6を設け、この高圧側すなわち直列巻線6aと分路巻線6bとを環流用ダイオード5に並列に接続している。低圧側すなわち分路巻線6bの一方の端子である中間端子6cにはダイオード7のアノード側を接続し、ダイオード7のカソード側と分路巻線6bの他方の端子との間には平滑用コンデンサ8を接続し、この平滑用コンデンサ8に並列に負荷9を接続するように構成されている。このような構成により、直流架線1から入力した直流電力を降圧チョッパ回路と単巻変圧器6により降圧して負荷9へ供給する。
【0008】
始めに、降圧チョッパとしての動作について、図2の電圧電流波形図及び図3の等価回路図を参照しながら説明する。
直流出力を得るために、スイッチング素子4をON/OFF制御したとき供給電流が断続電流となるモードの場合について説明すると、図2のt時点での初期電流は零である。また、平滑用コンデンサ8の充電電圧Vcの値は所定の電圧Voに充電され、負荷9は一定負荷を取っている状態とし、直流入力電圧eiの値はEdで一定とする。
【0009】
まず、モード1として、スイッチング素子4がオンであるton期間(t〜t)について説明する。
直流電源である直流架線1から単巻変圧器6の直列巻線6aを通じ電流i1が負荷9側に供給される。直列巻線6a及び分路巻線6bのそれぞれの巻数と漏れインダクタンスをN,L及びN,Lとすると、単巻変圧器6の入力電圧e=Ed、負荷電圧Vc=Voなので、ダイオード7での電圧降下を無視するとt秒後のi1は式1となる。
={(Ed−Vo)/L}×t・・・・・・・・・(1)
【0010】
一方、分路巻線6bからダイオード7→平滑用コンデンサ8及び負荷9→分路巻線6bの経路で電流iが流れる。この電流iは変圧器作用により等アンペアターンの法則が成り立つので、下記の式2で求められる。
=(N/N)×i ・・・・・・・・・・・・・・・(2)
そして、出力電流ioはiとiを合成したものなので式3で表される。
=i+i={(Ed−Vo)/L}×(1+N/N)×t
・・・・(3)
また、直列巻線6aと分路巻線6bの接続点である中間端子6cにおける出力電圧eOMは巻数比に比例するので、前述のように単巻変圧器6の入力電圧e=Ed(一定)とすると、次式4となる。
OM={N/(N+N)}×Ed・・・・・(4)
【0011】
次に、モード2として、スイッチング素子4がオフであるtoff期間(t〜t)の場合について説明する。
負荷9は平滑用コンデンサ8に比べインピーダンスが大きく回路動作に影響をほとんど与えないものとして計算から省略する。t時点ではスイッチング素子4がオフとなるので直流架線1から供給される電流は0となり、電流i1は、スイッチング素子4から環流用ダイオード5に転流することになる。この電流経路は、単巻変圧器6の直列巻線6a→ダイオード7→平滑用コンデンサ8及び負荷9→環流用ダイオード5→直列巻線6aとなる。このとき、直列巻線6aでの電磁エネルギーが平滑用コンデンサ8及び負荷9に供給される。
【0012】
図3の等価回路において、ダイオード7、環流用ダイオード5での電圧降下を無視し、t時点を起点にして(すなわちt=0とおき)単巻変圧器6の直列巻線6aに流れる初期電流をIm、分路巻線6bに流れる初期電流をIm、平滑用コンデンサ8における充電電圧Vcの初期充電電圧をVoとすると、この回路は下記の式5から式8のように表される。
【0013】
【数1】

Figure 0004226963
【0014】
この回路方程式を解くと、t時点からt秒後の電流iは、式9となる。
【0015】
【数2】
Figure 0004226963
【0016】
式9より、i=0となるのはβt+α=π/2のときであるので、その時刻tをTxとすれば、Txは式10となる。
Tx={(π/2)−α}×(1/β)・・・・(10)
そして、このときの平滑用コンデンサ8での電圧上昇分ΔVは、式11となる。
【0017】
【数3】
Figure 0004226963
【0018】
なお、Tx後は、ダイオード7がコンデンサ8の電圧により、逆バイアスされ、電流i=0のままとなる。
【0019】
モード1およびモード2の全区間についての各部の電圧電流波形を図2に示す。図2の(a)は中間端子6cの出力電圧eOM、(b)は出力電流i、(c)は直列巻線6aに流れる電流i、(d)は分路巻線6bに流れる電流iである。全区間における中間端子6cの出力電圧eOMの平均電圧Eaveは式12となる。
【0020】
【数4】
Figure 0004226963
【0021】
以上のように、ton期間とtoff期間を制御することにより、負荷9への供給電圧を制御することができる。
【0022】
次に、不具合時の動作について説明する。スイッチング素子4の駆動回路のOFF制御遅れや不点弧等不良動作が発生した場合、またはスイッチング素子4の短絡モードでの破損等のような不具合が発生した場合、中間端子6cの電圧eOMは、前述の式4から分かるように、eOM={N/(N+N)}×Ed以上にならないことが分かる。従って、上記不具合発生時もeOMに異常過電圧が発生することはない。なお、この電圧が単巻変圧器6に印加され続けると単巻変圧器6が飽和するため、eOM=0となり、過大電流が直流電源よりパンタグラフ2を通じて流れるので、その場合は図示しない保護回路により高速遮断器3を作動させ回路を遮断して保護するように構成している。
【0023】
本実施の形態の発明による各構成要素の具体設計例を下記に示す。
Ed=1200V、ton+toff=2ms、ton=1ms、N=N、L=L=12mH、C=5000μF、Vc=600V=Vo(初期電圧)とすると、式2よりi=i、式1よりi=100〔A〕、またIm=Im=50A、Im=100〔A〕、式10よりTx=0.985ms、また電圧上昇分は式11をもとに電流の三角波形近似で計算するとΔV≒9.85Vであり、この値はVc=600Vに比べ無視できる程小さい。そして、式4よりeOMの最大値は600Vであり、式12よりEave≒600Vとなる。すなわち、平滑用コンデンサおよび負荷に印加される最大電圧は600Vと、入力電圧1200Vに対して低い値であり、そのぶん、絶縁が低減できることが分かる。
【0024】
なお、上記の説明では、チョッパ動作として、出力電流iを断続モード(t時点でi=0)の場合について述べたが、連続モードでも同様の動作となる。
【0025】
以上のように、本実施の形態による発明によれば、降圧チョッパ回路の出力側に単巻変圧器を設け、この単巻変圧器の分路巻線にダイオードを介し設けた平滑用コンデンサに並列に負荷を接続するようにしたので、スイッチング素子の駆動回路のOFF制御遅れ、不点弧等不良動作、また短絡モードでの破損等のような不具合が発生した場合でも、平滑用コンデンサおよび負荷に入力側の電圧がそのまま印加されることはないので、平滑用コンデンサおよび負荷の絶縁を低減することができる。
また、電圧変換に単巻変圧器を利用しているため、直列巻線と分路巻線の巻き数を選定することにより、負荷に適した電圧を容易に選定することができる。
更に、平滑用コンデンサおよび負荷に対する過電圧保護のための保護回路が不要になる。
【0026】
なお、上述の電力変換装置では、スイッチング素子4のオン時間限界を規定していなかったが、オン時間が所定時間より長くなれば単巻変圧器6が飽和し、スイッチング素子4に過大電流が流れるので、図示しないスイッチング素子のオン/オフ制御回路において、オンパルス幅を出力する回路に最大オンパルス幅リミット設定手段を設け、オン時間に制限をつけるように構成すれば、単巻変圧器6が飽和するのを防止することができる。
【0027】
更に、初期電圧印加時に、図示しないスイッチング素子4のオン/オフ制御回路において、オンパルス幅を出力する回路に、平滑用コンデンサ8の充電電圧vcが所定の電圧であるVo付近に立ち上がるまで、最小オンパルス幅リミット設定手段を設けて所定の最小オン期間tonLを与えるように構成すれば、平滑用コンデンサ8の初期充電時においてもスイッチング素子4に過大な電流が供給されるのを防止することができる。具体的には、tonLを次のように決めれば良い。すなわち、{(Ed−Vo)/L}×tonと(Ed/L)×tonLが等しくなるようにすればioの最大値が同じになるので、tonLは式13のようになる。
tonL={(Ed−Vo)/Ed}×ton ・・・・(13)
【0028】
【発明の効果】
以上説明したように、この発明の電力変換装置によれば、降圧チョッパ回路の出力側に設けた単巻変圧器の直列巻線と分路巻線を環流用ダイオードに並列に接続し、分路巻線にダイオードを介して設けた平滑用コンデンサに並列に負荷を接続するように構成し、スイッチング素子のオン時間の最大値を限定する制御回路を備えて、単巻変圧器が飽和するのを防止するようにしたので、スイッチング素子の駆動回路でのOFF制御遅れや不点弧などの不良動作発生、またはスイッチング素子の短絡モードでの破損等のような、スイッチング素子の不具合時でも平滑用コンデンサおよび負荷に入力側の電圧がそのまま印加されることはないので、平滑用コンデンサおよび負荷の絶縁を低減することができる。
また、平滑用コンデンサおよび負荷に対する過電圧保護のための保護回路が不要になる。
更に、スイッチング素子のオン時間が所定時間より長くならないので、単巻変圧器が飽和するのを防止することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による電力変換装置の回路図である。
【図2】 図1の回路動作を示す電圧電流波形図である。
【図3】 図1のモード2における等価回路図である。
【符号の説明】
1 直流架線 4 スイッチング素子
5 環流用ダイオード 6 単巻変圧器
6a 直列巻線 6b 分路巻線
6c 中間端子 7 ダイオード
8 平滑用コンデンサ 9 負荷。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device using a step-down chopper used for a vehicle auxiliary power supply device or the like.
[0002]
[Prior art]
As a conventional power conversion device, for example, a chopper circuit that has a chopper switching element, an input filter capacitor, and an output filter capacitor and steps down a voltage supplied from a high-voltage DC power supply for an auxiliary power supply device for a vehicle. And a voltage detection means for detecting the voltage across the input filter capacitor, and a discharge means for discharging the charge of the input filter capacitor when the detection voltage detected by the voltage detection means is a predetermined value or more, An auxiliary power supply device is shown that can be operated continuously without turning off the high-speed circuit breaker provided on the input side even when the DC power supply voltage rises (see, for example, Patent Document 1). .
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 7-31135 (page 2-3, FIG. 1)
[0004]
[Problems to be solved by the invention]
The conventional power converter as described above has been shown to protect the chopper circuit when the DC input voltage rises. However, for example, there is a delay in OFF control in the drive circuit of the switching element for chopper composed of GTO or the like. When a faulty operation such as ignition occurs or when the switching element is damaged in short-circuit mode, if the DC reactor for the chopper provided on the output side of the switching element is saturated, the DC input voltage is directly applied to the load on the chopper output side. There was a fear. As a protection device for this purpose, a protection circuit using an overvoltage protection resistor or an overvoltage protection thyristor is provided in parallel with the load. When the output voltage exceeds a predetermined level, an ON signal is sent to the gate of the overvoltage protection thyristor. A configuration is known in which a load is input and a load is short-circuit protected. However, even if such measures are taken, the input side voltage is applied to the load side as it is in the case of the above problems, so it is necessary to match the equipment insulation design level on the chopper output side with the input DC voltage. Dimensions are required. For this reason, the dimensions of the output filter capacitor, the overvoltage protection resistor and the thyristor are large. In addition, when overvoltage stress is applied, there is a problem that the insulation reliability of the device is lowered.
[0005]
The present invention has been made to solve the above problems, and can reduce the insulation level of the output filter capacitor and the load even when the switching element is defective, such as an overvoltage protection resistor and an overvoltage protection thyristor. An object of the present invention is to obtain a power conversion device that can eliminate a protection circuit.
[0006]
[Means for Solving the Problems]
A power conversion device according to the present invention is a power conversion device that receives input from a DC power supply by a step-down chopper circuit having a switching element and a circulating diode and supplies DC power to a load. The series winding and shunt winding of the capacitor are connected in parallel to the freewheeling diode, the anode of the diode is connected to the intermediate terminal, which is one terminal of the shunt winding, and the cathode of the diode and the shunt winding A winding transformer having a control circuit for connecting a smoothing capacitor to the other terminal and connecting a load in parallel to the smoothing capacitor and limiting the maximum on-time of the switching element, Is to prevent saturation .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a circuit diagram showing a power converter according to Embodiment 1 of the present invention, FIG. 2 is a voltage-current waveform diagram showing the circuit operation of FIG. 1, and FIG. 3 is when the switching element of FIG. 2 is an equivalent circuit diagram in mode 2). In FIG. 1, DC power is input via a pantograph 2 and a high-speed circuit breaker 3 from a DC overhead line 1 that supplies DC power. In order to step down the input DC power and obtain a DC output, for example, a step-down chopper circuit having a switching element 4 made of GTO and a recirculation diode 5 is provided, and the switching element 4 is ON / OFF controlled. An autotransformer 6 is provided on the output side of the switching element 4, and the high voltage side, that is, the series winding 6 a and the shunt winding 6 b are connected in parallel to the circulating diode 5. The anode side of the diode 7 is connected to the low voltage side, that is, the intermediate terminal 6c which is one terminal of the shunt winding 6b, and smoothing is performed between the cathode side of the diode 7 and the other terminal of the shunt winding 6b. A capacitor 8 is connected, and a load 9 is connected in parallel to the smoothing capacitor 8. With such a configuration, the DC power input from the DC overhead line 1 is stepped down by the step-down chopper circuit and the autotransformer 6 and supplied to the load 9.
[0008]
First, the operation as a step-down chopper will be described with reference to the voltage / current waveform diagram of FIG. 2 and the equivalent circuit diagram of FIG.
In order to obtain a DC output, the mode in which the supply current becomes an intermittent current when the ON / OFF control of the switching element 4 is described. The initial current at time t 0 in FIG. 2 is zero. The value of the charging voltage Vc of the smoothing capacitor 8 is charged to a predetermined voltage Vo, the load 9 is in a constant load state, and the value of the DC input voltage ei is constant at Ed.
[0009]
First, as mode 1, a ton period (t 0 to t 1 ) in which the switching element 4 is on will be described.
A current i 1 is supplied to the load 9 side through the series winding 6a of the autotransformer 6 from the DC overhead line 1 which is a DC power source. When the turns and leakage inductances of the series winding 6a and the shunt winding 6b are N 1 , L 1 and N 2 , L 2 , the input voltage e o = Ed and the load voltage Vc = Vo of the autotransformer 6 Therefore, if the voltage drop at the diode 7 is ignored, i 1 after t seconds is given by Equation 1.
i 1 = {(Ed−Vo) / L 1 } × t (1)
[0010]
On the other hand, a path from the shunt winding 6b diode 7 → smoothing capacitor 8 and a load 9 → shunt winding 6b current i 2 flows. This current i 2 is obtained by the following formula 2 because the law of equiampere turn is established by the transformer action.
i 2 = (N 1 / N 2 ) × i 1 (2)
Since the output current io is a combination of i 1 and i 2 , it is expressed by Equation 3.
i O = i 1 + i 2 = {(Ed-Vo) / L 1} × (1 + N 1 / N 2) × t
.... (3)
Further, since the output voltage e OM at the intermediate terminal 6c, which is the connection point between the series winding 6a and the shunt winding 6b, is proportional to the turn ratio, the input voltage e o = Ed (1) of the autotransformer 6 as described above. (Constant), the following equation 4 is obtained.
e OM = {N 2 / (N 1 + N 2 )} × Ed (4)
[0011]
Next, the case of the toff period (t 1 to t 2 ) in which the switching element 4 is off will be described as mode 2.
The load 9 is omitted from the calculation because it has a larger impedance than the smoothing capacitor 8 and hardly affects the circuit operation. Since the switching element 4 is turned off at time t 1 , the current supplied from the DC overhead wire 1 becomes 0, and the current i 1 is commutated from the switching element 4 to the circulating diode 5. This current path is the series winding 6a of the autotransformer 6 → the diode 7 → the smoothing capacitor 8 and the load 9 → the circulating diode 5 → the series winding 6a. At this time, the electromagnetic energy in the series winding 6 a is supplied to the smoothing capacitor 8 and the load 9.
[0012]
In the equivalent circuit of FIG. 3, the diode 7, and ignoring the voltage drop across the ring diverted diode 5, and starting from the time point t 1 (i.e. t = 0 Distant) Initial flowing in series winding 6a of the autotransformer 6 Assuming that the current is Im 1 , the initial current flowing through the shunt winding 6b is Im 2 , and the initial charging voltage of the charging voltage Vc in the smoothing capacitor 8 is Vo, this circuit is expressed by the following equations 5 to 8. The
[0013]
[Expression 1]
Figure 0004226963
[0014]
When this circuit equation is solved, the current i O after t seconds from the time t 1 is expressed by Equation 9.
[0015]
[Expression 2]
Figure 0004226963
[0016]
From Equation 9, i O = 0 is obtained when βt + α = π / 2. Therefore, if the time t is Tx, then Tx becomes Equation 10.
Tx = {(π / 2) −α} × (1 / β) (10)
Then, the voltage increase ΔV in the smoothing capacitor 8 at this time is expressed by Equation 11.
[0017]
[Equation 3]
Figure 0004226963
[0018]
After Tx, the diode 7 is reverse-biased by the voltage of the capacitor 8 and the current i 0 = 0 remains.
[0019]
FIG. 2 shows voltage / current waveforms at various parts in all sections of mode 1 and mode 2. 2A shows the output voltage e OM of the intermediate terminal 6c, FIG. 2B shows the output current i O , FIG. 2C shows the current i 1 flowing through the series winding 6a, and FIG. 2D flows through the shunt winding 6b. Current i 2 . The average voltage Eave of the output voltage e OM of the intermediate terminal 6c in all sections is expressed by Equation 12.
[0020]
[Expression 4]
Figure 0004226963
[0021]
As described above, the supply voltage to the load 9 can be controlled by controlling the ton period and the toff period.
[0022]
Next, the operation at the time of malfunction will be described. When a malfunction such as OFF control delay or misfiring of the drive circuit of the switching element 4 occurs, or when a malfunction such as damage in the short-circuit mode of the switching element 4 occurs, the voltage e OM of the intermediate terminal 6c is As can be seen from Equation 4 above, it can be seen that e OM = {N 2 / (N 1 + N 2 )} × Ed or higher. Therefore, when the trouble occurs abnormal overvoltage to e OM does not occur. If this voltage continues to be applied to the autotransformer 6, the autotransformer 6 is saturated, so e OM = 0, and an excessive current flows from the DC power source through the pantograph 2, and in this case, a protection circuit (not shown) Thus, the high-speed circuit breaker 3 is operated to cut off and protect the circuit.
[0023]
A specific design example of each component according to the invention of the present embodiment is shown below.
Assuming that Ed = 1200 V, ton + toff = 2 ms, ton = 1 ms, N 1 = N 2 , L 1 = L 2 = 12 mH, C = 5000 μF, Vc = 600 V = Vo (initial voltage), i 1 = i 2 From equation 1, i 1 = 100 [A], Im 1 = Im 2 = 50 A, Im = 100 [A], from equation 10, Tx = 0.985 ms, and the voltage rise is based on equation 11 When calculated by the triangular waveform approximation, ΔV≈9.85V, which is negligibly small compared to Vc = 600V. From Equation 4, the maximum value of e OM is 600V, and from Equation 12, Eave≈600V. That is, it can be seen that the maximum voltage applied to the smoothing capacitor and the load is 600 V, which is a lower value than the input voltage 1200 V, and that the insulation can be reduced.
[0024]
In the above description, the case where the output current i 0 is in the intermittent mode (i 0 = 0 at time t 2 ) is described as the chopper operation, but the same operation is performed in the continuous mode.
[0025]
As described above, according to the invention according to the present embodiment, a single-turn transformer is provided on the output side of the step-down chopper circuit, and in parallel with a smoothing capacitor provided via a diode in the shunt winding of this single-turn transformer. Since the load is connected to the switching capacitor, the smoothing capacitor and the load can be connected to the smoothing capacitor and the load even if a malfunction such as a delay in the OFF control of the driving circuit of the switching element, a malfunction such as a non-firing, or a damage in the short-circuit mode occurs. Since the voltage on the input side is not applied as it is, the insulation of the smoothing capacitor and the load can be reduced.
In addition, since a single transformer is used for voltage conversion, a voltage suitable for the load can be easily selected by selecting the number of turns of the series winding and the shunt winding.
Furthermore, a protection circuit for overvoltage protection for the smoothing capacitor and the load becomes unnecessary.
[0026]
In the above-described power conversion device, the on-time limit of the switching element 4 is not specified. However, if the on-time is longer than a predetermined time, the autotransformer 6 is saturated and an excessive current flows through the switching element 4. Therefore, in the ON / OFF control circuit for the switching element (not shown), if the circuit for outputting the ON pulse width is provided with the maximum ON pulse width limit setting means to limit the ON time, the autotransformer 6 is saturated. Can be prevented.
[0027]
Further, in the on / off control circuit for the switching element 4 (not shown) when the initial voltage is applied, a minimum on-pulse is applied to the circuit that outputs the on-pulse width until the charging voltage vc of the smoothing capacitor 8 rises to around the predetermined voltage Vo. If the width limit setting means is provided to provide the predetermined minimum on-period tonL, it is possible to prevent an excessive current from being supplied to the switching element 4 even during the initial charging of the smoothing capacitor 8. Specifically, tonL may be determined as follows. That is, if {(Ed−Vo) / L 1 } × ton and (Ed / L 1 ) × tonL are made equal, the maximum value of io becomes the same, so tonL is expressed by Equation 13.
tonL = {(Ed−Vo) / Ed} × ton (13)
[0028]
【The invention's effect】
As described above, according to the power converter of the present invention, the series winding and shunt winding of the autotransformer provided on the output side of the step-down chopper circuit are connected in parallel to the recirculation diode, and the shunt A winding is connected in parallel to a smoothing capacitor provided via a diode, and a control circuit that limits the maximum on-time of the switching element is provided to saturate the autotransformer. The smoothing capacitor can be used even when the switching element malfunctions, such as the occurrence of defective operation such as OFF control delay or misfiring in the switching element drive circuit, or damage in the short-circuit mode of the switching element. Since the input side voltage is not applied to the load as it is, the insulation of the smoothing capacitor and the load can be reduced.
Further, a protection circuit for overvoltage protection for the smoothing capacitor and the load is not necessary.
Further , since the ON time of the switching element does not become longer than the predetermined time, it is possible to prevent the autotransformer from being saturated.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a power conversion apparatus according to Embodiment 1 of the present invention.
2 is a voltage / current waveform diagram showing the circuit operation of FIG. 1; FIG.
FIG. 3 is an equivalent circuit diagram in mode 2 of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 DC overhead wire 4 Switching element 5 Circulation diode 6 Single winding transformer 6a Series winding 6b Shunt winding 6c Intermediate terminal 7 Diode 8 Smoothing capacitor 9 Load

Claims (2)

スイッチング素子と環流用ダイオードとを有する降圧チョッパ回路により直流電源からの入力を受けて負荷に直流電力を供給する電力変換装置において、出力側に設けた単巻変圧器の直列巻線と分路巻線とを上記環流用ダイオードに並列に接続し、上記分路巻線の一方の端子である中間端子にダイオードのアノードを接続し、上記ダイオードのカソードと上記分路巻線の他方の端子との間に平滑用コンデンサを接続し、上記平滑用コンデンサに並列に上記負荷を接続するように構成し、上記スイッチング素子のオン時間の最大値を限定する制御回路を備えて、上記単巻変圧器が飽和するのを防止するようにしたことを特徴とする電力変換装置。In a power converter that receives input from a DC power supply by a step-down chopper circuit having a switching element and a recirculation diode and supplies DC power to a load, the series winding and shunt winding of a single-turn transformer provided on the output side Is connected in parallel to the recirculation diode, the anode of the diode is connected to an intermediate terminal which is one terminal of the shunt winding, and the cathode of the diode and the other terminal of the shunt winding A smoothing capacitor connected in between, and the load is connected in parallel to the smoothing capacitor, and a control circuit for limiting the maximum value of the on-time of the switching element is provided. A power converter characterized by preventing saturation . 請求項記載の電力変換装置において、初期電圧印加時に上記スイッチング素子に所定の最小オン時間を与える制御回路を備え、上記平滑用コンデンサが初期充電されるときに上記スイッチング素子に過大な電流が供給されるのを防止したことを特徴とする電力変換装置。2. The power conversion device according to claim 1, further comprising a control circuit for giving a predetermined minimum on-time to the switching element when an initial voltage is applied, and supplying an excessive current to the switching element when the smoothing capacitor is initially charged. The power converter characterized by having prevented being carried out.
JP2003191925A 2003-07-04 2003-07-04 Power converter Expired - Lifetime JP4226963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191925A JP4226963B2 (en) 2003-07-04 2003-07-04 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191925A JP4226963B2 (en) 2003-07-04 2003-07-04 Power converter

Publications (2)

Publication Number Publication Date
JP2005027460A JP2005027460A (en) 2005-01-27
JP4226963B2 true JP4226963B2 (en) 2009-02-18

Family

ID=34189357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191925A Expired - Lifetime JP4226963B2 (en) 2003-07-04 2003-07-04 Power converter

Country Status (1)

Country Link
JP (1) JP4226963B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023225A (en) * 2012-07-13 2014-02-03 Toshiba Lighting & Technology Corp Power supply device, solid light emitting element- lighting device, and illuminating device
CN103391004B (en) * 2013-06-29 2016-08-10 华为技术有限公司 Intermediate bus architecture voltage-regulating circuit
CN113472263B (en) * 2021-07-12 2023-01-17 中国矿业大学 Fault-tolerant power converter for power generation of switched reluctance motor and fault-tolerant method

Also Published As

Publication number Publication date
JP2005027460A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP3829534B2 (en) Discharge lamp lighting device
US9667158B2 (en) Power supply device
US8274767B2 (en) Magnetic energy regeneration switch provided with protection circuit
EP2280474B1 (en) Power conversion apparatus, discharge lamp ballast and headlight ballast
US20180236586A1 (en) Welding power supply with regulated background power supply
US20130170621A1 (en) Switching power supply circuit provided with protection function
US20180351015A1 (en) Protective circuit for a photovoltaic (pv) module, method for operating the protective circuit, and photovoltaic (pv) system having such a protective circuit
CN109759677B (en) Welding power supply device
US6489732B2 (en) Discharge lamp lighting circuit
JP4226963B2 (en) Power converter
US11883912B2 (en) Welding power supply device
JP4217979B2 (en) Input / output insulation type DC-DC converter
CN110605459B (en) Welding power supply device
CN110677041B (en) Control method and control device for DC converter
JP3829532B2 (en) Discharge lamp lighting device
KR20170050014A (en) Power factor correction device and method therefor
JP2021027749A (en) Charge/discharge control device, battery including the same, and dc power supply system
JPH04222481A (en) Crane control power unit
JP3829533B2 (en) Discharge lamp lighting device
JP7266558B2 (en) switching power supply
CN216599470U (en) Motor controller and vehicle
ITTO940422A1 (en) POWER SUPPLY CIRCUIT, PARTICULARLY FOR VEHICLES.
KR100478690B1 (en) Method and Apparatus for Protecting against Load Short-circuit of a High Voltage Multi-level Converter
JPH11266580A (en) Power source
CN115425822A (en) Inverter circuit output short-circuit detection method, inverter circuit and ARD rescue power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4226963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term