JP4222925B2 - High strength long fiber nonwoven fabric - Google Patents

High strength long fiber nonwoven fabric Download PDF

Info

Publication number
JP4222925B2
JP4222925B2 JP2003365215A JP2003365215A JP4222925B2 JP 4222925 B2 JP4222925 B2 JP 4222925B2 JP 2003365215 A JP2003365215 A JP 2003365215A JP 2003365215 A JP2003365215 A JP 2003365215A JP 4222925 B2 JP4222925 B2 JP 4222925B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
machine direction
elongation
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003365215A
Other languages
Japanese (ja)
Other versions
JP2005126865A (en
Inventor
佳憲 ▲高▼田
郁雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2003365215A priority Critical patent/JP4222925B2/en
Publication of JP2005126865A publication Critical patent/JP2005126865A/en
Application granted granted Critical
Publication of JP4222925B2 publication Critical patent/JP4222925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、高強度長繊維不織布及びその製造方法に関する。   The present invention relates to a high-strength long fiber nonwoven fabric and a method for producing the same.

熱可塑性樹脂からなる長繊維で形成された不織布は、一般的にスパンボンド法と呼ばれる紡糸直結形の製造方法により製造される。この方法は、生産性が他の不織布の製造法に比べて優れているだけでなく、得られる不織布は高いシート強力を持ち、寸法安定性にも優れている。しかし、スパンボンド法による不織布は、強度を付与する目的で、熱プレスロールにより多数の自己融着領域が設けられており、そのためシートの柔軟性及び嵩高性が制限され、繊維が動き難く、3次元の柔軟性に劣るという問題点を持つ。
一方、短繊維を水流処理により交絡させる方法により製造されるスパンレース不織布は、嵩高性及び柔軟性に優れているものの、強度はスパンボンド法により製造される長繊維不織布には及ばないとされている。樹脂加工、熱融着繊維等の利用により高い強度を得ること可能ではあるものの、逆に柔軟性が悪化する傾向がある。
そこで、両者の特徴を生かす目的で、長繊維からなるウエブに流体流交絡処理を施し、機能改善を目指す技術が提案されている。長繊維ウエブに流体流処理を施すことにより、ある程度の柔軟性と嵩高性は得られるが、繊維の交絡性がほとんど進まないため、強度発現は小さく、表面の糸が抜ける、毛羽立つといった現象が起こる。
A nonwoven fabric formed of long fibers made of a thermoplastic resin is generally manufactured by a direct-spinning manufacturing method called a spunbond method. This method is not only superior in productivity to other nonwoven fabric manufacturing methods, but the resulting nonwoven fabric has high sheet strength and excellent dimensional stability. However, the nonwoven fabric by the spunbond method is provided with a number of self-bonding regions by a hot press roll for the purpose of imparting strength, so that the flexibility and bulkiness of the sheet are limited, and the fibers are difficult to move. It has the problem of inferior dimensional flexibility.
On the other hand, the spunlace nonwoven fabric produced by the method of entanglement of short fibers by water treatment is superior in bulkiness and flexibility, but the strength is not as good as that of the long fiber nonwoven fabric produced by the spunbond method. Yes. Although high strength can be obtained by using resin processing, heat-fusible fibers, etc., the flexibility tends to deteriorate.
In order to take advantage of the characteristics of both, a technique has been proposed in which fluid flow entanglement processing is performed on a web made of long fibers to improve the function. By applying fluid flow treatment to the long fiber web, a certain degree of flexibility and bulkiness can be obtained, but since the entanglement of the fibers hardly progresses, the phenomenon of strength is small, and the phenomenon such that the yarn on the surface comes off and fluffing occurs .

特許文献1には、スパンボンド不織布に水流交絡処理を施した後、熱エンボス処理を施し、再度水流交絡処理を行う方法が開示されている。この方法の特徴は、自己融着部分以外の繊維を交絡させることであるが、実際には自己融着部以外の繊維の自由度は小さいため、繊維の交絡はほとんど進まない。水流交絡処理を施す前の対策として、繊維の圧着を行っていない状態の不織布に水流交絡処理を行い、次いで、熱圧着処理し、更に水流交絡処理を施す方法により多少の柔軟性及び嵩高性が発現できるものの、非常に煩雑な工程となるため、現実的な方法とは言い難い。   Patent Document 1 discloses a method in which a spunbonded nonwoven fabric is subjected to hydroentanglement treatment, then subjected to heat embossing treatment, and then subjected to hydroentanglement treatment again. A feature of this method is that the fibers other than the self-bonding portion are entangled. However, since the degree of freedom of the fibers other than the self-bonding portion is actually small, the fiber entanglement hardly proceeds. As a measure before applying hydroentanglement treatment, some flexibility and bulkiness can be obtained by performing hydroentanglement treatment on the nonwoven fabric in which the fibers are not crimped, then thermocompression treatment, and further applying hydroentanglement treatment. Although it can be expressed, it is a very complicated process, so it is difficult to say that it is a realistic method.

特許文献2には、自己融着間隔を広くして繊維の自由度を持たせ、水流処理により更に繊維を絡みやすくする技術が開示されているが、この場合にも自己接着域が存在することにより、繊維の自由度が制限されていることには変わりなく、繊維が交絡するには充分とはいえない。
特許文献3には、連続長繊維ウエブを水流交絡処理後、湿潤状態で粗面体を用いて押し圧処理することにより繊維に弱点部分を作り、再度水流交絡処理により弱点部分を繊維末端化し、より交絡性を高める技術が開示されている。しかし、弱点部分の均一な作成は難しいため、交絡した部分と未交絡部分が顕在化し、強度のバラツキが発生するという問題点がある。また弱点部分が多く発生すると、切断された細かい繊維屑が多く発生し、低リント性能が減少する。
Patent Document 2 discloses a technique for widening the self-bonding interval to give the fibers freedom and making the fibers more easily entangled by the water flow treatment. In this case as well, there is a self-adhesion zone. Therefore, the degree of freedom of the fiber is still limited, and it cannot be said that the fiber is entangled.
In Patent Document 3, a continuous long fiber web is hydroentangled and then subjected to a pressure treatment using a rough surface in a wet state to create a weak spot part in the fiber. A technique for improving confounding property is disclosed. However, since it is difficult to uniformly create the weak part, there is a problem that the entangled part and the unentangled part become obvious and the intensity varies. Moreover, when many weak point parts generate | occur | produce, the cut | disconnected fine fiber waste will generate | occur | produce many and low lint performance will reduce.

特許文献4には、不織布を形成するフィラメントに捲縮を与えることにより、繊維の易動性を向上させ、融着点があっても交絡の可能性を高くする試みがなされている。しかし、異なる成分のポリマーや重合度添加剤の異なるポリマーを用いて複合紡糸を行って捲縮を持たせているために、設備が複雑になること、単一成分のポリマーの場合は不均一な冷却や片面摩擦で捲縮を持たせているが、必ずしも捲縮が均一に起こるわけではなく、たとえ水流交絡処理を施しても、捲縮がかかっていなければ目標とするものが得られるとは限らない。
特許文献5では、規則的な自己融着領域を作り、これに水流交絡処理を施すことによって自己融着領域を破壊し、生成する繊維末端により交絡を促進させて、高柔軟性及び嵩高性のある不織布を製造する試みがなされている。この場合も、すべての自己融着領域が無くなるわけではなく、断続的にではあるが自己融着部が存在することにより、不織布の柔軟性及び嵩高性が押さえられていることには変わりない。また充分な柔軟性及び嵩高性を持っているとは言い難い。
In Patent Document 4, an attempt is made to improve the mobility of the fiber by crimping the filament forming the nonwoven fabric, and to increase the possibility of entanglement even if there is a fusion point. However, since the composite spinning using different component polymers and polymers with different polymerization degree additives is carried out, the equipment becomes complicated, and in the case of a single component polymer, it is uneven. Crimping is provided by cooling or single-sided friction, but crimping does not necessarily occur uniformly, and even if hydroentanglement processing is performed, the target thing can be obtained if crimping is not applied Not exclusively.
In Patent Document 5, a regular self-bonding region is formed, the self-bonding region is destroyed by applying a hydroentanglement treatment thereto, and the entanglement is promoted by the generated fiber ends, thereby providing high flexibility and bulkiness. Attempts have been made to produce certain nonwovens. Also in this case, not all the self-bonding regions are eliminated, and the presence of the self-bonding portion is intermittent but the flexibility and bulkiness of the nonwoven fabric are suppressed. Moreover, it cannot be said that it has sufficient flexibility and bulkiness.

このように、長繊維ウエブに流体流加工を施すことにより、高強度、柔軟性及び嵩高性を付与し、表面毛羽立ちを押さえることは、現状では流体流処理と自己融着領域の相乗効果によってはじめて達成されている。更に前記の特許文献においては、自己接着部分が減少しているために強度的に低く、自己融着しているスパンボンド長繊維不織布には及ばないという問題点を持つ。
特開平2−229253号公報 特開平1−132862号公報 特開昭63―152450号公報 特開平5―287660号公報 特開平8−134762号公報
In this way, by applying fluid flow processing to the long fiber web, high strength, flexibility and bulkiness are imparted, and surface fluff is suppressed for the first time by the synergistic effect of fluid flow treatment and self-bonding region. Has been achieved. Furthermore, in the above-mentioned patent document, since the self-adhesive portion is reduced, the strength is low, and there is a problem that it does not reach the self-fused spunbond long fiber nonwoven fabric.
JP-A-2-229253 JP-A-1-132862 JP-A-63-152450 JP-A-5-287660 JP-A-8-134762

本発明は、長繊維に高圧流体流処理を施すことにより、従来の流体流交絡処理のみでは達成し得なかった高い強度を持ち、柔軟性及び嵩高性に優れ、毛羽立ちの少ない長繊維不織布を提供することを目的とするものである。   The present invention provides a long-fiber non-woven fabric having high strength, excellent flexibility and bulkiness, and less fluffing, which could not be achieved only by conventional fluid flow entanglement processing, by subjecting long fibers to high-pressure fluid flow treatment. It is intended to do.

本発明者らは、前記の課題を解決するために鋭意研究を重ねた結果、長繊維の交絡性が、構成する繊維の繊度と分散状態、つまり繊維の配向比に大きな関係があることを見出し、その知見に基づいて本発明を完成するに至った。
すなわち、本発明は、以下のとおりである。
(1)スパンボンド法により、平均繊度1.7dtex以下の、単一成分の熱可塑性重合体からなる長繊維群を搬送手段上に紡出して、幾層にも堆積し、繊維のマシン方向/クロスマシン方向の配向比(マシン方向の配向度/クロスマシン方向との配向度)が1.2〜3.0の範囲内にある長繊維ウエブを形成させ、これを少なくとも2回、最大圧力が25〜45MPaであり、初期処理の流体流圧力が該最大圧力の70%未満である高圧流体流により処理することによって、繊維を互いに3次元交絡させると共に、マシン方向の伸度が60%以上、かつ、クロスマシン方向とマシン方向の伸度比(クロスマシン方向の伸度/マシン方向の伸度)を1.0〜2.5に制御し、層間剥離強度が9N/cm以上の不織布となすことを特徴とする不織布の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have found that the entanglement of long fibers is greatly related to the fineness and dispersion state of the constituent fibers, that is, the orientation ratio of the fibers. Based on the findings, the present invention has been completed.
That is, the present invention is as follows.
(1) A long fiber group consisting of a single-component thermoplastic polymer having an average fineness of 1.7 dtex or less is spun on a conveying means by a spunbond method, and is deposited in several layers. A long fiber web having an orientation ratio in the cross-machine direction (degree of orientation in the machine direction / degree of orientation with the cross-machine direction) in the range of 1.2 to 3.0 is formed at least twice , and the maximum pressure is By treating with a high-pressure fluid flow that is 25 to 45 MPa and the initial treatment fluid flow pressure is less than 70% of the maximum pressure, the fibers are three-dimensionally entangled with each other, and the elongation in the machine direction is 60% or more, Further, the non-woven fabric having a delamination strength of 9 N / cm or more is controlled by controlling the elongation ratio between the cross machine direction and the machine direction (elongation in the cross machine direction / elongation in the machine direction) to 1.0 to 2.5. Non-characteristic Method of manufacturing a cloth.

本発明の不織布は、高強度で等方伸長性に優れ、高柔軟性で嵩高性が高い。
本発明の不織布の用途として、オムツ、女性用生理用品等の衛生材用途や天井材、バッフル材等自動車部品、他の産業資材用途、ふきん、ワイパー等の生活雑貨用途、衣料用途に適している。
The nonwoven fabric of the present invention has high strength and isotropic elongation, high flexibility and high bulkiness.
The nonwoven fabric of the present invention is suitable for use in sanitary materials such as diapers and feminine sanitary products, automotive parts such as ceiling materials and baffles, other industrial materials, household goods such as wipes and wipers, and clothing. .

本発明について、以下、詳細に説明する。
本発明の不織布を構成する繊維に用いられる熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアルコール等のポリオレフィン系樹脂及びその共重合体、ナイロン6、ナイロン66等のポリアミド系樹脂物及びその共重合体、ポリエチレンテレフタレート、ポリプロピレンテレフタレート等のポリエステル系樹脂及びその共重合体等が挙げられる、これらに限られるものではなく、長繊維状となるものであれば限定されない。
本発明の不織布は、熱可塑性樹脂からなる長繊維で構成されている。不織布を構成する長繊維の平均繊度は1.7dtex以下であり、好ましくは0.1〜1.7dtex、より好ましくは0.2detx〜1.5dtex、最も好ましくは0.3dtex〜1.4dtexの範囲である。平均繊度が1.7detxよりも大きくなると、流体流による交絡が進みにくくなるため、高強度が得られないばかりでなく、得られた不織布は、柔軟性が劣る。繊度を小さくすることは、流体流による交絡が進む方向であり、交絡性の向上が認められ、高強度で、非常に風合いの良好な不織布となる。繊度の異なる長繊維を混用することもできる。
The present invention will be described in detail below.
Examples of the thermoplastic resin used for the fibers constituting the nonwoven fabric of the present invention include, for example, polyolefin resins such as polyethylene, polypropylene, polystyrene, and polyvinyl alcohol, and copolymers thereof, polyamide resin materials such as nylon 6, nylon 66, and the like. Examples thereof include polyester resins such as copolymers, polyethylene terephthalate, and polypropylene terephthalate, and copolymers thereof. However, the present invention is not limited to these.
The nonwoven fabric of the present invention is composed of long fibers made of a thermoplastic resin. The average fineness of the long fibers constituting the nonwoven fabric is 1.7 dtex or less, preferably 0.1 to 1.7 dtex, more preferably 0.2 dtex to 1.5 dtex, most preferably in the range of 0.3 dtex to 1.4 dtex. It is. When the average fineness is larger than 1.7 detex, entanglement by the fluid flow becomes difficult to proceed, so that not only high strength cannot be obtained, but the obtained nonwoven fabric is inferior in flexibility. Decreasing the fineness is the direction in which the entanglement by the fluid flow proceeds, the improvement of the entanglement is recognized, and the nonwoven fabric has a high strength and a very good texture. Long fibers with different fineness can also be mixed.

繊度(dtex)は、以下の式により求められる。
R=√(4×d/(π×10×10×ρ))×10
ここで、Rは平均単糸直径(μm)、ρは単糸を構成する高分子重合体の密度(g/cm)、dは単糸繊度(dtex)、πは円周率である。
単糸の断面形状は円形でも、非円形の種々の断面形状であってもよく、流体流との衝突面積が多いという点から扁平が好ましい。単糸の断面形状が円形の場合は、直接的にその直径を測定した値を平均化したものを単糸の直径とし、非円形断面、異形断面の繊維の場合は、その繊維断面の最長尺と最短尺の平均値を単糸の直径とする。
The fineness (dtex) is obtained by the following equation.
R = √ (4 × d / (π × 10 × 10 5 × ρ)) × 10 4
Here, R is the average single yarn diameter (μm), ρ is the density (g / cm 3 ) of the polymer constituting the single yarn, d is the single yarn fineness (dtex), and π is the circumference.
The cross-sectional shape of the single yarn may be circular or various non-circular cross-sectional shapes, and the flat shape is preferable from the viewpoint that the area of collision with the fluid flow is large. If the cross-sectional shape of a single yarn is circular, the average value of the diameters measured directly is taken as the single yarn diameter, and in the case of a non-circular cross-section or irregular cross-section, the longest length of the cross-section of the fiber The average value of the shortest length is taken as the diameter of the single yarn.

長繊維を構成する成分は、単一の熱可塑性樹脂成分でも、2成分以上の成分で構成されていていもよい。2成分以上の樹脂で構成されている場合、分割型複合繊維、ブレンド型繊維、フィブリル型繊維であってもよい。特に流体流処理により分割する繊維及びフィブリル分割する繊維等は、細繊度化するために好ましく、風合いも向上する。
本発明の不織布は、異なる2種以上の長繊維により構成されていてもよい。
本発明の不織布における繊維配向比は、[マシン方向(以下、縦方向、という)の配向度/クロスマシン方向(以下、横方向、という)の配向度]の値で表され(以下、この配向度の比を、繊維配向比、という)、1.2〜3.5の範囲であり、好ましくは1.2〜3.0である。配向比が1.2未満または3.5より大きくなると寸法安定性が低下し、また風合いが縦方向/横方向で均一でなくなる。
マシン方向(縦方向)とは、繊維の流れ方向のことであり、クロスマシン方向(横方向)とは、繊維の流れ方向に対して垂直に交差する方向のことである。繊維配向比は、後で述べる方法により測定される。
The component constituting the long fiber may be a single thermoplastic resin component or may be composed of two or more components. When the resin is composed of two or more components, it may be a split type composite fiber, a blend type fiber, or a fibril type fiber. In particular, fibers that are divided by fluid flow treatment, fibers that are divided into fibrils, and the like are preferable in order to reduce the fineness, and the texture is also improved.
The nonwoven fabric of the present invention may be composed of two or more different long fibers.
The fiber orientation ratio in the nonwoven fabric of the present invention is represented by the value of [degree of orientation in the machine direction (hereinafter referred to as longitudinal direction) / degree of orientation in the cross machine direction (hereinafter referred to as lateral direction)] (hereinafter referred to as this orientation). The degree ratio is referred to as a fiber orientation ratio), which is in the range of 1.2 to 3.5, preferably 1.2 to 3.0. When the orientation ratio is less than 1.2 or greater than 3.5, the dimensional stability is lowered, and the texture is not uniform in the longitudinal / lateral directions.
The machine direction (longitudinal direction) is a fiber flow direction, and the cross machine direction (lateral direction) is a direction perpendicular to the fiber flow direction. The fiber orientation ratio is measured by the method described later.

本発明の不織布の伸度は、縦方向の伸度が45%以上であり、好ましくは50%以上、より好ましくは60%以上である。特に従来の長繊維不織布は、伸度が低いため柔軟性が悪いという欠点があり、また伸びを必要とするカバーリング用途、成型用途等には不向きであった。これに対して、本発明の不織布の伸度を持つことにより、カバーリング用途や成型用途への使用が可能となる。
本発明の不織布の伸度比は、(クロスマシン方向の伸度/マシン方向の伸度)の値で表わされ、その範囲は1.0〜2.5であり、好ましくは1.0〜2.1である。前記の伸度比がこの範囲をはずれると、寸法安定性が低下し、また風合いが縦方向と横方向とで均一性がなくなる。
The elongation of the nonwoven fabric of the present invention is 45% or more in the longitudinal direction, preferably 50% or more, more preferably 60% or more. In particular, conventional long-fiber nonwoven fabrics have the disadvantage of poor flexibility due to low elongation, and are not suitable for covering applications and molding applications that require elongation. On the other hand, the use of the nonwoven fabric of the present invention enables use in covering applications and molding applications.
The elongation ratio of the nonwoven fabric of the present invention is represented by the value of (elongation in the cross machine direction / elongation in the machine direction), and the range is 1.0 to 2.5, preferably 1.0 to 2.1. When the elongation ratio is out of this range, the dimensional stability is lowered, and the texture is not uniform in the vertical and horizontal directions.

本発明の不織布の目付は10〜250g/mであることが好ましく、より好ましくは、12〜250g/mである。従来の熱圧着法による長繊維不織布は、低目付では熱により不織布が硬くなる傾向があり、高目付ではエンボス深さの影響で繊維の熱圧着が利きにくく生産が非常に困難であった。目付が10g/m未満であると、流体流による交絡性は高くなるが、流体流処理時に長繊維ウエブを保持している繊維のネット等への食い込みが激しくなること、搬送時の基布の切断が起こり易いこと等、生産時のトラブルの原因となる場合がある。目付が250g/mを越えると、流体流の貫通率が低下し、繊維の交絡が進み難いため高強度が得られない場合がある。また部分的に不織布の層間剥離が起こることがある。 It is preferable that the fabric weight of the nonwoven fabric of this invention is 10-250 g / m < 2 >, More preferably, it is 12-250 g / m < 2 >. Conventional non-woven fabrics by thermocompression bonding tend to harden the non-woven fabric due to heat at a low basis weight, and at a high basis weight, the thermocompression bonding of fibers is difficult to produce due to the embossing depth, and production is very difficult. When the basis weight is less than 10 g / m 2 , the entanglement due to the fluid flow becomes high, but the bite of the fiber holding the long fiber web into the net or the like becomes severe during the fluid flow treatment, and the base fabric during the conveyance This may cause troubles during production, such as the possibility of cutting. When the basis weight exceeds 250 g / m 2 , the penetration rate of the fluid flow is lowered, and the fiber entanglement is difficult to proceed, so that high strength may not be obtained. Moreover, the delamination of a nonwoven fabric may occur partially.

本発明の不織布の層間剥離強度は9N/cm以上が好ましい。層間剥離強度が9N/cm以上であれば層間剥離は起こりにくく、9N/cm未満であると、不織布の屈曲を繰り返すことにより、繊維シート間が剥離する場合があり、本発明の不織布の特徴である風合い、特に折り曲げた時の風合いが硬くなる。   The delamination strength of the nonwoven fabric of the present invention is preferably 9 N / cm or more. When the delamination strength is 9 N / cm or more, delamination hardly occurs. When the delamination strength is less than 9 N / cm, the fiber sheet may be peeled by repeating the bending of the non-woven fabric. A certain texture, especially when bent, becomes harder.

次に、本発明の不織布の製造方法について説明するが、製造法はこれに限定されるものではない。
熱可塑性樹脂を多数の紡口から溶融紡糸することにより得られる多数の長繊維を、エジェクター等の牽引装置で延伸し、搬送装置、すなわち、移動する捕集装置上へ分散・堆積させて、繊維配向比が1.2〜3.5の範囲内にある長繊維ウエブを形成させる。搬送装置としては、ネットコンベア−、ローラー(単体ローラ、対になったローラ等)が用いられる。
Next, although the manufacturing method of the nonwoven fabric of this invention is demonstrated, a manufacturing method is not limited to this.
A number of long fibers obtained by melt spinning a thermoplastic resin from a number of spinning nozzles are stretched by a traction device such as an ejector, and dispersed and deposited on a conveying device, that is, a moving collection device, to form a fiber. A long fiber web having an orientation ratio in the range of 1.2 to 3.5 is formed. As the transport device, a net conveyor or a roller (a single roller, a pair of rollers, or the like) is used.

溶融紡糸する際の紡糸温度は、通常、熱可塑性樹脂の融点よりも30℃〜100℃高い温度であり、好ましくは40〜80℃の範囲である。紡糸温度と融点の差が30℃未満であると、安定した溶融状態になり難く、得られた繊維の斑が大きくなる場合があり、また満足し得る強度を示さなくなる場合がある。紡糸温度と融点の差が100℃よりも大きくなると、熱分解のため得られた繊維が着色する場合がある。エジェクターは、加圧空気による高速空気流を推進力として、溶融紡糸されたフィラメントを高速で引取り細化し、かつ、高速空気流にフィラメントを随伴させる機能を持った装置である。
用いる紡口口金の形状は制限がなく、円形、三角、多角形、扁平等のものを用いることができる。通常は、直径が0.1〜0.5mmの円形紡口が用いられる。
The spinning temperature at the time of melt spinning is usually a temperature 30 to 100 ° C. higher than the melting point of the thermoplastic resin, and preferably 40 to 80 ° C. When the difference between the spinning temperature and the melting point is less than 30 ° C., it is difficult to obtain a stable molten state, and the resulting fiber may have large spots and may not exhibit satisfactory strength. When the difference between the spinning temperature and the melting point is larger than 100 ° C., the fiber obtained for thermal decomposition may be colored. The ejector is a device having a function of taking up and fine-pulverizing a melt-spun filament at high speed using a high-speed air flow by pressurized air as a driving force, and causing the filament to accompany the high-speed air flow.
The shape of the spinneret used is not limited, and circular, triangular, polygonal, flat, etc. can be used. Usually, a circular nozzle having a diameter of 0.1 to 0.5 mm is used.

エジェクターから押し出されるフィラメントの速度、すなわち、紡糸速度は、一般に2500〜6000m/minである。 紡糸速度は、フィラメント単糸の細化の指標であり、高速にするほど単糸の細化が進み低繊度の繊維となる。この紡糸速度は、主として吐出量、エジェクターの位置、送入される空気の圧力等の条件に支配されるが、好ましい紡糸速度の範囲は3000〜6000m/minである。紡糸速度が2500m/min未満では、フィラメントが充分に延伸されていないために引張強力が必ずしも十分とは言えず、また、そのフィラメントから得られる不織布の強力も低くなる傾向がある。紡糸速度が6000m/minを越えると、溶融紡糸中に糸切れが発生する確率が高くなり、不織布の生産性が低下する傾向がある。   The speed of the filament extruded from the ejector, that is, the spinning speed is generally 2500 to 6000 m / min. The spinning speed is an index of the thinning of the filament single yarn, and the higher the speed, the finer the single yarn and the lower the fineness of the fiber. The spinning speed is mainly governed by conditions such as the discharge amount, the position of the ejector, and the pressure of the air fed in, but the preferred spinning speed range is 3000 to 6000 m / min. When the spinning speed is less than 2500 m / min, the tensile strength is not necessarily sufficient because the filament is not sufficiently stretched, and the strength of the nonwoven fabric obtained from the filament tends to be low. When the spinning speed exceeds 6000 m / min, there is a high probability that yarn breakage will occur during melt spinning, and the productivity of the nonwoven fabric tends to decrease.

エジェクター等の出口から空気流と共に噴出されるフィラメント群は、その下方に設けられた、例えば、移動式の多孔性の受器、具体的には、金属製叉は樹脂製の定速走行している網状物等の上にウエブとして捕集される。この時、エジェクター等から噴出されるフィラメント群が、固まりやすく、かつ、捕集されたウエブの広がりが狭く、ウエブとしての均一性及び品位が欠けるような傾向にあるときには、特にフィラメントが相互に離れあった状態で噴出されて捕集されるような工夫をすることが有効である。
このためには、例えば、エジェクター等の下方に衝突部材を設け、衝突部材にフィラメントを衝突させて、フィラメントに摩擦帯電を起こさせて開繊させる方法、エジェクター等の下方でコロナ放電により該フィラメントに強制帯電させて開 繊させる方法等を用いることができる。
The filament group ejected from the outlet of the ejector or the like together with the air flow is, for example, a movable porous receiver, specifically, a metal or resin constant speed running. It is collected as a web on a net or the like. At this time, when the filaments ejected from the ejector or the like tend to harden and the spread of the collected web tends to be narrow and the uniformity and quality of the web tend to be lacking, the filaments are separated from each other. It is effective to devise such that it is ejected and collected in a certain state.
For this purpose, for example, a collision member is provided below the ejector or the like, the filament is collided with the collision member, the filament is triboelectrically charged, and the filament is opened by corona discharge below the ejector or the like. For example, a method of forcibly charging and opening can be used.

ウエブの捕集に際しては、フィラメント群に随伴して受器に当たる空気流のために、一旦堆積したウエブが吹き流されて乱れたものになる場合があり、この現象を防ぐためには、受器の下方から空気を吸引する手段を採用することが好ましい。
本発明の不織布を製造する際に用いられるウエブの繊維配向比は1.2〜3.5の範囲であり、好ましくは1.2〜3.0である。繊維の配向比は、流体流処理における交絡性と強度に密接な関係があり、配向比が1.2未満であることは、横方向への繊維配列が多いことを示し、流体流処理により交絡しやすくなるものの、高強度の不織布が得られない。繊維配向比が3.5よりも大きくなると、横方向の繊維配列している成分が非常に少なくなるため、流体流による繊維交絡が充分に進行せず、目的とする高強不織布が得られない、また本発明の特徴である、(クロスマシン方向の伸度/マシン方向の伸度)が大きく変化するため、等方伸長性を必要とするバッフル材などの使用が難しい。
When collecting the web, the accumulated web may be blown away and turbulent due to the air flow impinging on the receiver accompanying the filament group. To prevent this phenomenon, It is preferable to employ means for sucking air from below.
The fiber orientation ratio of the web used when producing the nonwoven fabric of the present invention is in the range of 1.2 to 3.5, preferably 1.2 to 3.0. The orientation ratio of the fibers is closely related to the entanglement and strength in the fluid flow treatment, and the orientation ratio of less than 1.2 indicates that there are many fiber arrays in the transverse direction, and the entanglement is caused by the fluid flow treatment. However, a high-strength nonwoven fabric cannot be obtained. When the fiber orientation ratio is larger than 3.5, the amount of the fibers arranged in the transverse direction is very small, so that the fiber entanglement by the fluid flow does not sufficiently proceed, and the intended high strength nonwoven fabric cannot be obtained. Further, since (characteristic of the present invention) (elongation in the cross machine direction / elongation in the machine direction) changes greatly, it is difficult to use a baffle material that requires isotropic elongation.

ウエブの繊維配向比は、繊維の堆積量と捕集速度によりが決定される。繊維の堆積量に対し捕集速度が速いと、大きくマシン方向(縦方向)に配向したウエブとなり、速度が遅いと、クロスマシン方向(横方向)に配向したウエブとなる。目的の繊維配向比を得るためには、溶融した熱可塑性樹脂の吐出量と、搬送手段による捕集速度の調整が重要である。また、エジェクター出口から繊維捕集面までの距離によっても繊維配向比は異なり、本発明の繊維配向比を得るためには、エジェクター出口から捕集面までの距離が、50mmから1200mmの範囲出ることが好ましく、より好ましくは70mmから900mmの範囲である。この範囲を外れると、繊維配向比が本発明の範囲を逸脱するばかりでなく、繊維を捕集できなく恐れがある。更に、より容易に目的とする繊維配向比を得るためには、紡口の数を増す方法、ウエブを幾層にも堆積させる方法等により、捕集速度を高速化する。長繊維をマシン方向に正弦波を描き幾重にも堆積させる方法がより好ましい。   The fiber orientation ratio of the web is determined by the amount of fibers deposited and the collection rate. When the collection speed is high with respect to the amount of accumulated fibers, the web is largely oriented in the machine direction (longitudinal direction). In order to obtain the target fiber orientation ratio, it is important to adjust the discharge rate of the molten thermoplastic resin and the collection speed by the conveying means. Also, the fiber orientation ratio varies depending on the distance from the ejector outlet to the fiber collecting surface, and in order to obtain the fiber orientation ratio of the present invention, the distance from the ejector outlet to the collecting surface should be in the range of 50 mm to 1200 mm. Is preferable, and more preferably in the range of 70 mm to 900 mm. Outside this range, the fiber orientation ratio deviates from the scope of the present invention, and fibers may not be collected. Furthermore, in order to obtain a desired fiber orientation ratio more easily, the collection speed is increased by a method of increasing the number of spinning nozzles, a method of depositing webs in several layers, or the like. A method in which long fibers are deposited in layers by drawing a sine wave in the machine direction is more preferable.

上記のようにして、搬送手段上に捕集されたウエブを、連続的に流体流処理を行うことにより、本発明の長繊維不織布を得ることができる。
上記で得られたウエブは、必要に応じて、プレスロール等を用いて、以下の条件で熱圧着加工を行うことが好ましい。プレスロール形状は、表面がフラットタイプで行うことが好ましく、エンボスタイプを使用する場合でも圧着面積が12%未満のものを使用することが好ましく、より好ましくは7%以下である。圧着面積が12%以上になると、圧着面積が大きくなり、たとえ低圧であってもエンボスの形が残り、流体流処理により繊維が交絡し難くなる。
The continuous fiber flow treatment is performed on the web collected on the conveying means as described above, whereby the long fiber nonwoven fabric of the present invention can be obtained.
The web obtained above is preferably subjected to thermocompression bonding under the following conditions using a press roll or the like, if necessary. The press roll shape is preferably a flat surface, and even when an embossed type is used, it is preferable to use a press-bonding area of less than 12%, more preferably 7% or less. When the crimping area is 12% or more, the crimping area is increased, the embossed shape remains even at low pressure, and the fibers are hardly entangled by the fluid flow treatment.

プレスロールの表面温度は、熱可塑性樹脂の融点よりも80〜100℃以上低い温度で行うことが好ましく、より好ましくは室温である。熱可塑性樹脂の融点との差が80℃未満の温度になると繊維の扁平化や切断が起こりやすくなる。またウエブを押さえる線圧は220N/cm以下であり、好ましくは180N/cm以下である。線圧が220N/cmより大きくなると繊維間の圧着が起こりやすくなるため流体流処理による繊維間交絡が起こりにくくなる。
次いで、この長繊維ウエブを流体流処理することにより、本発明の不織布を得ることができる。
The surface temperature of the press roll is preferably 80 to 100 ° C. lower than the melting point of the thermoplastic resin, more preferably room temperature. When the difference from the melting point of the thermoplastic resin is less than 80 ° C., the flattening or cutting of the fiber tends to occur. The linear pressure for pressing the web is 220 N / cm or less, preferably 180 N / cm or less. When the linear pressure is greater than 220 N / cm, inter-fiber crimping is likely to occur, and inter-fiber entanglement due to fluid flow treatment is unlikely to occur.
Next, the nonwoven fabric of the present invention can be obtained by subjecting the long fiber web to fluid flow treatment.

本発明におけるウエブの流体流処理は、高圧の流体流で処理することが好ましいが、設備及び製造コストと得られた不織布の物性バランスを考えると流体流の圧力としては、少なくとも1回、最大圧力が12MPa以上、好ましくは12MPa〜45MPaで処理する。流体流の最大圧力が12MPa未満であると、繊維間の交絡性の進行が充分でないため高強度の不織布が得られにくく、高強度の不織布を得るためには、流体流の処理回数を増加させる必要がある。
最大圧力を付与する場合は、交絡したウエブまたは糸の支持体に食い込まないような水圧条件を選択することが重要である。食い込みが起こると、ウエブの一部が裂けたり、支持体に糸が残りウエブが汚れる原因となる。
The fluid flow treatment of the web in the present invention is preferably carried out with a high-pressure fluid flow. However, considering the equipment and manufacturing costs and the physical property balance of the obtained nonwoven fabric, the pressure of the fluid flow is at least once, the maximum pressure. Is 12 MPa or more, preferably 12 MPa to 45 MPa. If the maximum pressure of the fluid flow is less than 12 MPa, it is difficult to obtain a high-strength nonwoven fabric because the entanglement between fibers is not sufficient, and in order to obtain a high-strength nonwoven fabric, the number of treatments of the fluid flow is increased. There is a need.
When applying the maximum pressure, it is important to select hydraulic conditions that do not bite into the entangled web or yarn support. When the bite occurs, a part of the web is torn, or the thread remains on the support and the web becomes dirty.

不織布の生産性を挙げるためには、処理速度は60m/min以上が好ましく、より好ましくは80m/min以上、最も好ましくは100m/min以上である。また流体流処理速度は、目付により選定されるべきであり、ウエブの目付が高いと低速で処理する必要があり、低目付のウエブでは高速で行うことが望ましい。速度及び水圧は処理された不織布の引張強度、剥離強度、表面平滑性等を考慮して設定される。
ここで言う流体とは、液体叉は気体である。取り扱い易さ、コスト、衝突エネルギーの大きさ等の点から、水が好ましい。水流を噴出させるノズルの径は0.05〜0.5mmが好ましい。ノズルの孔の間隔は0.2〜5mmが好ましい。
In order to increase the productivity of the nonwoven fabric, the treatment speed is preferably 60 m / min or more, more preferably 80 m / min or more, and most preferably 100 m / min or more. The fluid flow treatment speed should be selected according to the basis weight. When the web basis weight is high, it is necessary to perform the treatment at a low speed, and it is desirable to perform the treatment at a high speed on the low basis weight web. The speed and water pressure are set in consideration of the tensile strength, peel strength, surface smoothness, etc. of the treated nonwoven fabric.
The fluid mentioned here is liquid or gas. Water is preferable from the viewpoint of ease of handling, cost, impact energy, and the like. The diameter of the nozzle for ejecting the water flow is preferably 0.05 to 0.5 mm. The interval between the nozzle holes is preferably 0.2 to 5 mm.

交絡を効果的に行うためには、長繊維ウエブに噴き当てられた水を除去することも重要である。その方法としては、ウエブの下に目の細かい金網等の支持体を置き、その下から吸引脱水するのがよい。流体流の軌跡形状は、長繊維ウエブの進行方向に対し、平行な直線状であってもよいし、ノズルを取り付けたヘッダーを回転運動させたり、ウエブの進行方向に対して直角に往復運動させることによって得られる曲線状であってもよい。
流体流を長繊維ウエブに当てる順序は、表裏交互に当てる方法でもよいし、片面だけに当てる方法でもよいが、充分な交絡を得るため、かつ、表裏共に均一な表面を得るためには、表裏を交互に処理するのが好ましい。特に本発明の配向比、縦方向伸度及び伸度比を得るためには流体流処理方法が重要である。
In order to effectively perform the entanglement, it is also important to remove water sprayed on the long fiber web. As a method for this, it is preferable to place a support such as a fine wire net under the web and perform suction dehydration from the bottom. The trajectory shape of the fluid flow may be a straight line parallel to the traveling direction of the long fiber web, or the header to which the nozzle is attached is rotated or reciprocated at right angles to the traveling direction of the web. The curve shape obtained by this may be sufficient.
The order of applying the fluid flow to the long fiber web may be a method of alternately applying the front and back, or a method of applying only to one side, but in order to obtain sufficient confounding and to obtain a uniform surface on both sides, Are preferably processed alternately. In particular, the fluid flow treatment method is important for obtaining the orientation ratio, the longitudinal elongation and the elongation ratio of the present invention.

流体流処理は、初期処理から最終処理まで一定圧力で行ってもよいが、圧力を段階的に変化させる方法が好ましい。段階的に圧力を変えることにより、繊維交絡が充分に進み、目的とする縦方向伸度及び伸度比が得られることになる。初期処理の流体流圧力を、工程中の最大水圧の70%未満とすることが好ましい。初期の水圧が70%以上であると初期交絡が急に進むため配向比が崩れ、目的とする伸度及び伸度比が得られない場合がある。また圧力を段階的に変化させる方法は、他に流体流による軌跡を見えにくくしてフラットで均一な表面を得るのに効果的な方法でもある。   The fluid flow treatment may be performed at a constant pressure from the initial treatment to the final treatment, but a method of changing the pressure stepwise is preferable. By changing the pressure stepwise, the fiber entanglement is sufficiently advanced and the desired longitudinal elongation and elongation ratio can be obtained. It is preferable that the fluid flow pressure in the initial treatment is less than 70% of the maximum water pressure in the process. If the initial water pressure is 70% or more, the initial entanglement proceeds abruptly and the orientation ratio collapses, and the desired elongation and elongation ratio may not be obtained. The method of changing the pressure stepwise is also an effective method for obtaining a flat and uniform surface by making it difficult to see the locus caused by the fluid flow.

本発明に用いられる測定法は、以下の方法のとおりである。
1)繊度
ウエブの任意の部位からサンプリングした試験片の断面が観察できるように繊維軸を横切る方向に直角に切断されている任意の20本について繊維断面長軸と短軸の長さを測定し平均直径を算出する。繊維直径は走査型電子顕微鏡を用い200倍の倍率で測定する。
以下の式により繊度(dtex)を求める。
R=√(4d/(π×10×10×ρ))×10
ここで、Rは平均単糸直径(μm)、ρは単糸を構成する高分子重合体の密度(g/cm)、dは単糸繊度(dtex)、πは円周率である。ただし単糸の断面が円形の場合は直接的にその直径を測定した値を平均化したものを単糸の直径とし、非円形断面、異形断面の繊維の場合は、その繊維断面の最長尺と最短尺の平均を持って単糸の直径とする。
The measurement method used in the present invention is as follows.
1) Fineness The length of the fiber cross-section major axis and minor axis was measured for any 20 specimens cut at right angles to the direction crossing the fiber axis so that the cross section of the specimen sampled from an arbitrary part of the web could be observed. Calculate the average diameter. The fiber diameter is measured at 200 times magnification using a scanning electron microscope.
The fineness (dtex) is obtained by the following equation.
R = √ (4d / (π × 10 × 10 5 × ρ)) × 10 4
Here, R is the average single yarn diameter (μm), ρ is the density (g / cm 3 ) of the polymer constituting the single yarn, d is the single yarn fineness (dtex), and π is the circumference. However, if the cross section of a single yarn is circular, the average value of the diameters measured directly is taken as the diameter of the single yarn, and in the case of non-circular and irregular cross-section fibers, the maximum length of the fiber cross section The shortest average is taken as the diameter of the single yarn.

2)繊維配向比
マイクロ波配向計(神崎製紙(株)製)を用いて測定する。サンプルサイズ100mm×100mmを20枚採取し、周波数3.4〜4.2GHzの範囲で測定する。測定データはマシン方向とクロスマシン方向における透過マイクロ波強度比で表される。配向比はマシン方向/クロスマシン方向の値とし、大きいほど繊維が装置の進行方向に並んでいることを示す。
3)目付
JIS L−1096に準じて測定する。
4)引張強度
JIS L1096のストリップ法に準じ、マシン方向(縦方向)、クロスマシン方向(横方向)それぞれの引張強度を測定する。
5)引張伸度
JIS−L−1096のストリップ法に準じ、縦方向・横方向を測定。横方向の引張伸度を縦方向の引張伸度で除した値である。
6)柔軟性
JIS L1096 45°カンチレバー法。縦方向と横方向を測定し、その平均値で柔軟度とする。
2) Fiber orientation ratio Measured using a microwave orientation meter (manufactured by Kanzaki Paper Co., Ltd.). Twenty sample sizes of 100 mm × 100 mm are collected and measured in the frequency range of 3.4 to 4.2 GHz. The measurement data is expressed as a transmission microwave intensity ratio in the machine direction and the cross machine direction. The orientation ratio is a value in the machine direction / cross machine direction. The larger the orientation ratio, the more the fibers are arranged in the direction of travel of the apparatus.
3) Weight per unit area Measured according to JIS L-1096.
4) Tensile strength According to the strip method of JIS L1096, the tensile strength in each of the machine direction (longitudinal direction) and the cross machine direction (lateral direction) is measured.
5) Tensile elongation Measured in the longitudinal and transverse directions according to the strip method of JIS-L-1096. It is a value obtained by dividing the tensile elongation in the transverse direction by the tensile elongation in the longitudinal direction.
6) Flexibility JIS L1096 45 ° cantilever method. The vertical and horizontal directions are measured, and the average value is used as the flexibility.

7)層間剥離強度
不織布を巾2.5cm、長さ13cmにカットする。このサンプルに接着テープ(ソニーケミカル(株)製D3200)を接着させた後7kPaの圧力で120℃、30秒間プレスし貼り合わせる。こうして得られた測定用サンプルの、接着テープと不織布の間に切れ込みを入れ、両端を引張試験機のチャックでつかみ、速度100mm/minで測定する。
この場合、テープは強く、テープと不織布は強固に接着されているので、測定用サンプルのテープが測定用サンプルから引き剥される時に、テープが切断したり、テープと不織布の接着面が剥されることはなく、前記引き剥し力は不織布の一部分を他の部分から引き剥すように作用する。したがってこの方法によって不織布の層間剥離強度を測定することができる。
前記測定を引張試験機で行う際に得られるストレスストレン曲線から極大値3個と極小値3個を選んで計6個の値の平均値を得る。測定用サンプルの試験数は5とする。この様な測定を不織布の縦方向、横方向につき各々同様に行ない、その縦方向/横方向平均値でもって不織布の層間剥離強度とする。
7) Delamination strength The nonwoven fabric is cut into a width of 2.5 cm and a length of 13 cm. An adhesive tape (D3200 manufactured by Sony Chemical Co., Ltd.) is adhered to this sample and then pressed and bonded at 120 ° C. for 30 seconds at a pressure of 7 kPa. The measurement sample thus obtained is cut between the adhesive tape and the nonwoven fabric, and both ends are gripped by a chuck of a tensile tester and measured at a speed of 100 mm / min.
In this case, the tape is strong and the tape and the nonwoven fabric are firmly bonded. Therefore, when the measurement sample tape is peeled off from the measurement sample, the tape is cut or the adhesive surface of the tape and the nonwoven fabric is peeled off. The peeling force acts to peel a part of the nonwoven fabric from the other part. Therefore, the delamination strength of the nonwoven fabric can be measured by this method.
Three maximum values and three minimum values are selected from the stress strain curve obtained when the measurement is performed with a tensile tester, and an average value of a total of six values is obtained. The number of tests for the measurement sample is 5. Such measurement is similarly performed in the longitudinal direction and the transverse direction of the nonwoven fabric, and the average value of the longitudinal / lateral directions is used as the delamination strength of the nonwoven fabric.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
[実施例1]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度5000m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。こおnウエブは、平均繊度が1.1dtex、繊維配向比が2.2、目付が52g/mであった。このウエブに、ノズル径0.15mm、ノズルピッチ0.8mm、のノズルから、まず初期水圧7MPaで水流処理を行い、ついで水圧25MPaの水流処理を行い繊維を交絡させた。ノズルと長繊維ウエブの間隔は25mmとし、ウエブは100m/minの速度で移動させた。樹脂製製メッシュスクリーンで支持し、水圧を掛けると同時にメッシュスクリーンを通して吸引脱水させた。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[Example 1]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at a spinning speed of 5000 m / min while being sucked by an ejector, and collected and deposited on a moving porous belt to prepare a long fiber web. The koon web had an average fineness of 1.1 dtex, a fiber orientation ratio of 2.2, and a basis weight of 52 g / m 2 . From this nozzle having a nozzle diameter of 0.15 mm and a nozzle pitch of 0.8 mm, first, water flow treatment was performed at an initial water pressure of 7 MPa, and then water flow treatment at a water pressure of 25 MPa was performed to entangle the fibers. The distance between the nozzle and the long fiber web was 25 mm, and the web was moved at a speed of 100 m / min. It was supported by a resin mesh screen, applied with water pressure, and simultaneously sucked and dehydrated through the mesh screen.

同様の処理をウエブの反対側にも施し、交互に計4回行った。交絡したウエブを120℃に保ったピンテンター型乾燥機にて乾燥させて、目付が49g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は250/100N/5cm、引張伸度(縦方向/横方向)は81/105%、不織布の配向比は2.4、柔軟度は48mm、層間剥離強度は25N/cmであった。この不織布は強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。 The same treatment was performed on the opposite side of the web, and the treatment was alternately performed four times. The entangled web was dried with a pin tenter dryer maintained at 120 ° C. to obtain a long fiber nonwoven fabric having a basis weight of 49 g / m 2 . The resulting nonwoven fabric has a tensile strength (longitudinal / lateral) of 250/100 N / 5 cm, a tensile elongation (longitudinal / lateral) of 81/105%, a nonwoven fabric orientation ratio of 2.4, and a flexibility of 48 mm. The delamination strength was 25 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, so that there was very little thread loss. The results are shown in Table 1.

参考実施例2]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度5000m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。このウエブは、平均繊度が1.1dtex、繊維配向比が2.5、目付が20g/m2 であった。初期水圧を5MPaで行い、ついで12MPaで水流処理した以外は実施例1と同様の操作で繊維の交絡処理を行って、目付が21g/m2 の長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は80/19N/5cm、引張伸度(縦方向/横方向)は67/110%、不織布の配向比は2.7、柔軟度は37mm、層間剥離強度は13N/cmであった。この不織布は強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。
[ Reference Example 2]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at a spinning speed of 5000 m / min while being sucked by an ejector, and collected and deposited on a moving porous belt to prepare a long fiber web. This web had an average fineness of 1.1 dtex, a fiber orientation ratio of 2.5, and a basis weight of 20 g / m 2 . A fiber entanglement treatment was performed in the same manner as in Example 1 except that the initial water pressure was 5 MPa and then the water flow treatment was performed at 12 MPa to obtain a long fiber nonwoven fabric having a basis weight of 21 g / m 2 . The resulting nonwoven fabric has a tensile strength (longitudinal / lateral) of 80/19 N / 5 cm, a tensile elongation (longitudinal / lateral) of 67/110%, a nonwoven fabric orientation ratio of 2.7, and a flexibility of 37 mm. The delamination strength was 13 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, so that there was very little thread loss. The results are shown in Table 1.

[実施例3]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度4700m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。このウエブは、平均繊度が1.7dtex、繊維配向比が2.5、目付が44g/mであった。実施例1と同様の操作で繊維の交絡処理を行って、目付が42g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は235/95N/5cm、引張伸度(縦方向/横方向)は80/110%、不織布の配向比は2.8、柔軟度は53mm、層間剥離強度は21N/cmであった。この不織布は、強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。
[Example 3]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at an spinning speed of 4700 m / min while being sucked by an ejector, and collected and deposited on a moving porous belt to prepare a long fiber web. This web had an average fineness of 1.7 dtex, a fiber orientation ratio of 2.5, and a basis weight of 44 g / m 2 . The fiber entanglement process was performed in the same manner as in Example 1 to obtain a long fiber nonwoven fabric having a basis weight of 42 g / m 2 . The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 235/95 N / 5 cm, a tensile elongation (longitudinal / lateral) of 80/110%, an orientation ratio of the nonwoven of 2.8, and a flexibility of 53 mm. The delamination strength was 21 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, and therefore had very little thread loss. The results are shown in Table 1.

参考実施例4]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度5500m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは、平均繊度が0.7dtex、繊維配向比が1.6、目付が20g/m2 であった。参考実施例2と同様の操作で繊維の交絡処理を行って、目付が18g/m2 の長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は105/30N/5cm、引張伸度(縦方向/横方向)は76/95%、不織布の配向比は1.9、柔軟度は37mm、層間剥離強度は20N/cmであった。この不織布は強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。
[ Reference Example 4]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn with an ejector and drawn at a spinning speed of 5500 m / min, and collected and deposited on a moving porous strip to prepare a long fiber web. The obtained web had an average fineness of 0.7 dtex, a fiber orientation ratio of 1.6, and a basis weight of 20 g / m 2 . The fiber entanglement process was performed in the same manner as in Reference Example 2 to obtain a long fiber nonwoven fabric having a basis weight of 18 g / m 2 . The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 105/30 N / 5 cm, a tensile elongation (longitudinal / lateral) of 76/95%, an orientation ratio of the nonwoven of 1.9, and a flexibility of 37 mm. The delamination strength was 20 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, so that there was very little thread loss. The results are shown in Table 1.

[実施例5]
ポリプロピレン樹脂を230℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度3900m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブが平均繊度が1.1dtex、繊維配向比が2.1、目付が39g/mであった。実施例1と同様の操作で繊維の交絡処理を行って、目付が37g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は65/35N/5cm、引張伸度は(縦方向/横方向)は75/80%、不織布の配向比は2.4、柔軟度は34mm、層間剥離強度は12N/cmであった。この不織布は強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。
[Example 5]
A polypropylene resin was melt-spun at 230 ° C., drawn at a spinning speed of 3900 m / min while being sucked by an ejector, and collected and deposited on a moving porous band to prepare a long fiber web. The obtained web had an average fineness of 1.1 dtex, a fiber orientation ratio of 2.1, and a basis weight of 39 g / m 2 . The fiber entanglement process was performed in the same manner as in Example 1 to obtain a long fiber nonwoven fabric having a basis weight of 37 g / m 2 . The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 65/35 N / 5 cm, a tensile elongation (longitudinal / lateral) of 75/80%, a nonwoven fabric orientation ratio of 2.4, and a flexibility of The delamination strength was 34 N and 12 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, so that there was very little thread loss. The results are shown in Table 1.

[実施例6]
ポリアミド6樹脂を250℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度3900m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは、平均繊度が1.7dtex、繊維配向比が2.1、目付が42g/mであった。実施例1と同様の操作で繊維の交絡処理を行って、目付が40g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は180/85N/5cm、引張伸度(縦方向/横方向)は103/121%、不織布の配向比は2.4、柔軟度は36mm、層間剥離強度は27N/cmであった。この不織布は強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。
[Example 6]
Polyamide 6 resin was melt-spun at 250 ° C., drawn at a spinning speed of 3900 m / min while being sucked by an ejector, and collected and deposited on a moving porous strip to prepare a long fiber web. The obtained web had an average fineness of 1.7 dtex, a fiber orientation ratio of 2.1, and a basis weight of 42 g / m 2 . The fiber entanglement process was performed in the same manner as in Example 1 to obtain a long fiber nonwoven fabric having a basis weight of 40 g / m 2 . The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 180/85 N / 5 cm, a tensile elongation (longitudinal / lateral) of 103/121%, a nonwoven fabric orientation ratio of 2.4, and a flexibility of 36 mm. The delamination strength was 27 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, so that there was very little thread loss. The results are shown in Table 1.

[実施例7]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度5000m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは、平均繊度が1.1dtex、繊維配向比が1.9、目付が158g/mであった。水圧を30MPa、速度を70m/minとした以外は実施例1と同様の操作で繊維の交絡処理を行って、目付が155g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は445/268N/5cm、引張伸度(縦方向/横方向)は75/92%、不織布の配向比は2.2、柔軟度は75mm、層間剥離強度は32N/cmであった。この不織布は強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。
[Example 7]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at a spinning speed of 5000 m / min while being sucked by an ejector, and collected and deposited on a moving porous belt to prepare a long fiber web. The obtained web had an average fineness of 1.1 dtex, a fiber orientation ratio of 1.9, and a basis weight of 158 g / m 2 . Except for the water pressure of 30 MPa and the speed of 70 m / min, the fiber entanglement treatment was performed in the same manner as in Example 1 to obtain a long fiber nonwoven fabric having a basis weight of 155 g / m 2 . The resulting nonwoven fabric has a tensile strength (longitudinal / lateral) of 445/268 N / 5 cm, a tensile elongation (longitudinal / lateral) of 75/92%, a nonwoven fabric orientation ratio of 2.2, and a flexibility of 75 mm. The delamination strength was 32 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, so that there was very little thread loss. The results are shown in Table 1.

[実施例8]
まずポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度5000m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブ(平均繊度1.1dtex)を作成し、更に同様にして紡糸速度4300m/minにて延伸した糸(平均繊度1.7dtex)をその長繊維ウエブ上に積層させた。得られたウエブは、平均繊度が1.4dtex、繊維配向比が1.9、目付が45g/mであった。実施例1と同様の操作で繊維の交絡処理を行って、目付が42g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は245/102/5cm、引張伸度(縦方向/横方向)は75/101%、不織布の配向比は2.2、柔軟度は46mm、層間剥離強度は25N/cmであった。この不織布は強度が高く、等方伸長性、柔軟性に優れ、層間剥離強度が高いため糸抜けが非常に少ないものであった。結果を表1に示す。
[Example 8]
First, a polyethylene terephthalate resin is melt-spun at 280 ° C., drawn at a spinning speed of 5000 m / min while being sucked by an ejector, and collected and deposited on a moving porous band to obtain a long fiber web (average fineness 1.1 dtex). A yarn (average fineness of 1.7 dtex) prepared and drawn at a spinning speed of 4300 m / min in the same manner was laminated on the long fiber web. The obtained web had an average fineness of 1.4 dtex, a fiber orientation ratio of 1.9, and a basis weight of 45 g / m 2 . The fiber entanglement process was performed in the same manner as in Example 1 to obtain a long fiber nonwoven fabric having a basis weight of 42 g / m 2 . The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 245/102/5 cm, a tensile elongation (longitudinal / lateral) of 75/101%, a nonwoven fabric orientation ratio of 2.2, and a flexibility of 46 mm. The delamination strength was 25 N / cm. This nonwoven fabric had high strength, excellent isotropic elongation and flexibility, and had high delamination strength, so that there was very little thread loss. The results are shown in Table 1.

[比較例1]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度4300m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは平均繊度が1.1dtex、繊維配向比が2.1、目付が51g/mであった。水流交絡を全て水圧4MPaで行い、他は実施例1と同様の操作で繊維の交絡処理を行った。目付48g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は22/7N/5cm、引張伸度(縦方向/横方向)は25/10%、不織布の配向比は2.2、柔軟度は20mm、層間剥離強度は5N/cm未満であった。この不織布は、圧力が低く繊維が交絡しないため、強度、層間剥離強度も非常に低い。結果を表1に示す。
[Comparative Example 1]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at a spinning speed of 4300 m / min while being sucked by an ejector, and collected and deposited on a moving porous belt to prepare a long fiber web. The obtained web had an average fineness of 1.1 dtex, a fiber orientation ratio of 2.1, and a basis weight of 51 g / m 2 . Hydroentanglement was performed at a water pressure of 4 MPa, and the fiber entanglement treatment was performed in the same manner as in Example 1. A long fiber nonwoven fabric having a basis weight of 48 g / m 2 was obtained. The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 22/7 N / 5 cm, a tensile elongation (longitudinal / lateral) of 25/10%, a nonwoven fabric orientation ratio of 2.2, and a flexibility of 20 mm. The delamination strength was less than 5 N / cm. Since this nonwoven fabric has low pressure and the fibers do not entangle, the strength and delamination strength are also very low. The results are shown in Table 1.

[比較例2]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度4300m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは、平均繊度が2.2dtex、繊維配向比が2.0、目付が42g/mであった。実施例1と同様の操作で繊維の交絡処理を行って、目付40g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は125/25N/5cm、引張伸度(縦方向/横方向)は39/88%、不織布の配向比は2.5、柔軟度は48mm、層間剥離強度は9N/cmであった。この不織布は、繊度が本発明の範囲を外れるため繊維間の交絡が進まず強度が低く、等方伸長性、柔軟性が悪い、また層間剥離強度が低いため糸抜けが多い。結果を表1に示す。
[Comparative Example 2]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at a spinning speed of 4300 m / min while being sucked by an ejector, and collected and deposited on a moving porous belt to prepare a long fiber web. The obtained web had an average fineness of 2.2 dtex, a fiber orientation ratio of 2.0, and a basis weight of 42 g / m 2 . The fiber entanglement process was performed in the same manner as in Example 1 to obtain a long fiber nonwoven fabric having a basis weight of 40 g / m 2 . The resulting nonwoven fabric has a tensile strength (longitudinal / lateral) of 125/25 N / 5 cm, a tensile elongation (longitudinal / lateral) of 39/88%, a nonwoven fabric orientation ratio of 2.5, and a flexibility of 48 mm. The delamination strength was 9 N / cm. This nonwoven fabric has a fineness that is outside the scope of the present invention, so that the interlaced fibers do not progress and the strength is low, the isotropic stretchability and flexibility are poor, and the delamination strength is low, so that there are many yarns missing. The results are shown in Table 1.

[比較例3]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度5000m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは、平均繊度が1.1dtex、繊維配向比が3.9、目付が40g/mであった。実施例1と同様の操作で繊維の交絡処理を行って、目付37g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は200/20N/5cm、引張伸度(縦方向/横方向)は35/129%、不織布の配向比は4.4、柔軟度は52mm、層間剥離強度は19N/cmであった。この不織布は、繊維配向比が本発明の範囲を外れるため繊維交絡が進まないため強度が本発明の物よりも低く、等方伸長性、柔軟性が悪い、また層間剥離強度が低いため糸抜けが多い。結果を表1に示す。
[Comparative Example 3]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at a spinning speed of 5000 m / min while being sucked by an ejector, and collected and deposited on a moving porous belt to prepare a long fiber web. The obtained web had an average fineness of 1.1 dtex, a fiber orientation ratio of 3.9, and a basis weight of 40 g / m 2 . The fiber entanglement process was performed in the same manner as in Example 1 to obtain a long fiber nonwoven fabric having a basis weight of 37 g / m 2 . The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 200/20 N / 5 cm, a tensile elongation (longitudinal / lateral) of 35/129%, a nonwoven fabric orientation ratio of 4.4, and a flexibility of 52 mm. The delamination strength was 19 N / cm. This nonwoven fabric has a fiber orientation ratio that is outside the scope of the present invention, so that the fiber entanglement does not proceed and the strength is lower than that of the present invention, and isotropic elongation and flexibility are poor. There are many. The results are shown in Table 1.

[比較例4]
実施例1で作成した不織布を温度230℃に保った規則的な彫刻模様のある熱プレスロール内を通過させ熱圧着を行った。線圧は350N/cmとし、更に実施例1と同じ水流交絡処理を行って、目付が48g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は240/98N/5cm、引張伸度(縦方向/横方向)は30/24%、不織布の配向比は2.4、柔軟度は100mm、層間剥離強度は20N/cmであった。この不織布は熱圧着を行っているため強度は高いが、伸度が非常に低く、柔軟性に非常に劣っている。結果を表1に示す。
[Comparative Example 4]
The nonwoven fabric prepared in Example 1 was passed through a hot press roll having a regular sculpture pattern maintained at a temperature of 230 ° C. and subjected to thermocompression bonding. The linear pressure was 350 N / cm, and the same hydroentanglement treatment as in Example 1 was performed to obtain a long fiber nonwoven fabric having a basis weight of 48 g / m 2 . The resulting nonwoven fabric has a tensile strength (longitudinal / lateral) of 240/98 N / 5 cm, a tensile elongation (longitudinal / lateral) of 30/24%, a nonwoven fabric orientation ratio of 2.4, and a flexibility of 100 mm. The delamination strength was 20 N / cm. Since this nonwoven fabric is thermocompression bonded, it has high strength, but its elongation is very low and its flexibility is very poor. The results are shown in Table 1.

[比較例5]
ポリエチレンテレフタレート樹脂を280℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度4500m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは平均繊度が2.0dtex、繊維配向比が3.5、目付が50g/mであった。このウエブを温度230℃に保った規則的な彫刻模様のある熱プレスロール内を通過させ熱圧着を行った。線圧は350N/cmとして、目付48g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は248/102N/5cm、引張伸度(縦方向/横方向)は30/24%、不織布の配向比は2.7、柔軟度は105mm、層間剥離強度は5N/cm未満であった。この不織布は、熱圧着法のため柔軟性に劣っている。結果を表1に示す。
[Comparative Example 5]
A polyethylene terephthalate resin was melt-spun at 280 ° C., drawn at an spinning speed of 4500 m / min while being sucked by an ejector, and collected and deposited on a moving porous strip to prepare a long fiber web. The obtained web had an average fineness of 2.0 dtex, a fiber orientation ratio of 3.5, and a basis weight of 50 g / m 2 . The web was passed through a hot press roll having a regular sculpture pattern maintained at a temperature of 230 ° C. to perform thermocompression bonding. The linear pressure was 350 N / cm, and a long fiber nonwoven fabric having a basis weight of 48 g / m 2 was obtained. The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 248/102 N / 5 cm, a tensile elongation (longitudinal / lateral) of 30/24%, a nonwoven fabric orientation ratio of 2.7, and a flexibility of 105 mm. The delamination strength was less than 5 N / cm. This nonwoven fabric is inferior in flexibility because of the thermocompression bonding method. The results are shown in Table 1.

[比較例6]
ポリプロピレン樹脂を230℃で溶融紡糸し、エジェクターで吸引しながら紡糸速度3500m/minで延伸し、移動する多孔質帯状体に捕集・堆積させて長繊維ウエブを作成した。得られたウエブは、平均繊度が2.5dtex、繊維配向比が3.6、目付が40g/mであった。このウエブを温度135℃に保った規則的な彫刻模様のある熱プレスロール内を通過させ熱圧着を行った。線圧は350N/cmとして、目付39g/mの長繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は77/25N/5cm、引張伸度(縦方向/横方向)は70/75%、不織布の配向比は3.5、柔軟度は73mm、層間剥離強度は5N/cm未満であった。この不織布は、熱圧着法のため柔軟性に劣っている。結果を表1に示す。
[Comparative Example 6]
Polypropylene resin was melt-spun at 230 ° C., drawn with an ejector and drawn at a spinning speed of 3500 m / min, and collected and deposited on a moving porous band to produce a long fiber web. The obtained web had an average fineness of 2.5 dtex, a fiber orientation ratio of 3.6, and a basis weight of 40 g / m 2 . This web was passed through a hot press roll having a regular sculpture pattern maintained at a temperature of 135 ° C. and subjected to thermocompression bonding. The linear pressure was 350 N / cm, and a long fiber nonwoven fabric having a basis weight of 39 g / m 2 was obtained. The resulting nonwoven fabric has a tensile strength (longitudinal / lateral) of 77/25 N / 5 cm, a tensile elongation (longitudinal / lateral) of 70/75%, a nonwoven fabric orientation ratio of 3.5, and a flexibility of 73 mm. The delamination strength was less than 5 N / cm. This nonwoven fabric is inferior in flexibility because of the thermocompression bonding method. The results are shown in Table 1.

[比較例7]
繊維長51mm、繊度1.7dtexのポリエチレンテレフタレート短繊維をカード法を用いウエブ化した。得られたウエブは、繊維配向比が3.2、目付が39g/mであった。この後、実施例1と同様の操作で繊維間交絡処理を行って、目付37g/mの短繊維不織布を得た。得られた不織布の引張強度(縦方向/横方向)は84/17N/5cm、引張伸度(縦方向/横方向)は37/130%、不織布の配向比は3.5、柔軟度は35mm、層間剥離強度は17N/cmであった。この不織布の柔軟性は良好であったが、短繊維であるため強度が低く、等方伸長性にはならない。結果を表1に示す。
[Comparative Example 7]
Polyethylene terephthalate short fibers having a fiber length of 51 mm and a fineness of 1.7 dtex were formed into a web using a card method. The obtained web had a fiber orientation ratio of 3.2 and a basis weight of 39 g / m 2 . Then, the interfiber entanglement process was performed by the same operation as Example 1, and the short fiber nonwoven fabric of 37 g / m < 2 > of fabric weights was obtained. The nonwoven fabric obtained had a tensile strength (longitudinal / lateral) of 84/17 N / 5 cm, a tensile elongation (longitudinal / lateral) of 37/130%, a nonwoven fabric orientation ratio of 3.5, and a flexibility of 35 mm. The delamination strength was 17 N / cm. The nonwoven fabric had good flexibility, but because it is a short fiber, its strength is low and it is not isotropically extensible. The results are shown in Table 1.

Figure 0004222925
Figure 0004222925

本発明の不織布は、例えば、衣料部材、ディスポ衣料、靴部材等の衣料用途、保護衣、防護用品等の防護用途、手術着、マスク、ハップ剤基布等の医療用途、ルーフィング、タフト・カーペット基布、結露防止シート等の建築用途、補強材、保護材、地中埋設管の補修材等の土木用途、自動車内装、自動車部品等の車両用途、救急用品、洗浄用品、おしぼり等の衛生用途、カーペット、家具部材、壁紙等の家具・インテリア用途、ウェットワイパー、クリーニング材等のワイパー用途、空気フィルター、バグフィルター、エレクトレットフィルター等のフィルター用途、布団、布団袋、枕カバー等の寝装用途、べた掛けシート、防草シート、園芸プランター等の農業・園芸用途、収納用品、包装資材、台所用品等の生活資材用途、電気材料、製品材料、機器部材等の工業資材用途等に用いられる。   Non-woven fabrics of the present invention include, for example, apparel items such as apparel members, disposable apparel, shoe members, protective apparel, protective apparel items such as protective clothing, medical clothing such as surgical gowns, masks, and haptic base fabrics, roofing, and tufted carpets. Building use such as base fabric, anti-condensation sheet, etc., civil engineering use such as reinforcing material, protective material, repair material for underground pipe, automobile interior, vehicle use such as auto parts, hygiene use such as emergency supplies, cleaning supplies, hand towels, etc. , Carpet / furniture parts, wallpaper / furniture / interior use, wet wiper, cleaning material / wiper use, air filter, bag filter, electret filter / filter use, bedding, futon bag, pillow cover, etc. Agricultural and horticultural applications such as solid sheet, grass protection sheet, garden planter, storage materials, packaging materials, household materials such as kitchen materials, electrical materials, Goods materials, used in industrial materials applications such equipment members such.

特に、本発明の長繊維不織布は、引張伸度が等方性に優れているので、伸長や複雑な形状変形を伴う高度な成型部材として適している。用途として、例えば、ドアトリム、天井成型材、シート内張布等の自動車内装材、緑茶、紅茶、コーヒー等の食品用フィルターバッグ、防虫剤、芳香剤等の揮発性薬剤容器等が挙げられる。   In particular, the long-fiber nonwoven fabric of the present invention is excellent in isotropic tensile elongation, and is therefore suitable as an advanced molded member with elongation and complicated shape deformation. Applications include, for example, automotive interior materials such as door trims, ceiling molding materials, seat lining fabrics, filter bags for foods such as green tea, tea, and coffee, volatile chemical containers such as insect repellents and fragrances.

Claims (1)

スパンボンド法により、平均繊度1.7dtex以下の、単一成分の熱可塑性重合体からなる長繊維群を搬送手段上に紡出して、幾層にも堆積し、繊維のマシン方向/クロスマシン方向の配向比(マシン方向の配向度/クロスマシン方向との配向度)が1.2〜3.0の範囲内にある長繊維ウエブを形成させ、これを少なくとも2回、最大圧力が25〜45MPaであり、初期処理の流体流圧力が該最大圧力の70%未満である高圧流体流により処理することによって、繊維を互いに3次元交絡させると共に、マシン方向の伸度が60%以上、かつ、クロスマシン方向とマシン方向の伸度比(クロスマシン方向の伸度/マシン方向の伸度)を1.0〜2.5に制御し、層間剥離強度が9N/cm以上の不織布となすことを特徴とする不織布の製造方法。 By spunbonding, a long fiber group consisting of a single-component thermoplastic polymer having an average fineness of 1.7 dtex or less is spun on the conveying means and deposited in several layers, and the fiber machine direction / cross machine direction The long fiber web having an orientation ratio (degree of orientation in the machine direction / degree of orientation in the cross machine direction) in the range of 1.2 to 3.0 is formed at least twice , and the maximum pressure is 25 to 45 MPa. And the fibers are three-dimensionally entangled with each other by treating with a high-pressure fluid flow whose initial treatment fluid flow pressure is less than 70% of the maximum pressure, and the elongation in the machine direction is 60% or more and cross The elongation ratio between the machine direction and the machine direction (elongation in the cross machine direction / elongation in the machine direction) is controlled to 1.0 to 2.5, and the nonwoven fabric has a delamination strength of 9 N / cm or more. Of non-woven fabric Production method.
JP2003365215A 2003-10-24 2003-10-24 High strength long fiber nonwoven fabric Expired - Fee Related JP4222925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365215A JP4222925B2 (en) 2003-10-24 2003-10-24 High strength long fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365215A JP4222925B2 (en) 2003-10-24 2003-10-24 High strength long fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2005126865A JP2005126865A (en) 2005-05-19
JP4222925B2 true JP4222925B2 (en) 2009-02-12

Family

ID=34643967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365215A Expired - Fee Related JP4222925B2 (en) 2003-10-24 2003-10-24 High strength long fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4222925B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185927A (en) * 2011-03-03 2012-09-27 Fdk Twicell Co Ltd Method for manufacturing electrode core, method for manufacturing non-sintered nickel electrode, electrode core and non-sintered nickel electrode
US10801140B2 (en) 2016-03-16 2020-10-13 Kabushiki Kaisha Toshiba Fiber sheet and method for manufacturing same
JP6612664B2 (en) * 2016-03-16 2019-11-27 株式会社東芝 Fiber orientation sheet
JP6833914B2 (en) * 2019-06-28 2021-02-24 株式会社東芝 Manufacturing method of fiber alignment sheet

Also Published As

Publication number Publication date
JP2005126865A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP0796940B1 (en) Water jet intertwined nonwoven cloth and method of manufacturing the same
US5114787A (en) Multi-layer nonwoven web composites and process
JP3658884B2 (en) Method for producing composite long-fiber nonwoven fabric
EP1673500B1 (en) Method and apparatus for the production of nonwoven web materials
JPH10280267A (en) Flexible spun-bonded nonwoven fabric
EP1678360A1 (en) Method and apparatus for the production of nonwoven web materials
CN110268113B (en) Hydraulically treated nonwoven fabric and method of making same
WO1994008083A1 (en) Nonwoven cloth of ultrafine fibers and method of manufacturing the same
JPH05230754A (en) Nonwoven fabric composed of core-sheath type conjugate filament and its production
MX2008010775A (en) Nonwoven medical fabric.
US5942451A (en) Antiskid fabric
JP4222925B2 (en) High strength long fiber nonwoven fabric
WO2020097183A1 (en) Method of making fine spunbond fiber nonwoven fabrics at high through-puts
JPH10331063A (en) Composite nonwoven fabric and its production
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JPH06192953A (en) Polyolefin extra fine fiber non-woven fabric and its production
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH0995850A (en) Nonwoven fabric of polylactate-based filament and its production
JPH05230751A (en) High-toughness staple fiber nonwoven fabric excellent in flexibility and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JPH1096156A (en) Base fabric for disposable clothes
JPH07125128A (en) Biodegradable nonwoven laminate
JPH0841762A (en) Laminated nonwoven fabric and production of the same
US20080206517A1 (en) Fabric articles and methods of making such articles
JPH0931857A (en) Laminated nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Ref document number: 4222925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees