JP4222429B2 - High pressure discharge lamp lighting device - Google Patents
High pressure discharge lamp lighting device Download PDFInfo
- Publication number
- JP4222429B2 JP4222429B2 JP2007112984A JP2007112984A JP4222429B2 JP 4222429 B2 JP4222429 B2 JP 4222429B2 JP 2007112984 A JP2007112984 A JP 2007112984A JP 2007112984 A JP2007112984 A JP 2007112984A JP 4222429 B2 JP4222429 B2 JP 4222429B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- lighting
- discharge lamp
- region
- pressure discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y02B20/208—
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
Description
この発明は、高圧放電灯を高周波点灯する高圧放電灯点灯装置に関するものである。 The present invention relates to a high-pressure discharge lamp lighting device for high-frequency lighting of a high-pressure discharge lamp.
図9は、従来における高圧放電灯点灯装置の回路構成図を示す。図9において、1は直流電源、2は直流電源1の直流電圧を高周波電圧に変換する第1のスイッチング素子2aと第2のスイッチング素子2bとから成るハーフブリッジ回路、3はハーフブリッジ回路2を構成する各スイッチング素子のON/OFF駆動を制御する制御回路、4は共振コンデンサ5およびチョークコイル6、さらに始動回路7を含む負荷回路、8は負荷回路4から出力される高周波電圧の供給により高周波点灯する高圧放電灯である。
FIG. 9 shows a circuit configuration diagram of a conventional high pressure discharge lamp lighting device. In FIG. 9, 1 is a DC power source, 2 is a half bridge circuit composed of a
こうした構成を有する高圧放電灯点灯装置は、制御回路3により負荷回路4を介して1kHz以上の周波数を有する高周波電圧が高圧放電灯8へ供給するように、各スイッチング素子を駆動制御する。また、制御回路3は一般周知である高圧放電灯8の発光管内の放電アークの湾曲に伴う”立ち消え”或いは”ゆらぎ”の音響共鳴現象の発生を防止するため、高圧放電灯8の点灯周波数を音響共鳴現象が発生しない非共鳴周波数に決めて、各スイッチング素子を駆動制御する。
The high pressure discharge lamp lighting device having such a configuration drives and controls each switching element so that a high frequency voltage having a frequency of 1 kHz or more is supplied to the high
従来の高圧放電灯点灯装置は、前述のように点灯周波数を非共鳴周波数に決めて高圧放電灯を点灯する構成を採用している。しかしながら、一般に高圧放電灯は累積点灯時間に応じて発光管内の音波の速度が変化したり、或いは電極が消耗することにより非共鳴周波数帯も変化することが知られている。高圧放電灯は前述の各種要因により発光管内の放電アークの湾曲に伴って”立ち消え”或いは”ゆらぎ”という音響共鳴現象を発生し、高圧放電灯の点灯状態を安定に維持することが出来ないという問題点を有していた。 As described above, the conventional high pressure discharge lamp lighting device employs a configuration in which the lighting frequency is determined to be a non-resonant frequency and the high pressure discharge lamp is lit. However, it is generally known that in a high pressure discharge lamp, the non-resonant frequency band also changes as the speed of sound waves in the arc tube changes according to the cumulative lighting time or when the electrodes are consumed. The high-pressure discharge lamp causes an acoustic resonance phenomenon of “disappearance” or “fluctuation” with the curvature of the discharge arc in the arc tube due to the various factors described above, and the lighting state of the high-pressure discharge lamp cannot be stably maintained. Had problems.
この発明は、前述のような問題点を解決するためになされたもので、前述の各種要因によって非共鳴周波数が変化した場合でも、常に発光管内の放電アークの”立ち消え”或いは”ゆらぎ”を起こすことがなく、高圧放電灯を安定に高周波点灯させる高圧放電灯点灯装置を提供するものである。 The present invention has been made to solve the above-described problems. Even when the non-resonant frequency is changed due to the various factors described above, the discharge arc in the arc tube always “disappears” or “fluctuates”. The present invention provides a high pressure discharge lamp lighting device that stably operates a high pressure discharge lamp at a high frequency.
この発明に係る高圧放電灯点灯装置は、高圧放電灯と、この高圧放電灯の管電圧を検出する管電圧検出手段と、高圧放電灯に高周波電力を供給する高周波電力供給手段と、この高周波電力供給手段から供給される高周波電力の周波数を制御する制御回路とを備え、前記高圧放電灯を、安定点灯時の飽和電圧近傍における電圧範囲とこの電圧範囲における非共鳴領域を有する特定周波数範囲によって予め定められた領域で安定点灯させる高圧放電灯点灯装置において、前記制御回路は、点灯開始時に安定点灯時における前記特定周波数範囲外の高周波電力を供給し、安定点灯までの間、前記管電圧の上昇に応じて点灯周波数が前記非共鳴領域に収まるように、点灯周波数を変化させるように構成したものである。 A high pressure discharge lamp lighting device according to the present invention includes a high pressure discharge lamp, tube voltage detection means for detecting a tube voltage of the high pressure discharge lamp, high frequency power supply means for supplying high frequency power to the high pressure discharge lamp, and the high frequency power. And a control circuit for controlling the frequency of the high-frequency power supplied from the supply means, and the high-pressure discharge lamp is preliminarily provided by a specific frequency range having a voltage range in the vicinity of a saturation voltage during stable lighting and a non-resonant region in the voltage range. In the high pressure discharge lamp lighting device that stably lights in a predetermined area, the control circuit supplies high-frequency power outside the specific frequency range at the time of stable lighting at the start of lighting , and the rise of the tube voltage until stable lighting. Accordingly , the lighting frequency is changed so that the lighting frequency falls within the non-resonant region.
この発明に係る高圧放電灯装置によれば、光束立ち上がり時から安定点灯までの間の高圧放電灯の発光管内の放電アークの湾曲に伴う共鳴現象を抑制して安定に高圧放電灯を点灯させることができる。
According to the high-pressure discharge lamp device according to the present invention, the high-pressure discharge lamp can be stably lit by suppressing the resonance phenomenon associated with the curve of the discharge arc in the arc tube of the high-pressure discharge lamp from the time when the luminous flux rises until stable lighting. Can do.
実施の形態1.
高圧放電灯は、通常、点灯を開始してから約30秒間、封入されたアルゴンガスによる放電が続き、その後水銀などの金属成分が蒸発し始め、管電圧が急激に上昇するという特性を示す。
Embodiment 1 FIG.
The high-pressure discharge lamp usually has a characteristic that the discharge by the enclosed argon gas continues for about 30 seconds after the lighting is started, and thereafter a metal component such as mercury starts to evaporate and the tube voltage rapidly increases.
本発明は、アルゴンガスによる放電が続いた後、管電圧の上昇に伴って、音響共鳴現象が発生する領域に達するような点灯周波数が、スタート時に設定された場合の制御方法に関するものである。 The present invention relates to a control method in a case where a lighting frequency that reaches an area where an acoustic resonance phenomenon occurs with a rise in tube voltage after discharge by argon gas is set at the start.
図1に本実施の形態に係る高圧放電灯点灯装置の回路構成を示す。図1において、従来例との相違点は高圧放電灯8の管電圧を検出する管電圧検出回路9を設け、この管電圧検出回路9の検出値から音響共鳴現象が発生しない非共鳴周波数を抽出し、その周波数に対して点灯周波数を一致させるようにハーフブリッジ回路2を構成するスイッチング素子2a,2bの駆動周波数を制御する制御回路10を設け、更に、共鳴強度検出回路11を設けた点である。
FIG. 1 shows a circuit configuration of a high pressure discharge lamp lighting device according to the present embodiment. In FIG. 1, a difference from the conventional example is that a tube
また図2は、定格電力35Wのセラミック製発光管を持つメタルハライド高圧放電灯に対する点灯周波数と管電圧とこれによって発生する音響共鳴現象の関係を具体的に示したものである。図に示すように音響共鳴現象の発生の有無や強弱によって、A、B、C、D、E、F、Gの各領域に分けられる。 FIG. 2 specifically shows the relationship between the lighting frequency, tube voltage, and acoustic resonance phenomenon generated thereby for a metal halide high pressure discharge lamp having a ceramic arc tube with a rated power of 35 W. As shown in the figure, each region is divided into A, B, C, D, E, F, and G depending on whether or not an acoustic resonance phenomenon occurs and how strong it is.
ここで、音響共鳴現象が発生する領域、発生しない領域をそれぞれ「共鳴領域」、「非共鳴領域」という。また共鳴領域を、共鳴の強さによって強度、中度、弱度の三つのレベルに分ける。
まず「強度の共鳴領域」では、放電アークが激しく揺れて立ち消える。
また「中度の共鳴領域」では、放電アークが揺れるものの立ち消えを起こす確率は低い。これら二つの共鳴領域は、点灯そのものが成立しない領域と見做すことが出来る。
Here, a region where the acoustic resonance phenomenon occurs and a region where the acoustic resonance phenomenon does not occur are referred to as “resonance region” and “non-resonance region”, respectively. The resonance region is divided into three levels of intensity, medium and weak depending on the strength of resonance.
First, in the “strength resonance region”, the discharge arc shakes violently and disappears.
Also, in the “medium resonance region”, the probability that the discharge arc fluctuates but disappears is low. These two resonance regions can be regarded as regions where lighting itself is not established.
さらに「弱度の共鳴領域」では、音響共鳴現象はほとんど起きないが、放電アークが完全に安定しているわけではなく、ちらつくことがある。
したがって「弱度の共鳴領域」を、光束が立上るところで使う場合は、問題にはならないが、安定点灯時の領域として使う場合は、ユーザに対して違和感を与えることがあるので不適切である。
Furthermore, in the “weak resonance region”, the acoustic resonance phenomenon hardly occurs, but the discharge arc is not completely stable and may flicker.
Therefore, it is not a problem when the “weak resonance region” is used in a place where the luminous flux rises, but it is inappropriate to use it as a region during stable lighting because it may give the user a sense of discomfort. .
このような分類のもと、領域Aは管電圧が0Vから約50Vまでのアルゴンガスの放電によって占有される領域であり、「非共鳴領域」である。また領域B、C、D、E、F、Gは、全て管電圧が約50V以上の領域であり、点灯周波数の低い方からこの順番に並んでいる。それぞれ「強度の共鳴領域」、「非共鳴領域」、「弱度の共鳴領域」、「中度の共鳴領域」、「非共鳴領域」、「強度の共鳴領域」に対応している。 Under such a classification, the region A is a region occupied by the discharge of argon gas whose tube voltage is from 0 V to about 50 V, and is a “non-resonant region”. The regions B, C, D, E, F, and G are all regions where the tube voltage is about 50 V or more, and are arranged in this order from the lowest lighting frequency. These correspond to “intensity resonance region”, “non-resonance region”, “weak resonance region”, “medium resonance region”, “non-resonance region”, and “intensity resonance region”, respectively.
また、これら領域B〜Gにおいて、隣合う領域の境界線は、管電圧の上昇に伴って周波数が減少する特性を示す。 Further, in these regions B to G, the boundary line between adjacent regions shows a characteristic that the frequency decreases as the tube voltage increases.
図2のケースでは、領域Bと領域C、領域Cと領域D、領域Dと領域E、領域Eと領域F、領域Fと領域Gの境界線は、それぞれ(31KHz,50V)、(32.5KHz,50V)、(44.5KHz,50V)、(46KHz,50V)、(49.5KHz,50V)を起点とする傾き(−0.17KHz/V)の直線で近似される。 In the case of FIG. 2, the boundary lines of the region B and the region C, the region C and the region D, the region D and the region E, the region E and the region F, and the region F and the region G are (31 KHz, 50 V) and (32. 5KHz, 50V), (44.5KHz, 50V), (46KHz, 50V), and (49.5KHz, 50V) are approximated by a straight line having an inclination (−0.17 KHz / V).
このように境界線が管電圧の上昇に対して周波数が減少する特性を示す理由については、以下のように考えられる。 The reason why the boundary line exhibits such a characteristic that the frequency decreases as the tube voltage increases is considered as follows.
一般に音響共鳴現象が発生する周波数をfrとすると、周波数frは、発光管内の音速と発光管の形状因子の積に比例することが知られている。 In general, it is known that if the frequency at which the acoustic resonance phenomenon occurs is fr, the frequency fr is proportional to the product of the sound velocity in the arc tube and the shape factor of the arc tube.
一方、音速は管内に封入されたガスの平均分子量と絶対温度をそれぞれM、Tで表すと、(絶対温度T)/(平均分子量M) の1/2乗に比例することが知られている。 On the other hand, it is known that the speed of sound is proportional to the 1/2 power of (absolute temperature T) / (average molecular weight M) when the average molecular weight and absolute temperature of the gas sealed in the tube are represented by M and T, respectively. .
ここで、立上り時における絶対温度Tの変化率と、平均分子量Mの変化率を比べると、アルゴンガスによる放電以降は、封入されている水銀、ナトリウム、タリウム、スカンジウム、ジスプロチウムなどの金属成分が気化するため、平均分子量Mは急激に増大し、変化率の点で絶対温度Tを大きく上回る。このことはアルゴンガスによる放電以降、(絶対温度T)/(平均分子量M)が減少し、周波数frが減少することを意味している。この結果、境界線は、図2に示すように、管電圧の上昇に伴って周波数が減少する特性を示すようになる。 Here, when the rate of change in absolute temperature T at the time of rising is compared with the rate of change in average molecular weight M, the metal components such as mercury, sodium, thallium, scandium, dysprotium, etc. enclosed are discharged after the discharge with argon gas. Because of vaporization, the average molecular weight M increases rapidly and greatly exceeds the absolute temperature T in terms of rate of change. This means that (absolute temperature T) / (average molecular weight M) decreases and frequency fr decreases after the discharge with argon gas. As a result, as shown in FIG. 2, the boundary line shows a characteristic that the frequency decreases as the tube voltage increases.
また、管電圧はスタート時より増加し始め、中度もしくは強度の共鳴領域を通らないようにすれば、そのまま増加し続け、これ以上増加しなくなる飽和電圧に到達する。図2においてVsは、このような飽和電圧が収まる電圧範囲(75〜82V)を示したものである。またこの電圧範囲Vsによって、領域F(非共鳴領域)が切り取られる部分の周波数範囲(41〜45KHz)をfsで表している。 Further, the tube voltage starts to increase from the start, and if it does not pass through the medium or strong resonance region, it continues to increase and reaches a saturation voltage that does not increase any more. In FIG. 2, Vs indicates a voltage range (75 to 82 V) in which such a saturation voltage falls. In addition, the frequency range (41 to 45 KHz) where the region F (non-resonant region) is cut is represented by fs by the voltage range Vs.
高圧放電灯をちらつきなく安定に点灯させるためには、これら電圧範囲Vsと周波数範囲fsに囲まれた領域内に、管電圧と点灯周波数を収めるように制御することが重要である。この点に関し、L1は、本実施の形態に係る高圧放電灯点灯装置の管電圧と点灯周波数によって与えられる動作点が辿る軌跡を示したものである。 In order to light the high pressure discharge lamp stably without flickering, it is important to control the tube voltage and the lighting frequency so as to fall within the region surrounded by the voltage range Vs and the frequency range fs. In this regard, L1 indicates a trajectory followed by the operating point given by the tube voltage and the lighting frequency of the high-pressure discharge lamp lighting device according to the present embodiment.
次に図1、2をもとに動作を説明する。
スタート時の点灯周波数f1は、周波数範囲fsの近傍で任意に設定するものであるが、本実施の形態では、管電圧が、領域A(非共鳴領域)から領域D(弱度の共鳴領域)を経て領域E(中度の共鳴領域)へ移行する周波数を設定した場合について説明する。
Next, the operation will be described with reference to FIGS.
The lighting frequency f1 at the start is arbitrarily set in the vicinity of the frequency range fs. In the present embodiment, the tube voltage is changed from the region A (non-resonant region) to the region D (weak resonance region). A case will be described in which the frequency to be shifted to the region E (medium resonance region) is set.
まず、制御回路10は、点灯開始時に周波数f1にて各スイッチング素子2a、2bを駆動制御し、共鳴強度検出回路11から切替え信号を受け取るまでは、この周波数f1を維持する。
First, the control circuit 10 drives and controls the
また、管電圧検出回路9は、管電圧の実効値またはピーク値を直流化して検出し、この検出値を共鳴強度検出回路11に入力する。直流化された管電圧は、高圧放電灯の放電アークの揺れに起因するちらつきが発生すると、これと同期して振動する。
The tube
本実施の形態の場合、管電圧の上昇に伴って、領域D(弱度の共鳴領域)から領域E(中度の共鳴領域)へ移行する過程(領域Dと領域Eの境界近傍)に達した時点よりちらつきが始まる。 In the case of the present embodiment, as the tube voltage increases, the process proceeds from region D (weak resonance region) to region E (medium resonance region) (near the boundary between region D and region E). Flickering starts from the time when you do.
一方、共鳴強度検出回路11は、直流化された管電圧の電圧変動の振幅を算出し、その振幅が所定の値以上になった時、音響共鳴現象による放電アークの揺れが、所定以上の大きさを有するものと判定し、切替え信号を出力し、制御回路10が出力する周波数f1を所定幅δf1だけ上昇させるように設定されている。 On the other hand, the resonance intensity detection circuit 11 calculates the amplitude of the voltage fluctuation of the tube voltage converted to DC, and when the amplitude exceeds a predetermined value, the fluctuation of the discharge arc due to the acoustic resonance phenomenon is greater than a predetermined value. It is determined that the frequency f1 output from the control circuit 10 is increased by a predetermined width δf1.
したがって、これによって領域D(弱度の共鳴領域)と領域E(中度の共鳴領域)の境界近傍が検出され、制御回路10は、点灯周波数を、周波数f1から領域F(非共鳴領域)に含まれる新しい周波数f2(=f1+δf1)へと切替え、出力する。ここで所定幅δf1は、実験的に求められた領域区分をもとに、領域E(中度の共鳴領域)の周波数幅より大きく設定されている。 Therefore, this detects the vicinity of the boundary between the region D (weak resonance region) and the region E (medium resonance region), and the control circuit 10 changes the lighting frequency from the frequency f1 to the region F (non-resonance region). Switch to the new frequency f2 (= f1 + δf1) included and output. Here, the predetermined width δf1 is set to be larger than the frequency width of the region E (medium resonance region) based on the experimentally obtained region section.
このようにして管電圧と点灯周波数によって与えられる動作点は、領域A(非共鳴領域)→領域D(弱度の共鳴領域)→領域F(非共鳴領域)と移動し、中度または強度の共鳴領域を回避して安定点灯の領域に到達することができる。 In this way, the operating point given by the tube voltage and the lighting frequency moves from region A (non-resonant region) → region D (weak resonance region) → region F (non-resonant region). It is possible to avoid the resonance region and reach the stable lighting region.
また、領域D(弱度の共鳴領域)と領域E(中度の共鳴領域)の境界近傍で、管電圧の振動を検知する瞬間や、領域E(中度の共鳴領域)を通過する瞬間は、放電現象の観点からも視覚的観点からも十分短い時間であるのでちらつきが問題になることはない。なお、点灯周波数をf1からf2に切替えた後、点灯周波数を非共鳴領域に収める制御については、種々の方法があるが、本発明の主旨とは関係がないので省略する。 In addition, in the vicinity of the boundary between the region D (weak resonance region) and the region E (medium resonance region), the moment when the tube voltage oscillation is detected or the moment when it passes through the region E (medium resonance region) From the viewpoint of the discharge phenomenon and the visual viewpoint, the time is sufficiently short so that the flicker does not become a problem. Although there are various methods for controlling the lighting frequency within the non-resonant region after switching the lighting frequency from f1 to f2, it is omitted because it is not related to the gist of the present invention.
以上のように、光束立ち上り時に放電状態の変化に応じて点灯周波数を変化させ、音響共鳴現象を回避するようにしたので、安定点灯到達前のちらつきを回避することができる。 As described above, since the lighting frequency is changed in accordance with the change of the discharge state at the rising of the luminous flux to avoid the acoustic resonance phenomenon, the flicker before reaching the stable lighting can be avoided.
なお、点灯動作を開始してから所定時間が経過しても、共鳴強度検出回路11により領域D(弱度の共鳴領域)と領域E(中度の共鳴領域)の境界近傍が検出されなかった場合には、制御回路10が、強制的に、点灯周波数をf1からf2に切替えるように構成しても良い。 Even when a predetermined time has elapsed after starting the lighting operation, the resonance intensity detection circuit 11 did not detect the vicinity of the boundary between the region D (weak resonance region) and the region E (medium resonance region). In this case, the control circuit 10 may be configured to forcibly switch the lighting frequency from f1 to f2.
このようにすれば、スタート時に点灯周波数f1が低めに設定され、音響共鳴現象が起こり難い領域D(弱度の共鳴領域)において、光束立ち上がり時に音響共鳴現象が全く起きなかったり、放電アークの揺れが小さく検出され難い場合であっても、確実に安定点灯用の非共鳴領域における制御に移行することができ、点灯の安定性を確保することができる。また、点灯開始直後の過渡的な管電圧の変化による誤検出を防ぐことができ、確実に音響共鳴現象を回避することができる。 In this way, at the start, the lighting frequency f1 is set to be low, and in the region D where the acoustic resonance phenomenon hardly occurs (the weak resonance region), no acoustic resonance phenomenon occurs at the time of the rising of the light beam, or the discharge arc fluctuates. Even when it is small and difficult to detect, it is possible to reliably shift to control in a non-resonant region for stable lighting, and to ensure lighting stability. Further, erroneous detection due to a transient change in tube voltage immediately after the start of lighting can be prevented, and the acoustic resonance phenomenon can be reliably avoided.
また、本実施の形態では、管電圧が、領域D(弱度の共鳴領域)と領域E(中度の共鳴領域)の境界近傍に達した時点で、既に電圧範囲Vsに到達しており、点灯周波数をf1からf2に切替えるだけで済む場合について説明したが、以降の実施の形態の中では管電圧が領域Dと領域Eの境界近傍に達した時点では、まだ電圧範囲Vsに到達していない場合について説明する。 In the present embodiment, the tube voltage has already reached the voltage range Vs when the tube voltage reaches the vicinity of the boundary between the region D (weak resonance region) and the region E (medium resonance region). The case where only the lighting frequency is switched from f1 to f2 has been described. However, in the following embodiments, when the tube voltage reaches the vicinity of the boundary between the region D and the region E, the voltage range Vs is still reached. The case where there is not will be described.
実施の形態2.
実施の形態1では、管電圧の上昇に伴って、領域A(非共鳴領域)から領域D(弱度の共鳴領域)へ移行する周波数が、スタート時に選ばれた場合の制御方法について説明したが、本実施の形態では、領域A(非共鳴領域)から領域F(非共鳴領域)を経て領域G(強度の共鳴領域)へ移行する周波数が選ばれた場合の制御方法について説明する。
Embodiment 2. FIG.
In the first embodiment, the control method in the case where the frequency at which the transition from the region A (non-resonance region) to the region D (weak resonance region) with the increase of the tube voltage is selected at the start has been described. In the present embodiment, a control method in the case where a frequency for transition from region A (non-resonant region) to region G (intensity resonance region) through region F (non-resonant region) is selected will be described.
回路構成図は実施の形態1で示したものと同じであるので説明を省略する。また、図3は、図2で示した区画化された領域A〜Gをベースに、本実施の形態に係る高圧放電灯点灯装置の管電圧と点灯周波数によって与えられる動作点が辿る軌跡L2を、書き込んだものである。 Since the circuit configuration diagram is the same as that shown in the first embodiment, a description thereof will be omitted. 3 shows a locus L2 followed by an operating point given by the tube voltage and the lighting frequency of the high-pressure discharge lamp lighting device according to the present embodiment, based on the partitioned areas A to G shown in FIG. , Written.
次に図1、3をもとに動作を説明する。制御回路10がスタート時に周波数f1にて各スイッチング素子を駆動制御し、共鳴強度検出回路11から出力された切替え信号を受け取るまで、この周波数を維持すること、また管電圧検出回路9により直流化された管電圧が、高圧放電灯のアークの揺れに同期して振動すること、及びこの直流化された管電圧が共鳴強度検出回路11に入力されることは実施の形態1と同じである。 Next, the operation will be described with reference to FIGS. The control circuit 10 drives and controls each switching element at the frequency f1 at the start, and maintains this frequency until the switching signal outputted from the resonance intensity detection circuit 11 is received. In the same manner as in the first embodiment, the tube voltage vibrates in synchronism with the fluctuation of the arc of the high-pressure discharge lamp, and that the DC tube voltage is input to the resonance intensity detection circuit 11.
ここで前述の通り、点灯周波数f1は、光束の立ち上り(管電圧の上昇)に伴って領域A(非共鳴領域)から領域F(非共鳴領域)を経て領域G(強度の共鳴領域)へ移行するものが設定されている。そして管電圧が領域F(非共鳴領域)と領域G(強度の共鳴領域)の境界近傍に達した時点よりちらつきが始まる。 Here, as described above, the lighting frequency f1 shifts from the region A (non-resonance region) to the region G (intensity resonance region) through the region F (non-resonance region) as the luminous flux rises (increase in tube voltage). What to do is set. Then, flickering starts when the tube voltage reaches the vicinity of the boundary between the region F (non-resonance region) and the region G (strength resonance region).
一方共鳴強度検出回路11は、直流化された管電圧の電圧変動の振幅を算出し、その振幅が所定値以上になったら切替え信号を出力し、制御回路10がスイッチング素子を駆動制御する周波数f1を、所定幅δf2だけ下降させるように設定されている。 On the other hand, the resonance intensity detection circuit 11 calculates the amplitude of the voltage fluctuation of the DC tube voltage, outputs a switching signal when the amplitude exceeds a predetermined value, and the frequency f1 at which the control circuit 10 drives and controls the switching element. Is set to be lowered by a predetermined width δf2.
したがって、これによって領域F(非共鳴領域)と領域G(強度の共鳴領域)の境界近傍が検出され、領域F(非共鳴領域)内に留まる新しい点灯周波数f2(=f1−δf2)にて制御回路10は各スイッチング素子を駆動制御する。制御回路10は、再び切替え信号を受け取るまで、この周波数f2を維持する。ここで所定幅δf2は、実験的に求められた領域区分をもとに、領域F(非共鳴領域)の周波数幅より小さく設定されている。 Therefore, the vicinity of the boundary between the region F (non-resonance region) and the region G (intensity resonance region) is detected by this, and control is performed with a new lighting frequency f2 (= f1-δf2) that remains in the region F (non-resonance region). The circuit 10 drives and controls each switching element. The control circuit 10 maintains this frequency f2 until it receives the switching signal again. Here, the predetermined width δf2 is set to be smaller than the frequency width of the region F (non-resonant region) based on the experimentally obtained region section.
またこの場合、図から明らかなように、管電圧はまだ安定点灯する電圧範囲Vsに達していないので、その後も増加を続け、再び領域F(非共鳴領域)と領域G(強度の共鳴領域)の境界近傍が検出される。検出された後、共鳴強度検出回路11から切替え信号が出力されると、制御回路10は点灯周波数をδf2だけ下降させ、領域F(非共鳴領域)に含まれる周波数f3(=f2−δf2)にて各スイッチング素子を駆動制御する。この動作は、管電圧が電圧範囲Vsに達して飽和するまで繰返され、点灯周波数fnは常に領域F(非共鳴領域)に留まるように段階的に切替えられる。 In this case, as is apparent from the figure, since the tube voltage has not yet reached the voltage range Vs for stable lighting, it continues to increase thereafter, and again the region F (non-resonance region) and region G (intensity resonance region). The vicinity of the boundary is detected. After the detection, when a switching signal is output from the resonance intensity detection circuit 11, the control circuit 10 lowers the lighting frequency by δf2, and the frequency f3 (= f2−δf2) included in the region F (non-resonance region). The switching elements are driven and controlled. This operation is repeated until the tube voltage reaches the voltage range Vs and is saturated, and the lighting frequency fn is switched stepwise so that it always remains in the region F (non-resonant region).
このようにして管電圧と点灯周波数によって与えられる動作点は、共鳴領域を避けた形で領域A(非共鳴領域)→領域F(非共鳴領域)へと移動し、安定点灯する領域に到達することができる。 Thus, the operating point given by the tube voltage and the lighting frequency moves from the region A (non-resonant region) to the region F (non-resonant region) avoiding the resonance region, and reaches the region where stable lighting is performed. be able to.
なお、安定点灯後に、点灯周波数を非共鳴領域内に留める制御は、種々の方法があるが、本発明の主旨とは関係がないので説明を省略する。但し、上記動作を繰返し行っても点灯周波数は非共鳴領域に留まることになるので、上記動作を継続して実行するようにしても良い。 Although there are various methods for controlling the lighting frequency within the non-resonant region after stable lighting, there is no relation to the gist of the present invention, so that the description is omitted. However, since the lighting frequency remains in the non-resonant region even when the above operation is repeated, the above operation may be continuously executed.
以上のように、光束立ち上り時に放電状態の変化に応じて点灯周波数を変化させ、音響共鳴現象を回避するようにしたので、安定点灯到達前を含む点灯中のちらつきを回避することができる。また、安定点灯に到達するまでに共鳴領域を超えるための周波数切換を行う必要がないので、さらに安定感のある光束立ち上りとすることができる。 As described above, since the lighting frequency is changed in accordance with the change in the discharge state when the luminous flux rises, and the acoustic resonance phenomenon is avoided, flickering during lighting including before reaching stable lighting can be avoided. In addition, since it is not necessary to perform frequency switching for exceeding the resonance region until stable lighting is reached, it is possible to make the luminous flux rise with a more stable feeling.
実施の形態3.
実施の形態2では、管電圧の上昇に伴って、領域A(非共鳴領域)から領域F(非共鳴領域)を経て領域G(強度の共鳴領域)へ移行する周波数を設定した場合の周波数制御について説明した。本実施の形態では、実施の形態2と同じケースにつき、管電圧と点灯周波数によって与えられる動作点が異なる軌跡を辿る制御方法について説明する。
In the second embodiment, as the tube voltage increases, frequency control is performed when a frequency for transition from region A (non-resonance region) to region G (intensity resonance region) through region F (non-resonance region) is set. Explained. In the present embodiment, a control method in which the operating points given by the tube voltage and the lighting frequency follow different trajectories will be described for the same case as in the second embodiment.
回路構成図は実施の形態1で示したものと同じであるので説明を省略する。また、図4は、図2で示した区画化された領域A〜Gをベースに、本実施の形態に係る高圧放電灯点灯装置の管電圧と点灯周波数によって与えられる動作点が辿る軌跡L3を、書き込んだものである。 Since the circuit configuration diagram is the same as that shown in the first embodiment, a description thereof will be omitted. FIG. 4 shows a locus L3 followed by the operating point given by the tube voltage and the lighting frequency of the high pressure discharge lamp lighting device according to the present embodiment based on the partitioned areas A to G shown in FIG. , Written.
次に図1、4をもとに動作を説明する。
制御回路10がスタート時に周波数f1にて各スイッチング素子を駆動制御し、共鳴強度検出回路11から出力された切替え信号を受け取るまで、この周波数を維持すること、また管電圧検出回路9により直流化された管電圧が、高圧放電灯のアークの揺れに同期して振動すること、及びこの直流化された管電圧が共鳴強度検出回路11に入力されることは実施の形態4と同じである。
Next, the operation will be described with reference to FIGS.
The control circuit 10 drives and controls each switching element at the frequency f1 at the start, and maintains this frequency until the switching signal outputted from the resonance intensity detection circuit 11 is received. As in the fourth embodiment, the tube voltage oscillates in synchronism with the fluctuation of the arc of the high-pressure discharge lamp and that the DC tube voltage is input to the resonance intensity detection circuit 11.
一方、共鳴強度検出回路11は、直流化された管電圧の電圧変動の振幅を算出し、その振幅が所定値以上になったら切替え信号を出力し、制御回路10が、各スイッチング素子を駆動制御する周波数f1を、漸減させる。漸減させていくと、やがて領域F(非共鳴領域)と領域E(中度の共鳴領域)の境界近傍で再びちらつきが始まる。 On the other hand, the resonance intensity detection circuit 11 calculates the amplitude of the voltage fluctuation of the DC tube voltage and outputs a switching signal when the amplitude exceeds a predetermined value, and the control circuit 10 controls driving of each switching element. The frequency f1 is gradually decreased. As it gradually decreases, the flickering starts again in the vicinity of the boundary between the region F (non-resonant region) and the region E (medium resonant region).
これによって領域F(非共鳴領域)と領域E(中度の共鳴領域)の境界近傍が検出され、制御回路10は領域F(非共鳴領域)内に留まる新しい点灯周波数f2(=f1−fh+δf3)にて各スイッチング素子を駆動制御する。ここでfhは、領域F(非共鳴領域)の周波数幅であり、δf3は、周波数幅fhより小さく設定された周波数増分である。共に実験的に求められた領域区分をもとに、設定されている。 As a result, the vicinity of the boundary between the region F (non-resonance region) and the region E (medium resonance region) is detected, and the control circuit 10 can detect a new lighting frequency f2 (= f1-fh + δf3) that remains in the region F (non-resonance region). The drive of each switching element is controlled by. Here, fh is a frequency width of the region F (non-resonant region), and δf3 is a frequency increment set smaller than the frequency width fh. Both are set based on the experimentally obtained area divisions.
またこの場合も、図から明らかなように、管電圧は安定点灯する電圧範囲Vsに達していないので、増加を続ける。 Also in this case, as is apparent from the drawing, the tube voltage does not reach the voltage range Vs for stable lighting, and therefore continues to increase.
ここで点灯周波数f2は所定時間維持され、その間管電圧は増加する。所定時間維持された後、共鳴強度検出回路11から出力された切替え信号をトリガとして、周波数は再び漸減される。漸減させていくと、領域F(非共鳴領域)と領域E(中度の共鳴領域)の境界近傍の周波数が、再び求められる。この求められた周波数からδf3だけ増加させ、制御回路10は領域F(非共鳴領域)内に含まれる点灯周波数f3にて各スイッチング素子を駆動制御する。 Here, the lighting frequency f2 is maintained for a predetermined time, during which the tube voltage increases. After being maintained for a predetermined time, the frequency is gradually decreased again using the switching signal output from the resonance intensity detection circuit 11 as a trigger. When the frequency is gradually decreased, the frequency near the boundary between the region F (non-resonant region) and the region E (medium resonance region) is obtained again. The control circuit 10 drives and controls each switching element at the lighting frequency f3 included in the region F (non-resonant region) by increasing the calculated frequency by δf3.
この動作は、管電圧が電圧範囲Vsに達して飽和するまで繰返され、点灯周波数fnは常に領域F(非共鳴領域)に留まるように段階的に切替えられる。 This operation is repeated until the tube voltage reaches the voltage range Vs and is saturated, and the lighting frequency fn is switched stepwise so that it always remains in the region F (non-resonant region).
これにより、管電圧と点灯周波数によって与えられる動作点は共鳴領域を避けて、領域A(非共鳴領域)→領域F(非共鳴領域)と移動し、安定点灯の領域に到達することができる。 As a result, the operating point given by the tube voltage and the lighting frequency moves from region A (non-resonant region) to region F (non-resonant region), avoiding the resonance region, and can reach the region of stable lighting.
なお、安定点灯到達後に、点灯周波数を非共鳴領域に留める制御は、種々の方法があるが、本発明の主旨とは関係がないので説明を省略する。但し、上記動作を繰返し行っても点灯周波数は非共鳴領域に留まることになるので、上記動作を継続して実行するようにしても良い。 Although there are various methods for controlling the lighting frequency in the non-resonant region after the stable lighting is reached, the description is omitted because it is not related to the gist of the present invention. However, since the lighting frequency remains in the non-resonant region even if the above operation is repeated, the above operation may be continued.
以上のように、光束立ち上り時に放電状態の変化に応じて点灯周波数を変化させ、音響共鳴現象を回避するようにしたので、安定点灯到達前を含む点灯中のちらつきを回避することができる。また、安定点灯に到達するまでに共鳴領域を超えるための周波数切換を行う必要がなく、安定点灯に到達できるので、さらに安定感のある光束立ち上りとすることができる。さらに、安定点灯到達後は上記の動作のインターバルを大きくして同様の制御をしても良く、これによって安定点灯中も点灯周波数が常に領域F(非共鳴領域)に含まれるようになる。 As described above, since the lighting frequency is changed in accordance with the change in the discharge state when the luminous flux rises, and the acoustic resonance phenomenon is avoided, flickering during lighting including before reaching stable lighting can be avoided. Further, it is not necessary to switch the frequency for exceeding the resonance region until stable lighting is reached, and stable lighting can be achieved, so that a more stable luminous flux rise can be achieved. Further, after reaching stable lighting, the above-described operation interval may be increased and the same control may be performed, so that the lighting frequency is always included in the region F (non-resonant region) even during stable lighting.
また、本実施の形態では、点灯周波数fn(n>2)を決定する際、点灯周波数を下降させて領域E(中度の共鳴領域)と領域F(非共鳴領域)の境界近傍を検出するようにしたが、逆に点灯周波数を上昇させて領域F(非共鳴領域)と領域G(強度の共鳴領域)の境界近傍を検出し、点灯周波数fnをその境界からδf4だけ低い周波数とする制御としても同様の効果が期待できる。 In the present embodiment, when determining the lighting frequency fn (n> 2), the lighting frequency is lowered to detect the vicinity of the boundary between the region E (medium resonance region) and the region F (non-resonance region). However, conversely, the lighting frequency is increased to detect the vicinity of the boundary between the region F (non-resonance region) and the region G (intensity resonance region), and the lighting frequency fn is controlled to be lower by δf4 from the boundary. However, the same effect can be expected.
実施の形態4.
実施の形態2または3では、領域F(非共鳴領域)と領域E(中度の共鳴領域)、または領域G(強度の共鳴領域)の境界近傍を検出し、境界近傍に対応する周波数を少し変位させ、点灯周波数が常に領域F(非共鳴領域)内に留まるような制御方法について説明したが、本実施の形態では境界近傍を検出することなく点灯周波数を常に領域F(非共鳴領域)内に留める制御方法について説明する。
In the second or third embodiment, the vicinity of the boundary between the region F (non-resonance region) and the region E (medium resonance region) or the region G (intensity resonance region) is detected, and a frequency corresponding to the vicinity of the boundary is slightly changed. The control method has been described in which the lighting frequency is always kept within the region F (non-resonant region). However, in the present embodiment, the lighting frequency is always within the region F (non-resonant region) without detecting the vicinity of the boundary. A control method to be described will be described.
回路構成図は実施の形態1で示したものと同じであるので説明を省略する。また、図5は、図2で示した区画化された領域A〜Gをベースに、本実施の形態に係る高圧放電灯点灯装置の管電圧と点灯周波数によって与えられる動作点が辿る軌跡L4を、書き込んだものである。 Since the circuit configuration diagram is the same as that shown in the first embodiment, a description thereof will be omitted. Further, FIG. 5 shows a trajectory L4 followed by the operating point given by the tube voltage and the lighting frequency of the high pressure discharge lamp lighting device according to the present embodiment based on the partitioned areas A to G shown in FIG. , Written.
次に、図1、5をもとに動作を説明する。制御回路10において、管電圧と点灯周波数によって与えられる動作点が、管電圧の増加に対して点灯周波数が略一定の変化率で減少するような軌跡を、領域F(非共鳴領域)内で描くような変換式を予め求めておき、この式を制御回路10内のメモリ(図示せず)に格納する。 Next, the operation will be described with reference to FIGS. In the control circuit 10, an operating point given by the tube voltage and the lighting frequency draws a locus in the region F (non-resonant region) such that the lighting frequency decreases at a substantially constant change rate with respect to the increase of the tube voltage. Such a conversion formula is obtained in advance, and this formula is stored in a memory (not shown) in the control circuit 10.
そして、管電圧検出回路9による管電圧が、領域F(非共鳴領域)内に収まったことを確認し、管電圧をもとにメモリに格納された変換式から周波数を算出し、点灯周波数が算出された周波数となるように制御する。
Then, it is confirmed that the tube voltage by the tube
これにより、管電圧と点灯周波数によって与えられる動作点は制御F(非共鳴領域)に達した後、管電圧の上昇に伴って連続的に漸減しながら常に領域F(非共鳴領域)内に留まることになる。 Thereby, after the operating point given by the tube voltage and the lighting frequency reaches the control F (non-resonance region), it always stays in the region F (non-resonance region) while gradually decreasing as the tube voltage increases. It will be.
即ち、領域A(非共鳴領域)→領域F(非共鳴領域)へと移動し、共鳴領域を避けて安定点灯に移行することができる。 That is, it can move from region A (non-resonant region) to region F (non-resonant region), and can shift to stable lighting while avoiding the resonance region.
また、ここでは変換式を用いる場合について説明したが、換算テーブルを予め作っておき、これをメモリに格納するようにしても良い。なお、安定点灯到達後に、点灯周波数を非共鳴領域に留める制御は、種々の方法があるが、本発明の主旨ではないので説明を省略する。但し、上記動作を繰返し行っても点灯周波数は非共鳴領域に留まることになるので、上記動作を継続して実行するようにしても良い。 Although the case of using a conversion formula has been described here, a conversion table may be prepared in advance and stored in a memory. Although there are various methods for controlling the lighting frequency in the non-resonant region after the stable lighting is reached, the description is omitted because it is not the gist of the present invention. However, since the lighting frequency remains in the non-resonant region even if the above operation is repeated, the above operation may be continued.
以上のように、管電圧に応じて点灯周波数を下降させ、音響共鳴現象を回避するようにしたので、安定点灯到達前を含む点灯中のちらつきを回避することができる。 As described above, since the lighting frequency is lowered according to the tube voltage to avoid the acoustic resonance phenomenon, flickering during lighting including before reaching stable lighting can be avoided.
・参考例
実施の形態1乃至4では、安定点灯前のちらつき回避を単一のアルゴリズムによって行っていたが、本参考例では上記を組み合わせた場合の周波数制御について説明する。
Reference Example In Embodiments 1 to 4, flicker avoidance before stable lighting is performed by a single algorithm, but in this reference example , frequency control when the above is combined will be described.
回路構成図は実施の形態1で示したものと同じであるので説明を省略する。また、図6〜8は、それぞれ図2で示した区画化された領域A〜Gをベースに、本実施の形態に係る高圧放電灯点灯装置の管電圧と点灯周波数によって与えられる動作点が辿る軌跡L5〜L7を、書き込んだものである。 Since the circuit configuration diagram is the same as that shown in the first embodiment, a description thereof will be omitted. 6 to 8 follow the operating points given by the tube voltage and the lighting frequency of the high-pressure discharge lamp lighting device according to the present embodiment, based on the partitioned areas A to G shown in FIG. The trajectories L5 to L7 are written.
次にこれら図を基に動作について説明する。動作点が、領域A(非共鳴領域)及び領域D(弱度の共鳴領域)に含まれている状態では、軌跡L5、L6及びL7とも、実施の形態1で説明したものと同様の制御が行われる。 Next, the operation will be described with reference to these drawings. In a state where the operating point is included in the region A (non-resonant region) and the region D (weak resonance region), the trajectories L5, L6, and L7 are controlled in the same manner as described in the first embodiment. Done.
動作点が領域D(弱度の共鳴領域)から領域F(非共鳴領域)へ移動した後、軌跡L5は実施の形態2で説明したものと、また軌跡L6は実施の形態3で説明したものと、また軌跡L7は実施の形態4で説明したものと同様の制御が行われる。 After the operating point moves from the region D (weak resonance region) to the region F (non-resonance region), the locus L5 is the same as that described in the second embodiment, and the locus L6 is the same as that described in the third embodiment. In addition, the locus L7 is controlled in the same way as described in the fourth embodiment.
これにより管電圧と点灯周波数によって与えられる動作点は、領域A(非共鳴領域)→領域D(弱度の共鳴領域)→領域F(非共鳴領域)と移動し、中度または強度の共鳴領域を避けて安定点灯に移行することができる。 As a result, the operating point given by the tube voltage and the lighting frequency moves from region A (non-resonant region) to region D (weak resonance region) to region F (non-resonant region). Can be switched to stable lighting.
なお、領域D(弱度の共鳴領域)と領域E(中度の共鳴領域)の境界近傍で管電圧の振動を検知する瞬間や、領域E(中度の共鳴領域)を通過する瞬間は、放電現象の観点からも視覚的観点からも十分短い時間であるのでちらつきが問題になることはない。 It should be noted that the moment of detecting tube voltage oscillation near the boundary between the region D (weak resonance region) and the region E (medium resonance region) or the moment of passing through the region E (medium resonance region) Since the time is sufficiently short from the viewpoint of the discharge phenomenon and the visual viewpoint, flicker does not become a problem.
以上のように、光束立ち上り時に放電状態の変化に応じて点灯周波数を変化させ、音響共鳴現象を回避するようにしたので、安定点灯到達前のちらつきを回避することができる。 As described above, since the lighting frequency is changed in accordance with the change of the discharge state at the rising of the luminous flux to avoid the acoustic resonance phenomenon, the flicker before reaching the stable lighting can be avoided.
また、複数の制御アルゴリズムを組み合わせることで共鳴領域E(中度の共鳴領域)や領域F(非共鳴領域)の幅にかかわらず確実に安定点灯到達前のちらつきを回避することができる。 Further, by combining a plurality of control algorithms, it is possible to reliably avoid flicker before reaching stable lighting regardless of the width of the resonance region E (medium resonance region) or the region F (non-resonance region).
なお、実施の形態1乃至4及び参考例において、定格電力35Wのセラミック製発光管を持つメタルハライド高圧放電灯を例に取り上げて説明したが、他の高圧放電灯についても、周波数と管電圧と音響共鳴現象の関係が類似するものであれば、同様の制御で安定点灯前のちらつきを回避できる。 In Embodiments 1 to 4 and the reference example , the metal halide high-pressure discharge lamp having a ceramic arc tube with a rated power of 35 W has been described as an example. However, other high-pressure discharge lamps also have a frequency, a tube voltage, and an acoustic wave. If the relationship of the resonance phenomenon is similar, flicker before stable lighting can be avoided by the same control.
また、実施の形態1乃至4及び参考例において、誤検出を防ぐために、立上がりの初期の過渡的状態(例えばアルゴンガスによる放電等)は無視しても良い。この場合、管電圧が所定値以上、または点灯動作をスタートしてからの時間が所定値以上となった時を起点として、共鳴強度検出回路11の検出結果に基づいて制御するアルゴリズムが適切である。 In the first to fourth embodiments and the reference examples , in order to prevent erroneous detection, the initial transient state (eg, discharge with argon gas) may be ignored. In this case, an algorithm that performs control based on the detection result of the resonance intensity detection circuit 11 starting from the time when the tube voltage is equal to or higher than a predetermined value or the time after starting the lighting operation is equal to or higher than the predetermined value is appropriate. .
1 直流電源、2 ハーフブリッジ回路、3 制御回路、4 負荷回路、5 共振コンデンサ、6 チョークコイル、7 始動回路、8 高圧放電灯、9 管電圧検出回路、10 制御回路、11 共鳴強度検出回路 DESCRIPTION OF SYMBOLS 1 DC power supply, 2 Half bridge circuit, 3 Control circuit, 4 Load circuit, 5 Resonance capacitor, 6 Choke coil, 7 Start circuit, 8 High pressure discharge lamp, 9 Tube voltage detection circuit, 10 Control circuit, 11 Resonance intensity detection circuit
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007112984A JP4222429B2 (en) | 2002-01-07 | 2007-04-23 | High pressure discharge lamp lighting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002000509 | 2002-01-07 | ||
JP2007112984A JP4222429B2 (en) | 2002-01-07 | 2007-04-23 | High pressure discharge lamp lighting device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002250159A Division JP2003264093A (en) | 2002-01-07 | 2002-08-29 | Lighting device for high pressure discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007188908A JP2007188908A (en) | 2007-07-26 |
JP4222429B2 true JP4222429B2 (en) | 2009-02-12 |
Family
ID=38343890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007112984A Expired - Fee Related JP4222429B2 (en) | 2002-01-07 | 2007-04-23 | High pressure discharge lamp lighting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4222429B2 (en) |
-
2007
- 2007-04-23 JP JP2007112984A patent/JP4222429B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007188908A (en) | 2007-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8348437B2 (en) | Discharge lamp lighting device and image display device that controls electric power converter output on a historical basis | |
US6005356A (en) | Operating method and operating apparatus for a high pressure discharge lamp | |
JPH07230884A (en) | High voltage discharge lamp lighting device | |
KR100366777B1 (en) | Method for driving piezoelectic transducer and driving circuit therefor | |
US6225754B1 (en) | Operating method and operating apparatus for a high pressure discharge lamp | |
KR100537826B1 (en) | High-pressure discharge lamp operation apparatus and high-pressure discharge lamp operation method | |
JP2002063993A (en) | Driving device for discharge lamp | |
EP1698214B1 (en) | Method and circuit arrangement for operating a discharge lamp | |
JP4222429B2 (en) | High pressure discharge lamp lighting device | |
EP0906003B1 (en) | Discharge lamp operating apparatus | |
JP2003197386A (en) | Alternating current ballast device and its controlling method | |
JP2006185663A (en) | Lighting device | |
JP4151281B2 (en) | High pressure discharge lamp lighting device | |
JP4178465B2 (en) | High pressure discharge lamp lighting device and lighting fixture | |
JP4103439B2 (en) | High pressure discharge lamp lighting device | |
JP4110820B2 (en) | High pressure discharge lamp lighting device | |
JP4140255B2 (en) | High pressure discharge lamp lighting device | |
JP2005050711A (en) | Discharge lamp lighting device | |
JP2003133096A (en) | Discharge lamp lighting device | |
JP4143897B2 (en) | High pressure discharge lamp lighting device | |
JP4211028B2 (en) | High pressure discharge lamp lighting device | |
JPH04272695A (en) | Lighting device for discharge lamp | |
JP2007179920A (en) | Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer | |
JPH08102393A (en) | Discharge lamp lighting device | |
JP2005203197A (en) | Discharge lamp lighting device and projector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |