JP2007179920A - Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer - Google Patents

Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer Download PDF

Info

Publication number
JP2007179920A
JP2007179920A JP2005378363A JP2005378363A JP2007179920A JP 2007179920 A JP2007179920 A JP 2007179920A JP 2005378363 A JP2005378363 A JP 2005378363A JP 2005378363 A JP2005378363 A JP 2005378363A JP 2007179920 A JP2007179920 A JP 2007179920A
Authority
JP
Japan
Prior art keywords
output
piezoelectric transformer
frequency
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005378363A
Other languages
Japanese (ja)
Inventor
Naoki Furuhashi
直樹 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005378363A priority Critical patent/JP2007179920A/en
Publication of JP2007179920A publication Critical patent/JP2007179920A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of adjusting brightness of a discharge lamp of low power consumption restraining brightness deviation of the discharge lamp for a backlight of a liquid crystal display device, and a power source device using a piezoelectric transformer. <P>SOLUTION: During a period of lighting the discharge lamp, the piezoelectric transformer 7 is driven by a frequency at which boosting ratio of the piezoelectric transformer 7 is high, and during a period of darkly lighting a load 8 as the discharge lamp, the piezoelectric transformer 7 is driven by a frequency at which boosting ratio of the piezoelectric transformer is low. The ratio of the period driving the piezoelectric transformer with a frequency of high boosting ratio and that of low boosting ratio is adjusted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電灯の輝度調整方法と圧電トランスを使用した電源装置に関し、特に、液晶表示装置のバックライト用放電灯の輝度調整に好適な輝度調整方法と圧電トランスを使用した電源装置に関する。   The present invention relates to a brightness adjustment method for a discharge lamp and a power supply device using a piezoelectric transformer, and more particularly to a brightness adjustment method suitable for brightness adjustment of a discharge lamp for a backlight of a liquid crystal display device and a power supply device using a piezoelectric transformer.

液晶表示装置のバックライト用放電灯の輝度調整(以下、調光と称する)は、放電灯に流れる交流電流の振幅を小さくすることで、電流値を低下させ、輝度を低下させている。この方法では、輝度は100%(最大時)〜約50%程度の範囲でしか調光ができない。電流振幅を更に小さくすると放電灯の性質上放電が不安定になる。   In the luminance adjustment (hereinafter referred to as dimming) of the backlight discharge lamp of the liquid crystal display device, the current value is decreased and the luminance is decreased by reducing the amplitude of the alternating current flowing through the discharge lamp. In this method, dimming can be performed only in the range of about 100% (at the maximum) to about 50%. If the current amplitude is further reduced, the discharge becomes unstable due to the nature of the discharge lamp.

最近、充電1回あたりのバッテリー稼動時間を長くするために低域側を広げた100%〜10%程度の調光範囲の液晶表示装置を搭載するノート型パーソナルコンピュータが強く要求されるようになった。   Recently, a notebook personal computer equipped with a liquid crystal display device with a dimming range of about 100% to 10% in which the low frequency range is widened in order to increase the battery operating time per charge has been strongly demanded. It was.

充電1回あたりのバッテリー稼動時間を長くする必要性から連続電流動作による調光範囲の拡大はできないので、放電灯に流れる電流を断続電流動作させて断続電流動作の比率で調光を行う時分割調光方法が多く採用されるようになった。   Since the dimming range by continuous current operation cannot be expanded due to the need to lengthen the battery operating time per charge, time-division that performs dimming at the ratio of intermittent current operation by operating the current flowing in the discharge lamp intermittently Many dimming methods have been adopted.

電流振幅による調光方法と時分割による調光方法との電流波形の比較が図8に示されている。電流振幅による調光方法は、連続電流動作で振幅を変化させ、電流値を変化させることで液晶表示装置のバックライト用放電灯の輝度を調整する方法である。時分割による調光方法は、100Hz〜300Hz程度の調光周波数で電流のON・OFF動作を繰り返し、一定の電流振幅でON動作時とOFF動作時の時間比率を調整する方法である。時分割による調光方法により100%〜10%の調光範囲を実現できる。   FIG. 8 shows a comparison of current waveforms between the dimming method using current amplitude and the dimming method using time division. The dimming method based on the current amplitude is a method of adjusting the luminance of the backlight discharge lamp of the liquid crystal display device by changing the amplitude by a continuous current operation and changing the current value. The dimming method based on time division is a method in which the current ON / OFF operation is repeated at a dimming frequency of about 100 Hz to 300 Hz, and the time ratio between the ON operation and the OFF operation is adjusted with a constant current amplitude. The dimming range of 100% to 10% can be realized by the dimming method by time division.

図9は、時分割調光を採用する圧電インバータの一例を示すブロック図である。図9に示すように、(1)直流電源1と(2) 調光回路10の出力と駆動周波数発生回路11の出力を入力するAND回路12の出力により制御された保護素子付きスイッチZ2と(3)スイッチZ2の出力端とグランド間に接続されたフライホイールのダイオード9と(4)一次側電極から交流電圧を入力し、圧電効果を利用して二次側電極から出力する圧電トランス7と(8)圧電トランス7の一方の一次側電極14とスイッチZ2の出力端の間に接続されたコイル3と(9)圧電トランス7の他方の一次側電極13とスイッチZ2の出力端の間に接続されたコイル4と(10)圧電トランス7の一次側電極14とグランド間に接続された保護素子付きスイッチA5と(11)圧電トランス7の一次側電極13とグランド間に接続された保護素子付きスイッチB6と(12)圧電トランス7の出力を負荷8に供給するための二次側電極15とで構成される。   FIG. 9 is a block diagram illustrating an example of a piezoelectric inverter that employs time-division dimming. As shown in FIG. 9, (1) a DC power supply 1 and (2) a switch Z2 with a protective element controlled by an output of an AND circuit 12 that inputs an output of a dimming circuit 10 and an output of a drive frequency generation circuit 11 ( 3) a flywheel diode 9 connected between the output terminal of the switch Z2 and the ground; and (4) a piezoelectric transformer 7 for inputting an AC voltage from the primary side electrode and outputting from the secondary side electrode using the piezoelectric effect. (8) The coil 3 connected between one primary electrode 14 of the piezoelectric transformer 7 and the output end of the switch Z2, and (9) between the other primary electrode 13 of the piezoelectric transformer 7 and the output end of the switch Z2. The connected coil 4, (10) the switch A 5 with a protective element connected between the primary electrode 14 of the piezoelectric transformer 7 and the ground, and (11) the protective element connected between the primary electrode 13 of the piezoelectric transformer 7 and the ground. With switch B6 and (12) Piezoelectric switch It comprises a secondary electrode 15 for supplying the output of the lance 7 to the load 8.

スイッチA5とスイッチB6は、駆動周波数発生回路11からハイレベルの信号が供給された場合に導通する構造になっている。なお、図10は、プッシュプル構成の圧電トランス駆動回路のスイッチング動作を示す図である。また、駆動周波数発生回路11からスイッチA5とスイッチB6に供給される信号は、図10に示すように互いに位相の反転した効率が50%未満の信号なので、スイッチA5とスイッチB6は、交互に導通する。その結果、交互に導通する都度にコイルと圧電トランス入力容量とで形成される共振が発生し、圧電トランス7の一次側電極13と一次側電極14の間に等価的な交流が入力される。   The switches A5 and B6 are configured to be conductive when a high level signal is supplied from the drive frequency generation circuit 11. FIG. 10 is a diagram illustrating a switching operation of the push-pull piezoelectric transformer driving circuit. Further, since the signals supplied from the drive frequency generation circuit 11 to the switches A5 and B6 are signals whose phase inversion efficiency is less than 50% as shown in FIG. 10, the switches A5 and B6 are alternately turned on. To do. As a result, a resonance formed by the coil and the piezoelectric transformer input capacitance is generated every time the power is alternately conducted, and an equivalent alternating current is input between the primary side electrode 13 and the primary side electrode 14 of the piezoelectric transformer 7.

駆動周波数発生回路11からAND回路12へ出力される信号は、スイッチA5やスイッチB6へ送られる信号の2倍程度の周波数をもつ信号である。スイッチZ2を導通させたい期間は、ハイレベルである。調光回路10からAND回路12へ出力される信号は、100〜300Hz程度の周波数で、時分割調光時に負荷8を消灯させたい期間にローレベルになる。また、AND回路12は、時分割調光時に消灯させたい期間にスイッチZ2を非導通にし、かつ時分割調光時に消灯させたい期間以外の期間は、駆動周波数発生回路11から入力される周波数でスイッチZ2のON・OFF動作を繰り返すことで、スイッチZ2以降のステップ動作を行うブロックに供給する電力を調節している。   The signal output from the drive frequency generation circuit 11 to the AND circuit 12 is a signal having a frequency about twice that of the signal sent to the switch A5 or the switch B6. The period during which the switch Z2 is to be conducted is at a high level. The signal output from the dimming circuit 10 to the AND circuit 12 is at a frequency of about 100 to 300 Hz, and becomes a low level during a period when the load 8 is desired to be extinguished during time-division dimming. The AND circuit 12 makes the switch Z2 non-conductive during a period in which it is desired to turn off during time-division dimming, and the frequency input from the drive frequency generation circuit 11 during periods other than the period in which it is desired to turn off during time-division dimming. By repeating the ON / OFF operation of the switch Z2, the power supplied to the block that performs the step operation after the switch Z2 is adjusted.

図9に示した圧電インバータは、時分割調光時はスイッチZ2により、スイッチZ2以降のステップ動作を行うブロックへの電力供給をゼロにすることで、負荷8の消灯期間を作成している。   The piezoelectric inverter shown in FIG. 9 creates the extinguishing period of the load 8 by setting the power supply to the block performing the step operation after the switch Z2 to zero by the switch Z2 at the time-division dimming.

また、スイッチZ2とダイオード9とを省略して、コイル3とコイル4に直流電源1を直接接続した、図9に示された圧電インバータを簡略化したタイプもある。図9に示した圧電インバータを簡略化したタイプは、スイッチZ2とダイオード9の2部品がないので、その動作制御回路も不要になり、直流電源1の広電圧範囲に対応できないというデメリットがあるものの、コスト低減できるメリットがある。なお、図9に示した圧電インバータを簡略化したタイプでは、時分割調光時スイッチA5とスイッチB6の両方の導通を停止し、圧電トランス7への交流入力を停止させることで負荷8の消灯期間を作成している。   In addition, there is a simplified type of the piezoelectric inverter shown in FIG. 9 in which the switch Z2 and the diode 9 are omitted and the DC power source 1 is directly connected to the coils 3 and 4. Although the simplified type of the piezoelectric inverter shown in FIG. 9 does not have two components of the switch Z2 and the diode 9, its operation control circuit is also unnecessary, and there is a demerit that it cannot correspond to the wide voltage range of the DC power supply 1. There is a merit that the cost can be reduced. In the simplified type of the piezoelectric inverter shown in FIG. 9, the conduction of both the switch A5 and the switch B6 during time division dimming is stopped, and the AC input to the piezoelectric transformer 7 is stopped to turn off the load 8. Creating a period.

時分割調光方法は、圧電トランス7及びその駆動部への電力供給を急に停止する動作(OFF動作)、急に開始する動作(ON動作)を繰り返す方法である。時分割調光方法の周波数は、可聴周波数なので、可聴音が発生しやすいという問題点があった。   The time-division dimming method is a method in which an operation of suddenly stopping the power supply to the piezoelectric transformer 7 and its driving unit (OFF operation) and an operation of suddenly starting (ON operation) are repeated. Since the frequency of the time division dimming method is an audible frequency, there is a problem that an audible sound is likely to be generated.

可聴音を低減する技術が、特許文献1に開示されている。特許文献1における調光時の電流波形が図11に示されている。管電流を5mArmsから4mArmsに低減させる場合は、電流の振幅が低減するだけであるが、連続電流動作で、4mArmsより電流の振幅を低減させると放電灯の特性の制約から放電が不安定になる。管電流を4mArms未満に低減させる場合は、管電流4mArms時と同じ電流振幅にし、圧電トランスから出力される交流周波数よりも充分低い周波数になる周期で圧電トランスの出力レベルを連続的に低下させながら、圧電トランスの出力レベルを連続的に低下させる期間の時間比率を調整することで調光する方法である。この方法では、圧電トランスの出力レベルを連続的に変化させることで、可聴音を低減できる。   A technique for reducing audible sound is disclosed in Patent Document 1. The current waveform at the time of light control in Patent Document 1 is shown in FIG. When the tube current is reduced from 5 mArms to 4 mArms, only the current amplitude is reduced. However, in continuous current operation, if the current amplitude is reduced from 4 mArms, the discharge becomes unstable due to restrictions on the characteristics of the discharge lamp. . When reducing the tube current to less than 4 mArms, the current amplitude is the same as the tube current of 4 mArms, and the output level of the piezoelectric transformer is continuously reduced at a period that is sufficiently lower than the AC frequency output from the piezoelectric transformer. This is a method of dimming by adjusting the time ratio of the period during which the output level of the piezoelectric transformer is continuously reduced. In this method, audible sound can be reduced by continuously changing the output level of the piezoelectric transformer.

特開2000−58289号公報JP 2000-58289 A

上述した特許文献1に示された調光方法では、液晶表示装置のバックライト用放電灯の輝度を均一にするのが困難であるという問題点があった。   The dimming method disclosed in Patent Document 1 described above has a problem that it is difficult to make the luminance of the backlight discharge lamp of the liquid crystal display device uniform.

図12は、電流振幅を変化させる調光方法(圧電トランスの駆動周波数を変化させる方法)にて、電流振幅を変化させて放電灯の低圧側(接地側)に流れる電流を減少させた場合の放電灯の高圧側(インバータ側)に流れる電流と高圧側の電流値と低圧側の電流値の差を実測した結果のデータである。図13は、圧電トランスの駆動周波数と昇圧比の関係を示すグラフである。図13に示すように、圧電トランス7の昇圧比が最大となる周波数より若干高い周波数で圧電トランス7を駆動した場合の低圧側電流は、5mArmsで、圧電トランス7の駆動周波数を強制的に高くすることで、低圧側電流は低下する。なお、低圧側電流を3mArms以下にすると放電が不安定になった。   FIG. 12 shows a case where the current flowing through the low voltage side (grounding side) of the discharge lamp is reduced by changing the current amplitude by the dimming method (changing the driving frequency of the piezoelectric transformer) that changes the current amplitude. It is the data of the result of having actually measured the difference of the electric current which flows into the high voltage | pressure side (inverter side) of a discharge lamp, the electric current value of a high voltage | pressure side, and the electric current value of a low voltage | pressure side. FIG. 13 is a graph showing the relationship between the drive frequency of the piezoelectric transformer and the step-up ratio. As shown in FIG. 13, when the piezoelectric transformer 7 is driven at a frequency slightly higher than the frequency at which the step-up ratio of the piezoelectric transformer 7 is maximum, the low-voltage side current is 5 mArms, and the driving frequency of the piezoelectric transformer 7 is forcibly increased. As a result, the low-voltage side current decreases. The discharge became unstable when the low-voltage current was 3 mArms or less.

図12により、低圧側電流を減少させれば、高圧側電流も減少する。しかし、高圧側電流は、低圧側電流よりも減少のしかたが少ない。その結果、電流の振幅を小さくする程高圧側電流と低圧側電流の差が大きくなり、その比も大きくなる。バックライト上の輝度は、放電灯の高圧側付近の輝度は高く、放電灯の低圧側付近の輝度は低い傾向あり、電流の振幅を小さくすることで更にその傾向が顕著になる。   According to FIG. 12, if the low-voltage side current is decreased, the high-voltage side current is also decreased. However, the high-voltage side current is less reduced than the low-voltage side current. As a result, the smaller the current amplitude, the greater the difference between the high-voltage side current and the low-voltage side current, and the ratio also increases. The brightness on the backlight tends to be high near the high-pressure side of the discharge lamp and low near the low-pressure side of the discharge lamp, and this tendency becomes more prominent by reducing the current amplitude.

前述の図11に示される電流波形で説明すると、電流を5mArmsから4mArmsに減少させる場合は、電流の振幅を小さくしているので、バックライト上の輝度偏差が大きくなる。更に、4mArms未満に減少させる場合は、所定の期間電流をなだらかに減少させることで音の減少に効果があるが、なだらかに(時間をかけて電流が更に小さくなっている)ので、高圧側電流と低圧側電流の差が更に大きくなる期間が長くなるので、バックライト上の輝度偏差は一段と大きくなる。   The current waveform shown in FIG. 11 will be described. When the current is reduced from 5 mArms to 4 mArms, the amplitude of the current is reduced, so that the luminance deviation on the backlight increases. Furthermore, when decreasing to less than 4 mArms, reducing the current gently for a predetermined period is effective in reducing sound, but since it is gentle (the current is further reduced over time), Since the period during which the difference between the low voltage side current and the low voltage side current is further increased, the luminance deviation on the backlight is further increased.

本発明は、上述した問題点を解決すべくなされたもので、その技術課題は、液晶表示装置のバックライト用放電灯の輝度偏差を抑制した低消費電力の放電灯の輝度調整方法と圧電トランスを使用した電源装置を提供することである。   The present invention has been made to solve the above-described problems, and its technical problem is to provide a method for adjusting the luminance of a discharge lamp with low power consumption and a piezoelectric transformer in which the luminance deviation of the backlight discharge lamp of the liquid crystal display device is suppressed. It is providing the power supply device which used the.

上記目的を達成するための第1の発明は、直流電圧から交流電圧を発生させる圧電トランスを使用した電源装置の出力電圧を放電灯に印加して、前記放電灯を点灯するときの放電灯の輝度調整方法において、前記放電灯を点灯させる期間は、前記圧電トランスの昇圧比が高い周波数で前記圧電トランスを駆動し、前記放電灯を暗く点灯させる期間又は前記放電灯を消灯させる期間は、昇圧比が低い周波数で前記圧電トランスを駆動し、前記昇圧比の高い周波数で前記圧電トランスを駆動する時間と前記昇圧比の低い周波数で前記圧電トランスを駆動する時間の比率を調整する放電灯の輝度調整方法である。   According to a first aspect of the invention for achieving the above object, there is provided a discharge lamp for lighting a discharge lamp by applying an output voltage of a power supply device using a piezoelectric transformer that generates an AC voltage from a DC voltage to the discharge lamp. In the brightness adjustment method, the period during which the discharge lamp is lit is driven by driving the piezoelectric transformer at a frequency at which the step-up ratio of the piezoelectric transformer is high, and the period during which the discharge lamp is lit dark or the period during which the discharge lamp is extinguished The brightness of the discharge lamp that drives the piezoelectric transformer at a low frequency and adjusts the ratio of the time to drive the piezoelectric transformer at a high frequency of the boost ratio and the time to drive the piezoelectric transformer at a low frequency of the boost ratio It is an adjustment method.

上記目的を達成するための第2の発明は、前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数との切り換えは、0秒より大きく約500μ秒以下の期間で切り換える放電灯の輝度調整方法である。   According to a second aspect of the present invention for achieving the above object, the brightness adjustment of the discharge lamp is performed by switching between a frequency with a high step-up ratio of the piezoelectric transformer and a frequency with a low step-up ratio in a period greater than 0 seconds and about 500 μsec or less. Is the method.

上記目的を達成するための第3の発明は、前記圧電トランスの昇圧比が低い周波数で駆動させる期間では、前記圧電トランス駆動周波数1周期あたりのスイッチング素子導通時間を短くする放電灯の輝度調整方法である。   According to a third aspect of the invention for achieving the above object, there is provided a discharge lamp luminance adjusting method for shortening a switching element conduction time per one cycle of the piezoelectric transformer driving frequency during a period in which the step-up ratio of the piezoelectric transformer is driven at a low frequency. It is.

上記目的を達成するための第4の発明は、出力電圧を放電灯に印加して、前記放電灯を点灯するときの放電灯の輝度調整機能を備えた直流電圧から交流電圧を発生させる圧電トランスを使用した電源装置において、前記放電灯を点灯させる期間は、前記圧電トランスの昇圧比が高い周波数で前記圧電トランスを駆動し、放電灯を暗く点灯させる期間又は前記放電灯を消灯させる期間は、昇圧比が低い周波数で駆動し、前記昇圧比の高い周波数で駆動する時間と前記昇圧比の低い周波数で駆動する時間の比率を調整する放電灯の輝度調整機能を備えた圧電トランスを使用した電源装置である。   According to a fourth aspect of the present invention for achieving the above object, there is provided a piezoelectric transformer for generating an AC voltage from a DC voltage having a function of adjusting the brightness of the discharge lamp when an output voltage is applied to the discharge lamp and the discharge lamp is turned on. In the power supply device using the above, the period during which the discharge lamp is lit is a period during which the piezoelectric transformer is driven at a frequency at which the step-up ratio of the piezoelectric transformer is high and the discharge lamp is lit darkly or the period during which the discharge lamp is extinguished is: A power source using a piezoelectric transformer having a function of adjusting the brightness of a discharge lamp that is driven at a frequency with a low step-up ratio and adjusts a ratio between a time for driving at a high frequency with the step-up ratio and a time for driving at a low frequency with the step-up ratio Device.

上記目的を達成するための第5の発明は、前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数との切り換えは、0秒より大きく約500μ秒以下の期間で切り換える機能を備えた圧電トランスを使用した電源装置である。   According to a fifth aspect of the present invention for achieving the above object, the piezoelectric transformer has a function of switching between a frequency with a high step-up ratio of the piezoelectric transformer and a frequency with a low step-up ratio in a period greater than 0 seconds and less than about 500 μsec. This is a power supply device using a transformer.

上記目的を達成するための第6の発明は、放電灯を流れる電流を検出する機能と検出された前記放電灯を流れる電流を比較器で比較する機能と前記比較器で比較された結果に基づき基準電圧値を変更する機能を備えて、前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数とを切り換える圧電トランスを使用した電源装置である。   A sixth invention for achieving the above object is based on a function of detecting a current flowing through a discharge lamp, a function of comparing a detected current flowing through the discharge lamp with a comparator, and a result compared with the comparator. The power supply device includes a function of changing a reference voltage value and uses a piezoelectric transformer that switches between a frequency with a high step-up ratio of the piezoelectric transformer and a frequency with a low step-up ratio.

上記目的を達成するための第7の発明は、電圧制御発振器の入力電圧が上昇すると出力周波数を低くし、前記電圧制御発振器の入力電圧が下降すると出力周波数を高くする機能を備えて、前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数とを切り換える圧電トランスを使用した電源装置である。   According to a seventh aspect of the invention for achieving the above object, the piezoelectric device includes a function of lowering an output frequency when the input voltage of the voltage controlled oscillator is increased and increasing an output frequency when the input voltage of the voltage controlled oscillator is decreased. This power supply device uses a piezoelectric transformer that switches between a frequency with a high step-up ratio of the transformer and a frequency with a low step-up ratio.

上記目的を達成するための第8の発明は、圧電トランスの昇圧比が低い周波数で駆動する期間は、圧電トランス駆動周波数1周期あたりのスイッチング素子導通時間を短くする機能を備えた圧電トランスを使用した電源装置である。   The eighth invention for achieving the above object uses a piezoelectric transformer having a function of shortening the switching element conduction time per cycle of the piezoelectric transformer driving frequency during the period in which the step-up ratio of the piezoelectric transformer is driven at a low frequency. It is a power supply unit.

上記目的を達成するための第9の発明は、(1)一次側電極から交流電圧を入力し、圧電効果を利用して二次側電極から出力する圧電トランスと(2)入力端から前記圧電トランスの出力を入力し、第一の出力端から出力し、第二の出力端から前記第一の出力端から出力する電流値に比例した電流を出力する電流検出回路と(3)前記電流検出回路の第一の出力端からの出力を入力する負荷と(4)前記電流検出回路の第二の出力端からの出力を入力し、整流した結果を出力する整流回路と(5)調光回路の出力信号を受けて、複数存在する直流電源の何れかを選択して比較器に出力するスイッチと(6) 前記整流回路の出力と前記スイッチの出力を入力し、前記整流回路の出力と前記スイッチの出力とを比較し、前記整流回路の出力が小さい期間は、ハイレベルの出力をおこなう比較器と(7)前記比較器の出力を入力し、特定の時定数をもった積分結果を出力する積分回路と(8)前記積分回路の出力を入力電圧とし、入力電圧が上昇すると出力周波数を低くし、入力電圧が下降すると出力周波数を高くする三角波を出力する電圧制御発振器と(9)前記電圧制御発振器出力と直流電圧とを入力し、前記直流電圧によって定められる効率をもった信号を電圧制御発振器の出力周波数で出力する第二の比較器と(10)点灯期間を定める効率を時分割調光の周波数で出力する調光回路と(11)前記第二の比較器の出力と前記調光回路の出力を入力し、前記第二の比較器の出力と前記調光回路の出力との入力が、共にハイレベルの期間のみハイレベルの出力をするように前記圧電トランスを駆動させるスイッチング信号を発生させるAND回路と(12)前記AND回路の出力を入力し、駆動回路を動作させる信号に変換する駆動信号発生回路と(13)前記駆動信号発生回路の出力を入力し、前記圧電トランスを駆動する圧電トランス駆動回路とを含んでなる圧電トランスを使用した電源装置である。   The ninth invention for achieving the above object is as follows: (1) a piezoelectric transformer for inputting an AC voltage from the primary side electrode and outputting from the secondary side electrode using the piezoelectric effect; and (2) the piezoelectric from the input end. A current detection circuit for inputting the output of the transformer, outputting from the first output end, and outputting a current proportional to the current value output from the first output end from the second output end; and (3) the current detection A load for inputting an output from the first output terminal of the circuit; (4) a rectifier circuit for inputting an output from the second output terminal of the current detection circuit and outputting a rectified result; and (5) a dimming circuit. A switch that selects any one of a plurality of DC power supplies that are output to the comparator, and (6) inputs the output of the rectifier circuit and the output of the switch, and outputs the rectifier circuit and the The output of the rectifier circuit is compared with the output of the switch. And (7) an integrator circuit that inputs the output of the comparator and outputs an integration result having a specific time constant, and (8) the output of the integrator circuit is the input voltage, and the input voltage increases. Then, a voltage controlled oscillator that outputs a triangular wave that lowers the output frequency and raises the output frequency when the input voltage decreases, and (9) the voltage controlled oscillator output and the DC voltage are input, and the efficiency determined by the DC voltage is obtained. A second comparator that outputs the output signal at the output frequency of the voltage controlled oscillator, (10) a dimming circuit that outputs the efficiency for determining the lighting period at the frequency of time-division dimming, and (11) the second comparator. The output of the dimming circuit and the output of the dimming circuit are input, and the piezoelectric transformer is set so that both the output of the second comparator and the output of the dimming circuit output a high level only during a high level period. Generate a switching signal to drive AND circuit and (12) a drive signal generation circuit for inputting the output of the AND circuit and converting it into a signal for operating the drive circuit; and (13) a piezoelectric for driving the piezoelectric transformer by inputting the output of the drive signal generation circuit. A power supply device using a piezoelectric transformer including a transformer driving circuit.

上記目的を達成するための第10の発明は、(1)一次側電極から交流電圧を入力し、圧電効果を利用して二次側電極から出力する圧電トランスと(2)入力端から前記圧電トランスの出力を入力し、第一の出力端から出力し、前記第一の出力端から出力する電流値に比例した電流を第二の出力端から出力する電流検出回路と(3)前記電流検出回路の第一の出力端からの出力を入力する負荷と(4)前記電流検出回路の第二の出力端からの出力を入力し、整流した結果を出力する整流回路と(5)前記整流回路の出力と直流電源の出力を入力し、前記整流回路の出力と直流電源の出力とを比較し、整流回路出力が小さい期間は、ハイレベルの出力をおこなう比較器と(6)前記比較器の出力を入力し、特定の時定数をもった積分結果を出力する積分回路と(7)調光回路出力が消灯期間を指示するローレベルの期間導通するスイッチと(8)前記スイッチが導通している期間に積分回路出力レベルを低下させる放電回路と(9)前記積分回路の出力を入力電圧とし、入力電圧が上昇すると出力周波数を低くし、入力電圧が下降すると出力周波数を高くする三角波を出力する電圧制御発振器と(10)前記電圧制御発振器の出力と直流電圧とを入力し、前記直流電圧によって定められる効率をもった信号を前記電圧制御発振器の出力周波数で出力する第二の比較器と(11)点灯期間を定める効率を時分割調光の周波数で出力する調光回路と(12)前記第二の比較器出力と前記調光回路出力とを入力し、前記第二の比較器出力と前記調光回路出力との入力が、共にハイレベルの期間のみハイレベルの出力をするように前記圧電トランスを駆動させるスイッチング信号を発生させるAND回路と(13)前記AND回路の出力を入力し、駆動回路を動作させる信号に変換する駆動信号発生回路と(14)前記駆動信号発生回路の出力を入力し、前記圧電トランスを駆動する圧電トランス駆動回路を含んでなる圧電トランスを使用した電源装置である。   The tenth invention for achieving the above object is as follows: (1) a piezoelectric transformer that inputs an AC voltage from the primary side electrode and outputs from the secondary side electrode using the piezoelectric effect; A current detection circuit for inputting the output of the transformer, outputting from the first output terminal, and outputting a current proportional to the current value output from the first output terminal from the second output terminal; and (3) the current detection A load for inputting an output from the first output terminal of the circuit; and (4) a rectifier circuit for inputting an output from the second output terminal of the current detection circuit and outputting a rectified result; and (5) the rectifier circuit. And the output of the DC power supply, the output of the rectifier circuit and the output of the DC power supply are compared, and during a period when the output of the rectifier circuit is small, a comparator that outputs a high level; and (6) An integration circuit that inputs the output and outputs an integration result with a specific time constant and (7) dimming circuit A switch that is conductive during a low level instructing the extinguishing period; and (8) a discharge circuit that decreases the output level of the integration circuit during the period in which the switch is conductive; and (9) the output of the integration circuit is an input voltage, When the input voltage rises, the output frequency is lowered, and when the input voltage is lowered, the voltage controlled oscillator that outputs a triangular wave that raises the output frequency and (10) the output of the voltage controlled oscillator and the DC voltage are input, and the DC voltage A second comparator that outputs a signal having a defined efficiency at an output frequency of the voltage controlled oscillator; and (11) a dimming circuit that outputs an efficiency for determining a lighting period at a frequency of time-division dimming; and The second comparator output and the dimming circuit output are input, and the input of the second comparator output and the dimming circuit output both outputs a high level only during a high level period. Piezoelectric transformer An AND circuit for generating a switching signal to be moved, and (13) an input of the output of the AND circuit, a drive signal generating circuit for converting the signal to operate the driving circuit, and (14) an output of the drive signal generating circuit, A power supply apparatus using a piezoelectric transformer including a piezoelectric transformer driving circuit for driving the piezoelectric transformer.

上記目的を達成するための第11の発明は、第二の比較器に入力する直流電圧値を第二のスイッチで複数の電圧値から選択させた圧電トランスを使用した電源装置である。   An eleventh invention for achieving the above object is a power supply device using a piezoelectric transformer in which a DC voltage value inputted to a second comparator is selected from a plurality of voltage values by a second switch.

本発明によれば、放電灯を点灯させる期間は、圧電トランスの昇圧比が高い周波数で圧電トランスを駆動し、放電灯を暗く点灯させる期間又は消灯する期間は、昇圧比が低い周波数で駆動し、昇圧比の高い周波数で駆動する時間と昇圧比の低い周波数で駆動する時間との比率を調整することで、放電灯の輝度を調整できる。更に、圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数との切り換えは、0秒より大きく、500μ秒以下程度の時間で切り換えが完了するように時定数を設定する。また、圧電トランスの昇圧比が低い周波数で駆動させる期間は、圧電トランス駆動周波数1周期あたりのスイッチング素子導通時間を短くすることで、圧電トランスへの入力電力を低減できる。   According to the present invention, the period during which the discharge lamp is turned on drives the piezoelectric transformer at a frequency at which the boost ratio of the piezoelectric transformer is high, and the period during which the discharge lamp is lit dark or is turned off at a frequency at which the boost ratio is low. The brightness of the discharge lamp can be adjusted by adjusting the ratio between the time for driving at a high boost ratio and the time for driving at a low boost ratio. Furthermore, the time constant is set so that the switching between the frequency with a high step-up ratio of the piezoelectric transformer and the frequency with a low step-up ratio is completed in a time greater than 0 seconds and about 500 μsec or less. Further, during the period in which the step-up ratio of the piezoelectric transformer is driven at a low frequency, the input power to the piezoelectric transformer can be reduced by shortening the switching element conduction time per cycle of the piezoelectric transformer driving frequency.

また、本発明によれば、調光範囲を広く設定可能な時分割調光を実施しながら、圧電トランスへの交流入力を停止させる期間なしに圧電トランスを常に振動を継続させることで、急激な振動状態の変化による可聴音の発生を抑制できる。更に、圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数との切り換えを迅速に実施することで、輝度偏差の悪化を防止できる。また、圧電トランスの昇圧比が低い周波数で駆動する期間は、圧電トランスの入力電力を制限することで消費電力増大を抑制できる。   In addition, according to the present invention, while performing time-division dimming capable of setting a wide dimming range, the piezoelectric transformer is continuously vibrated without a period in which the AC input to the piezoelectric transformer is stopped. Generation of audible sounds due to changes in the vibration state can be suppressed. Furthermore, it is possible to prevent the luminance deviation from deteriorating by quickly switching between a frequency with a high step-up ratio of the piezoelectric transformer and a frequency with a low step-up ratio. Further, during the period in which the step-up ratio of the piezoelectric transformer is driven at a low frequency, an increase in power consumption can be suppressed by limiting the input power of the piezoelectric transformer.

その結果、液晶表示装置のバックライト用放電灯の輝度偏差を抑制した低消費電力の放電灯の輝度調整方法と圧電トランスを使用した電源装置の提供が可能になる。   As a result, it is possible to provide a method for adjusting the brightness of a low-power-consumption discharge lamp that suppresses the brightness deviation of the backlight discharge lamp of the liquid crystal display device and a power supply device using a piezoelectric transformer.

本発明を実施するための最良の形態に係る放電灯の輝度調整方法と圧電トランスを使用した電源装置を以下に図面を参照して詳細に説明する。   A discharge lamp luminance adjusting method and a power supply apparatus using a piezoelectric transformer according to the best mode for carrying out the present invention will be described in detail below with reference to the drawings.

(実施の形態1)
本発明の第1の実施の形態における放電灯の輝度調整方法と圧電トランスを使用した電源装置を以下に図面を参照して詳細に説明する。図1は、本発明の第1の実施の形態における放電灯の輝度調整方法とその電源装置を示すブロック図である。図2は、フルブリッジ構成の圧電トランスの駆動回路を示すブロック図である。図3は、プッシュプル構成の圧電トランスの駆動回路を示すブロック図である。図4は、ハーフブリッジ構成の圧電トランスの駆動回路を示すブロック図である。図5は、駆動回路のスイッチの動作を示した図である。
(Embodiment 1)
A discharge lamp luminance adjusting method and a power supply apparatus using a piezoelectric transformer in the first embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing a method for adjusting the brightness of a discharge lamp and its power supply apparatus according to the first embodiment of the present invention. FIG. 2 is a block diagram showing a driving circuit for a piezoelectric transformer having a full bridge configuration. FIG. 3 is a block diagram illustrating a drive circuit for a piezoelectric transformer having a push-pull configuration. FIG. 4 is a block diagram showing a driving circuit for a piezoelectric transformer having a half-bridge configuration. FIG. 5 is a diagram illustrating the operation of the switch of the drive circuit.

図1に示すように、(1)一次側電極13と一次側電極14から交流電圧を入力し、圧電効果を利用して二次側電極15から出力する圧電トランス7と(2)入力端から圧電トランス7の出力を入力し、第一の出力端から出力し、第一の出力端から出力する電流値に比例した電流を第二の出力端から出力する電流検出回路16と(3)電流検出回路16の第一の出力端からの出力を入力する負荷8と(4)電流検出回路16の第二の出力端からの出力を入力し、整流した結果を出力する整流回路17と(5)調光回路10の出力信号を受けて、直流電源26と直流電源27の何れかの出力を選択して比較器18に出力するスイッチW23と(6)整流回路17の出力とスイッチW23の出力とを入力し、整流回路の出力とスイッチの出力とを比較し、整流回路17出力のほうが小さい期間は、ハイレベルの出力をおこなう比較器18と(7)比較器18の出力を入力し、特定の時定数をもった積分結果を出力する積分回路19と(8)積分回路19の出力を入力電圧とし、入力電圧が上昇すると出力周波数を低くし、入力電圧が下降すると出力周波数を高くする三角波を出力する電圧制御発振器20と(9)電圧制御発振器20の出力と直流電源30の直流電圧とを入力することで、直流電源30の直流電圧によって定められる効率をもった信号を電圧制御発振器20の出力周波数で出力する比較器31と(10)点灯期間を定める効率を時分割調光の周波数で出力する調光回路10と(11)比較器31出力と調光回路10出力とを入力し、比較器31出力と調光回路10出力との入力が共にハイレベルの期間のみハイレベルの出力をするように圧電トランス7を駆動させるスイッチング信号を発生させるAND回路12と(12)AND回路12の出力を入力し、駆動信号発生回路21を動作させる信号に変換する駆動信号発生回路21と(13)駆動信号発生回路21の出力を入力し、圧電トランス7を駆動する圧電トランスの駆動回路22を含んでなる構成の出力電圧を放電灯に印加して、放電灯を点灯するときの放電灯の輝度調整機能を備えた直流電圧から交流電圧を発生させる圧電トランスを使用した電源装置である。   As shown in FIG. 1, (1) an AC voltage is input from the primary side electrode 13 and the primary side electrode 14 and output from the secondary side electrode 15 using the piezoelectric effect, and (2) from the input end. An output of the piezoelectric transformer 7 is input, output from the first output terminal, and a current detection circuit 16 that outputs a current proportional to the current value output from the first output terminal from the second output terminal, and (3) current A load 8 for inputting an output from the first output terminal of the detection circuit 16, and (4) a rectifier circuit 17 for inputting an output from the second output terminal of the current detection circuit 16 and outputting a rectified result (5) ) A switch W23 that receives the output signal of the dimming circuit 10 and selects either the DC power supply 26 or the DC power supply 27 and outputs it to the comparator 18. (6) The output of the rectifier circuit 17 and the output of the switch W23 And the output of the rectifier circuit and the output of the switch are compared, and the output of the rectifier circuit 17 During the shorter period, the comparator 18 that outputs a high level and (7) the output of the comparator 18 are input, and the integration circuit 19 that outputs an integration result having a specific time constant and (8) the integration circuit 19 The output is an input voltage, and when the input voltage increases, the output frequency decreases, and when the input voltage decreases, the voltage controlled oscillator 20 outputs a triangular wave that increases the output frequency, and (9) the output of the voltage controlled oscillator 20 and the DC power supply 30 By inputting a DC voltage, a comparator 31 that outputs a signal having an efficiency determined by the DC voltage of the DC power source 30 at the output frequency of the voltage controlled oscillator 20 and (10) time-sharing adjustment of the efficiency that determines the lighting period. The dimming circuit 10 that outputs at the frequency of light, (11) the comparator 31 output and the dimming circuit 10 output are input, and the comparator 31 output and the dimming circuit 10 output are both high only during a high level. Level output An AND circuit 12 for generating a switching signal for driving the piezoelectric transformer 7 so as to perform the above operation, and (12) a drive signal generation circuit 21 for inputting the output of the AND circuit 12 and converting it into a signal for operating the drive signal generation circuit 21 ( 13) A discharge lamp when the output of the drive signal generation circuit 21 is input and the output voltage of the configuration including the drive circuit 22 of the piezoelectric transformer for driving the piezoelectric transformer 7 is applied to the discharge lamp to light the discharge lamp. This is a power supply device using a piezoelectric transformer that generates an AC voltage from a DC voltage having a brightness adjustment function.

次に、本発明の第1の実施の形態における放電灯の輝度調整方法と圧電トランスを使用した電源装置における動作について図1を用いて説明する。圧電トランス7の二次側電極15からの出力は、電流検出回路16に入力される。本発明の実施の形態1の電流検出回路16は、カレントトランスの構成が好適である。入力端からの入力は、第一の出力端から出力され、第二の出力端からは第一の出力端から出力された電流値に応じた電流が出力される。なお、電流検出回路16は、負荷8の反対側である低電圧側に挿入しても殆ど同等の効果を奏する。   Next, the operation of the power supply device using the discharge lamp luminance adjusting method and the piezoelectric transformer according to the first embodiment of the present invention will be described with reference to FIG. The output from the secondary electrode 15 of the piezoelectric transformer 7 is input to the current detection circuit 16. The current detection circuit 16 according to the first embodiment of the present invention preferably has a current transformer configuration. An input from the input terminal is output from the first output terminal, and a current corresponding to the current value output from the first output terminal is output from the second output terminal. Note that even if the current detection circuit 16 is inserted on the low voltage side, which is the opposite side of the load 8, the same effect can be obtained.

放電灯の低電圧側における電流と放電灯の高電圧側における電流とでは電流変化率が異なるので、放電灯の低電圧側における電流と放電灯の高電圧側のどちらを制御したいかの目的に応じて、挿入個所を決定すれば良い。最近では、放電灯の両端に圧電トランスを配する両高電圧駆動方式が増えている。この場合には低電圧側が存在しないので、高電圧側に挿入する方式に汎用性がある。   Since the current change rate differs between the current on the low voltage side of the discharge lamp and the current on the high voltage side of the discharge lamp, whether you want to control the current on the low voltage side of the discharge lamp or the high voltage side of the discharge lamp Accordingly, the insertion location may be determined. Recently, both high-voltage drive systems in which a piezoelectric transformer is disposed at both ends of a discharge lamp are increasing. In this case, since the low voltage side does not exist, the method of inserting the high voltage side has versatility.

電流検出回路16の第二の出力端から出力された交流電流は、整流回路17で整流される。整流回路17の出力は、完全に平滑された状態でない脈状の信号になる。スイッチW23は、調光回路10の出力を受けて、時分割調光時に点灯させたい期間は、電圧値の高い直流電源26を選択し、時分割調光時に消灯させたい期間又は輝度を低くしたい期間は、電圧値の低い直流電源27を選択する制御をおこなう。比較器18は、整流回路17の出力信号とスイッチW23により選択された直流電源26又は直流電源27とを入力する。比較器18は、整流回路17の出力信号である脈状の信号が、スイッチW23で選択された直流電圧値よりも低い期間は、ハイレベルの出力をするステップになるので、スイッチW23が電圧値の低い直流電源27を選択している場合は、スイッチW23が電圧値の高い直流電源26を選択している場合よりもハイレベルの出力をする時間比率が小さくなる。言い換えれば、時分割調光時に消灯させたい期間又は輝度を低くしたい期間は、点灯させたい期間よりもハイレベルの出力をしている時間比率が小さくなる。なお、積分回路19は、比較器18の出力を受けて積分した結果を出力するステップなので、時分割調光時に消灯させたい期間又は輝度を低くしたい期間は、点灯させたい期間よりも低い出力レベルになる。   The alternating current output from the second output terminal of the current detection circuit 16 is rectified by the rectifier circuit 17. The output of the rectifier circuit 17 becomes a pulse-like signal that is not completely smoothed. The switch W23 receives the output of the dimming circuit 10 and selects the DC power supply 26 having a high voltage value during a period in which it is desired to be turned on during time-division dimming, and lowers the period or luminance desired to be turned off during the time-division dimming. During the period, control is performed to select the DC power supply 27 having a low voltage value. The comparator 18 inputs the output signal of the rectifier circuit 17 and the DC power source 26 or the DC power source 27 selected by the switch W23. The comparator 18 is a step of outputting a high level during a period in which the pulse signal that is the output signal of the rectifier circuit 17 is lower than the DC voltage value selected by the switch W23. When the low DC power supply 27 is selected, the time ratio for outputting a high level is smaller than when the switch W23 selects the DC power supply 26 having a high voltage value. In other words, the time ratio during which high level output is performed is smaller in the period in which the light is to be turned off during the time-division dimming or the period in which the luminance is to be lowered. Since the integration circuit 19 is a step for receiving the output of the comparator 18 and outputting the result of integration, the output level is lower in the period in which the light is turned off or the brightness is lowered in the time division dimming than in the period in which the light is turned on. become.

積分回路19の出力を入力する電圧制御発振器20は、入力電圧が高いほど低い周波数の三角波を出力し、入力電圧が低いほど高い周波数の三角波を出力する構造になっているので、時分割調光時に点灯させたい期間は、消灯させたい期間又は輝度を低くしたい期間よりも低い周波数の三角波を出力することになる。   The voltage controlled oscillator 20 that receives the output of the integrating circuit 19 is configured to output a triangular wave having a lower frequency as the input voltage is higher, and to output a triangular wave having a higher frequency as the input voltage is lower. During the period in which the light is sometimes turned on, a triangular wave having a lower frequency than the period in which the light is to be turned off or the period in which the luminance is to be lowered is output.

電圧制御発振器20の出力信号周波数は、圧電トランス7を駆動する周波数の2倍の周波数である。電圧制御発振器20における出力周波数の二分の一の周波数が、圧電トランス7を実際に駆動する周波数になる。図13に示すように、最低周波数は圧電トランスの昇圧比が最大になる周波数より僅かに低い周波数で、最高周波数は圧電トランスの出力が無い又は殆ど出ない周波数とする掃引範囲になる。整流回路が出力する脈状信号のいかなる値よりも低い値に直流電源の電圧値を設定しておけば、電圧制御発振器20の入力電圧は、最低電位となる。その出力周波数は、掃引範囲の最高周波数になり、その二分の一の周波数で圧電トランス7の出力が無い又は殆ど出ないB点になる(図13中のB点)。なお、直流電源の電圧値は、点灯時に所望の電流になる圧電トランス駆動周波数に設定する。   The output signal frequency of the voltage controlled oscillator 20 is twice the frequency for driving the piezoelectric transformer 7. A half frequency of the output frequency in the voltage controlled oscillator 20 is a frequency for actually driving the piezoelectric transformer 7. As shown in FIG. 13, the lowest frequency is a frequency slightly lower than the frequency at which the step-up ratio of the piezoelectric transformer is maximized, and the highest frequency is a sweep range where there is no or almost no output from the piezoelectric transformer. If the voltage value of the DC power supply is set to a value lower than any value of the pulse signal output from the rectifier circuit, the input voltage of the voltage controlled oscillator 20 becomes the lowest potential. The output frequency is the highest frequency in the sweep range, and becomes a point B where the output of the piezoelectric transformer 7 does not appear or hardly appears at a half frequency (point B in FIG. 13). Note that the voltage value of the DC power supply is set to a piezoelectric transformer driving frequency at which a desired current is obtained during lighting.

点灯期間の周波数と消灯させたい期間又は輝度を低くしたい期間の周波数との切り換えは、積分回路の時定数を小さくし、間の周波数を通過しない様瞬時に切り換えることで、圧電トランスの出力が所定値から無しの状態に瞬時に切り換わる。その結果、高圧側電流と低圧側電流との差が非常に大きくなる周波数を通過しないので、バックライト上の輝度偏差が大きくなることを防止できる。   Switching between the frequency of the lighting period and the frequency of the period for turning off the light or the period for reducing the luminance is performed by reducing the time constant of the integrating circuit and switching instantaneously so as not to pass the frequency between them. The value switches instantly to the none state. As a result, since the frequency at which the difference between the high-voltage side current and the low-voltage side current becomes very large is not passed, the luminance deviation on the backlight can be prevented from increasing.

しかし、間の周波数を通過しないように周波数が瞬時に切り換わる場合は、圧電トランス7の振動状態も急に切り換わり、振動が無い状態から大振動に急激に切り換わる程ではないが、小さな音が発生する。更に、点灯期間に入った瞬間に圧電トランス7の出力電圧波形や出力電流波形にオーバーシュートが発生する場合がある。これらの問題を回避しつつ輝度偏差を抑制するために、積分回路19の時定数を調整し、点灯期間の周波数と消灯させたい期間又は輝度を低くしたい期間の周波数との切り換えは、0秒より大きく、500μ秒以下の時間で切り換わるのが望ましい。   However, when the frequency is switched instantaneously so as not to pass the frequency in between, the vibration state of the piezoelectric transformer 7 is also switched suddenly, but not so much that the vibration is suddenly switched from a state without vibration to a large vibration. Will occur. Furthermore, overshoot may occur in the output voltage waveform or output current waveform of the piezoelectric transformer 7 at the moment when the lighting period starts. In order to suppress the luminance deviation while avoiding these problems, the time constant of the integrating circuit 19 is adjusted, and the switching between the frequency of the lighting period and the frequency of the period in which the luminance is to be turned off or the period in which the luminance is to be lowered is from 0 second. It is desirable to switch in a large time of 500 μsec or less.

比較器31は、電圧制御発振器20の出力三角波と直流電源30の直流電圧とを入力し、電圧制御発振器20の出力のほうが高い期間は、ハイレベルの出力をする。この比較器31から出力される時比率は、駆動回路22内蔵のスイッチング素子における圧電トランス7駆動1周期あたりの導通する時比率となる。スイッチング素子の導通時比率を可能な範囲内で低下させることで圧電トランス7への電力供給を低減させ、低減させた電力により、圧電トランス7の昇圧比の高い周波数や変換効率の高い周波数で動作させることにより、電源装置全体としての省電力化をおこなう。   The comparator 31 inputs the output triangular wave of the voltage controlled oscillator 20 and the DC voltage of the DC power supply 30 and outputs a high level during a period when the output of the voltage controlled oscillator 20 is higher. The time ratio output from the comparator 31 is the time ratio of conduction per cycle of driving the piezoelectric transformer 7 in the switching element built in the drive circuit 22. The power supply to the piezoelectric transformer 7 is reduced by reducing the ratio of conduction of the switching element within a possible range, and the reduced power operates at a frequency with a high step-up ratio of the piezoelectric transformer 7 and a high conversion efficiency. By doing so, the power consumption of the entire power supply device is reduced.

調光回路10は、時分割調光時に予め定められた調光周波数で圧電トランス7が出力する期間のみハイレベルの出力をする。調光回路10の出力は、スイッチW23の切り換え状態を制御し、AND回路12へ出力される。   The dimming circuit 10 outputs a high level only during a period in which the piezoelectric transformer 7 outputs at a predetermined dimming frequency during time division dimming. The output of the dimming circuit 10 controls the switching state of the switch W23 and is output to the AND circuit 12.

AND回路12は、比較器31出力と調光回路10出力とを入力し、両入力が共にハイレベルの期間のみハイレベルの出力をするので、AND回路12の出力信号は時分割調光時に消灯させたい期間はローレベルとなる。また、その他の期間は電圧制御発振器20により出力される周波数における直流電源30の電圧値で決定される効率でハイレベル・ローレベルを繰り返す信号になる。   The AND circuit 12 inputs the output of the comparator 31 and the output of the dimming circuit 10, and both outputs a high level only when both inputs are at a high level. Therefore, the output signal of the AND circuit 12 is turned off during time-division dimming. It is low level for the period you want to let. In other periods, the signal repeats a high level and a low level with an efficiency determined by the voltage value of the DC power supply 30 at the frequency output by the voltage controlled oscillator 20.

なお、駆動信号発生回路21は、AND回路12より入力されたハイレベルの信号を、駆動回路22のスイッチング素子を制御する信号に変換する回路である。   The drive signal generation circuit 21 is a circuit that converts a high-level signal input from the AND circuit 12 into a signal that controls the switching element of the drive circuit 22.

駆動回路22と圧電トランス7の組み合わせ例として代表的な回路が、図2、図3、図4に示されている。いずれも圧電トランス7の一次側電極13と一次側電極14の間に等価的交流が入力されるようにスイッチA5、スイッチB6を備える。更に、フルブリッジ構成の場合は、スイッチC32、スイッチD33は図5の実線で示した制御が必要になる。図5中のONは導通状態を示し、OFFは非導通状態を示す。   Typical examples of combinations of the drive circuit 22 and the piezoelectric transformer 7 are shown in FIGS. In either case, a switch A5 and a switch B6 are provided so that an equivalent alternating current is input between the primary side electrode 13 and the primary side electrode 14 of the piezoelectric transformer 7. Further, in the case of a full bridge configuration, the switches C32 and D33 need to be controlled as indicated by the solid lines in FIG. In FIG. 5, ON indicates a conductive state, and OFF indicates a non-conductive state.

駆動信号発生回路21は、AND回路12より入力される圧電トランス7の駆動周波数における2倍の周波数であるハイレベルの信号をスイッチA5の導通信号とスイッチB6の導通信号に交互に振り分ける手段を有する。また、図2のフルブリッジ回路使用時は、スイッチA5の導通信号と同一の信号をスイッチD33の導通信号として、スイッチB6の導通信号と同一の信号をスイッチC32の導通信号として供給している。その結果、駆動信号発生回路21と駆動回路22とで電圧制御発振器20の出力周波数を1/2に分周して圧電トランス7を駆動している。また、直流電源30の電圧値を上昇させることで、図5中の実線で示された信号は、破線で示された信号に変化し、圧電トランス7への電力の供給を低減できる。   The drive signal generation circuit 21 has means for alternately allocating a high-level signal that is twice the drive frequency of the piezoelectric transformer 7 input from the AND circuit 12 to the conduction signal of the switch A5 and the conduction signal of the switch B6. . When the full bridge circuit of FIG. 2 is used, the same signal as the conduction signal of the switch A5 is supplied as the conduction signal of the switch D33, and the same signal as the conduction signal of the switch B6 is supplied as the conduction signal of the switch C32. As a result, the drive signal generation circuit 21 and the drive circuit 22 drive the piezoelectric transformer 7 by dividing the output frequency of the voltage controlled oscillator 20 by half. Further, by increasing the voltage value of the DC power supply 30, the signal indicated by the solid line in FIG. 5 changes to the signal indicated by the broken line, and the supply of power to the piezoelectric transformer 7 can be reduced.

以上に示した動作により、放電灯を点灯させる期間は圧電トランスの昇圧比が高い周波数で圧電トランスを駆動し、放電灯を暗くさせる期間又は消灯させる期間は昇圧比が低い周波数で駆動し、昇圧比の高い周波数で駆動する時間と昇圧比の低い周波数で駆動する時間の比を調整することで、放電灯の輝度調整する圧電トランスを使用した電源装置を実現できる。また、圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数とを切り換える手段は、放電灯を流れる電流を検出した結果を比較器で比較して、基準電圧値を変更できる。   By the operation described above, the piezoelectric transformer is driven at a frequency where the boosting ratio of the piezoelectric transformer is high during the period when the discharge lamp is turned on, and is driven at a frequency where the boosting ratio is low during the period where the discharge lamp is darkened or turned off. By adjusting the ratio between the time for driving at a high frequency and the time for driving at a low boosting ratio, a power supply device using a piezoelectric transformer for adjusting the brightness of the discharge lamp can be realized. Further, the means for switching between the frequency with a high step-up ratio of the piezoelectric transformer and the frequency with a low step-up ratio can change the reference voltage value by comparing the result of detecting the current flowing through the discharge lamp with a comparator.

(実施の形態2)
図6は、本発明の第二の実施の形態における放電灯の輝度調整方法とその電源装置を示すブロック図である。図6に示すように、(1)一次側電極13と一次側電極14から交流電圧を入力し、圧電効果を利用して二次側電極15から出力する圧電トランス7と(2)圧電トランス7の出力を入力端から入力し、第一の出力端から出力し、その電流値に比例した電流を第二の出力端から出力する電流検出回路16と(3)電流検出回路16の第一の出力端からの出力を入力する負荷8と(4)電流検出回路16の第二の出力端からの出力を入力し、その整流結果を出力する整流回路17と(5)整流回路17の出力と直流電源26の出力を入力し、比較して、整流回路17出力のほうが小さい期間にハイレベルの出力をおこなう比較器18と(6)比較器18の出力を入力し、特定の時定数をもった積分結果を出力する積分回路19と(7)調光回路10出力が消灯期間を指示するローレベルの期間に導通するスイッチX24と(8)スイッチX24が導通している期間に積分回路19出力レベルを低下させる放電回路28と(9)積分回路19の出力を入力電圧とし、入力電圧が上昇すると出力周波数を低くし、入力電圧が下降すると出力周波数が高くなる三角波を出力する電圧制御発振器20と(10)電圧制御発振器20の出力と直流電源30とを入力することで電圧制御発振器20の出力周波数で直流電源30によって定められる効率をもった信号を出力する比較器31と(11) 時分割調光の周波数で点灯期間を定める効率を出力する調光回路10と(12) 比較器31出力と調光回路10出力とを入力し、両入力が共にハイレベルの期間のみハイレベルの出力をすることで圧電トランス7を駆動するスイッチング信号を発生させるAND回路12と (13) AND回路12の出力を入力し、駆動信号発生回路21を動作させる信号に変換する駆動信号発生回路21と(14) 駆動信号発生回路21の出力を入力し、圧電トランス7を駆動する圧電トランスの駆動回路22を含んでなる放電灯の輝度調整方法とその電源装置である。
(Embodiment 2)
FIG. 6 is a block diagram showing a discharge lamp luminance adjustment method and its power supply apparatus according to the second embodiment of the present invention. As shown in FIG. 6, (1) a piezoelectric transformer 7 that inputs an AC voltage from the primary side electrode 13 and the primary side electrode 14 and outputs it from the secondary side electrode 15 using the piezoelectric effect, and (2) a piezoelectric transformer 7. Are output from the input terminal, output from the first output terminal, and output a current proportional to the current value from the second output terminal, and (3) the first of the current detection circuit 16 A load 8 for inputting an output from the output terminal, (4) a rectifier circuit 17 for inputting an output from the second output terminal of the current detection circuit 16 and outputting a rectification result, and (5) an output of the rectifier circuit 17 Comparing the output of the DC power supply 26 and comparing it, the comparator 18 that outputs a high level during the period when the output of the rectifier circuit 17 is smaller, and (6) the output of the comparator 18 are input and have a specific time constant. The integration circuit 19 that outputs the integration result and (7) dimming circuit 10 output indicate the extinguishing period. The switch X24 that conducts during the -level period, (8) the discharge circuit 28 that lowers the output level of the integrating circuit 19 while the switch X24 is conducting, and (9) the output of the integrating circuit 19 is the input voltage, and the input voltage increases Then, the output frequency is lowered, and the voltage-controlled oscillator 20 that outputs a triangular wave whose output frequency is increased when the input voltage is lowered, and (10) the output of the voltage-controlled oscillator 20 and the DC power supply 30 are input, whereby the voltage-controlled oscillator 20 A comparator 31 for outputting a signal having an efficiency determined by the DC power source 30 at an output frequency; and (11) a dimming circuit 10 for outputting an efficiency for determining a lighting period at a frequency of time-division dimming; and (12) a comparator 31. AN that generates the switching signal for driving the piezoelectric transformer 7 by inputting the output and the output of the dimming circuit 10 and outputting a high level only when both inputs are at a high level. The D circuit 12 and (13) the output of the AND circuit 12 is input and converted into a signal for operating the drive signal generation circuit 21; and (14) the output of the drive signal generation circuit 21 is input and the piezoelectric transformer 7 is a method for adjusting the luminance of a discharge lamp including a drive circuit 22 of a piezoelectric transformer for driving the power supply 7, and a power supply device for the method.

図1の構成と図6の構成の相違点は、図1にスイッチW23の直流電源27が存在するが図6には存在せず、直流電源26が直接比較器18へ入力され、図6にスイッチ放電回路28が存在するが、図1に存在しないことである。図6において図1と同一構成部品は同一符合をもって表し、その説明を省略する。図1におけるスイッチW23の直流電源27が削除されたことにより、放電灯を流れる電流を検出した結果を比較器で比較する基準電圧値を変更する周波数変移手段が無い。代替の周波数変移手段は、消灯期間はスイッチX24が導通し、積分回路19出力は放電回路28により低下するので、電圧制御発振器20への入力電圧を低減できる。電圧制御発振器20は、入力電圧が下降すると出力周波数が高くなるので、図13に示すように、圧電トランス7の駆動周波数は点灯時に、例えばA点であったのが消灯時に昇圧比の低い周波数B点に移動し、消灯期間が実現する。放電回路28の放電能力が大きい場合は、A点からB点へほとんど0秒に近い時間で切り換わるので、バックライト上の輝度偏差が大きくなるのを防止できる。この状態で小さな音や圧電トランス7の出力電圧や出力電流にオーバーシュートが発生する場合は、放電能力を調整し、0秒より大きい500μ秒以下時間で切り換わるような設定にすることが望ましい。   The difference between the configuration of FIG. 1 and the configuration of FIG. 6 is that the DC power supply 27 of the switch W23 is present in FIG. 1 but not in FIG. 6, and the DC power supply 26 is directly input to the comparator 18, and FIG. The switch discharge circuit 28 exists but does not exist in FIG. In FIG. 6, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. Since the DC power supply 27 of the switch W23 in FIG. 1 is deleted, there is no frequency shifting means for changing the reference voltage value for comparing the result of detecting the current flowing through the discharge lamp with the comparator. The alternative frequency shifting means can reduce the input voltage to the voltage controlled oscillator 20 because the switch X24 is conductive during the extinguishing period and the output of the integrating circuit 19 is lowered by the discharging circuit 28. Since the output frequency of the voltage controlled oscillator 20 increases as the input voltage decreases, as shown in FIG. 13, the driving frequency of the piezoelectric transformer 7 is a frequency with a low step-up ratio at the time of lighting, for example, the point A when the light is turned off. Moving to point B, the extinguishing period is realized. When the discharge capacity of the discharge circuit 28 is large, switching from the point A to the point B is performed in a time almost close to 0 seconds, so that an increase in luminance deviation on the backlight can be prevented. In this state, when an overshoot occurs in a small sound or the output voltage or output current of the piezoelectric transformer 7, it is desirable to adjust the discharge capacity so that the switching is performed in a time of 500 μsec or less greater than 0 seconds.

以上に示した動作により、放電灯を点灯させる期間は圧電トランスの昇圧比が高い周波数で圧電トランスを駆動し、放電灯を暗くさせる期間又は消灯させる期間は昇圧比が低い周波数で駆動し、昇圧比の高い周波数で駆動する時間と昇圧比の低い周波数で駆動する時間の比を調整することで、放電灯の輝度調整圧電トランスを使用した電源装置を実現できる。圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数とを切り換える手段は、電圧制御発振器の入力電圧を強制的に変化させることを特徴とする。   By the operation described above, the piezoelectric transformer is driven at a frequency where the boosting ratio of the piezoelectric transformer is high during the period when the discharge lamp is turned on, and is driven at a frequency where the boosting ratio is low during the period where the discharge lamp is darkened or turned off. By adjusting the ratio between the time for driving at a high frequency and the time for driving at a low step-up ratio, a power supply device using a brightness adjusting piezoelectric transformer for the discharge lamp can be realized. The means for switching between a frequency with a high step-up ratio of the piezoelectric transformer and a frequency with a low step-up ratio is characterized by forcibly changing the input voltage of the voltage controlled oscillator.

(実施の形態3)
図7は、本発明の第三の実施の形態における放電灯の輝度調整方法とその電源装置を示すブロック図である。図8は、電流振幅による調光方法と時分割による調光方法の電流波形を示す図である。図12は、電流振幅変更時における低圧側電流と高圧側電流との相関を示すグラフである。図13は、圧電トランスの駆動周波数と昇圧比の関係を示すグラフである。
(Embodiment 3)
FIG. 7 is a block diagram showing a discharge lamp luminance adjustment method and its power supply apparatus according to the third embodiment of the present invention. FIG. 8 is a diagram illustrating current waveforms of a dimming method using current amplitude and a dimming method using time division. FIG. 12 is a graph showing the correlation between the low-voltage side current and the high-voltage side current when the current amplitude is changed. FIG. 13 is a graph showing the relationship between the drive frequency of the piezoelectric transformer and the step-up ratio.

図7の構成を改めて説明すると、(1)一次側電極13と一次側電極14から交流電圧を入力し、圧電効果を利用して二次側電極15から出力する圧電トランス7と(2)圧電トランス7の出力を入力端から入力し、第一の出力端から出力し、その電流値に比例した電流を第二の出力端から出力する電流検出回路16と(3)電流検出回路16の第一の出力端からの出力を入力する負荷8と(4)電流検出回路16の第二の出力端からの出力を入力し、その整流結果を出力する整流回路17と(5)調光回路10の出力信号を受けて直流電源26と直流電源27の何れかの出力を選択して比較器18に対し出力するスイッチW23と(6)整流回路17の出力とスイッチW23の出力を入力し、比較して、整流回路17出力のほうが小さい期間にハイレベルの出力をおこなう比較器18と(7) 比較器18の出力を入力し、特定の時定数をもった積分結果を出力する積分回路19と(8)積分回路19の出力を入力電圧とし、入力電圧が上昇すると出力周波数を低くし、入力電圧が下降すると出力周波数が高くなる三角波を出力する電圧制御発振器20と(9)電圧制御発振器20の出力とスイッチY25によって直流電源29又は直流電源30のいずれか選択された直流電圧を入力することで電圧制御発振器20の出力周波数で直流電源30によって定められる効率をもった信号を出力する比較器31と(10)時分割調光の周波数で点灯期間を定める効率を出力する調光回路10と(11)比較器31出力と調光回路10出力とを入力し、両入力が共にハイレベルの期間のみハイレベルの出力をすることで圧電トランス7を駆動するスイッチング信号を発生させるAND回路12と(12)AND回路12の出力を入力し、駆動信号発生回路21を動作させる信号に変換する駆動信号発生回路21と(13)駆動信号発生回路21の出力を入力し、圧電トランス7を駆動する圧電トランスの駆動回路22を含んでなる。   The configuration of FIG. 7 will be described again. (1) The piezoelectric transformer 7 that receives an AC voltage from the primary side electrode 13 and the primary side electrode 14 and outputs it from the secondary side electrode 15 using the piezoelectric effect, and (2) the piezoelectric element. An output of the transformer 7 is input from the input end, output from the first output end, and a current detection circuit 16 that outputs a current proportional to the current value from the second output end; and (3) a first of the current detection circuit 16 A load 8 for inputting an output from one output terminal, (4) a rectifier circuit 17 for inputting an output from a second output terminal of the current detection circuit 16 and outputting the rectification result, and (5) a dimming circuit 10 The switch W23 that selects one of the outputs of the DC power supply 26 and the DC power supply 27 in response to the output signal and outputs to the comparator 18 and (6) the output of the rectifier circuit 17 and the output of the switch W23 are input and compared. Therefore, when the output of the rectifier circuit 17 is smaller, the high level output is reduced. The comparator 18 and (7) the output of the comparator 18 are input, the integration circuit 19 that outputs an integration result having a specific time constant, and (8) the output of the integration circuit 19 is the input voltage. The voltage controlled oscillator 20 that outputs a triangular wave that lowers the output frequency when the input voltage increases and the output frequency increases when the input voltage decreases, and (9) either the DC power supply 29 or the DC power supply 30 depending on the output of the voltage controlled oscillator 20 and the switch Y25. A comparator 31 that outputs a signal having an efficiency determined by the DC power source 30 at the output frequency of the voltage controlled oscillator 20 by inputting the selected DC voltage, and (10) the lighting period is determined by the time-division dimming frequency. The dimming circuit 10 that outputs the efficiency, (11) the comparator 31 output and the dimming circuit 10 output are input, and the piezoelectric transformer 7 is driven by outputting a high level only when both inputs are at a high level. The AND circuit 12 for generating the switching signal and (12) the output of the AND circuit 12 are input and converted to a signal for operating the driving signal generating circuit 21 and (13) the output of the driving signal generating circuit 21 And a piezoelectric transformer drive circuit 22 for driving the piezoelectric transformer 7.

図1の構成と図7(本実施の形態3)の構成の相違点は、図7にスイッチY25の直流電源29が存在し、比較器31への入力はスイッチY25で切り換えられるが、図1にスイッチY25の直流電源29が存在しないので、比較器31へ入力する直流電圧は一定である。図7において、図1と同一の構成部品は同一符合をもって表し、その説明を省略する。スイッチY25は調光回路10の出力信号を受けて、点灯期間は直流電源30に導通し、消灯期間は直流電源29に導通する構成になっている。直流電源29の電圧値は直流電源30の電圧値よりも高い値に設定する。よって消灯期間に比較器31に入力される直流電圧は、点灯期間に入力される直流電圧値よりも高くなる。図1の動作説明で記述した如く比較器31に入力する直流電圧値を上昇させることで、図5の実線で示された信号は破線で示された信号に変化し、圧電トランス7への供給電力を低減できる。これにより消灯させたい期間(圧電トランス7の出力が不要な期間)の圧電トランス7への入力電力を低減できる。その結果、電源装置の省電力化できる。   The difference between the configuration of FIG. 1 and the configuration of FIG. 7 (the third embodiment) is that the DC power supply 29 of the switch Y25 exists in FIG. 7 and the input to the comparator 31 is switched by the switch Y25. Since the DC power supply 29 of the switch Y25 does not exist, the DC voltage input to the comparator 31 is constant. In FIG. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. The switch Y25 receives the output signal of the dimming circuit 10, and is configured to conduct to the DC power supply 30 during the lighting period and to conduct the DC power supply 29 during the extinguishing period. The voltage value of the DC power supply 29 is set higher than the voltage value of the DC power supply 30. Therefore, the DC voltage input to the comparator 31 during the extinguishing period is higher than the DC voltage value input during the lighting period. As described in the operation description of FIG. 1, the DC voltage input to the comparator 31 is increased, whereby the signal indicated by the solid line in FIG. 5 is changed to the signal indicated by the broken line and supplied to the piezoelectric transformer 7. Electric power can be reduced. As a result, it is possible to reduce the input power to the piezoelectric transformer 7 during a period in which it is desired to turn off the light (a period in which the output of the piezoelectric transformer 7 is unnecessary). As a result, power saving of the power supply device can be achieved.

(実施の形態4)
実施の形態3で実施の形態1に付加したスイッチY25と直流電源29は、実施の形態2に付加しても同様に電源装置の省電力化に有効である。
(Embodiment 4)
The switch Y25 and the DC power supply 29 added to the first embodiment in the third embodiment are also effective for power saving of the power supply device even if added to the second embodiment.

以上に示したように、本発明により、液晶表示装置のバックライト用放電灯の輝度偏差を抑制した低消費電力の放電灯の輝度調整方法と圧電トランスを使用した電源装置の提供が可能になる。   As described above, according to the present invention, it is possible to provide a method for adjusting the luminance of a discharge lamp with low power consumption, which suppresses the luminance deviation of a backlight discharge lamp of a liquid crystal display device, and a power supply device using a piezoelectric transformer. .

本発明の第1の実施の形態における放電灯の輝度調整方法とその電源装置を示すブロック図。The block diagram which shows the brightness | luminance adjustment method of the discharge lamp in the 1st Embodiment of this invention, and its power supply device. フルブリッジ構成の圧電トランスの駆動回路を示すブロック図。The block diagram which shows the drive circuit of the piezoelectric transformer of a full bridge structure. プッシュプル構成の圧電トランスの駆動回路を示すブロック図。The block diagram which shows the drive circuit of the piezoelectric transformer of a push pull structure. ハーフブリッジ構成の圧電トランスの駆動回路を示すブロック図。The block diagram which shows the drive circuit of the piezoelectric transformer of a half bridge structure. 駆動回路のスイッチの動作を示した図。The figure which showed operation | movement of the switch of a drive circuit. 本発明の第二の実施の形態における放電灯の輝度調整方法とその電源装置を示すブロック図。The block diagram which shows the brightness | luminance adjustment method of the discharge lamp in 2nd embodiment of this invention, and its power supply device. 本発明の第三の実施の形態における放電灯の輝度調整方法とその電源装置を示すブロック図。The block diagram which shows the brightness | luminance adjustment method of the discharge lamp in 3rd embodiment of this invention, and its power supply device. 電流振幅による調光方法と時分割による調光方法の電流波形を示す図。The figure which shows the current waveform of the light control method by an electric current amplitude, and the light control method by a time division. 時分割調光を採用する圧電インバータの一例を示すブロック図。The block diagram which shows an example of the piezoelectric inverter which employ | adopts time division dimming. プッシュプル構成の圧電トランスの駆動回路を示す図。The figure which shows the drive circuit of the piezoelectric transformer of a push pull structure. 特許文献1における調光時の電流波形を示す図。The figure which shows the electric current waveform at the time of the light control in patent document 1. FIG. 電流振幅変更時における低圧側電流と高圧側電流との相関を示すグラフ。The graph which shows the correlation of the low voltage side current at the time of current amplitude change, and the high voltage side current. 圧電トランスの駆動周波数と昇圧比の関係を示すグラフ。The graph which shows the relationship between the drive frequency of a piezoelectric transformer, and a step-up ratio.

符号の説明Explanation of symbols

1 直流電源
2 スイッチZ
3 コイル
4 コイル
5 スイッチA
6 スイッチB
7 圧電トランス
8 負荷
9 ダイオード
10 調光回路
11 駆動周波数発生回路
12 AND回路
13 圧電トランス一次側電極
14 圧電トランス一次側電極
15 圧電トランス二次側電極
16 電流検出回路
17 整流回路
18 比較器
19 積分回路
20 電圧制御発振器
21 駆動信号発生回路
22 駆動回路
23 スイッチW
24 スイッチX
25 スイッチY
26 直流電源
27 直流電源
28 放電回路
29 直流電源
30 直流電源
31 比較器
32 スイッチC
33 スイッチD
1 DC power supply 2 Switch Z
3 Coil 4 Coil 5 Switch A
6 Switch B
7 Piezoelectric transformer 8 Load 9 Diode 10 Dimming circuit 11 Drive frequency generation circuit 12 AND circuit 13 Piezoelectric transformer primary electrode 14 Piezoelectric transformer primary electrode 15 Piezoelectric transformer secondary electrode 16 Current detection circuit 17 Rectifier circuit 18 Comparator 19 Integration Circuit 20 Voltage controlled oscillator 21 Drive signal generation circuit 22 Drive circuit 23 Switch W
24 Switch X
25 Switch Y
26 DC power supply 27 DC power supply 28 discharge circuit 29 DC power supply 30 DC power supply 31 comparator 32 switch C
33 Switch D

Claims (11)

直流電圧から交流電圧を発生させる圧電トランスを使用した電源装置の出力電圧を放電灯に印加して、前記放電灯を点灯するときの放電灯の輝度調整方法において、前記放電灯を点灯させる期間は、前記圧電トランスの昇圧比が高い周波数で前記圧電トランスを駆動し、前記放電灯を暗く点灯させる期間又は前記放電灯を消灯させる期間は、昇圧比が低い周波数で前記圧電トランスを駆動し、前記昇圧比の高い周波数で前記圧電トランスを駆動する時間と前記昇圧比の低い周波数で前記圧電トランスを駆動する時間の比率を調整することを特徴とする放電灯の輝度調整方法。   In the method for adjusting the brightness of the discharge lamp when the output voltage of the power supply device using a piezoelectric transformer that generates an AC voltage from the DC voltage is applied to the discharge lamp and the discharge lamp is turned on, the period during which the discharge lamp is turned on is The piezoelectric transformer is driven at a frequency with a high step-up ratio of the piezoelectric transformer, and the piezoelectric transformer is driven at a frequency with a low step-up ratio during a period in which the discharge lamp is lit dark or a period in which the discharge lamp is turned off. A method for adjusting a luminance of a discharge lamp, comprising adjusting a ratio of a time for driving the piezoelectric transformer at a frequency having a high step-up ratio and a time for driving the piezoelectric transformer at a frequency having a low step-up ratio. 前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数との切り換えは、0秒より大きく約500μ秒以下の期間で切り換えることを特徴とする請求項1記載の放電灯の輝度調整方法。   2. The method for adjusting the brightness of a discharge lamp according to claim 1, wherein switching between a frequency with a high step-up ratio of the piezoelectric transformer and a frequency with a low step-up ratio is performed in a period greater than 0 seconds and about 500 μsec or less. 前記圧電トランスの昇圧比が低い周波数で駆動させる期間では、前記圧電トランス駆動周波数1周期あたりのスイッチング素子導通時間を短くすることを特徴とする請求項1又は2記載の放電灯の輝度調整方法。   The method for adjusting the luminance of a discharge lamp according to claim 1 or 2, wherein, in a period in which the step-up ratio of the piezoelectric transformer is driven at a low frequency, a switching element conduction time per cycle of the piezoelectric transformer driving frequency is shortened. 出力電圧を放電灯に印加して、前記放電灯を点灯するときの放電灯の輝度調整機能を備えた直流電圧から交流電圧を発生させる圧電トランスを使用した電源装置において、前記放電灯を点灯させる期間は、前記圧電トランスの昇圧比が高い周波数で前記圧電トランスを駆動し、放電灯を暗く点灯させる期間又は前記放電灯を消灯させる期間は、昇圧比が低い周波数で駆動し、前記昇圧比の高い周波数で駆動する時間と前記昇圧比の低い周波数で駆動する時間の比率を調整する放電灯の輝度調整機能を備えたことを特徴とする圧電トランスを使用した電源装置。   Applying an output voltage to a discharge lamp to light the discharge lamp in a power supply device using a piezoelectric transformer that generates an AC voltage from a DC voltage having a function of adjusting the brightness of the discharge lamp when the discharge lamp is turned on During the period, the piezoelectric transformer is driven at a frequency where the boost ratio of the piezoelectric transformer is high, and the period during which the discharge lamp is lit darkly or during the period when the discharge lamp is extinguished is driven at a frequency where the boost ratio is low. A power supply device using a piezoelectric transformer, comprising a brightness adjusting function of a discharge lamp that adjusts a ratio between a time for driving at a high frequency and a time for driving at a low frequency of the step-up ratio. 前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数との切り換えは、0秒より大きく約500μ秒以下の期間で切り換える機能を備えたことを特徴とする請求項4記載の圧電トランスを使用した電源装置。   5. The piezoelectric transformer according to claim 4, wherein the piezoelectric transformer has a function of switching between a frequency having a high step-up ratio and a frequency having a low step-up ratio in a period of greater than 0 seconds and about 500 μsec or less. Power supply. 放電灯を流れる電流を検出する機能と検出された前記放電灯を流れる電流を比較器で比較する機能と前記比較器で比較された結果に基づき基準電圧値を変更する機能を備えて、前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数とを切り換えることを特徴とする請求項4又は5記載の圧電トランスを使用した電源装置。   A function of detecting a current flowing through a discharge lamp, a function of comparing a detected current flowing through the discharge lamp with a comparator, and a function of changing a reference voltage value based on a result of comparison with the comparator; 6. The power supply device using a piezoelectric transformer according to claim 4, wherein a frequency with a high step-up ratio of the transformer is switched between a frequency with a low step-up ratio. 電圧制御発振器の入力電圧が上昇すると出力周波数を低くし、前記電圧制御発振器の入力電圧が下降すると出力周波数を高くする機能を備えて、前記圧電トランスの昇圧比が高い周波数と昇圧比の低い周波数とを切り換えることを特徴とする請求項4、5又は6記載の圧電トランスを使用した電源装置。   When the input voltage of the voltage controlled oscillator is increased, the output frequency is decreased, and when the input voltage of the voltage controlled oscillator is decreased, the output frequency is increased, and the piezoelectric transformer has a high boost ratio and a low boost ratio. The power supply device using the piezoelectric transformer according to claim 4, wherein: 圧電トランスの昇圧比が低い周波数で駆動する期間は、圧電トランス駆動周波数1周期あたりのスイッチング素子導通時間を短くする機能を備えたことを特徴とする請求項4、5、6又は7記載の圧電トランスを使用した電源装置。   8. The piezoelectric device according to claim 4, wherein the piezoelectric transformer has a function of shortening a switching element conduction time per cycle of the piezoelectric transformer driving frequency during a period in which the step-up ratio of the piezoelectric transformer is driven at a low frequency. A power supply using a transformer. (1) 一次側電極から交流電圧を入力し、圧電効果を利用して二次側電極から出力する圧電トランスと(2) 入力端から前記圧電トランスの出力を入力し、第一の出力端から出力し、第二の出力端から前記第一の出力端から出力する電流値に比例した電流を出力する電流検出回路と(3) 前記電流検出回路の第一の出力端からの出力を入力する負荷と(4) 前記電流検出回路の第二の出力端からの出力を入力し、整流した結果を出力する整流回路と(5) 調光回路の出力信号を受けて、複数存在する直流電源の何れかを選択して比較器に出力するスイッチと(6) 前記整流回路の出力と前記スイッチの出力を入力し、前記整流回路の出力と前記スイッチの出力とを比較し、前記整流回路の出力が小さい期間は、ハイレベルの出力をおこなう比較器と(7) 前記比較器の出力を入力し、特定の時定数をもった積分結果を出力する積分回路と(8) 前記積分回路の出力を入力電圧とし、入力電圧が上昇すると出力周波数を低くし、入力電圧が下降すると出力周波数を高くする三角波を出力する電圧制御発振器と(9) 前記電圧制御発振器出力と直流電圧とを入力し、前記直流電圧によって定められる効率をもった信号を電圧制御発振器の出力周波数で出力する第二の比較器と(10) 点灯期間を定める効率を時分割調光の周波数で出力する調光回路と(11) 前記第二の比較器の出力と前記調光回路の出力を入力し、前記第二の比較器の出力と前記調光回路の出力との入力が、共にハイレベルの期間のみハイレベルの出力をするように前記圧電トランスを駆動させるスイッチング信号を発生させるAND回路と(12) 前記AND回路の出力を入力し、駆動回路を動作させる信号に変換する駆動信号発生回路と(13) 前記駆動信号発生回路の出力を入力し、前記圧電トランスを駆動する圧電トランス駆動回路とを含んでなることを特徴とする請求項4、5又は6記載の圧電トランスを使用した電源装置。   (1) An AC voltage is input from the primary side electrode and a piezoelectric transformer is used to output from the secondary side electrode using the piezoelectric effect. (2) The output of the piezoelectric transformer is input from the input end, and from the first output end. A current detection circuit that outputs and outputs a current proportional to a current value output from the first output terminal from the second output terminal; and (3) inputs an output from the first output terminal of the current detection circuit. A load and (4) a rectifier circuit that outputs an output from the second output terminal of the current detection circuit and outputs a rectified result; and (5) a plurality of DC power supplies that receive an output signal of the dimming circuit. A switch that selects one of them and outputs it to the comparator; and (6) inputs the output of the rectifier circuit and the output of the switch, compares the output of the rectifier circuit and the output of the switch, and outputs the output of the rectifier circuit A comparator that outputs a high level during a period when (7) the comparator is An integration circuit that inputs an output and outputs an integration result with a specific time constant. (8) The output of the integration circuit is an input voltage. When the input voltage increases, the output frequency decreases, and when the input voltage decreases, the output (9) a voltage-controlled oscillator that outputs a triangular wave that increases the frequency; and (9) the voltage-controlled oscillator output and a DC voltage are input, and a signal having an efficiency determined by the DC voltage is output at an output frequency of the voltage-controlled oscillator. Two comparators and (10) a dimming circuit that outputs the efficiency for determining the lighting period at a frequency of time-division dimming, and (11) input the output of the second comparator and the output of the dimming circuit, An AND circuit for generating a switching signal for driving the piezoelectric transformer so that both the output of the second comparator and the output of the dimming circuit output a high level only during a high level period; AND circuit A drive signal generation circuit for inputting an output and converting the signal into a signal for operating the drive circuit; and (13) a piezoelectric transformer drive circuit for inputting the output of the drive signal generation circuit and driving the piezoelectric transformer. A power supply device using the piezoelectric transformer according to claim 4, 5 or 6. (1) 一次側電極から交流電圧を入力し、圧電効果を利用して二次側電極から出力する圧電トランスと(2) 入力端から前記圧電トランスの出力を入力し、第一の出力端から出力し、前記第一の出力端から出力する電流値に比例した電流を第二の出力端から出力する電流検出回路と(3) 前記電流検出回路の第一の出力端からの出力を入力する負荷と(4) 前記電流検出回路の第二の出力端からの出力を入力し、整流した結果を出力する整流回路と(5) 前記整流回路の出力と直流電源の出力を入力し、前記整流回路の出力と直流電源の出力とを比較し、整流回路出力が小さい期間は、ハイレベルの出力をおこなう比較器と(6) 前記比較器の出力を入力し、特定の時定数をもった積分結果を出力する積分回路と(7) 調光回路出力が消灯期間を指示するローレベルの期間導通するスイッチと(8) 前記スイッチが導通している期間に積分回路出力レベルを低下させる放電回路と(9) 前記積分回路の出力を入力電圧とし、入力電圧が上昇すると出力周波数を低くし、入力電圧が下降すると出力周波数を高くする三角波を出力する電圧制御発振器と(10) 前記電圧制御発振器の出力と直流電圧とを入力し、前記直流電圧によって定められる効率をもった信号を前記電圧制御発振器の出力周波数で出力する第二の比較器と(11) 点灯期間を定める効率を時分割調光の周波数で出力する調光回路と(12) 前記第二の比較器出力と前記調光回路出力とを入力し、前記第二の比較器出力と前記調光回路出力との入力が、共にハイレベルの期間のみハイレベルの出力をするように前記圧電トランスを駆動させるスイッチング信号を発生させるAND回路と(13) 前記AND回路の出力を入力し、駆動回路を動作させる信号に変換する駆動信号発生回路と(14) 前記駆動信号発生回路の出力を入力し、前記圧電トランスを駆動する圧電トランス駆動回路を含んでなることを特徴とする請求項4、5、6又は7記載の圧電トランスを使用した電源装置。   (1) An AC voltage is input from the primary side electrode and a piezoelectric transformer is used to output from the secondary side electrode using the piezoelectric effect. (2) The output of the piezoelectric transformer is input from the input end, and from the first output end. A current detection circuit that outputs and outputs a current proportional to a current value output from the first output terminal from the second output terminal; and (3) inputs an output from the first output terminal of the current detection circuit. A load and (4) a rectifier circuit that inputs an output from the second output terminal of the current detection circuit and outputs a rectified result; and (5) an output of the rectifier circuit and an output of a DC power source and the rectifier Comparing the output of the circuit and the output of the DC power source, and when the output of the rectifier circuit is small, a comparator that outputs a high level and (6) the output of the comparator is input and integration with a specific time constant The integration circuit that outputs the result and (7) dimming circuit output is low level indicating the extinguishing period. A switch that conducts for a period; and (8) a discharge circuit that lowers the output level of the integration circuit during the period in which the switch is conducted; and (9) the output of the integration circuit is used as an input voltage, and when the input voltage increases, the output frequency is lowered. A voltage-controlled oscillator that outputs a triangular wave that increases the output frequency when the input voltage decreases, and (10) an output of the voltage-controlled oscillator and a DC voltage are input, and a signal having an efficiency determined by the DC voltage is input to the voltage A second comparator that outputs at the output frequency of the controlled oscillator, and (11) a dimming circuit that outputs the efficiency for determining the lighting period at a frequency of time-division dimming, and (12) the second comparator output and the dimming A circuit output is input, and a switching signal is generated to drive the piezoelectric transformer so that the second comparator output and the dimming circuit output both output a high level only during a high level period. And an AND circuit that inputs the output of the AND circuit and converts it into a signal for operating the drive circuit, and (14) inputs the output of the drive signal generation circuit and drives the piezoelectric transformer. 8. A power supply device using a piezoelectric transformer according to claim 4, further comprising a piezoelectric transformer drive circuit. 第二の比較器に入力する直流電圧値を第二のスイッチで複数の電圧値から選択させたことを特徴とする請求項9又は10記載の圧電トランスを使用した電源装置。   11. The power supply device using a piezoelectric transformer according to claim 9, wherein a DC voltage value input to the second comparator is selected from a plurality of voltage values by a second switch.
JP2005378363A 2005-12-28 2005-12-28 Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer Withdrawn JP2007179920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378363A JP2007179920A (en) 2005-12-28 2005-12-28 Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378363A JP2007179920A (en) 2005-12-28 2005-12-28 Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer

Publications (1)

Publication Number Publication Date
JP2007179920A true JP2007179920A (en) 2007-07-12

Family

ID=38304888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378363A Withdrawn JP2007179920A (en) 2005-12-28 2005-12-28 Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer

Country Status (1)

Country Link
JP (1) JP2007179920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999257B1 (en) 2007-11-19 2010-12-07 산켄덴키 가부시키가이샤 Discharge lamp lighting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999257B1 (en) 2007-11-19 2010-12-07 산켄덴키 가부시키가이샤 Discharge lamp lighting apparatus
US7982415B2 (en) 2007-11-19 2011-07-19 Sanken Electric Co., Ltd. Discharge lamp lighting apparatus

Similar Documents

Publication Publication Date Title
US6075325A (en) Inverter and method for driving a plurality of cold cathode tubes in parallel
TWI326523B (en) Inverter for providing power to a load, method for improving efficiency thereof, and information handling system
JP3237614B2 (en) Driving method and driving circuit for piezoelectric transformer
CN102047766B (en) Discharge lamp lighting apparatus
US20080137384A1 (en) Mixed-mode DC/AC inverter
JPH09107684A (en) Drive circuit for piezoelectric transformer
US7012578B2 (en) Light emission control device, backlight device, liquid crystal display apparatus, liquid crystal monitor and liquid crystal television
US6044003A (en) Piezoelectric transformer-inverter
US7521877B2 (en) Dimmer circuit for a discharge lighting apparatus
JPH10228993A (en) Piezoelectric trans-inverter device
EP2222141B1 (en) Discharge lamp lighting circuit for AC-driving a discharge lamp
JP2007068335A (en) Power supply device
JP2007179920A (en) Method of adjusting brightness of discharge lamp, and power source device using piezoelectric transformer
JP2003257689A (en) Lighting method for high pressure discharge lamp and electronic apparatus using it
US7224592B2 (en) Multi-period cycle-alternative switching mode power supply control device and its control method
JP2000188880A (en) Piezoelectric element driving circuit and method for controlling the same
JP4059053B2 (en) Lighting method of high pressure discharge lamp
JP3269460B2 (en) Piezoelectric transformer drive circuit and drive method
JP2006081233A (en) Power unit using piezoelectric transformer
CN109845409A (en) Discharge lamp lighting control device and lamp current supply method
JP5993618B2 (en) Discharge lamp lighting device
JP2005327661A (en) Lighting device of high-pressure discharge lamp, and electronic apparatus using it
JP2010094000A (en) Inverter for backlight and method of activating the same
JPH1075576A (en) Control circuit for piezoelectric transformer
JP2005116501A (en) Dimmer system for electrodeless lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110518