JP4221538B2 - Digital signal generation method - Google Patents

Digital signal generation method Download PDF

Info

Publication number
JP4221538B2
JP4221538B2 JP2000169168A JP2000169168A JP4221538B2 JP 4221538 B2 JP4221538 B2 JP 4221538B2 JP 2000169168 A JP2000169168 A JP 2000169168A JP 2000169168 A JP2000169168 A JP 2000169168A JP 4221538 B2 JP4221538 B2 JP 4221538B2
Authority
JP
Japan
Prior art keywords
digital signal
frequency
value
absolute value
generation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000169168A
Other languages
Japanese (ja)
Other versions
JP2001345762A (en
Inventor
祥子 長倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP2000169168A priority Critical patent/JP4221538B2/en
Publication of JP2001345762A publication Critical patent/JP2001345762A/en
Application granted granted Critical
Publication of JP4221538B2 publication Critical patent/JP4221538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デジタル信号の発生方法に関するものである。
【0002】
【従来の技術】
デジタル信号発生器と受信器が伝送路で接続されている系で、発生したデジタル信号を受信器で受信している。このとき受信器では受信した信号を解析するために、信号の電力を計算する必要がある場合が多い。この信号の解析を固定小数点DSP(Digtal Signal Processor )を用いて行う場合には、それが複雑であるほど処理量やメモリ量を多く必要とし、効率的な演算が求められる。
【0003】
周波数F(Hz)の単一周波信号を、サンプリング周波数をFs(Hz)とするデジタル信号発生器で離散系列として発生する時、解散時刻nにおける出力xn は、
【数5】

Figure 0004221538
である。この時一般的に位相θ=0(rad )である。
【0004】
式(1)で示すデジタル信号の電力<x2 >は、式(2)の平均電力
【数6】
Figure 0004221538
を計算することによって求めることができるが、xn のダイナミックレンジを保ったまま、xn 2 を計算するには2倍のbit 幅が必要となる。
【0005】
そこで式(2)の代替手段として式(3)の絶対値振幅平均
【数7】
Figure 0004221538
を用いると、bit 幅は変わらずにダイナミックレンジを保てるので、効果的な演算を行う上で利用される場合も多い。固定小数点DSPを用いて式(3)で演算を行うと、式(2)に比べ数分の1の処理量と約半分のメモリ容量で電力計算を実現できることになる。
【0006】
【発明が解決しようとする課題】
しかし、デジタル信号発生器と受信器間にD/A変換器およびA/D変換器が介在しないデジタル信号伝送路上では、受信器で上記絶対値振幅平均を計算する場合、サンプリング周波数に対してある特定の関係が成り立つ周波数では、上記計算値と連続時間系による絶対値振幅平均の理論値との間に大きな誤差が生じる。従来の技術ではこの現象に対する考慮がなされていない。
【0007】
すなわち、受信器に単一周波信号が入力される場合を連続時間系で表すと、周波数f(Hz)の信号x(t)を
【数8】
Figure 0004221538
とすると、絶対値振幅平均は、
【数9】
Figure 0004221538
となり、この値は周波数によらず一定値(2A/π)である。
【0008】
一方、離散時間系では、サンプリング周波数Fs(Hz)でサンプリングした周波数F(Hz)のデジタル信号の絶対値振幅平均は
【数10】
Figure 0004221538
となる。例えば、Fs=8000(Hz)とし、F=150(Hz)〜3400(Hz)の範囲で計算し、グラフ化すると、図1のような結果になる。この結果は発生する周波数によって連続時間系における理論値と振幅上に差が生じることを示しており、特にサンプリング周波数Fsの整数分の1の周波数で顕著になる傾向がある。図1ではサンプリング周波数の1/4の周波数(2000Hz)で最大となり、約2dBの振幅差が生じている。
【0009】
いま、サンプリング周波数の整数分の1の周波数Fを、
【数11】
Figure 0004221538
とし、式(7)を式(6)に代入すると、
【数12】
Figure 0004221538
となる。
【0010】
従って、A=1とすると、
【数13】
Figure 0004221538
のように、サンプリング周波数の1/k(k=1,2,…N)の周波数では周期kで特定の値を繰り返す。kが大きいときの絶対値振幅平均<|x|>は連続時間系における理論値2/π≒0.636619に収束していくが、kが小さいときの絶対値振幅平均<|x|>はNによらず式(9)に示した値となり、連続時間系における理論値2/πとの誤差が大きい。例えばN=k,A=1として、k=1,2…と変化させて式(9)を求め、グラフ化すると図2のようになる。図2の点Oが図1の2000Hzの点に、点Pが1333Hzの点に、点Qが1000Hzの点に相当することがわかる。
【0011】
本発明の目的は、デジタル信号発生器に用いて発生するデジタル信号の絶対値振幅平均と連続時間系における理論値との誤差を制御することができる信号発生方法を提供することにある。
【0012】
【課題を解決するための手段】
この目的を達成するために、本発明によるデジタル信号発生方法は、発生するデジタル信号の絶対値振幅平均<|X|>と連続時間系における理論値との誤差を除去するために、所望の周波数Fに対して、次式
【数14】
Figure 0004221538
(ここで、Aは振幅、Nは任意の実数、FS はサンプリング周波数、nは離散時刻)
を展開して求めた位相θを有する次式
【数15】
Figure 0004221538
による 信号xm を発生することを特徴とする構成を有している。
また、発生するデジタル信号の絶対値振幅平均<|X|>と連続時間系における理論値との誤差を抑圧するために、所望の周波数Fに対して、次式
【数16】
Figure 0004221538
(ここで、Aは振幅、Nは任意の実数、FS はサンプリング周波数、nは離散時刻)
の位相θを有するように予め定められたテーブルを用いて次式
【数17】
Figure 0004221538
による信号xn を発生することを特徴とするように構成することができる。
前記テーブルは、前記絶対値振幅平均の理論値と計算値との誤差を所望の値以下に抑圧するように設定することができる。
【0013】
【発明の実施の形態】
一般に、式(1)に示したようにデジタル信号発生器のサンプリング点の位相θは0rad であるが、サンプリング点の位相θを変化させて絶対値振幅平均を計算し、連続時間系における理論値と比較すると、どの周波数にも理論値と一致する点が存在する。
【数18】
Figure 0004221538
【0014】
式(10)でA=1とし、位相θを0〜πの範囲で変化させて絶対値振幅平均を計算しグラフ化すると図3のような結果となる。例えば2000Hzの場合では図上のA,B,C,Dの4点で理論値と計算値が一致する。
【0015】
この結果にしたがって、式(1)の代わりに例えばA点の位相θA を含んだ式(11)で信号を発生することで
【数19】
Figure 0004221538
前述の誤差を0にすることができる。
【0016】
前述の説明ではkを整数としたが、kが実数となる任意の周波数でも同様な現象による誤差が発生するから、すべての周波数に対して式(12)を展開して求めた位相θを含んだ信号を発生することで、どの周波数においても前述の誤差が生じない信号を発生することができる。
【数20】
Figure 0004221538
【0017】
【実施例】
サンプリング周波数8kHzの単一周波数を発生するデジタル信号発生器を考える。振幅A,周波数F(Hz)の信号のn番目の出力xn は、
【数21】
Figure 0004221538
となる。
【0018】
このとき、図1より3.2kHz,3kHz,2.4kHz,2kHz,1.6kHz,1kHz,800Hzの点は、サンプリング点の位相θを0(rad )としたときの絶対値振幅平均と理論値との差が大きいので、位相θを表1のように求める。A=1のときの絶対値振幅平均の値もθ項がない場合とθ項がある場合について共に示す。A=1のときの絶対値振幅平均の理論値は2/π=0.636619である。この場合の理論値と表1で定められている計算値との差は、本発明によるデジタル信号発生方法を適用するシステムの要求によって定まる値以下にするように適宜設定すればよい。
【0019】
【表1】
Figure 0004221538
【0020】
【発明の効果】
以上詳細に説明したように、本発明によるデジタル信号発生方法によれば、電力計算に絶対値振幅平均を用いた場合に生じる連続時間系における理論値との誤差のないデジタル信号を発生することができる。
【図面の簡単な説明】
【図1】離散時間系でサンプリングされたデジタル信号の周波数と絶対値振幅平均の計算値との関係を示す特性図である。
【図2】離散時間系でサンプリングされたデジタル信号の絶対値振幅平均の計算値と 連続時間系における理論値との関係を示す周波数特性図である。
【図3】離散時間系でサンプリングされたデジタル信号の絶対値振幅平均の計算値と 連続時間系における理論値との関係を示す位相特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for generating a digital signal.
[0002]
[Prior art]
In a system in which a digital signal generator and a receiver are connected via a transmission line, the generated digital signal is received by the receiver. At this time, the receiver often needs to calculate the power of the signal in order to analyze the received signal. When this signal analysis is performed using a fixed-point DSP (Digtal Signal Processor), the more complicated it is, the more processing and memory are required, and more efficient calculation is required.
[0003]
When a single frequency signal having a frequency F (Hz) is generated as a discrete sequence by a digital signal generator having a sampling frequency Fs (Hz), the output x n at the dissolution time n is
[Equation 5]
Figure 0004221538
It is. At this time, the phase θ is generally 0 (rad).
[0004]
The power <x 2 > of the digital signal shown in equation (1) is the average power of equation (2)
Figure 0004221538
However, to calculate x n 2 while maintaining the dynamic range of x n, a double bit width is required.
[0005]
Therefore, as an alternative to equation (2), the absolute amplitude average of equation (3)
Figure 0004221538
If is used, the dynamic range can be maintained without changing the bit width, so it is often used for effective calculation. When the calculation is performed by the expression (3) using the fixed-point DSP, the power calculation can be realized with a processing amount of a fraction and a memory capacity about half that of the expression (2).
[0006]
[Problems to be solved by the invention]
However, on the digital signal transmission path in which the D / A converter and the A / D converter are not interposed between the digital signal generator and the receiver, the absolute value amplitude average is calculated with respect to the sampling frequency in the receiver. At a frequency where a specific relationship is established, a large error occurs between the calculated value and the theoretical value of the absolute value amplitude average by the continuous time system. The conventional technology does not consider this phenomenon.
[0007]
That is, when a single frequency signal is input to the receiver in a continuous time system, a signal x (t) having a frequency f (Hz) is expressed as follows:
Figure 0004221538
Then, the absolute amplitude average is
[Equation 9]
Figure 0004221538
This value is a constant value (2 A / π) regardless of the frequency.
[0008]
On the other hand, in the discrete time system, the absolute value amplitude average of the digital signal of the frequency F (Hz) sampled at the sampling frequency Fs (Hz) is
Figure 0004221538
It becomes. For example, when Fs = 8000 (Hz) and F = 150 (Hz) to 3400 (Hz) is calculated and graphed, the result is as shown in FIG. This result shows that a difference occurs between the theoretical value and the amplitude in the continuous time system depending on the generated frequency, and in particular, it tends to become prominent at a frequency that is 1 / integer of the sampling frequency Fs. In FIG. 1, it becomes maximum at a frequency (2000 Hz) that is ¼ of the sampling frequency, and an amplitude difference of about 2 dB occurs.
[0009]
Now, the frequency F that is 1 / integer of the sampling frequency is
## EQU11 ##
Figure 0004221538
And substituting equation (7) into equation (6),
[Expression 12]
Figure 0004221538
It becomes.
[0010]
Therefore, if A = 1,
[Formula 13]
Figure 0004221538
As described above, a specific value is repeated at a cycle k at a frequency of 1 / k (k = 1, 2,... N) of the sampling frequency. The absolute value amplitude average <| x |> when k is large converges to the theoretical value 2 / π≈0.636619 in the continuous-time system, but the absolute value amplitude average <| x |> when k is small is Regardless of N, the value shown in the equation (9) is obtained, and the error from the theoretical value 2 / π in the continuous time system is large. For example, assuming N = k and A = 1, k = 1, 2,... Is changed to obtain equation (9), and a graph is obtained as shown in FIG. It can be seen that the point O in FIG. 2 corresponds to the point of 2000 Hz, the point P corresponds to the point of 1333 Hz, and the point Q corresponds to the point of 1000 Hz.
[0011]
An object of the present invention is to provide a signal generation method capable of controlling an error between an absolute value amplitude average of a digital signal generated using a digital signal generator and a theoretical value in a continuous time system.
[0012]
[Means for Solving the Problems]
In order to achieve this object, a digital signal generation method according to the present invention has a desired frequency in order to eliminate an error between an absolute value amplitude average <| X |> of a generated digital signal and a theoretical value in a continuous time system. For F, the following equation:
Figure 0004221538
(Where A is the amplitude, N is any real number, F S is the sampling frequency, and n is the discrete time)
The following equation having the phase θ obtained by expanding
Figure 0004221538
It has a configuration which is characterized by generating a signal x m by.
Further, in order to suppress the error between the absolute value amplitude average <| X |> of the generated digital signal and the theoretical value in the continuous time system, for the desired frequency F,
Figure 0004221538
(Where A is the amplitude, N is any real number, F S is the sampling frequency, and n is the discrete time)
Using a table predetermined so as to have a phase θ of
Figure 0004221538
To generate a signal xn .
The table can be set so as to suppress an error between the theoretical value and the calculated value of the absolute value amplitude average below a desired value.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In general, the phase θ of the sampling point of the digital signal generator is 0 rad as shown in the equation (1), but the absolute value amplitude average is calculated by changing the phase θ of the sampling point, and the theoretical value in the continuous time system is calculated. Compared with, there is a point that matches the theoretical value at any frequency.
[Formula 18]
Figure 0004221538
[0014]
When A = 1 in Equation (10) and the phase θ is changed in the range of 0 to π, the absolute value amplitude average is calculated and graphed, and the result is as shown in FIG. For example, in the case of 2000 Hz, the theoretical value and the calculated value coincide at four points A, B, C, and D on the drawing.
[0015]
According to this result, instead of the formula (1), for example, the signal is generated by the formula (11) including the phase θ A at the point A.
Figure 0004221538
The aforementioned error can be made zero.
[0016]
In the above description, k is an integer, but an error due to the same phenomenon occurs even at an arbitrary frequency where k is a real number. Therefore, the phase θ obtained by developing Equation (12) for all frequencies is included. By generating the signal, it is possible to generate a signal that does not cause the aforementioned error at any frequency.
[Expression 20]
Figure 0004221538
[0017]
【Example】
Consider a digital signal generator that generates a single frequency with a sampling frequency of 8 kHz. The n-th output x n of the signal of amplitude A and frequency F (Hz) is
[Expression 21]
Figure 0004221538
It becomes.
[0018]
At this time, the points of 3.2 kHz, 3 kHz, 2.4 kHz, 2 kHz, 1.6 kHz, 1 kHz, and 800 Hz are the absolute value amplitude average and the theoretical value when the sampling point phase θ is 0 (rad). Therefore, the phase θ is obtained as shown in Table 1. The absolute value amplitude average value when A = 1 also shows both the case where there is no θ term and the case where there is a θ term. The theoretical value of the absolute value amplitude average when A = 1 is 2 / π = 0.636619. The difference between the theoretical value in this case and the calculated value defined in Table 1 may be set as appropriate so as to be equal to or less than the value determined by the requirements of the system to which the digital signal generation method according to the present invention is applied.
[0019]
[Table 1]
Figure 0004221538
[0020]
【The invention's effect】
As described above in detail, according to the digital signal generation method of the present invention, it is possible to generate a digital signal having no error from a theoretical value in a continuous time system, which occurs when absolute value amplitude averaging is used for power calculation. it can.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a relationship between a frequency of a digital signal sampled in a discrete time system and a calculated value of absolute value amplitude average.
FIG. 2 is a frequency characteristic diagram showing a relationship between a calculated value of an absolute value amplitude average of a digital signal sampled in a discrete time system and a theoretical value in a continuous time system.
FIG. 3 is a phase characteristic diagram showing a relationship between a calculated value of an absolute value amplitude average of a digital signal sampled in a discrete time system and a theoretical value in a continuous time system.

Claims (3)

発生するデジタル信号の絶対値振幅平均<|X|>と連続時間系における理論値との誤差を除去するために、所望の周波数Fに対して、次式
Figure 0004221538
(ここで、Aは振幅、Nは任意の実数、FS はサンプリング周波数、nは離散時刻)
を展開して求めた位相θを有する次式
Figure 0004221538
による信号xn を発生することを特徴とするデジタル信号発生方法。
In order to remove the error between the absolute value amplitude average <| X |> of the generated digital signal and the theoretical value in the continuous time system, for the desired frequency F,
Figure 0004221538
(Where A is the amplitude, N is any real number, F S is the sampling frequency, and n is the discrete time)
Which has the phase θ obtained by expanding
Figure 0004221538
A digital signal generation method characterized by generating a signal x n according to.
発生するデジタル信号の絶対値振幅平均<|X|>と連続時間系における理論値との誤差を抑圧するために、所望の周波数Fに対して、次式
Figure 0004221538
(ここで、Aは振幅、Nは任意の実数、FS はサンプリング周波数、nは離散時刻)
の位相θを有するように予め定められたテーブルを用いて次式
Figure 0004221538
による信号xn を発生することを特徴とするデジタル信号発生方法。
In order to suppress the error between the absolute value amplitude average <| X |> of the generated digital signal and the theoretical value in the continuous-time system, for the desired frequency F,
Figure 0004221538
(Where A is the amplitude, N is any real number, F S is the sampling frequency, and n is the discrete time)
Using a table predetermined to have a phase θ of
Figure 0004221538
A digital signal generation method characterized by generating a signal x n according to.
前記テーブルは、前記絶対値振幅平均の理論値と計算値との誤差を所望の値以下に抑圧するために設定されていることを特徴とする請求項2に記載のデジタル信号発生方法。3. The digital signal generation method according to claim 2, wherein the table is set to suppress an error between the theoretical value and the calculated value of the absolute value amplitude average below a desired value.
JP2000169168A 2000-06-06 2000-06-06 Digital signal generation method Expired - Fee Related JP4221538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169168A JP4221538B2 (en) 2000-06-06 2000-06-06 Digital signal generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169168A JP4221538B2 (en) 2000-06-06 2000-06-06 Digital signal generation method

Publications (2)

Publication Number Publication Date
JP2001345762A JP2001345762A (en) 2001-12-14
JP4221538B2 true JP4221538B2 (en) 2009-02-12

Family

ID=18672068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169168A Expired - Fee Related JP4221538B2 (en) 2000-06-06 2000-06-06 Digital signal generation method

Country Status (1)

Country Link
JP (1) JP4221538B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057595B2 (en) 2003-09-05 2011-11-15 Synthes Usa, Llc Bone cement compositions having fiber-reinforcement and/or increased flowability
US8197481B2 (en) 2002-11-13 2012-06-12 Synthes Usa, Llc Adjustable length tap and method for drilling and tapping a bore in bone
US8382836B2 (en) 2003-08-08 2013-02-26 Synthes Usa, Llc Method to impregnate a porous bone replacement material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116225623B (en) * 2023-05-04 2023-07-07 北京庚顿数据科技有限公司 Virtual data generation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197481B2 (en) 2002-11-13 2012-06-12 Synthes Usa, Llc Adjustable length tap and method for drilling and tapping a bore in bone
US8382836B2 (en) 2003-08-08 2013-02-26 Synthes Usa, Llc Method to impregnate a porous bone replacement material
US8632242B2 (en) 2003-08-08 2014-01-21 DePuy Synthes Products, LLC Method to impregnate a porous bone replacement material
US8057595B2 (en) 2003-09-05 2011-11-15 Synthes Usa, Llc Bone cement compositions having fiber-reinforcement and/or increased flowability

Also Published As

Publication number Publication date
JP2001345762A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP2001510001A (en) Audio processor with multiple sources
JP5068373B2 (en) Signal processing circuit
JP4221538B2 (en) Digital signal generation method
JP2004294712A (en) Reverberation sound generating apparatus and program
JP3766975B1 (en) Parametric time stretch pulse generator
JPH07154308A (en) Digital filter device
JP3336729B2 (en) Sound field control device
US5130943A (en) Method and configuration for improving the dynamic range of an adaptive recursive network for processing discrete-time signals
JP2001507912A (en) Audio system having audio signal processing circuit
AU704387B2 (en) Filter with feed-forward AGC
JPH0683378A (en) Reverberation adding device
JPS5958922A (en) Automatic gain control system
JP4354038B2 (en) Digital signal level control device and control method
JP3579640B2 (en) Acoustic characteristic control device
JP3541263B2 (en) Gain setting method
DE102012008557B4 (en) Method for feedback suppression in electroacoustic systems
JP2010041323A (en) Harmonic component generator
JP3466546B2 (en) Time constant processing circuit, time constant processing method, audio compression device, audio expansion device, audio compression method, audio expansion method, and recording medium
JP2021044730A (en) Signal processing device and signal processing method
JP2001527313A5 (en)
JPH1117474A (en) Gain varying device
JP2744095B2 (en) Active silencer
JPH0540482A (en) Noise controller
JPS6231359B2 (en)
JPH04302511A (en) Sine wave generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees