JP4220946B2 - Electric vehicle, overhead line-less traffic system, and control method for overhead line-less traffic system - Google Patents

Electric vehicle, overhead line-less traffic system, and control method for overhead line-less traffic system Download PDF

Info

Publication number
JP4220946B2
JP4220946B2 JP2004234463A JP2004234463A JP4220946B2 JP 4220946 B2 JP4220946 B2 JP 4220946B2 JP 2004234463 A JP2004234463 A JP 2004234463A JP 2004234463 A JP2004234463 A JP 2004234463A JP 4220946 B2 JP4220946 B2 JP 4220946B2
Authority
JP
Japan
Prior art keywords
charging
power
electric vehicle
storage device
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004234463A
Other languages
Japanese (ja)
Other versions
JP2006054958A (en
Inventor
克明 森田
正博 山口
博 山下
悟 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004234463A priority Critical patent/JP4220946B2/en
Publication of JP2006054958A publication Critical patent/JP2006054958A/en
Application granted granted Critical
Publication of JP4220946B2 publication Critical patent/JP4220946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、架線レス交通システム及び架線レス交通システムの制御方法に関し、特に蓄電装置を有する架線レス交通システム及び架線レス交通システムの制御方法に関する。   The present invention relates to an overhead line-less traffic system and a control method for the overhead line-less traffic system, and more particularly to an overhead line-less traffic system having a power storage device and a control method for the overhead line-less traffic system.

架線から電力の供給を受けずに走行する電気車両を用いた架線レス交通システムが知られている。架線レス交通システムの電気車両は、蓄電装置を搭載している。蓄電装置は、電気車両の走行に必要な電力を放電する。蓄電装置は、例えば、電気車両の運行開始前や運行終了後に充電装置により充電される。蓄電装置は、充電及び放電のされ方により、その劣化の度合いが変化する。例えば、充放電方法の違いにより、寿命が3000サイクル程度の場合から、10万サイクル程度の場合まで変動する。蓄電装置の劣化が抑制でき、蓄電装置の寿命を延ばすことができる技術が望まれる。蓄電装置の充電の効率を高めることが可能な技術が求められる。電気車両のコストを低減し、輸送効率を向上させることが可能な技術が望まれる。   2. Description of the Related Art An overhead line-less traffic system using an electric vehicle that travels without receiving power from an overhead line is known. An electric vehicle of an overhead line-less transportation system is equipped with a power storage device. The power storage device discharges electric power necessary for traveling of the electric vehicle. The power storage device is charged by, for example, the charging device before the operation of the electric vehicle starts or after the operation ends. The degree of deterioration of the power storage device changes depending on how it is charged and discharged. For example, depending on the charge / discharge method, the lifetime varies from about 3000 cycles to about 100,000 cycles. A technique that can suppress the deterioration of the power storage device and extend the life of the power storage device is desired. There is a need for a technique that can increase the efficiency of charging the power storage device. A technique capable of reducing the cost of electric vehicles and improving transportation efficiency is desired.

関連する技術として特開2000−83302号公報に電力蓄積式電動機、電力蓄積式電動機を用いた電力蓄積方法、電動移動体を用いた輸送システム、及び電動移動体を用いた輸送システムにおける輸送方法が開示されている。この電動移動体を用いた輸送システムは、電動移動体と停止施設と外部給電手段を備える。電動移動体は、受電手段と、移動体内蓄電手段と、電気的駆動源と、駆動車輪と、電力制御手段を有する。受電手段は、外部から供給される外部電力を取り入れ可能である。移動体内蓄電手段は、その外部電力を蓄積電力として蓄積する。電気的駆動源は、その蓄積電力により回転する。駆動車輪は、その電気的駆動源により回転駆動される。停止施設は、その電動移動体により輸送される被輸送対象をその電動移動体内に取り入れ又は取り降ろすためにその電動移動体が停止する。外部給電手段は、その停止施設に配置されるとともにその外部電力を供給可能なである。その電力制御手段は、その電動移動体がその停止施設に停止したときには、その受電手段がその外部給電手段と電気的に結合するように制御する。その外部給電手段からその外部電力の供給を受け、受電したその外部電力をその蓄積電力としてその移動体内蓄電手段に蓄積させる。その電動移動体の駆動走行時には、その移動体内蓄電手段からその蓄積電力を取り出し、その電気的駆動源へ送り、その電気的駆動源の回転速度を制御してその電動移動体の走行速度を制御する。かつ、その電動移動体の制動走行時には、その電気的駆動源を発電機として用いて回転させ、発生する回生電力をその蓄積電力としてその移動体内蓄電手段に蓄積させる。   As a related technique, Japanese Patent Application Laid-Open No. 2000-83302 discloses a power storage motor, a power storage method using a power storage motor, a transport system using an electric mobile body, and a transport method in a transport system using an electric mobile body. It is disclosed. This transportation system using an electric vehicle includes an electric vehicle, a stop facility, and external power feeding means. The electric movable body includes a power receiving means, a moving body power storage means, an electric drive source, a drive wheel, and a power control means. The power receiving means can take in external power supplied from the outside. The mobile power storage means stores the external power as stored power. The electric drive source is rotated by the stored electric power. The drive wheel is rotationally driven by its electrical drive source. In the stop facility, the electric vehicle is stopped in order to take the object to be transported transported by the electric vehicle into or out of the electric vehicle. The external power supply means is arranged at the stop facility and can supply the external power. The power control means controls the power receiving means to be electrically coupled to the external power feeding means when the electric vehicle is stopped at the stop facility. The external power is supplied from the external power supply means, and the received external power is stored in the mobile storage means as the stored power. When the electric vehicle is driven, the stored electric power is taken out from the electric storage means in the moving body, sent to the electric drive source, and the rotation speed of the electric drive source is controlled to control the running speed of the electric vehicle. To do. At the time of braking of the electric mobile body, the electric drive source is rotated as a generator, and the generated regenerative power is stored in the mobile body storage means as the stored power.

特開2000−83302号公報JP 2000-83302 A

従って、本発明の目的は、蓄電装置の劣化が抑制でき、蓄電装置の寿命を延ばすことができる電気車両、架線レス交通システム及び架線レス交通システムの制御方法を提供することにある。   Accordingly, an object of the present invention is to provide an electric vehicle, an overhead line-less traffic system, and a control method for an overhead line-less traffic system that can suppress deterioration of the energy storage device and extend the life of the energy storage device.

また、本発明の他の目的は、蓄電装置の充電の効率を高めることが可能な電気車両、架線レス交通システム及び架線レス交通システムの制御方法を提供することにある。   Another object of the present invention is to provide an electric vehicle, an overhead line-less traffic system, and a control method for the overhead line-less traffic system that can increase the charging efficiency of the power storage device.

本発明の更に他の目的は、電気車両のコストを低減し、輸送効率を向上させることが可能な電気車両、架線レス交通システム及び架線レス交通システムの制御方法を提供することにある。   Still another object of the present invention is to provide an electric vehicle, an overhead line-less traffic system, and an overhead line-less traffic system control method capable of reducing the cost of the electric vehicle and improving the transportation efficiency.

以下に、発明を実施するための最良の形態で使用される番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、特許請求の範囲の記載と発明を実施するための最良の形態との対応関係を明らかにするために括弧付きで付加されたものである。ただし、それらの番号・符号を、特許請求の範囲に記載されている発明の技術的範囲の解釈に用いてはならない。   Hereinafter, means for solving the problem will be described using the numbers and symbols used in the best mode for carrying out the invention. These numbers and symbols are added in parentheses in order to clarify the correspondence between the description of the claims and the best mode for carrying out the invention. However, these numbers and symbols should not be used for interpreting the technical scope of the invention described in the claims.

従って、上記課題を解決するために、本発明の電気車両は、電力を用いて予め設定された経路(4)を動く車両本体(1)と、その電力を蓄積する蓄電装置(13)とを具備する。蓄電装置(13)は、経路(4)における充電可能な複数の場所(A、B、C、D)で充電されるとき、経路(4)における蓄電装置(13)の充電状態としてのSOCの増減が、蓄電装置(13)の最適なSOC(E0)を含む所定の範囲内となるように電気容量が設定されている。ただし、蓄電装置(13)は、二次電池を含む。
本発明において、SOCの増減が最適なSOC(E0)を含む所定の範囲内であるので、蓄電装置(13)の負担が軽くなり、蓄電装置(13)の寿命を伸ばすことができる。複数の場所(A、B、C、D)で充電することは、SOCの低下を抑え、その変動を所定の範囲内に収める易くでき好ましい。加えて、蓄電装置(13)の電気容量を低減でき、省スペース、軽量、低コストなどで好ましい。
Therefore, in order to solve the above problems, an electric vehicle of the present invention includes a vehicle body (1) that moves on a route (4) set in advance using electric power, and a power storage device (13) that stores the electric power. It has. When the power storage device (13) is charged at a plurality of rechargeable locations (A, B, C, D) in the path (4), the SOC of the power storage device (13) in the path (4) The electric capacity is set so that the increase / decrease is within a predetermined range including the optimum SOC (E0) of the power storage device (13). However, the power storage device (13) includes a secondary battery.
In the present invention, since the increase / decrease in the SOC is within a predetermined range including the optimum SOC (E0), the load on the power storage device (13) is reduced, and the life of the power storage device (13) can be extended. Charging at a plurality of locations (A, B, C, D) is preferable because it suppresses the decrease in SOC and easily keeps the variation within a predetermined range. In addition, the electric capacity of the power storage device (13) can be reduced, which is preferable in terms of space saving, light weight, and low cost.

上記の電気車両において、その所定の範囲は、最適なSOC(E0)の±10%の範囲である。
本発明において、最適なSOC(E0)の±10%の範囲にすることは、蓄電装置(13)の負担をより軽くでき好ましい。
In the above electric vehicle, the predetermined range is a range of ± 10% of the optimum SOC (E0).
In the present invention, it is preferable to make the range of ± 10% of the optimum SOC (E0) because the burden on the power storage device (13) can be further reduced.

上記の電気車両において、記憶部(31)と制御部(33)とを更に具備する。記憶部(31)は、経路(4)における車両本体(1)の運行に関する運行関連情報を格納する。制御部(33)は、蓄電装置(13)を充電するとき、その運行関連情報に基づいて、次の充電までの運行におけるSOCの変動に対応した充電電力量を設定する。
本発明において、次の充電までの運行における電力消費に対応した充電を行うことは、不必要に多くの電力を充電することがなくなり、SOCの増加を抑えることができ好ましい。蓄電装置(13)の電気容量を低減でき好ましい。
The electric vehicle further includes a storage unit (31) and a control unit (33). A memory | storage part (31) stores the operation relevant information regarding the operation | movement of the vehicle main body (1) in a path | route (4). When charging the power storage device (13), the control unit (33) sets a charging power amount corresponding to the SOC fluctuation in the operation up to the next charging based on the operation related information.
In the present invention, it is preferable to perform the charging corresponding to the power consumption in the operation until the next charging because an excessive amount of power is not charged and an increase in SOC can be suppressed. It is preferable because the electric capacity of the power storage device (13) can be reduced.

上記の電気車両において、その運行関連情報は、経路(4)に関する情報、車両本体(1)に関する情報及び車両本体(1)の運行方法に関する情報、並びに、過去の運行における消費電力量に関する情報の少なくとも一方を含む。
本発明において、これらの情報は、次の充電までの運行における充電電力量を設定する際に有用であり好ましい。
In the electric vehicle, the operation related information includes information on the route (4), information on the vehicle main body (1), information on the operation method of the vehicle main body (1), and information on power consumption in the past operation. Including at least one.
In the present invention, these pieces of information are useful and preferable when setting the amount of charging power in operation until the next charging.

上記の電気車両において、制御部(33)は、複数の場所(A、B、C、D)のうちの一つである第1場所(A)で蓄電装置(13)を充電するとき、複数の場所(A、B、C、D)のうちの次に充電する場所としての第2場所(B)と第1場所(A)との間で車両本体(1)が使用する電力量について、その運行関連情報に基づいて予測し、予測された電力量の変動に対応してその充電電力量を設定する。
本発明において、第1場所(A)から第2場所(B)までの予測消費電力(蓄電電力量の変動を含む)を充電電力量の設定に用いることは、過不足のほとんどない適正な電力量を充電でき、SOCの不適正な変動(所定の範囲を超える変動)を抑えることができ好ましい。
In the electric vehicle, the control unit (33) includes a plurality of control units (13) when charging the power storage device (13) at the first place (A) which is one of the plurality of places (A, B, C, D). The amount of electric power used by the vehicle body (1) between the second place (B) and the first place (A) as the next charging place among the places (A, B, C, D) Predicting based on the operation-related information, the charging power amount is set in response to the predicted fluctuation of the power amount.
In the present invention, the use of the predicted power consumption (including fluctuations in the amount of stored power) from the first place (A) to the second place (B) for setting the charge power amount is appropriate power with little excess or deficiency. The amount can be charged, and an inappropriate variation of SOC (a variation exceeding a predetermined range) can be suppressed, which is preferable.

上記の電気車両において、第1場所(A)における充電後から第2場所(B)における充電前までの蓄電電力量の変動が、その所定の範囲内となるように、その充電電力量が設定される。
本発明において、充電前後の蓄電電力量を所定の範囲になるように設定することで、蓄電装置(13)の負担が軽くなり、蓄電装置(13)の寿命を伸ばすことができる。
In the electric vehicle described above, the amount of charge electric power is set so that the variation in the amount of stored electric energy from after charging at the first location (A) to before charging at the second location (B) is within the predetermined range. Is done.
In the present invention, by setting the amount of stored power before and after charging to be within a predetermined range, the burden on the power storage device (13) can be reduced and the life of the power storage device (13) can be extended.

上記の電気車両において、充電電力量は、E0を前記最適なSOC、E1を充電目標のSOC、E2を充電前のSOC、Eminを第1場所(A)と前記第2場所(B)との間で変動するSOCの最低値として、以下の式に基づいて設定される。充電電力量=E0+(E1−Emin.)/2−E2。
本発明において、上式で算出することで、充電電力を適正な範囲に設定することができる。
In the electric vehicle described above, the amount of electric power to be charged is calculated as follows: E0 is the optimum SOC, E1 is the target SOC, E2 is the SOC before charging, and Emin is the first place (A) and the second place (B). Is set based on the following equation as the minimum value of the SOC that fluctuates between. Charging electric energy = E0 + (E1-Emin.) / 2−E2.
In the present invention, the charging power can be set in an appropriate range by calculating with the above equation.

上記課題を解決するために、本発明の架線レス交通システムは、電気車両(1)と、複数の充電装置(13)とを具備する。電気車両(1)は、予め設定された経路(4)を動く。上記の各段落のいずれか一項に記載されている。複数の充電装置(13)は、経路(4)における複数の場所(A、B、C、D)に設置され、電気車両(1)の制御部(33)からの充電電力量の設定値に対応して、電気車両(1)の蓄電装置(13)を充電する。
本発明において、SOCの増減が最適なSOC(E0)を含む所定の範囲内であるので、蓄電装置(13)の負担が軽くなり、蓄電装置(13)の寿命を伸ばすことができる。複数の場所(経路(4)上にあれば駅(A、B、C、D)に限らない)で充電することは、SOCの低下を抑え、その変動を所定の範囲内に収める易くでき好ましい。加えて、蓄電装置(13)の電気容量を低減でき、省スペース、軽量、低コストなどで好ましい。
In order to solve the above problems, the overhead wire-less transportation system of the present invention includes an electric vehicle (1) and a plurality of charging devices (13). The electric vehicle (1) moves along a preset route (4). It is described in any one of the above paragraphs. The plurality of charging devices (13) are installed at a plurality of locations (A, B, C, D) in the route (4), and set to the set value of the charging energy from the control unit (33) of the electric vehicle (1). Correspondingly, the power storage device (13) of the electric vehicle (1) is charged.
In the present invention, since the increase / decrease in the SOC is within a predetermined range including the optimum SOC (E0), the load on the power storage device (13) is reduced, and the life of the power storage device (13) can be extended. Charging at a plurality of locations (not limited to stations (A, B, C, D) as long as it is on the route (4)) is preferable because it suppresses the decrease in SOC and easily keeps the variation within a predetermined range. . In addition, the electric capacity of the power storage device (13) can be reduced, which is preferable in terms of space saving, light weight, and low cost.

上記の架線レス交通システムにおいて、電気車両(1)は、複数の場所(A、B、C、D)のうちから選択される複数の選択場所において、蓄電装置(13)の充電を行う。
本発明において、SOCの増減が最適なSOC(E0)を含む所定の範囲内で収まるのであれば、充電を行う場所は、必ずしも次の充電場所である必要はない。充電場所を選択できることは、充電回数を低減することができ好ましい。
In the overhead line-less traffic system, the electric vehicle (1) charges the power storage device (13) at a plurality of selected locations selected from among a plurality of locations (A, B, C, D).
In the present invention, if the increase / decrease in the SOC is within a predetermined range including the optimum SOC (E0), the place where charging is performed does not necessarily need to be the next charging place. The ability to select the charging location is preferable because the number of times of charging can be reduced.

上記の架線レス交通システムにおいて、経路(4)は、軌道(4)である。
本発明において、軌道(4)を用いる場合、一般の道路を用いる場合に比較して、SOCの増減がより正確に設計通りになり好ましい。
In the above overhead line-less traffic system, the route (4) is the track (4).
In the present invention, when the track (4) is used, the increase / decrease in the SOC is more accurately as designed as compared with the case of using a general road.

上記課題を解決するために、本発明の架線レス交通システムの制御方法は、(a)予め設定された経路(4)を動く電気車両(1)の蓄電装置(13)について、充電前の経路(4)における充電可能な複数の場所(A、B、C、D)のうちの一つである第1場所(A)で充電するとき、蓄電装置(13)の蓄電電力量を計測するステップと、(b)複数の場所(A、B、C、D)のうちの次に充電する場所としての第2場所(B)と第1場所(A)との間で電気車両(1)が使用する電力量について、経路(4)における電気車両(1)の運行に関する運行関連情報に基づいて予測するステップと、(c)予測された電力量に基づいて、第1場所(A)における充電後から第2場所(B)における充電前までの蓄電電力量の変動が、蓄電装置(13)の充電状態としてのSOCのうちの最適なSOC(E0)を基準とする所定の範囲内となるように、充電電力量を設定するステップと、(d)充電電力量に基づいて、蓄電装置(13)を充電するステップとを具備する。
本発明において、第1場所(A)から第2場所(B)までの予測消費電力(蓄電電力量の変動を含む)を充電電力量の設定に用いることは、過不足のほとんどない適正な電力量を充電でき、SOCの増減を最適なSOC(E0)を含む所定の範囲内に抑えることができ好ましい。複数の場所(A、B、C、D)で充電することは、SOCの低下を抑え、その変動を所定の範囲内に収め易くでき好ましい。加えて、蓄電装置(13)の電気容量を低減でき、省スペース、軽量、低コストなどで好ましい。
In order to solve the above-described problem, a method for controlling an overhead wire-less traffic system according to the present invention includes: (a) a route before charging for a power storage device (13) of an electric vehicle (1) moving on a preset route (4). The step of measuring the amount of power stored in the power storage device (13) when charging at the first location (A), which is one of a plurality of rechargeable locations (A, B, C, D) in (4). And (b) the electric vehicle (1) between the second place (B) and the first place (A) as a place to be charged next among the plurality of places (A, B, C, D). The step of predicting the amount of power to be used based on operation-related information related to the operation of the electric vehicle (1) on the route (4), and (c) charging at the first location (A) based on the predicted amount of power. The change in the amount of stored electric power after the charging at the second location (B) after (13) a step of setting the charging power amount to be within a predetermined range based on the optimum SOC (E0) of the SOCs as the charging state, and (d) based on the charging power amount, Charging the power storage device (13).
In the present invention, the use of the predicted power consumption (including fluctuations in the amount of stored power) from the first place (A) to the second place (B) for setting the charge power amount is appropriate power with little excess or deficiency. The amount of charge can be charged, and the increase or decrease in SOC can be suppressed within a predetermined range including the optimum SOC (E0). Charging at a plurality of locations (A, B, C, D) is preferable because it suppresses the decrease in SOC and easily keeps the fluctuation within a predetermined range. In addition, the electric capacity of the power storage device (13) can be reduced, which is preferable in terms of space saving, light weight, and low cost.

上記の架線レス交通システムの制御方法において、(c)ステップにおける充電電力量は、E0を前記最適なSOC、E1を充電目標のSOC、E2を充電前のSOC、Eminを第1場所(A)と第2場所(B)との間で変動するSOCの最低値として、以下の式に基づいて設定される。充電電力量=E0+(E1−Emin)/2−E2。
本発明において、上式で算出することで、充電電力を適正な範囲に設定することができる。
In the control method of the overhead line-less traffic system, the charging power amount in step (c) is as follows: E0 is the optimum SOC, E1 is the target SOC, E2 is the SOC before charging, and Emin is the first location (A). Is set based on the following equation as the minimum value of the SOC that fluctuates between the second location (B) and the second location (B). Charge electric energy = E0 + (E1-Emin) / 2−E2.
In the present invention, the charging power can be set in an appropriate range by calculating with the above equation.

上記の架線レス交通システムの制御方法において、(b)ステップは、(b1)第2場所(B)と第1場所(A)との間における蓄電装置(13)の蓄電電力量の増減が、その所定の範囲内に収まらない場合、複数の場所(A、B、C、D)のうちの第2場所(B)と第1場所(A)との間にある第3場所を改めてその第2場所として設定し直すステップを備える。
本発明において、次の充電場所として、より近い充電場所を選択することで、SOCの増減が最適なSOC(E0)を含む所定の範囲内で収まるようにすることができる。
In the control method of the overhead line-less traffic system, (b) step includes (b1) increase or decrease in the amount of stored power of the power storage device (13) between the second location (B) and the first location (A). If it does not fall within the predetermined range, the third place between the second place (B) and the first place (A) among the plurality of places (A, B, C, D) is changed to the first place. The step of resetting as two places is provided.
In the present invention, by selecting a closer charging place as the next charging place, it is possible to make the increase or decrease in the SOC fall within a predetermined range including the optimum SOC (E0).

上記の架線レス交通システムの制御方法において、蓄電装置(13)は、経路(4)におけるそのSOCの増減がその所定の範囲内となる電気容量に設定されている。
本発明において、SOCの増減が所定の範囲になるように設定することで、蓄電装置(13)の負担が軽くなり、蓄電装置(13)の寿命を伸ばすことができる。
In the control method of the overhead line-less traffic system, the power storage device (13) is set to an electric capacity at which the increase / decrease of the SOC in the route (4) falls within the predetermined range.
In the present invention, by setting the increase / decrease of the SOC to be within a predetermined range, the burden on the power storage device (13) is reduced, and the life of the power storage device (13) can be extended.

上記の架線レス交通システムの制御方法において、その運行関連情報は、経路(4)に関する情報、電気車両(1)に関する情報及び電気車両(1)の運行方法に関する情報、並びに、過去の運行における消費電力量に関する情報の少なくとも一方を含む。
本発明において、これらの情報は、予測消費電力(蓄電電力量の変動を含む)をより正確に求める際に有用であり好ましい。
In the control method of the overhead line-less traffic system, the operation related information includes information on the route (4), information on the electric vehicle (1), information on the operation method of the electric vehicle (1), and consumption in the past operation. It includes at least one of information related to the electric energy.
In the present invention, these pieces of information are useful and preferable when more accurately determining predicted power consumption (including fluctuations in the amount of stored power).

上記の架線レス交通システムの制御方法において、その所定の範囲は、最適なSOC(E0)の±10%の範囲である。
本発明において、最適なSOC(E0)の±10%の範囲にすることは、蓄電装置(13)の負担をより軽くでき好ましい。
In the control method for the overhead line-less traffic system, the predetermined range is a range of ± 10% of the optimum SOC (E0).
In the present invention, it is preferable to make the range of ± 10% of the optimum SOC (E0) because the burden on the power storage device (13) can be further reduced.

上記の架線レス交通システムの制御方法において、経路(4)は、軌道(4)である。
本発明において、軌道(4)を用いる場合、一般の道路を用いる場合に比較して、SOCの増減がより正確に設計通りになり好ましい。
In the control method for the overhead line-less traffic system, the route (4) is the track (4).
In the present invention, when the track (4) is used, the increase / decrease in the SOC is more accurately as designed as compared with the case of using a general road.

上記課題を解決するために、本発明のプログラムは、(e)予め設定された経路(4)を動く電気車両(1)の蓄電装置(13)について、経路(4)における充電可能な複数の場所(A、B、C、D)のうちの一つである第1場所(A)で充電するとき、充電前の蓄電装置(13)の蓄電電力量を取得するステップと、(f)複数の場所(A、B、C、D)のうちの次に充電する場所としての第2場所(B)と第1場所(A)との間で電気車両(1)が使用する電力量について、経路(4)における電気車両(1)の運行に関する運行関連情報に基づいて予測するステップと、(g)その予測された電力量に基づいて、第1場所(A)における充電後から第2場所(B)における充電前までの蓄電電力量の変動が、蓄電装置(13)の充電状態としてのSOCのうちの最適なSOC(E0)を基準とする所定の範囲内となるように、充電電力量を設定するステップと、(h)その充電電力量に基づいて、蓄電装置(13)の充電を指示するステップとを具備する方法をコンピュータに実行させる。   In order to solve the above-described problem, the program of the present invention includes: (e) a plurality of chargeable devices in the route (4) for the power storage device (13) of the electric vehicle (1) moving on the preset route (4). When charging at the first location (A), which is one of the locations (A, B, C, D), obtaining a stored power amount of the power storage device (13) before charging; (f) a plurality of The amount of electric power used by the electric vehicle (1) between the second place (B) and the first place (A) as the next charging place among the places (A, B, C, D) of A step of predicting based on operation-related information relating to the operation of the electric vehicle (1) on the route (4), and (g) the second location after charging at the first location (A) based on the predicted electric energy. The change in the amount of stored power before charging in (B) is the charging of the power storage device (13). A step of setting the charging power amount so as to be within a predetermined range based on the optimum SOC (E0) of the SOCs as states, and (h) a power storage device (13 based on the charging power amount) And instructing the computer to perform charging.

上記の架線レス交通システムの制御方法において、(g)ステップにおける充電電力量は、E0を前記最適なSOC、E1を充電目標のSOC、E2を充電前のSOC、Eminを第1場所(A)と第2場所(B)との間で変動するSOCの最低値として、以下の式に基づいて設定される。充電電力量=E0+(E1−Emin)/2−E2。   In the control method of the overhead line-less traffic system, the charging power amount in step (g) is as follows: E0 is the optimum SOC, E1 is the target SOC, E2 is the SOC before charging, and Emin is the first location (A). Is set based on the following equation as the minimum value of the SOC that fluctuates between the second location (B) and the second location (B). Charge electric energy = E0 + (E1-Emin) / 2−E2.

上記のプログラムにおいて、(f)ステップは、(f1)第2場所(B)と第1場所(A)との間における蓄電装置(13)の蓄電電力量の増減が、その所定の範囲内に収まらない場合、複数の場所(A、B、C、D)のうちの第2場所(B)と第1場所(A)との間にある第3場所を改めてその第2場所として設定し直すステップを備える。   In the above program, the step (f) includes (f1) the increase or decrease in the amount of stored power in the power storage device (13) between the second location (B) and the first location (A) is within the predetermined range. If not, the third place between the second place (B) and the first place (A) among the plurality of places (A, B, C, D) is set again as the second place. Comprising steps.

上記のプログラムにおいて、その運行関連情報は、経路(4)に関する情報、電気車両(1)に関する情報及び電気車両(1)の運行方法に関する情報、並びに、過去の運行における消費電力量に関する情報の少なくとも一方を含む。   In the above program, the operation related information includes at least information on the route (4), information on the electric vehicle (1) and information on the operation method of the electric vehicle (1), and information on the power consumption in the past operation. Including one.

上記のプログラムにおいて、その所定の範囲は、その最適なSOC(E0)の±10%の範囲である。   In the above program, the predetermined range is a range of ± 10% of the optimum SOC (E0).

上記のプログラムにおいて、経路(4)は、軌道(4)である。   In the above program, the path (4) is the trajectory (4).

本発明により、電気車両に搭載された蓄電装置の劣化が抑制でき、蓄電装置の寿命を延ばすことができる。   According to the present invention, deterioration of a power storage device mounted on an electric vehicle can be suppressed, and the life of the power storage device can be extended.

以下、本発明の電気車両、架線レス交通システム及び架線レス交通システムの制御方法の実施の形態に関して、添付図面を参照して説明する。ここでは、専用の軌道上を運行される電気車両を用いた架線レス交通システムを例にして説明するが、予め設定された経路(例示:一般的な道路)上を運行される電気車両(例示:バス、路面電車)であれば適用可能である。   Hereinafter, embodiments of an electric vehicle, an overhead line-less traffic system, and an overhead line-less traffic system control method according to the present invention will be described with reference to the accompanying drawings. Here, an explanation will be given by taking an overhead line-less traffic system using an electric vehicle operated on a dedicated track as an example. However, an electric vehicle operated on a preset route (example: general road) (example) : Bus, tram).

本発明の電気車両を適用した架線レス交通システムの実施の形態の構成について説明する。図1は、本発明の電気車両を適用した架線レス交通システムの実施の形態を示す構成図である。架線レス交通システムは、電気車両1、充電装置2、駅舎3及び軌道4を具備する。架線レス交通システムでは、電気車両1が、電気車両専用の軌道4上を移動しながら、軌道4の途中に設けられた複数の駅舎3間で乗客又は荷物を輸送する。   A configuration of an embodiment of an overhead line-less traffic system to which an electric vehicle of the present invention is applied will be described. FIG. 1 is a configuration diagram showing an embodiment of an overhead line-less traffic system to which an electric vehicle of the present invention is applied. The overhead line-less traffic system includes an electric vehicle 1, a charging device 2, a station building 3, and a track 4. In the overhead line-less traffic system, the electric vehicle 1 transports passengers or luggage between a plurality of station buildings 3 provided in the middle of the track 4 while moving on the track 4 dedicated to the electric vehicle.

電気車両1は、乗客又は荷物を乗せて、電気を利用して、予め設定された軌道4を動く。軌道4は、電気車両専用の軌道に限定されるものではなく、道路上の専用又は優先路線、及び、単に道路上に設定された路線であっても良い。軌道4は、ループ式又は往復式であり、途中で枝分かれしていても良い。充電装置2は、軌道4における複数の場所の各々に設置されている。電気車両1がその場所に到着して充電をするとき、電気車両1(の制御装置)からの充電電力量の設定値に基づいて、電気車両1(の蓄電装置)を充電する。充電装置2は、全ての駅舎3に設けられていても、駅舎3のうちの選択されたものにだけ設けられていても良い。また、駅舎3とは関係のない軌道4の途中に設けられていても良い。   The electric vehicle 1 carries passengers or luggage and moves on a predetermined track 4 using electricity. The track 4 is not limited to a track dedicated to an electric vehicle, and may be a dedicated or priority route on a road, or a route simply set on the road. The track 4 is a loop type or a reciprocating type, and may be branched on the way. The charging device 2 is installed at each of a plurality of places on the track 4. When the electric vehicle 1 arrives at the place and is charged, the electric vehicle 1 (the power storage device) is charged based on the set value of the amount of electric power charged from the electric vehicle 1 (the control device). The charging device 2 may be provided in all the station buildings 3 or only in selected ones of the station buildings 3. Further, it may be provided in the middle of the track 4 that is not related to the station building 3.

電気車両1は、制御装置11、集電装置12、蓄電装置13、SIV(Static Inverter)14、インバータ/コンバータ15、モータ16、補機17、車輪18を備える。   The electric vehicle 1 includes a control device 11, a current collector 12, a power storage device 13, a SIV (Static Inverter) 14, an inverter / converter 15, a motor 16, an auxiliary machine 17, and wheels 18.

集電装置12は、充電装置2で蓄電装置13を充電するとき、蓄電装置13と充電装置2とを電気的に接続する。蓄電装置13は、電気車両1の運行に使用する電気を蓄積する。蓄電装置12は、集電装置12を介して充電装置2により充電される。SIV14は、蓄電装置13からの直流電力を交流電力に変換し、補機17や制御装置1へ出力する。インバータ/コンバータ15は、蓄電装置13からの直流電力を交流電力に変換してモータ16へ出力するインバータとしての機能と、回生時のモータ16からの交流電力を直流電力に変換して蓄電装置13へ出力するコンバータとして機能とを有する。モータ16は、インバータ/コンバータ15から交流電力を供給されて車輪18を回転させる。それにより電気車両1が動く。補機17は、電気車両1の駆動用以外の機器であり、照明装置や空調装置、ブレーキコンプレッサに例示される。制御装置11は、集電装置12による蓄電装置13の充電の際、充電電力量を設定し、充電装置2へ指示する。   When charging the power storage device 13 with the charging device 2, the current collector 12 electrically connects the power storage device 13 and the charging device 2. The power storage device 13 stores electricity used for the operation of the electric vehicle 1. The power storage device 12 is charged by the charging device 2 via the current collector 12. The SIV 14 converts the DC power from the power storage device 13 into AC power and outputs it to the auxiliary machine 17 and the control device 1. The inverter / converter 15 functions as an inverter that converts DC power from the power storage device 13 into AC power and outputs the AC power, and converts the AC power from the motor 16 during regeneration into DC power to store the power storage device 13. As a converter that outputs to The motor 16 is supplied with AC power from the inverter / converter 15 and rotates the wheel 18. Thereby, the electric vehicle 1 moves. The auxiliary machine 17 is a device other than for driving the electric vehicle 1 and is exemplified by a lighting device, an air conditioner, and a brake compressor. When charging power storage device 13 by current collector 12, control device 11 sets the amount of charging power and instructs charging device 2.

蓄電装置13は、リチウムイオン二次電池に例示される二次電池である。軌道4における蓄電装置13の充電状態としてのSOC(Status of Charge:全容量(Wh)に対する%値)の増減が、蓄電装置13の最適なSOCを含む所定の範囲内となるように全容量(電気容量)が設定されていることが好ましい。すなわち、蓄電装置13を充電する複数の場所の各々において、充電前後の蓄電装置13の充電電力量が上記の所定の範囲から外れないように全容量(電気容量)が設定されている。そのの設定は、架線レス交通システムの設計の際に、後述の運行関連情報のような情報に基づいて行われる。その所定の範囲は、最適なSOCの±10%が好ましい。そのように設定することで、蓄電装置13の負担を減らし、その寿命を延ばすことができる。より好ましくは±5%である。ただし、最適なSOCは、電池の種類や構造にもよるが、例えばリチウムイオン二次電池の場合、全容量の40〜60%程度である。蓄電装置13は、蓄電装置13の充電電力量を計測するセンサ35を含み、センサ35の出力を制御装置11へ出力している。   The power storage device 13 is a secondary battery exemplified by a lithium ion secondary battery. The total capacity (so that the increase / decrease in the SOC (Status of Charge:% of the total capacity (Wh)) as the state of charge of the power storage device 13 in the track 4 is within a predetermined range including the optimum SOC of the power storage device 13 ( It is preferable that the electric capacity is set. That is, in each of a plurality of places where the power storage device 13 is charged, the total capacity (electric capacity) is set so that the amount of charge power of the power storage device 13 before and after charging does not deviate from the predetermined range. The setting is performed based on information such as operation related information described later when designing the overhead line-less traffic system. The predetermined range is preferably ± 10% of the optimum SOC. By setting in such a manner, it is possible to reduce the burden on the power storage device 13 and extend its life. More preferably ± 5%. However, although the optimum SOC depends on the type and structure of the battery, for example, in the case of a lithium ion secondary battery, it is about 40 to 60% of the total capacity. The power storage device 13 includes a sensor 35 that measures the amount of charging power of the power storage device 13, and outputs the output of the sensor 35 to the control device 11.

制御装置11は、コンピュータに例示される情報処理装置である。ハードディスクやメモリのような記憶部31、CPU(Centerl Processing Unit)やMPU(micro processing unit)のような制御部33及び通信ボードのような通信部34を備える。記憶部31は、軌道4における電気車両1の運行に関する運行関連情報を格納する。運行関連情報は、軌道4に関する情報、電気車両1に関する情報、電気車両1の運行方法に関する情報、過去の運行に関する情報を含む。制御部33は、蓄電装置13を充電するとき、その充電する場所(第1場所)と次に充電する場所(第2場所)との間で電気車両1が使用する電力量について、運行関連情報に基づいて予測する。そして、予測された電力量に対応して充電に関する充電情報を設定する。充電情報は、充電電力量、充電電力、充電時間を含む。通信部34は、設定された充電情報を充電装置2へ出力する。   The control device 11 is an information processing device exemplified by a computer. A storage unit 31 such as a hard disk or a memory, a control unit 33 such as a CPU (Central Processing Unit) or MPU (micro processing unit), and a communication unit 34 such as a communication board are provided. The storage unit 31 stores operation related information related to the operation of the electric vehicle 1 on the track 4. The operation related information includes information related to the track 4, information related to the electric vehicle 1, information related to the operation method of the electric vehicle 1, and information related to past operations. When charging the power storage device 13, the control unit 33 operates information related to the amount of power used by the electric vehicle 1 between the charging place (first place) and the next charging place (second place). Predict based on Then, charging information related to charging is set corresponding to the predicted electric energy. The charging information includes a charging power amount, charging power, and charging time. The communication unit 34 outputs the set charging information to the charging device 2.

充電装置2は、充電部21、充電電源22、制御部23、及び通信部24を備える。   The charging device 2 includes a charging unit 21, a charging power source 22, a control unit 23, and a communication unit 24.

充電部21は、蓄電装置13を充電するとき、充電電源2と集電装置12とを電気的に接続する。通信ボードに例示される通信部24は、通信部34から受信した充電情報を制御部23へ出力する。CPUやMPUに例示される制御部23は、受信した充電情報に基づいて、充電電源22の出力する電力について、充電電力量、充電電力及び充電電圧、充電時間を制御する。充電電源22は、制御部23の制御に基づいて、所定の充電電力、充電時間により、所定の充電電力量の電力を蓄電装置13へ充電部21を介して出力する。   When charging power storage device 13, charging unit 21 electrically connects charging power supply 2 and current collector 12. The communication unit 24 exemplified by the communication board outputs the charging information received from the communication unit 34 to the control unit 23. Based on the received charging information, the control unit 23 exemplified by the CPU and MPU controls the amount of charging power, the charging power and charging voltage, and the charging time for the power output from the charging power source 22. Based on the control of the control unit 23, the charging power source 22 outputs a predetermined amount of charging power to the power storage device 13 via the charging unit 21 according to predetermined charging power and charging time.

図2は、制御部33の構成を示す図である。制御部33は、プログラムとしての運転パターン推定部41、駆動エネルギー計算部42、補機動作推定部43、補機エネルギー計算部44、及び充電電力計算部45を含む。   FIG. 2 is a diagram illustrating a configuration of the control unit 33. The control unit 33 includes an operation pattern estimation unit 41 as a program, a drive energy calculation unit 42, an auxiliary machine operation estimation unit 43, an auxiliary machine energy calculation unit 44, and a charging power calculation unit 45.

運転パターン推定部41は、記憶部31の運行関連情報(路線データベース51、運行データベース52、車両データベース53)に基づいて、充電する場所(第1場所)と次に充電する場所(第2場所)との間における電気車両1の運転パターンを推定する。運転パターンは、モータ17の駆動/回生パターンに例示される。
駆動エネルギー計算部42は、運転パターン推定部41の推定した電気車両1の運転パターンに基づいて、第1場所と第2場所との間の電気車両1の移動に必要な電力量を計算する。
補機動作推定部43は、記憶部31の運行関連情報(補機運行データベース55)に基づいて、充電する場所(第1場所)と次に充電する場所(第2場所)との間における補機17の運転パターンを推定する。補機17の運転パターンは、ブレーキコンプレッサの稼動パターンや空調設備の運転パターンに例示される。
補機エネルギー計算部44は、補機動作推定部43の推定した補機17の運転パターンに基づいて、第1場所と第2場所との間の補機17の稼動に必要な電力量を計算する。
充電電力計算部45は、駆動エネルギー計算部42の計算した電気車両1用の電力量と、補機エネルギー計算部44の計算した補機17用の電力量とに基づいて、充電電力量を設定する。
The driving pattern estimation unit 41, based on the operation related information (route database 51, operation database 52, vehicle database 53) in the storage unit 31, a place to be charged (first place) and a place to be charged next (second place). The driving pattern of the electric vehicle 1 is estimated. The operation pattern is exemplified by the drive / regeneration pattern of the motor 17.
Based on the driving pattern of the electric vehicle 1 estimated by the driving pattern estimation unit 41, the driving energy calculation unit 42 calculates the amount of electric power necessary for the movement of the electric vehicle 1 between the first place and the second place.
Based on the operation related information (auxiliary operation database 55) in the storage unit 31, the auxiliary machine operation estimating unit 43 performs an auxiliary operation between the charging place (first place) and the next charging place (second place). The operation pattern of the machine 17 is estimated. The operation pattern of the auxiliary machine 17 is exemplified by the operation pattern of the brake compressor and the operation pattern of the air conditioning equipment.
The auxiliary machine energy calculation unit 44 calculates the amount of electric power necessary for the operation of the auxiliary machine 17 between the first place and the second place based on the operation pattern of the auxiliary machine 17 estimated by the auxiliary machine operation estimation unit 43. To do.
The charging power calculation unit 45 sets the charging power amount based on the electric energy for the electric vehicle 1 calculated by the driving energy calculation unit 42 and the electric energy for the auxiliary machine 17 calculated by the auxiliary machine energy calculation unit 44. To do.

図3は、記憶部31の構成を示す図である。記憶部31は、プログラム及びデータとしての路線データベース51、運行データベース52、車両データベース53、運行履歴データベース54、補機運行データベース55、及び補機運転履歴データベース56を含む。   FIG. 3 is a diagram illustrating a configuration of the storage unit 31. The storage unit 31 includes a route database 51, an operation database 52, a vehicle database 53, an operation history database 54, an auxiliary machine operation database 55, and an auxiliary machine operation history database 56 as programs and data.

路線データベース51は、軌道4に関する情報を格納する。例えば、軌道4における、電気車両1の停車する駅(舎)間の距離や、充電可能な場所間の距離、軌道4中の勾配の位置及び大きさ、軌道4中のカーブの位置及び曲率、天候と軌道との関係(例示:スリップのし易さ)である。
運行データベース52は、電気車両1の運行方法に関する情報を格納する。例えば、軌道4上の位置と速度パターン、軌道4上の位置と加速度パターン、電気車両1の運行のダイヤグラム、電気車両1の停車する駅、電気車両1の充電する場所、である。
車両データベース53は、電気車両1に関する情報を格納する。例えば、電気車両1の重量、電気車両1の運動性能、電気車両1の輸送性能である。
運行履歴データベース54は、過去の運行に関する実績の情報(軌道4に関する情報、電気車両1の運行方法に関する情報、電気車両1に関する情報)を格納する。例えば、電気車両1が過去に運行した際の実績としての、駅(舎)間(充電場所間)の運行に関わる使用電力量(消費電力量)に関する情報である。
補機運行データベース55は、補機17の運行方法に関する情報を格納する。例えば、外気温及び室内温度と空調設備の稼働率との関係、ブレーキコンプレッサの残圧と駆動率との関係である。
補機運転履歴データベース56は、過去の補機17の運行に関する情報(補機17の運行方法に関する情報)を格納する。例えば、補機17が過去に稼動した際の実績としての駅(舎)間(充電場所間)の補機に関わる使用電力量(消費電力量)に関する情報である。
The route database 51 stores information on the track 4. For example, the distance between stations (buildings) where the electric vehicle 1 stops in the track 4, the distance between places where charging is possible, the position and magnitude of the gradient in the track 4, the position and curvature of the curve in the track 4, It is the relationship between weather and track (example: ease of slipping).
The operation database 52 stores information regarding the operation method of the electric vehicle 1. For example, the position and speed pattern on the track 4, the position and acceleration pattern on the track 4, the operation diagram of the electric vehicle 1, the station where the electric vehicle 1 stops, and the place where the electric vehicle 1 is charged.
The vehicle database 53 stores information related to the electric vehicle 1. For example, the weight of the electric vehicle 1, the motion performance of the electric vehicle 1, and the transport performance of the electric vehicle 1.
The operation history database 54 stores information on the results of past operations (information about the track 4, information about the operation method of the electric vehicle 1, and information about the electric vehicle 1). For example, it is information regarding the amount of power used (power consumption) related to the operation between stations (buildings) (between charging places) as a result when the electric vehicle 1 has operated in the past.
The auxiliary machine operation database 55 stores information on the operation method of the auxiliary machine 17. For example, the relationship between the outside air temperature and the room temperature and the operating rate of the air conditioning equipment, and the relationship between the residual pressure of the brake compressor and the driving rate.
The auxiliary machine operation history database 56 stores information related to past operation of the auxiliary machine 17 (information related to the operation method of the auxiliary machine 17). For example, it is information relating to the power consumption (power consumption) related to the auxiliary equipment between stations (buildings) (between charging places) as a result when the auxiliary equipment 17 has been operated in the past.

図4及び図5は、充電装置2及び集電装置12の一例を示す構成図である。図5は非充電時、図4は充電時の状態を示している。ただし、本発明はこの充電装置2及び集電装置12に限定されるものではなく、他の充電装置及び集電装置を用いても良い。   4 and 5 are configuration diagrams illustrating examples of the charging device 2 and the current collector 12. FIG. 5 shows a non-charging state, and FIG. 4 shows a charging state. However, the present invention is not limited to the charging device 2 and the current collector 12, and other charging devices and current collectors may be used.

軌道4には、軌道4の方向に伸びる凹部79が形成されている。この凹部79に充電部21が設置されている。充電部21は、軌道幅方向の断面が環状(図に示す矩形状も含む)に形成された1次コア67と、この1次コア67に巻装された1次コイル70a、70bとを備えている。   The track 4 has a recess 79 extending in the direction of the track 4. The charging unit 21 is installed in the recess 79. The charging unit 21 includes a primary core 67 having a circular cross section (including a rectangular shape shown in the drawing) in the orbit width direction, and primary coils 70 a and 70 b wound around the primary core 67. ing.

1次コア67は、凹部79の底部に固定されて一部に開放部(開口部)が形成された略環状のコア本体68と、コア本体68の開放部に軌道幅方向に並んで載置された2つの可動コア部材(以下、単に可動コアという)69a、69bとから構成されている。図4では、コア本体68は、軌道幅方向断面がU字形に形成され、上面が開放している。可動コア69a、69bは、軌道幅方向断面がI字形に形成されている。コア本体8及び可動コア69a、69bは、共に強磁性体で形成されている。コア本体68及び可動コア69a、69bは、ここでは軌道方向に所定の厚みを持って形成されており、コア本体68及び可動コア69a、69bを一体物としてみると筒形状になっている。一次コイル70aは、可動コア69aに、可動コア69aの軌道方向にわたって巻装されている。一次コイル70bは、可動コア69bに、可動コア69bの軌道方向にわたって巻装されている。   The primary core 67 is fixed to the bottom of the recess 79 and is placed in a substantially annular core main body 68 in which an opening (opening) is formed in part, and aligned in the track width direction on the opening of the core main body 68. The two movable core members (hereinafter simply referred to as movable cores) 69a and 69b are configured. In FIG. 4, the core body 68 has a U-shaped cross section in the track width direction, and an upper surface is open. The movable cores 69a and 69b have an I-shaped cross section in the track width direction. The core body 8 and the movable cores 69a and 69b are both formed of a ferromagnetic material. Here, the core main body 68 and the movable cores 69a and 69b are formed to have a predetermined thickness in the orbital direction, and the core main body 68 and the movable cores 69a and 69b are formed into a cylindrical shape when viewed as one body. The primary coil 70a is wound around the movable core 69a in the track direction of the movable core 69a. The primary coil 70b is wound around the movable core 69b in the track direction of the movable core 69b.

可動コア69aには、可動コア69bから離れる方向(図4では右方向)へ力を付与する駆動機構80aが備えられている。駆動機構80aは、凹部79の可動コア69a側の壁面(図4では右側壁面)に固設されたベース部材81aと、ベース部材81a及び可動コア69aを接続するばね部材82aとを備えている。図4に示すばね部材82aは伸びた状態を示しており、通常のばね部材82aは図5に示すように縮んだ形状をしている。可動コア69bには、可動コア69aから離れる方向(図4では左方向)へ力を付与する駆動機構80bが備えられている。駆動機構80bは、凹部79の可動コア69b側の壁面(図4では左側壁面)に固設されたベース部材81bと、ベース部材81b及び可動コア69aを接続するばね部材82bとを備えている。図4に示すばね部材82bは伸びた状態を示しており、通常のばね部材82bは図5に示すように縮んだ形状をしている。   The movable core 69a is provided with a drive mechanism 80a that applies force in a direction away from the movable core 69b (right direction in FIG. 4). The drive mechanism 80a includes a base member 81a fixed to the wall surface on the movable core 69a side of the recess 79 (the right wall surface in FIG. 4), and a spring member 82a that connects the base member 81a and the movable core 69a. A spring member 82a shown in FIG. 4 shows an extended state, and a normal spring member 82a has a contracted shape as shown in FIG. The movable core 69b is provided with a drive mechanism 80b that applies force in a direction away from the movable core 69a (leftward in FIG. 4). The drive mechanism 80b includes a base member 81b fixed to a wall surface on the movable core 69b side of the recess 79 (the left wall surface in FIG. 4), and a spring member 82b that connects the base member 81b and the movable core 69a. The spring member 82b shown in FIG. 4 shows an extended state, and the normal spring member 82b has a contracted shape as shown in FIG.

充電時、充電電源22から1次コイル70a、70bに高周波電力が供給されると、1次コイル70a、70bにより発生する磁力により可動コア69a、69bは互いに接近する方向へ動かされる。その結果、可動コア69a、69bは、図5の状態から、互いに接触した図4の状態になる。すなわち、コア本体68の開放部が連結され、図4に示すような高周波磁束M0が発生する。充電する際、急に大きな高周波電力を供給するのではなく、次第に電流値が高くなるように充電電源22からの高周波電力を制御することが好ましい。このように電流値を制御しながら高周波電力を1次コイル70a、70bに供給することで、可動コア69a、69bが対抗面接触するときの衝撃を和らげることが出来、可動コア69a、69bの損傷を防止できる。充電電源22からの高周波電力の供給を断つと、ばね部材82a、82bが縮んで可動コア69a、69bは互いに隔離する方向に動いてコア本体68の開放部が開放される。このように、1次コイル70a、70bにより発生する磁力によりコア本体68の開放部を開放又は連結することで、充電開始に連動させて、1次コア67のエアギャップをなくすことができる。   At the time of charging, when high frequency power is supplied from the charging power source 22 to the primary coils 70a and 70b, the movable cores 69a and 69b are moved toward each other by the magnetic force generated by the primary coils 70a and 70b. As a result, the movable cores 69a and 69b change from the state of FIG. 5 to the state of FIG. 4 in contact with each other. That is, the open part of the core main body 68 is connected, and the high frequency magnetic flux M0 as shown in FIG. 4 is generated. When charging, it is preferable to control the high frequency power from the charging power source 22 so that the current value gradually increases rather than suddenly supplying a large high frequency power. By supplying high-frequency power to the primary coils 70a and 70b while controlling the current value in this way, the impact when the movable cores 69a and 69b come into contact with each other can be reduced, and the movable cores 69a and 69b are damaged. Can be prevented. When the supply of the high frequency power from the charging power source 22 is cut off, the spring members 82a and 82b contract and the movable cores 69a and 69b move in a direction to isolate them from each other, thereby opening the open portion of the core body 68. Thus, the air gap of the primary core 67 can be eliminated in conjunction with the start of charging by opening or connecting the open portion of the core body 68 by the magnetic force generated by the primary coils 70a and 70b.

電気車両1は、2次コイル12aと整流装置12bとを含む集電装置12、蓄電装置13、インバータ/コンバータ15、SIV14、補機17、モータ16及び車輪18を備えている。2次コイル12aは、充電時に、電気車両1の下部に突出して、且つ、1次コイル70aと1次コイル70bとの間の空間に位置するように固定される。2次コイル11は、可動コア69a、69bの軌道方向にわたって巻装されるように形成されている。つまり、2次コイル12aは、軌道幅方向にわたって孔(中空部)が形成された状態である。充電時には、可動コア69a、69bが2次コイル12aの中空部に進入して2次コイル12aと交差した状態でコア本体68の開放部を連結し、非充電時には可動コア69a、69bが2次コイル12aの中空部から離脱してコア本体68の開放部を開放するようになっている。これにより、充電時には1次コア67に発生する高周波磁束M0により2次コイル12aに交流電力(誘導起電力)が発生する。整流装置12は、2次コイル12aに発生した交流電力を直流電力に変換する。蓄電装置13、インバータ/コンバータ14、SIV15、補機16、モータ17及び車輪18は、既述のとおりである。   The electric vehicle 1 includes a current collector 12 including a secondary coil 12a and a rectifier 12b, a power storage device 13, an inverter / converter 15, an SIV 14, an auxiliary machine 17, a motor 16, and wheels 18. The secondary coil 12a is fixed so as to protrude to the lower part of the electric vehicle 1 and to be positioned in a space between the primary coil 70a and the primary coil 70b during charging. The secondary coil 11 is formed so as to be wound over the orbital direction of the movable cores 69a and 69b. That is, the secondary coil 12a is in a state in which holes (hollow portions) are formed over the track width direction. At the time of charging, the movable cores 69a and 69b enter the hollow portion of the secondary coil 12a and connect the open portion of the core body 68 in a state of crossing the secondary coil 12a. At the time of non-charging, the movable cores 69a and 69b are secondary The core 12 is released from the hollow portion of the coil 12a to open the open portion. Thereby, AC power (inductive electromotive force) is generated in the secondary coil 12a by the high-frequency magnetic flux M0 generated in the primary core 67 during charging. The rectifier 12 converts AC power generated in the secondary coil 12a into DC power. The power storage device 13, the inverter / converter 14, the SIV 15, the auxiliary machine 16, the motor 17, and the wheels 18 are as described above.

1次コア(すなわちコア本体68及び可動コア69a、69b)67と1次コイル70a、70bと2次コイル12aとの表面は、例えば、樹脂系の絶縁体で被覆されており、万が一、人がこれらのいずれかに触れてしまった場合でも感電を防止することができる。駆動機構80a、80bの表面にも同様の絶縁処理を施しておいても良い。同様に感電を防止できる。   The surfaces of the primary core (that is, the core body 68 and the movable cores 69a and 69b) 67, the primary coils 70a and 70b, and the secondary coil 12a are covered with, for example, a resin-based insulator. Even when one of these is touched, an electric shock can be prevented. A similar insulation treatment may be applied to the surfaces of the drive mechanisms 80a and 80b. Similarly, electric shock can be prevented.

充電が完了すると、図5に示すように、充電電源22からの高周波電力の供給が断たれる。これと同時に可動コア69a、69bが2次コイル12aの中空部から離脱して、蓄電装置13への電力供給が停止する。   When the charging is completed, as shown in FIG. 5, the supply of the high frequency power from the charging power source 22 is cut off. At the same time, the movable cores 69a and 69b are detached from the hollow portion of the secondary coil 12a, and the power supply to the power storage device 13 is stopped.

次に、本発明の電気車両を適用した架線レス交通システムの実施の形態の動作(架線レス交通システムの制御方法)について説明する。   Next, the operation of the embodiment of the overhead line-less traffic system to which the electric vehicle of the present invention is applied (control method of the overhead line-less traffic system) will be described.

図6は、架線レス交通システムの動作を説明する概念図である。架線レス交通システムは、電気車両1が軌道4上に設けられた複数の駅舎(駅Aの駅舎3a、駅Bの駅舎3b、駅Cの駅舎3c、…)の間を移動しながら乗客又は荷物を輸送する。その際、各駅舎において、乗客の乗降又は荷物の出し入れの間の時間を使って充電装置(2a、2b、2c、…)の充電部(21a、21b、21c、…)により電気車両1が蓄電装置13の充電を行う。そして、複数の駅舎をつなぐ軌道4上を移動して、乗客を次の駅舎へ輸送して行く。次の駅舎においても、途中に設けられた複数の駅舎3間で乗客を輸送する。   FIG. 6 is a conceptual diagram for explaining the operation of the overhead line-less traffic system. The overhead line-less transportation system is used for passengers or luggage while moving between a plurality of station buildings (station building 3a at station A, station building 3b at station B, station building 3c at station C,...) Where the electric vehicle 1 is provided on the track 4. To transport. At that time, in each station building, the electric vehicle 1 is stored by the charging units (21a, 21b, 21c,...) Of the charging devices (2a, 2b, 2c,. The device 13 is charged. And it moves on the track | orbit 4 which connects a some station building, and transports a passenger to the next station building. In the next station building, passengers are transported between a plurality of station buildings 3 provided on the way.

図7は、車両速度、SOC及び充電電力の時間変化の様子を示すグラフである。縦軸は、それぞれ図7(a)が車両速度、図7(b)はSOC、図7(c)は充電電力である。横軸は時間である。時刻t0でA駅を出発して時刻t1でB駅に到着、時刻t2でB駅を出発して時刻t3でC駅に到着、時刻t4でC駅を出発して時刻t5でD駅に到着、時刻t6でD駅を出発したことをそれぞれ示している。   FIG. 7 is a graph showing changes over time in vehicle speed, SOC, and charging power. 7A shows the vehicle speed, FIG. 7B shows the SOC, and FIG. 7C shows the charging power. The horizontal axis is time. Depart A station at time t0, arrive at B station at time t1, depart from B station at time t2, arrive at C station at time t3, depart C station at time t4, arrive at D station at time t5 , Respectively, indicating that the station D has been departed at time t6.

図7(a)を参照して、電気車両1は、A駅からB駅に向かう場合、時刻t0から時刻t1までにおいて、まず、概ね一定の加速度で速度をゼロから上昇させる。次に、ある時点で加速を止めて所定の時間、概ね一定の速度とする。その後、概ね一定の加速度で速度を減速する。そして、時刻t1でB駅に到着し、速度がゼロとなる。B駅からC駅に向かう場合(時刻t2から時刻t3まで)、C駅からD駅に向かう場合(時刻t4から時刻t5まで)等についても、同様である。   Referring to FIG. 7A, when traveling from station A to station B, electric vehicle 1 first increases the speed from zero at a substantially constant acceleration from time t0 to time t1. Next, acceleration is stopped at a certain point in time, and the speed is kept constant for a predetermined time. Thereafter, the speed is reduced at a substantially constant acceleration. At time t1, the vehicle arrives at station B, and the speed becomes zero. The same applies to the case of going from station B to station C (from time t2 to time t3), from station C to station D (from time t4 to time t5), and the like.

図7(c)を参照して、電気車両1は、B駅に停車中に、時刻t1から時刻t2まで概ね一定の充電電力P1で蓄電装置13を充電する。このときの充電は、制御装置11によりB駅−C駅間で使用されると予測された電力量に基づいて、その充電電力量が決定されている。充電の際、充電電力P1は、P1=(B駅で充電される充電電力量)/(B駅停車時間:t2−t1)、となる。同様に、C駅に停車中に、時刻t3から時刻t4まで概ね一定の充電電力P2で蓄電装置13を充電する。充電電力量は、制御装置11によりC駅−D駅間で使用されると予測された電力量に基づいて決定されている。充電の際、充電電力P2は、P2=(C駅で充電される充電電力量)/(C駅停車時間:t4−t3)、となる。同様に、D駅停車中に、時刻t5から時刻t6まで概ね一定の充電電力P3で蓄電装置13を充電する。充電電力量は、制御装置11によりD駅−E駅(図示されず)間で使用されると予測された電力量に基づいて決定されている。充電の際、充電電力P3は、P3=(D駅で充電される充電電力量)/(D駅停車時間:t6−t5)となる。概ね一定の充電電力で充電を行うことで、蓄電装置13への負担が減るほか、充電の際の電気的な損失を軽減することができる。   With reference to FIG.7 (c), the electric vehicle 1 charges the electrical storage apparatus 13 with the substantially constant charging power P1 from the time t1 to the time t2 while stopping at the B station. The charging power amount at this time is determined based on the power amount predicted to be used between the B station and the C station by the control device 11. At the time of charging, the charging power P1 is P1 = (amount of charging power charged at the B station) / (B station stop time: t2-t1). Similarly, while stopping at station C, power storage device 13 is charged with substantially constant charging power P2 from time t3 to time t4. The charge power amount is determined based on the power amount predicted to be used between the C station and the D station by the control device 11. At the time of charging, the charging power P2 is P2 = (amount of charging power charged at the C station) / (C station stop time: t4-t3). Similarly, while the D station stops, the power storage device 13 is charged with a substantially constant charging power P3 from time t5 to time t6. The amount of charging power is determined based on the amount of power predicted to be used between D station and E station (not shown) by the control device 11. At the time of charging, the charging power P3 is P3 = (amount of charging power charged at the D station) / (D station stop time: t6-t5). By performing charging with substantially constant charging power, the burden on the power storage device 13 is reduced, and electrical loss during charging can be reduced.

図7(b)を参照して、C駅で充電する場合を例にとり、前記充電電力量の決定方法を説明する。E0は、電気車両1に搭載された蓄電装置13の最適なSOCである。E2は充電前のSOC、E1は充電後の目標SOCである。Eminは、次の充電設備まで走行する間に変動するSOCの最低値(予測値)である。ΔEは、E1とEminの差である。ΔEがSOCの増減に対して予め設定された望ましい変動の大きさよりも小さくなるように、本システムは設計されている。そして、SOCの望ましい変動の範囲は、E0を中心として±10%である。より好ましくは±5%である。充電後のSOCであるE1がE0とΔE/2の和と等しくなるよう充電電力量を決定する。すなわち、(充電電力量=E0+ΔE/2―E2)とすることでSOCは常にE0を中心に±ΔE/2の範囲で変動させることができる。   With reference to FIG.7 (b), the case where it charges in C station is taken as an example, and the determination method of the said charging electric energy is demonstrated. E0 is the optimum SOC of the power storage device 13 mounted on the electric vehicle 1. E2 is the SOC before charging, and E1 is the target SOC after charging. Emin is the lowest value (predicted value) of SOC that fluctuates while traveling to the next charging facility. ΔE is the difference between E1 and Emin. The system is designed such that ΔE is smaller than a preset desired variation with respect to the increase or decrease of the SOC. A desirable range of variation of the SOC is ± 10% centering on E0. More preferably ± 5%. The charging electric energy is determined so that E1 which is the SOC after charging is equal to the sum of E0 and ΔE / 2. That is, by setting (charging energy = E0 + ΔE / 2−E2), the SOC can always be varied within a range of ± ΔE / 2 with E0 as the center.

電気車両1がA駅からB駅に向かう場合、時刻t0から時刻t1までにおいて、まず、概ね一定の加速度で速度をゼロから上昇させることにより、蓄電装置13の電力が主にモータ17で消費される。それに伴い、SOCが概ね一定の割合で減少する。次に、ある時点で加速を止め、所定の時間を概ね一定の速度とする。それにより、一部補機17の使用で減少する他は蓄電装置13の電力はあまり消費されない。それに伴い、SOCが概ね一定となる。その後、概ね一定の加速度で速度を減速することにより速度ゼロになるまでに、モータ17が回生により発電してその電力を蓄電装置13へ充電する。それに伴い、SOCが上昇する。時刻t1でB駅に到着後、図7(c)において説明した充電により、時刻t2にかけてSOCが上昇する。B駅からC駅へ到着してC駅で充電を行った場合(時刻t2から時刻t4まで)、C駅からD駅へ到着してD駅で充電を行った場合(時刻t4から時刻t6まで)等についても、同様である。この場合、SOCの変動の中心は常に最適なSOC(E0)であり、蓄電装置13の充放電は、最適なSOC±10%(より好ましくは±5%)に収まっており、蓄電装置13にかかる負担が減少し、その寿命を延ばすことができる。   When the electric vehicle 1 moves from the A station to the B station, the electric power of the power storage device 13 is mainly consumed by the motor 17 by increasing the speed from zero at a substantially constant acceleration from time t0 to time t1. The Accordingly, the SOC decreases at a substantially constant rate. Next, acceleration is stopped at a certain point, and a predetermined time is set to a substantially constant speed. As a result, the electric power of the power storage device 13 is not consumed much except that it is reduced by the use of the auxiliary machine 17. Accordingly, the SOC becomes substantially constant. Thereafter, the motor 17 generates power by regeneration and charges the power storage device 13 until the speed becomes zero by decelerating the speed at a substantially constant acceleration. Along with this, the SOC increases. After arriving at station B at time t1, the SOC increases toward time t2 due to the charging described in FIG. When arriving at station C from station B and charging at station C (from time t2 to time t4) When arriving at station D from station C and charging at station D (from time t4 to time t6) ) And the like. In this case, the center of the SOC fluctuation is always the optimum SOC (E0), and the charge / discharge of the power storage device 13 is within the optimum SOC ± 10% (more preferably ± 5%). This burden can be reduced and its life can be extended.

次に、本発明の電気車両を適用した架線レス交通システムの実施の形態の動作(架線レス交通システムの制御方法)の詳細について説明する。   Next, details of the operation (control method of the overhead line-less traffic system) of the embodiment of the overhead line-less traffic system to which the electric vehicle of the present invention is applied will be described.

図8は、架線レス交通システムの動作を説明するフロー図である。ここでは、図6に示す架線レス交通システムにおいて、電気車両1が、駅Aから駅Bへ向かう場合について説明する。
(1)ステップS01
電気車両1は、出発前に駅Aの充電装置2で蓄電装置13を充電する。そのとき、制御部33は、充電する場所(第1場所)である駅Aと次に充電する場所(第2場所)である駅Bとの間で電気車両1が使用する電力量について、記憶部51の運行関連情報に基づいて予測する。そして、予測された電力量に対応して充電に関する充電情報を設定する。充電装置2は、充電情報に基づいて、蓄電装置13を充電する。
(2)ステップS02
電気車両1は、駅Aを出発する。そして、運行データベース52を参照して、軌道4上を運行する。
(3)ステップS03
電気車両1は、駅Bに到着する。
(4)ステップS04
電気車両1は、運行データベース52を参照して、駅Bが終点であるか否かを判断する。駅Bが終点の場合、運行は終了する。駅Bが終点で無い場合、ステップS01へ戻る。電気車両1が、駅Bから駅Cへ向かう場合や、駅Cから駅Dへ向かう場合についても、上述のS01〜S04と同様にして運行を行う。
FIG. 8 is a flowchart for explaining the operation of the overhead line-less traffic system. Here, the case where the electric vehicle 1 goes from the station A to the station B in the overhead line-less traffic system shown in FIG. 6 will be described.
(1) Step S01
The electric vehicle 1 charges the power storage device 13 with the charging device 2 at the station A before departure. At that time, the control unit 33 stores the amount of electric power used by the electric vehicle 1 between the station A that is the place to be charged (first place) and the station B that is the place to be charged next (second place). Predict based on the operation-related information of the unit 51. Then, charging information related to charging is set corresponding to the predicted electric energy. Charging device 2 charges power storage device 13 based on the charging information.
(2) Step S02
The electric vehicle 1 leaves the station A. And it refers to the operation database 52 and operates on the track 4.
(3) Step S03
The electric vehicle 1 arrives at the station B.
(4) Step S04
The electric vehicle 1 refers to the operation database 52 and determines whether or not the station B is the end point. When station B is the end point, the operation ends. If station B is not the end point, the process returns to step S01. Even when the electric vehicle 1 heads from the station B to the station C or heads from the station C to the station D, the operation is performed in the same manner as the above-described S01 to S04.

ここで、電気車両1の蓄電装置13を充電する動作(S01)について更に説明する。図9は、ステップS01の詳細を示すフロー図である。   Here, the operation (S01) of charging the power storage device 13 of the electric vehicle 1 will be further described. FIG. 9 is a flowchart showing details of step S01.

(1)ステップS11
電気車両1の蓄電装置13について、制御部33は、センサ35により蓄電装置13の蓄電電力量を計測する。
(2)ステップS12
制御部33は、駅Aと駅Bとの間で電気車両1が使用する電力量Ee(使用する電力量、蓄電電力量の変動、SOCの変動を含む)について、記憶部51の路線データベース51、運行データベース52、車両データベース53及び補機運行データベース55に基づいて予測する。ただし、運行履歴データベース54及び補機運転履歴データベース56を参照して、過去の同様の運行において使用した電力量(実績値)を用いても良い。
(3)ステップS13
制御部33は、予測された電力量の変動から充電電力量を設定する。すなわち、次式で求める。
充電電力量=E0+(E1−Emin.)/2−E2 (1)
ただし、
E0:蓄電装置13の最適なSOC(蓄電装置13に固有の値)
E1:充電後の目標SOC(設定値、又は、予測値)
E2:充電前のSOC(実測値)
Emin:次の充電設備まで走行する間に変動するSOCの最低値(予測値)
ここで、E1は、予め各充電場所(各駅)ごとに設定されていても良い(設定値)し、次式で求めても良い(予測値:この式は例示であり、本発明はこの式に限定されない)。
E1=Ee/2+E0 (2)
Ee:駅間で電気車両が使用する電力量(予測値)
なお、蓄電装置13が全ての駅間でSOCの増減が予め設定された望ましい変動の範囲(E0を中心として±10%である。より好ましくは±5%)となるように設計されており、Ee/2もその範囲内である。
(4)ステップS14
制御部33は、設定された充電電力量を定電力充電するために、その定電力を設定する。駅における停車時間(=充電時間)がt(sec)の場合、定電力(充電電力P1〜P3)=設定された充電電力量(Wh)×3600/t(sec)、である。制御部33は、通信部34を介して充電電力量、定電力、充電時間tを充電情報として充電装置2へ出力する。
充電装置2の制御部23は、通信部24を介して充電情報を受信する。制御部23は、充電情報に基づいて、充電電源22と充電部21を用いて、集電装置12を介して蓄電装置13を充電する。
(5)ステップS15
制御部33は、センサ35により充電後の蓄電装置13の蓄電電力量を測定する。
(1) Step S11
For the power storage device 13 of the electric vehicle 1, the control unit 33 measures the amount of power stored in the power storage device 13 using the sensor 35.
(2) Step S12
The control unit 33 uses the route database 51 of the storage unit 51 for the power amount Ee used by the electric vehicle 1 between the station A and the station B (including the amount of power used, variation in the amount of stored power, and variation in SOC). , Based on the operation database 52, the vehicle database 53, and the auxiliary machine operation database 55. However, with reference to the operation history database 54 and the auxiliary machine operation history database 56, the electric energy (actual value) used in the past similar operation may be used.
(3) Step S13
The control unit 33 sets the charging power amount from the predicted variation in the power amount. That is, it calculates | requires by following Formula.
Charging electric energy = E0 + (E1-Emin.) / 2−E2 (1)
However,
E0: Optimum SOC of power storage device 13 (value inherent to power storage device 13)
E1: Target SOC after charging (set value or predicted value)
E2: SOC before charging (actual measured value)
Emin: Minimum SOC (predicted value) that fluctuates while traveling to the next charging facility
Here, E1 may be set in advance for each charging place (each station) (set value) or may be obtained by the following formula (predicted value: this formula is an example, and the present invention is based on this formula. Not limited to).
E1 = Ee / 2 + E0 (2)
Ee: Electricity consumed by electric vehicles between stations (predicted value)
The power storage device 13 is designed so that the increase / decrease in the SOC between all the stations is within a desirable range of fluctuation (± 10% centered on E0, more preferably ± 5%), Ee / 2 is also within the range.
(4) Step S14
The control unit 33 sets the constant power in order to charge the set charging power amount at a constant power. When the stop time (= charge time) at the station is t (sec), constant power (charge power P1 to P3) = set charge power amount (Wh) × 3600 / t (sec). The control unit 33 outputs the charging power amount, constant power, and charging time t to the charging device 2 as charging information via the communication unit 34.
The control unit 23 of the charging apparatus 2 receives charging information via the communication unit 24. The controller 23 charges the power storage device 13 via the current collector 12 using the charging power source 22 and the charging unit 21 based on the charging information.
(5) Step S15
Control unit 33 measures the amount of power stored in power storage device 13 after charging by sensor 35.

ステップS13において、駅Aと駅Bとの間における蓄電装置13の蓄電電力量の増減が、所定の範囲内に収まらない場合、駅Aと駅Bとの間に設けられた他の充電場所を、次の充電場所と設定し直して上記プロセスを実行することも可能である。
同様に、当初は駅Bで充電を行わない予定であった場合、ステップS13において、駅Aと駅Cとの間における蓄電装置13の蓄電電力量の増減が、所定の範囲内に収まらない場合、駅Bを、次の充電場所と設定し直して上記プロセスを実行することも可能である。
In step S13, when the increase / decrease in the amount of power stored in the power storage device 13 between the station A and the station B does not fall within the predetermined range, another charging place provided between the station A and the station B is selected. It is also possible to reset the next charging location and execute the above process.
Similarly, if it is initially planned not to charge at station B, in step S13, the increase or decrease in the amount of power stored in power storage device 13 between station A and station C does not fall within a predetermined range. It is also possible to reset the station B as the next charging place and execute the above process.

ここで、駅Aと駅Bとの間で電気車両1が使用する電力量(使用する電力量、蓄電電力量の変動、SOCの変動を含む)を予測する動作(S12)について更に説明する。図10は、ステップS12の詳細を示すフロー図である。   Here, the operation (S12) for predicting the amount of power used by the electric vehicle 1 between the station A and the station B (including the amount of power used, variation in the amount of stored power, and variation in SOC) will be further described. FIG. 10 is a flowchart showing details of step S12.

(1)ステップS21
制御部33の、運転パターン推定部41は、記憶部31の路線データベース51、運行データベース52及び車両データベース53に基づいて、駅Aと次に充電する駅Bとの間における電気車両1のモータ17の駆動パターン/回生パターンを推定する。
(2)ステップS22
駆動エネルギー計算部42は、運転パターン推定部41の推定した電気車両1の駆動パターン/回生パターンに基づいて、駅Aと駅Bとの間の電気車両1の移動に必要な電力量を計算する。なお、運行履歴データベース54の使用電力量の過去の実績を用いても良い。
(3)ステップS23
補機動作推定部43は、記憶部31の補機運行データベース55に基づいて、駅Aと駅Bとの間における補機17の運転パターンを推定する。補機17の運転パターンは、ブレーキ用コンプレッサの稼動パターン、空調設備の稼動パターンである。
(4)ステップS24
補機エネルギー計算部44は、補機動作推定部43の推定した補機17の運転パターンに基づいて、駅Aと駅Bとの間の補機17の稼動に必要な電力量を計算する。補機17に必要とされる電力量を計算する。なお、補機運転履歴データベース56の使用電力量の過去の実績を用いても良い。
(5)ステップS25
ステップS22で算出した電力量とステップS24で算出した電力量を加算して、駅Aと駅Bとの間で電気車両1が使用する電力量を算出する。
(1) Step S21
The driving pattern estimation unit 41 of the control unit 33 is based on the route database 51, the operation database 52, and the vehicle database 53 of the storage unit 31, and the motor 17 of the electric vehicle 1 between the station A and the station B to be charged next. The driving pattern / regenerative pattern is estimated.
(2) Step S22
The drive energy calculation unit 42 calculates the amount of electric power necessary for the movement of the electric vehicle 1 between the station A and the station B based on the drive pattern / regeneration pattern of the electric vehicle 1 estimated by the driving pattern estimation unit 41. . In addition, you may use the past results of the electric power consumption of the operation history database 54. FIG.
(3) Step S23
The auxiliary machine operation estimation unit 43 estimates an operation pattern of the auxiliary machine 17 between the station A and the station B based on the auxiliary machine operation database 55 of the storage unit 31. The operation pattern of the auxiliary machine 17 is an operation pattern of the brake compressor and an operation pattern of the air conditioning equipment.
(4) Step S24
The auxiliary machine energy calculation unit 44 calculates the amount of electric power necessary for the operation of the auxiliary machine 17 between the stations A and B based on the operation pattern of the auxiliary machine 17 estimated by the auxiliary machine operation estimation unit 43. The amount of electric power required for the auxiliary machine 17 is calculated. In addition, you may use the past track record of the electric power consumption of the auxiliary machinery driving | operation history database 56. FIG.
(5) Step S25
The amount of power used by the electric vehicle 1 between the station A and the station B is calculated by adding the amount of power calculated in step S22 and the amount of power calculated in step S24.

ステップS12において、架線レス交通システムがサーバを有し、軌道4上の全ての電気車両の消費電力量の実績値をそのサーバに常時格納している場合、電気車両1は直前の電気車両の電力量の実績値をそのサーバからデータ通信で受信することで、自身の電力量の予測値として用いることも可能である。その場合、使用する電力量の予測値を算出する時間が短縮できる。或いは、無線通信により直前の電気車両のデータを直接受信するようにしても良い。   In step S12, when the overhead wire-less transportation system has a server and the actual power consumption values of all electric vehicles on the track 4 are always stored in the server, the electric vehicle 1 has the power of the immediately preceding electric vehicle. By receiving the actual value of the amount by data communication from the server, it is also possible to use it as a predicted value of its own electric energy. In that case, the time for calculating the predicted value of the amount of power to be used can be shortened. Or you may make it receive the data of the last electric vehicle directly by radio | wireless communication.

図11は、架線レス交通システムの動作を説明する他の概念図である。この架線レス交通システムは、充電装置2b及びその充電部21b、21b’が駅舎以外の駅間の軌道4上にある点で図6の場合と異なる。このような箇所を設けておくことは、駅舎での充電だけでは、E0±ΔE/2の範囲にSOCを収められない場合(蓄電装置13の電気容量を小さくしたい場合)や、急に途中で電力が必要になった場合、電力を多く消費する区間(例示:急な長い坂道のある区間や人の乗車が多い区間)の直前に追加で電力供給をしたい場合などに対応でき好ましい。この場合、電気車両1が静止しないでも充電可能な充電装置2及び集電装置12を用いることが好ましい。   FIG. 11 is another conceptual diagram illustrating the operation of the overhead line-less traffic system. This overhead line-less traffic system is different from the case of FIG. 6 in that the charging device 2b and its charging units 21b and 21b 'are on the track 4 between stations other than the station building. Such a place is provided when the SOC cannot be accommodated within the range of E0 ± ΔE / 2 only by charging at the station building (when it is desired to reduce the electric capacity of the power storage device 13) or suddenly in the middle When electric power is required, it is possible to cope with a case where it is desired to additionally supply electric power immediately before a section that consumes a lot of power (eg, a section with a steep and long slope or a section with many passengers). In this case, it is preferable to use the charging device 2 and the current collector 12 that can be charged even when the electric vehicle 1 is not stationary.

本発明により、架線レス交通システムの電気車両における蓄電装置の劣化が抑制でき、蓄電装置の寿命を延ばすことができる。そして、定電力充電により、蓄電装置の充電の効率を高めることが可能となる。   According to the present invention, deterioration of a power storage device in an electric vehicle of an overhead line-less traffic system can be suppressed, and the life of the power storage device can be extended. And it becomes possible to raise the efficiency of charge of an electrical storage apparatus by constant power charge.

軌道4上に複数の充電場所を設けることにより、電気車両に搭載する蓄電装置の電力容量を低減することができる。それにより、蓄電装置のスペース及び重量、コストを軽減することができる。そして、電気車両のコストを低減し、輸送効率を向上させることが可能となる。   By providing a plurality of charging locations on the track 4, the power capacity of the power storage device mounted on the electric vehicle can be reduced. Thereby, the space, weight, and cost of the power storage device can be reduced. And it becomes possible to reduce the cost of an electric vehicle and to improve transport efficiency.

図1は、本発明の電気車両を適用した架線レス交通システムの第1の実施の形態を示す構成図である。FIG. 1 is a block diagram showing a first embodiment of an overhead line-less traffic system to which an electric vehicle of the present invention is applied. 図2は、制御部の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the control unit. 図3は、記憶部の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the storage unit. 図4は、充電時の充電部の詳細を示す構成図である。FIG. 4 is a configuration diagram illustrating details of the charging unit during charging. 図5は、非充電時の充電部の詳細を示す構成図である。FIG. 5 is a configuration diagram showing details of the charging unit during non-charging. 図6は、架線レス交通システムの動作を説明する概念図である。FIG. 6 is a conceptual diagram for explaining the operation of the overhead line-less traffic system. 図7は、(a)車両速度、(b)SOC及び(c)充電電力の時間変化の様子を示すグラフである。FIG. 7 is a graph showing changes over time in (a) vehicle speed, (b) SOC, and (c) charging power. 図8は、架線レス交通システムの動作を説明するフロー図である。FIG. 8 is a flowchart for explaining the operation of the overhead line-less traffic system. 図9は、ステップS01の詳細を示すフロー図である。FIG. 9 is a flowchart showing details of step S01. 図10は、ステップS12の詳細を示すフロー図である。FIG. 10 is a flowchart showing details of step S12. 図11は、架線レス交通システムの動作を説明する他の概念図である。FIG. 11 is another conceptual diagram illustrating the operation of the overhead line-less traffic system.

符号の説明Explanation of symbols

1 電気車両
2 充電装置
3 駅舎
4 軌道
11 制御装置
12 集電装置
12a 2次コイル
12b 整流装置
13 蓄電装置
14 SIV(Static Inverter)
15 インバータ/コンバータ
16 モータ
17 補機
18 車輪
21 充電部
22 充電電源
23 制御部
24 通信部
31 記憶部
33 制御部
34 通信部
35 センサ
41 運転パターン推定部
42 駆動エネルギー計算部
43 補機動作推定部
44 補機エネルギー計算部
45 充電電力計算部
51 路線データベース
52 運行データベース
53 車両データベース
54 運行履歴データベース
55 補機運行データベース
56 補機運転履歴データベース
67 1次コア
68 コア本体
69、69a、69b 可動コア部材(可動コア)
70、70a、70b 1次コイル
79 凹部
80、80a、80b 駆動機構
81、81a、81b ベース部材
82、82a、82b ばね部材
DESCRIPTION OF SYMBOLS 1 Electric vehicle 2 Charging device 3 Station building 4 Track 11 Control device 12 Current collector 12a Secondary coil 12b Rectifier 13 Power storage device 14 SIV (Static Inverter)
DESCRIPTION OF SYMBOLS 15 Inverter / converter 16 Motor 17 Auxiliary machine 18 Wheel 21 Charging part 22 Charging power supply 23 Control part 24 Communication part 31 Storage part 33 Control part 34 Communication part 35 Sensor 41 Operation pattern estimation part 42 Drive energy calculation part 43 Auxiliary machine operation estimation part 44 Auxiliary energy calculation unit 45 Charging power calculation unit 51 Route database 52 Operation database 53 Vehicle database 54 Operation history database 55 Auxiliary operation database 56 Auxiliary operation history database 67 Primary core 68 Core body 69, 69a, 69b Movable core member (Movable core)
70, 70a, 70b Primary coil 79 Recess 80, 80a, 80b Drive mechanism 81, 81a, 81b Base member 82, 82a, 82b Spring member

Claims (18)

電力を用いて予め設定された経路を動く車両本体と、
前記電力を蓄積する蓄電装置と
前記経路における前記車両本体の運行に関する運行関連情報を格納する記憶部と、
前記蓄電装置を充電するとき、前記運行関連情報に基づいて、次の充電までの運行における前記経路における前記蓄電装置の充電状態としてのSOCの変動に対応した充電電力量を設定する制御部と
を具備し、
前記蓄電装置は、前記経路における充電可能な複数の場所で充電されるとき、前記SOCの増減が、前記蓄電装置の最適なSOCを含む所定の範囲内となるように電気容量が設定され
前記制御部は、前記複数の場所のうちの一つである第1場所で前記蓄電装置を充電するとき、前記複数の場所のうちの次に充電する場所としての第2場所と前記第1場所との間で前記車両本体が使用する電力量について、前記運行関連情報に基づいて予測し、予測された前記電力量の変動に対応して前記充電電力量を設定し、
前記充電電力量は、E0を前記最適なSOC、E1を充電目標のSOC、E2を充電前のSOC、Eminを前記第1場所と前記第2場所との間で変動するSOCの最低値として、以下の式に基づいて設定される
充電電力量=E0+(E1−Emin.)/2−E2
電気車両。
A vehicle body that moves along a predetermined route using electric power;
A power storage device for storing the power ;
A storage unit that stores operation-related information related to the operation of the vehicle body in the route;
When charging the power storage device, based on the operation-related information, a control unit that sets a charging power amount corresponding to a change in SOC as a charging state of the power storage device in the route in operation until the next charging Equipped,
Said power storage device, when it is charged at a plurality of locations which can be charged in the path, increasing or decreasing the pre-Symbol S OC is, the capacitance to be within a predetermined range including the optimum SOC of the power storage device is set ,
The controller, when charging the power storage device at a first location that is one of the plurality of locations, the second location and the first location as locations to be charged next among the plurality of locations. Predicting the amount of power used by the vehicle body between and based on the operation-related information, and setting the amount of charged power corresponding to the predicted variation in the amount of power,
The charging power amount is defined as E0 is the optimum SOC, E1 is the SOC of the charging target, E2 is the SOC before charging, and Emin is the lowest SOC that varies between the first place and the second place. Set based on the following formula
Charging power amount = E0 + (E1-Emin.) / 2−E2
Electric vehicle.
請求項1に記載の電気車両において、
前記所定の範囲は、前記最適なSOCの±10%の範囲である
電気車両。
The electric vehicle according to claim 1,
The predetermined range is a range of ± 10% of the optimum SOC.
請求項1又は2に記載の電気車両において、
前記運行関連情報は、前記経路に関する情報、前記車両本体に関する情報及び前記車両本体の運行方法に関する情報、並びに、過去の運行における消費電力量に関する情報の少なくとも一つを含む
電気車両。
The electric vehicle according to claim 1 or 2 ,
The operation-related information includes at least one of information on the route, information on the vehicle main body, information on an operation method of the vehicle main body, and information on power consumption in the past operation.
請求項1乃至3のいずれか一項に記載の電気車両において、
前記第1場所における充電後から前記第2場所における充電前までの蓄電電力量の変動が、前記所定の範囲内となるように、前記充電電力量が設定される
電気車両。
The electric vehicle according to any one of claims 1 to 3 ,
The electric vehicle in which the amount of charged electric power is set so that a change in the amount of stored electric power after charging at the first location before charging at the second location is within the predetermined range.
予め設定された経路を動く請求項1乃至のいずれか一項に記載の電気車両と、
前記経路における複数の場所に設置され、前記電気車両の制御部からの充電電力量の設定値に対応して、前記電気車両の蓄電装置を充電する複数の充電装置と
を具備する
架線レス交通システム。
The electric vehicle according to any one of claims 1 to 4 , which moves along a preset route,
A plurality of charging devices that are installed at a plurality of places on the route and charge the power storage device of the electric vehicle in accordance with a set value of the amount of charging power from the control unit of the electric vehicle. .
請求項に記載の架線レス交通システムにおいて、
前記電気車両は、前記複数の場所のうちから選択される複数の選択場所において、前記蓄電装置の充電を行う
架線レス交通システム。
In the overhead line-less transportation system according to claim 5 ,
The electric vehicle charges the power storage device at a plurality of selected locations selected from the plurality of locations.
請求項又はに記載の架線レス交通システムにおいて、
前記経路は、軌道である
架線レス交通システム。
In the overhead line-less transportation system according to claim 5 or 6 ,
The route is a track.
(a)予め設定された経路を動く電気車両の蓄電装置について、前記経路における充電可能な複数の場所のうちの一つである第1場所で充電するとき、充電前の前記蓄電装置の蓄電電力量を計測するステップと、
(b)前記複数の場所のうちの次に充電する場所としての第2場所と第1場所との間で前記電気車両が使用する電力量について、前記経路における前記電気車両の運行に関する運行関連情報に基づいて予測するステップと、
(c)前記予測された電力量に基づいて、前記第1場所における充電後から前記第2場所における充電前までの蓄電電力量の変動が、前記蓄電装置の充電状態としてのSOCのうちの最適なSOCを基準とする所定の範囲内となるように、充電電力量を設定するステップと、
(d)前記充電電力量に基づいて、前記蓄電装置を充電するステップと
を具備し、
前記(c)ステップにおける前記充電電力量は、E0を前記最適なSOC、E1を充電目標のSOC、E2を充電前のSOC、Eminを前記第1場所と前記第2場所との間で変動するSOCの最低値として、以下の式に基づいて設定される
充電電力量=E0+(E1−Emin)/2−E2
架線レス交通システムの制御方法。
(A) When charging a power storage device of an electric vehicle that moves on a preset route at a first location that is one of a plurality of rechargeable locations on the route, the stored power of the power storage device before charging Measuring the quantity;
(B) Operation related information regarding the operation of the electric vehicle in the route with respect to the amount of power used by the electric vehicle between the second place and the first place as the next charging place among the plurality of places. Predicting based on:
(C) Based on the predicted electric energy, the variation in the amount of stored electric power from after charging at the first location to before charging at the second location is the optimum of the SOCs as the charged state of the power storage device Setting the amount of charging power to be within a predetermined range with respect to a correct SOC;
(D) charging the power storage device based on the amount of charging power , and
The charging electric energy in the step (c) varies between E0 as the optimum SOC, E1 as the charging target SOC, E2 as the SOC before charging, and Emin between the first place and the second place. The lowest SOC value is set based on the following formula:
Charging power amount = E0 + (E1-Emin) / 2−E2
A control method for an overhead line-less traffic system.
請求項に記載の架線レス交通システムの制御方法において、
前記(b)ステップは、
(b1)前記第2場所と前記第1場所との間における前記蓄電装置の蓄電電力量の増減が、前記所定の範囲内に収まらない場合、前記複数の場所のうちの前記第2場所と前記第1場所との間にある第3場所を改めて前記第2場所として設定し直すステップを備える
架線レス交通システムの制御方法。
In the control method of the overhead line-less traffic system according to claim 8 ,
The step (b)
(B1) When an increase or decrease in the amount of stored power of the power storage device between the second location and the first location does not fall within the predetermined range, the second location of the plurality of locations and the A control method for an overhead line-less traffic system, comprising a step of resetting a third place between the first place and the second place as the second place.
請求項8又は9に記載の架線レス交通システムの制御方法において、
前記蓄電装置は、前記経路における前記SOCの増減が前記所定の範囲内となる電気容量に設定されている
架線レス交通システムの制御方法。
In the control method of the overhead line-less traffic system according to claim 8 or 9 ,
The power storage device is set to an electric capacity at which the increase / decrease of the SOC in the route falls within the predetermined range.
請求項乃至10のいずれか一項に記載の架線レス交通システムの制御方法において、
前記運行関連情報は、前記経路に関する情報、前記電気車両に関する情報及び前記電気車両の運行方法に関する情報、並びに、過去の運行における消費電力量に関する情報の少なくとも一つを含む
架線レス交通システムの制御方法。
In the control method of an overhead wire-less traffic system according to any one of claims 8 to 10 ,
The operation-related information includes at least one of information on the route, information on the electric vehicle and information on an operation method of the electric vehicle, and information on power consumption in the past operation. .
請求項乃至11のいずれか一項に記載の架線レス交通システムの制御方法において、
前記所定の範囲は、前記最適なSOCの±10%の範囲である
架線レス交通システムの制御方法。
In the control method of an overhead wire-less traffic system according to any one of claims 8 to 11 ,
The predetermined range is a range of ± 10% of the optimum SOC.
請求項乃至12のいずれか一項に記載の架線レス交通システムの制御方法において、
前記経路は、軌道である
架線レス交通システムの制御方法。
In the control method of an overhead wire-less traffic system according to any one of claims 8 to 12 ,
The route is a track. A method for controlling an overhead line-less traffic system.
(e)予め設定された経路を動く電気車両の蓄電装置について、前記経路における充電可能な複数の場所のうちの一つである第1場所で充電するとき、充電前の前記蓄電装置の蓄電電力量を取得するステップと、
(f)前記複数の場所のうちの次に充電する場所としての第2場所と第1場所との間で前記電気車両が使用する電力量について、前記経路における前記電気車両の運行に関する運行関連情報に基づいて予測するステップと、
(g)前記予測された電力量に基づいて、前記第1場所における充電後から前記第2場所における充電前までの蓄電電力量の変動が、前記蓄電装置の充電状態としてのSOCのうちの最適なSOCを基準とする所定の範囲内となるように、充電電力量を設定するステップと、
(h)前記充電電力量に基づいて、前記蓄電装置の充電を指示するステップと
を具備し、
前記(g)ステップにおける前記充電電力量は、E0を前記最適なSOC、E1を充電目標のSOC、E2を充電前のSOC、Eminを前記第1場所と前記第2場所との間で変動するSOCの最低値として、以下の式に基づいて設定される
充電電力量=E0+(E1−Emin)/2−E2
方法をコンピュータに実行させるプログラム。
(E) When charging a power storage device of an electric vehicle that moves on a preset route at a first location that is one of a plurality of rechargeable locations on the route, the stored power of the power storage device before charging Obtaining a quantity;
(F) Operation related information related to the operation of the electric vehicle in the route with respect to the amount of power used by the electric vehicle between the second place and the first place as the next charging place among the plurality of places. Predicting based on:
(G) Based on the predicted electric energy, a change in the amount of stored electric power from after charging at the first place to before charging at the second place is the optimum of the SOCs as the state of charge of the electric storage device Setting the amount of charging power to be within a predetermined range with respect to a correct SOC;
(H) instructing charging of the power storage device based on the amount of charging power , and
The charging electric energy in the step (g) varies between E0 as the optimum SOC, E1 as the target SOC, E2 as the SOC before charging, and Emin between the first place and the second place. The lowest SOC value is set based on the following formula:
Charging power amount = E0 + (E1-Emin) / 2−E2
A program that causes a computer to execute the method.
請求項14に記載のプログラムにおいて、
前記(f)ステップは、
(f1)前記第2場所と前記第1場所との間における前記蓄電装置の蓄電電力量の増減が、前記所定の範囲内に収まらない場合、前記複数の場所のうちの前記第2場所と前記第1場所との間にある第3場所を改めて前記第2場所として設定し直すステップを備える
プログラム。
The program according to claim 14 , wherein
The step (f)
(F1) When an increase or decrease in the amount of stored power of the power storage device between the second location and the first location does not fall within the predetermined range, the second location of the plurality of locations and the A program comprising the step of re-setting a third place between the first place as the second place.
請求項14又は15に記載のプログラムにおいて、
前記運行関連情報は、前記経路に関する情報、前記電気車両に関する情報及び前記電気車両の運行方法に関する情報、並びに、過去の運行における消費電力量に関する情報の少なくとも一つを含む
プログラム。
The program according to claim 14 or 15 ,
The operation-related information includes at least one of information on the route, information on the electric vehicle, information on an operation method of the electric vehicle, and information on power consumption in past operation.
請求項14乃至16のいずれか一項に記載のプログラムにおいて、
前記所定の範囲は、前記最適なSOCの±10%の範囲である
プログラム。
The program according to any one of claims 14 to 16 ,
The predetermined range is a range of ± 10% of the optimum SOC.
請求項14乃至17のいずれか一項に記載のプログラムにおいて、
前記経路は、軌道である
プログラム。
The program according to any one of claims 14 to 17 ,
The path is a trajectory program.
JP2004234463A 2004-08-11 2004-08-11 Electric vehicle, overhead line-less traffic system, and control method for overhead line-less traffic system Expired - Fee Related JP4220946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234463A JP4220946B2 (en) 2004-08-11 2004-08-11 Electric vehicle, overhead line-less traffic system, and control method for overhead line-less traffic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234463A JP4220946B2 (en) 2004-08-11 2004-08-11 Electric vehicle, overhead line-less traffic system, and control method for overhead line-less traffic system

Publications (2)

Publication Number Publication Date
JP2006054958A JP2006054958A (en) 2006-02-23
JP4220946B2 true JP4220946B2 (en) 2009-02-04

Family

ID=36032043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234463A Expired - Fee Related JP4220946B2 (en) 2004-08-11 2004-08-11 Electric vehicle, overhead line-less traffic system, and control method for overhead line-less traffic system

Country Status (1)

Country Link
JP (1) JP4220946B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103548A (en) * 2011-11-11 2013-05-30 Hitachi Ltd Battery train system
JP2014204479A (en) * 2013-04-01 2014-10-27 三菱重工業株式会社 Charge control device, charge control method, and charge control system
CN104884295A (en) * 2012-05-09 2015-09-02 丰田自动车株式会社 Vehicle

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244035A (en) * 2006-03-06 2007-09-20 Toshiba Corp Electric car controlling device
JP5037244B2 (en) * 2006-07-10 2012-09-26 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト Controlled energy consumption of the electric drive in the machine
JP4884945B2 (en) * 2006-11-30 2012-02-29 三菱重工業株式会社 Charging state prediction program, overhead line-less traffic system and charging method thereof
JP4568736B2 (en) 2007-02-27 2010-10-27 三菱重工業株式会社 Overhead-less transportation system and charging method thereof
US8299756B2 (en) * 2007-11-01 2012-10-30 General Electric Company System and method for battery control
JP5079535B2 (en) * 2008-01-31 2012-11-21 株式会社日立製作所 Railway vehicle drive system
JP4695162B2 (en) * 2008-06-16 2011-06-08 泉陽興業株式会社 Transportation equipment
US8508186B2 (en) 2008-09-02 2013-08-13 Mitsubishi Heavy Industries, Ltd. Charging system for transportation system without contact wire
JP4576465B2 (en) * 2009-03-06 2010-11-10 三菱重工業株式会社 Charging method and charging system for overhead line-less traffic vehicle
JP2011166962A (en) * 2010-02-10 2011-08-25 Mitsubishi Heavy Ind Ltd Vehicle system
JP2011178209A (en) * 2010-02-26 2011-09-15 Denso Corp Power consumption prediction apparatus
EP2619877A4 (en) 2010-09-21 2017-03-29 Proterra Inc. Systems and methods for equivalent rapid charging with different energy storage configurations
JP5473964B2 (en) * 2011-02-28 2014-04-16 三菱重工業株式会社 Transportation system
KR101222644B1 (en) 2011-02-28 2013-01-16 현대로템 주식회사 Installation structure of railway vehicle current collector
JP2012228005A (en) * 2011-04-15 2012-11-15 Denso Corp Vehicle charge control apparatus
JP5879852B2 (en) * 2011-09-16 2016-03-08 セイコーエプソン株式会社 Circuit device and electronic device
TW201331066A (en) * 2011-10-10 2013-08-01 普羅泰拉公司 Systems and methods for battery life maximization under fixed-route applications
JP5615254B2 (en) 2011-12-09 2014-10-29 三菱重工業株式会社 Charge / discharge control device, charge control method, discharge control method, and program
JP5901318B2 (en) 2012-02-02 2016-04-06 三菱重工業株式会社 Charge / discharge control device, charge control method, discharge control method, and program
DE102012209645A1 (en) * 2012-06-08 2013-12-12 Siemens Aktiengesellschaft Method for controlling the charging operation in an electric motor vehicle
KR101437155B1 (en) 2012-07-10 2014-09-03 한국철도기술연구원 Power supply method for electromotive forklift truck of cell area in depository and power supply apparatus using the method
CN103192721B (en) * 2013-04-25 2015-02-18 青岛理工大学 Braking system and braking method of double-shaft driven electric automobile
JP6625320B2 (en) * 2014-11-07 2019-12-25 株式会社Ihi Coil device, non-contact power supply system and auxiliary magnetic member
KR20170033520A (en) 2015-09-17 2017-03-27 경상대학교산학협력단 Catenary-less train system and method for operating thereof
CN111030205A (en) * 2018-10-10 2020-04-17 Oppo广东移动通信有限公司 Charging control method, charging control device, storage medium and electronic equipment
KR102685558B1 (en) * 2019-01-04 2024-07-15 주식회사 엘지에너지솔루션 Battery management method, battery device, and vehicle comprising battery device
CN113811462A (en) * 2019-05-20 2021-12-17 沃尔沃卡车集团 Method for controlling charging of an electrically driven vehicle, computer program, computer readable medium, and battery charging system
DE102019135315A1 (en) * 2019-12-19 2021-06-24 Bombardier Transportation Gmbh Predictive battery charging for battery-powered rail vehicles
JP7050108B2 (en) * 2020-03-30 2022-04-07 本田技研工業株式会社 Contactless charging system
DE102021202690A1 (en) * 2021-03-19 2022-09-22 Siemens Mobility GmbH Vehicle and method of operating a vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185674B2 (en) * 1996-07-30 2001-07-11 トヨタ自動車株式会社 Power generation control device for hybrid vehicle
JPH10170293A (en) * 1996-12-05 1998-06-26 Nissan Motor Co Ltd Route searching device for electric automobile
JP3911621B2 (en) * 2000-06-06 2007-05-09 株式会社日立製作所 Railway system for battery-powered trains
JP2002281610A (en) * 2001-03-23 2002-09-27 Kawasaki Heavy Ind Ltd Urban traffic system using streetcar
JP2003134604A (en) * 2001-10-19 2003-05-09 Hitachi Ltd Rolling stock

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103548A (en) * 2011-11-11 2013-05-30 Hitachi Ltd Battery train system
CN104884295A (en) * 2012-05-09 2015-09-02 丰田自动车株式会社 Vehicle
JP2014204479A (en) * 2013-04-01 2014-10-27 三菱重工業株式会社 Charge control device, charge control method, and charge control system
US9457679B2 (en) 2013-04-01 2016-10-04 Mitsubishi Heavy Industries, Ltd. Charge control device, charge control method, and charge control system

Also Published As

Publication number Publication date
JP2006054958A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4220946B2 (en) Electric vehicle, overhead line-less traffic system, and control method for overhead line-less traffic system
US10946766B2 (en) Electrically powered vehicle
JP4932062B2 (en) Vehicle control system and automobile
JP4417949B2 (en) Railway vehicle drive system
JP2007236196A (en) Railroad train of battery drive
JP7048313B2 (en) Control device and control method for controlling charge / discharge of power storage device installed in railway vehicles
KR20200043408A (en) Method for managing the charging status of a hybrid vehicle
JP2011016635A (en) Feeding type cargo handling device
JP5477366B2 (en) Battery charge amount control apparatus and method
JP2007202335A (en) Transportation system, charging method for therein car, and charging management method
JP2017189062A (en) Railway vehicle
JP4576465B2 (en) Charging method and charging system for overhead line-less traffic vehicle
EP3941783B1 (en) A method for controlling an energy storage system of a vehicle
US10742157B2 (en) Vehicle and method of controlling the same
JP7225697B2 (en) carrier system
KR20180057917A (en) A vehicle, an apparatus for charging a vehicle, a system including the same and a method thereof
JP4709654B2 (en) Transportation system
JP2015171232A (en) Drive control system and movable body equipped with drive control system
JP6446884B2 (en) Transport system for automated guided vehicles
KR20240069243A (en) Method and system for controlling battery in vehicle
JP2017121835A (en) Train battery control device, method and program
JP5473964B2 (en) Transportation system
KR102567582B1 (en) Eco-Driving system of electric railway using battery and regenerative energy
JP2019187076A (en) Battery device, battery drive traveling vehicle with the same, and battery control method
JP2019115244A (en) Electric automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4220946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees