JP4219707B2 - Gastrointestinal hormone GLP-2 secretion promoter and food and drink having gastrointestinal hormone GLP-2 secretion promoting action - Google Patents

Gastrointestinal hormone GLP-2 secretion promoter and food and drink having gastrointestinal hormone GLP-2 secretion promoting action Download PDF

Info

Publication number
JP4219707B2
JP4219707B2 JP2003056049A JP2003056049A JP4219707B2 JP 4219707 B2 JP4219707 B2 JP 4219707B2 JP 2003056049 A JP2003056049 A JP 2003056049A JP 2003056049 A JP2003056049 A JP 2003056049A JP 4219707 B2 JP4219707 B2 JP 4219707B2
Authority
JP
Japan
Prior art keywords
protein
hydrolyzate
glp
secretion
casein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003056049A
Other languages
Japanese (ja)
Other versions
JP2004051623A (en
Inventor
吉隆 田村
光徳 高瀬
和裕 小澤
靖 川口
寛子 後藤
裕久 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2003056049A priority Critical patent/JP4219707B2/en
Publication of JP2004051623A publication Critical patent/JP2004051623A/en
Application granted granted Critical
Publication of JP4219707B2 publication Critical patent/JP4219707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、糖類の吸収能の未熟な又は低下した乳幼児、老人等の糖類の吸収性を向上する作用を有する消化管ホルモンGLP-2(グルカゴン様ペプチド−2)を分泌促進する消化管ホルモンGLP-2分泌促進剤及び消化管ホルモンGLP-2分泌促進作用を有する飲食品に関する。
【0002】
更に詳しくは、本発明は、乳蛋白質の加水分解物を有効成分として含有する消化管ホルモンGLP-2分泌促進剤並びに乳蛋白質の加水分解物を配合したことを特徴とする消化管ホルモンGLP-2分泌促進作用を有する飲食品に関するものである。
【0003】
【従来の技術】
本発明の分泌促進対象であるGLP-2は、グルカゴン関連の消化管ホルモンの一つである。1983年、ハムスターグルカゴン前駆体の全アミノ酸配列が提出され、グルカゴンとアミノ酸配列が類似するGLP-2の存在が明らかとなった(非特許文献1)。GLP-2などのグルカゴン関連ペプチドは、前駆体のプレプログルカゴンとして膵臓あるいは腸管(特に小腸下部)から分泌された後、臓器特異的なプロセッシングを受け、膵A細胞では主にグルカゴンとglicentin-related pancreatic peptide、major proglucagon fragmentが生成し、消化管のL細胞ではGLP-1、GLP-2、グリセンチン、オキシントモデュリンが生成することが明らかとなっている(非特許文献2)。生理作用については、GLP-1では、インスリン、グルカゴン、ソマトスタチン、胃酸の分泌に関与することがすでに知られている(非特許文献2)が、GLP-2についても、食事からのグルコース等の糖類の吸収促進効果が最近報告され(非特許文献3)、生理的な意義が認められている。
【0004】
【非特許文献1】
ベル(G.I.Bell)ら、「ネイチャー(Nature)」、1983年、第304巻、p.368
【非特許文献2】
梶沼宏、「ホルモンと臨床」、1997年、第45巻、929頁
【非特許文献3】
チーズマン(C.I.Cheeseman)、「アメリカン・ジャーナル・オブ・フィジオロジー(American Journal of Physiology)」、1997年、第273巻、p.R1965
【0005】
【発明が解決しようとする課題】
前記従来の技術に開示されているとおり、GLP-2について、最近、その有用な生理作用が認められているものの、未だ、これらの生理作用を応用することについての検討は十分になされていない。
【0006】
本発明は前記現状に鑑みてなされたものであり、GLP-2の分泌量を増大させ、糖類の吸収性を向上する等のGLP-2の有用な生理作用を発揮させる、飲食品にも使用可能な天然物である乳蛋白質由来の加水分解物を有効成分とする新規な消化管ホルモンGLP-2分泌促進作用を有する剤及び飲食品を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記のとおりの状況に鑑み、本発明者らは、天然物中より、消化管ホルモンGLP-2分泌促進作用を有する物質を探索すべく、種々の飲食品にも使用可能な天然物について試験を行なった。
その結果、乳蛋白質の加水分解物が、後記する試験例の結果からも明らかなとおり、GLP-2の分泌量を増大させる効果が高いことを見い出し、本発明を完成した。
【0008】
前記課題を解決する本発明の第一の発明は、乳蛋白質の加水分解物を有効成分として含有する消化管ホルモンGLP-2分泌促進剤である。
また、本発明の第一の発明において、乳蛋白質の加水分解物の分解率が10%以上であることを望ましい態様としてもいる。
更に、本発明の第一の発明において、乳蛋白質がカゼイン又は乳清蛋白質であることを望ましい態様としてもいる。特に、乳清蛋白質がα−ラクトアルブミンであることを望ましい態様としてもいる。
【0009】
また、本発明の第一の発明において、乳蛋白質の加水分解物が、パンクレアチン、アスペルギルス・オリゼ(Aspergillus oryzae)由来のプロテアーゼ、及びストレプトマイセス・グリセウス(Streptomyces griseus)由来のプロテアーゼから成る群から選ばれる1又は2以上のプロテアーゼにより加水分解されたものであることを望ましい態様としてもいる。
【0010】
前記課題を解決する本発明の第二の発明は、乳蛋白質の加水分解物を配合したことを特徴とする消化管ホルモンGLP-2分泌促進作用を有する飲食品である。
なお、本発明の第二の発明においても、乳蛋白質の加水分解物の分解率が10%以上であること、乳蛋白質がカゼイン又は乳清蛋白質であること、特に、乳清蛋白質がα−ラクトアルブミンであること、並びに乳蛋白質の加水分解物が、パンクレアチン、アスペルギルス・オリゼ(Aspergillus oryzae)由来のプロテアーゼ、及びストレプトマイセス・グリセウス(Streptomyces griseus)由来のプロテアーゼから成る群から選ばれる1又は2以上のプロテアーゼにより加水分解されたものであることが望ましい。
【0011】
【発明の実施の形態】
次に、本発明について詳細に説明する。
本発明の消化管ホルモンGLP-2分泌促進作用を有する剤及び飲食品の有効成分である乳蛋白質の加水分解物の調製方法は、次のとおりである。
【0012】
(蛋白質分解物の調製方法)
原料蛋白質は、乳由来蛋白質であって、カゼイン若しくは乳清蛋白質、又はそれぞれを更に精製分離した蛋白質成分(乳清蛋白質濃縮物(WPC)、乳清蛋白質分離物(WPI)、α−ラクトアルブミン等)のいずれでもよい。特に市販品を使用できること、及び後記する試験例の結果からも明らかなとおり、消化管ホルモンGLP-2分泌促進作用に優れることから、カゼイン又は乳清蛋白質、特にα−ラクトアルブミンであることが好ましい。また、上記のような乳由来蛋白質は、牛乳、脱脂乳、全脂粉乳、脱脂粉乳、チーズホエーから常法により精製することもできる。
【0013】
上記のような乳蛋白質を加水分解する方法は、得られる加水分解物がGLP-2分泌促進作用を有する限り特に制限されないが、例えば、蛋白質を加水分解するプロテアーゼ(蛋白質分解酵素)を用いる方法が挙げられる。
【0014】
プロテアーゼとしては、例えば、パンクレアチン(例えばパンクレアチンF(天野エンザイム社製))、ペプシン、トリプシン、キモトリプシン、アスペルギルス・オリゼ(Aspergillus oryzae)由来のプロテアーゼ(例えばプロテアーゼA「アマノ」(天野エンザイム社製)、スミチームLP(新日本科学社製))、ストレプトマイセス・グリセウス(Streptomyces griseus)由来のプロテアーゼ(例えばアクチナーゼAS(科研ファルマ社製))等が挙げられ、これらの酵素のいずれか1種又は2種類以上を組み合わせて使用することができるが、後記する試験例の結果からも明らかなとおり、特にパンクレアチン、プロテアーゼA「アマノ」が好ましい。また、エンド型プロテアーゼを、エキソ型プロテアーゼと組み合わせて使用することも可能である。これらの酵素を単独あるいは組み合わせて使用し、好ましくは分解率が10%以上の分解物を調製する。
【0015】
次に、乳由来蛋白質をプロテアーゼで加水分解する方法を説明する。前記のような原料蛋白質を水又は温湯に分散し、溶解する。該溶解液の濃度は格別の制限はないが、通常、蛋白質換算で5〜15%前後の濃度範囲にするのが効率性及び操作性の点から望ましい。
【0016】
前記原料蛋白質を含有する溶液を70〜90℃で15秒間〜10分間程度加熱殺菌すること、または、膜を用いたマイクロフィルトレーションにより除菌することが、雑菌汚染による変敗防止の点から望ましい。
次いで、前記原料蛋白質を含有する溶液にアルカリ剤又は酸剤を添加し、pHを使用するプロテアーゼの至適pH又はその付近に調整することが好ましい。本発明の方法に使用するアルカリ剤又は酸剤は、食品又は医薬品に許容されるものであれば如何なるアルカリ剤又は酸剤であってもよい。具体的には、アルカリ剤としては、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等を、酸剤としては、塩酸、クエン酸、リン酸、酢酸等を例示することができる。
【0017】
次いで、前記原料蛋白質溶液にプロテアーゼ溶液を添加する。本発明において用いるプロテアーゼは1種でもよく、2種以上用いてもよい。2種以上の酵素を用いる場合は、それぞれの酵素反応は同時に行ってもよく、別々に行ってもよい。使用するプロテアーゼの量は、反応温度、反応時間を考慮して適宜調整する。
【0018】
プロテアーゼを添加した溶液を、プロテアーゼの種類に応じて適当な温度、例えば30〜60℃、望ましくは45〜55℃に保持して乳由来蛋白質の加水分解を開始する。加水分解反応時間は、酵素反応の分解率をモニターしながら、好ましい分解率に達するまで反応を続ける。本発明のGLP-2分泌促進剤の有効成分である乳由来蛋白質の加水分解物を得るためには、分解率は好ましくは10%以上、より好ましくは15%以上、特に好ましくは20%以上であることが望ましい。また、分解率は、好ましくは45%以下、より好ましくは40%以下、特に好ましくは35%以下であることが望ましい。
なお、蛋白質の分解率の算出方法は次のとおりである。
【0019】
(蛋白質の分解率の算出方法)
ケルダール法(日本食品工業会編、「食品分析法」、第102頁、株式会社光琳、昭和59年)により試料の全窒素量を測定し、ホルモール滴定法(満田他編、「食品工学実験書」、上巻、第547頁、養賢堂、1970年)により試料のホルモール態窒素量を測定し、これらの測定値から分解率を次式により算出する。
【0020】
【数1】
分解率(%)=(ホルモール態窒素量/全窒素量)×100
【0021】
なお、本発明に使用される乳蛋白質及びその加水分解物の蛋白質相当量については、前記ケルダール法により求められる乳蛋白質及びその加水分解物の全窒素量より、次式により算出した。
【0022】
【数2】
蛋白質相当量=全窒素量×6.38(乳類の窒素−蛋白質換算係数)
【0023】
前記乳類の窒素−蛋白質換算係数は、文献(香川監修、「五訂食品成分表2001」、第14頁、女子栄養大学出版部、平成13年4月)に記載の値を使用した。
【0024】
酵素反応の停止は、加水分解液中のプロテアーゼの失活により行われ、常法による加熱失活処理により実施することができる。加熱失活処理の加熱温度と保持時間は、使用したプロテアーゼの熱安定性を考慮し、十分に失活できる条件を適宜設定することができるが、例えば、80〜130℃の温度範囲で2秒間〜30分間の保持時間で行うことができる。
【0025】
本発明で使用する乳蛋白質原料及びその製造方法は、食品用として通常広く用いられているものである。したがって、調製した分解物の安全性及び毒性のレベルは、市販の食品用の蛋白質分解物と同等である。
【0026】
従って、本発明の有効成分である乳蛋白質の加水分解物は、毒性が極めて低く、ヒト又は動物に対して安全に、かつ副作用が極めて少ない状態で使用することができ、飲食品に配合して使用することもできると考えられる。
【0027】
上記のようにして得られる乳由来蛋白質の加水分解物は、GLP-2分泌促進作用を有する。したがって、GLP-2分泌促進作用を指標として、乳由来蛋白質の加水分解物を製造する際の条件は、適宜設定することができる。尚、本発明において「GLP-2分泌促進」とは、GLP-2を分泌する細胞のGLP-2分泌を促進することを意味する。
【0028】
得られた乳由来蛋白質の加水分解物を含有する溶液は、本発明のGLP-2分泌促進作用を有する剤及び飲食品の製造にそのまま使用することも可能であり、また、必要に応じて、この溶液を公知の方法により濃縮した濃縮液、更に、この濃縮液を公知の方法により乾燥した粉末、として使用することもできる。さらに、乳由来蛋白質の加水分解物から、GLP-2分泌促進作用を有するペプチドを単離、精製して使用することもできる。
【0029】
本発明の消化管ホルモンGLP-2分泌促進剤は、投与方法として、例えば、経口、経管、及び経腸によりヒト又は動物に投与することができ、これらの投与方法及び治療目的に応じて、一般的な医薬製剤の形態である各種の剤形が選択可能である。その代表的なものとして錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤等を例示することができる。
【0030】
また、本発明の第二の発明の消化管ホルモンGLP-2分泌促進作用を有する飲食品としては、乳蛋白質の加水分解物を配合でき、糖類の吸収能の未熟な又は低下した乳幼児、老人等に使用可能な、調製粉乳等の粉末状の栄養組成物、流動食、各種栄養素の強化に用いられる母乳添加用粉末、スポーツ飲料等を例示することができる。
【0031】
本発明の有効投与量は、経口投与の場合(飲食品の経口給与の場合も同じ。)、ラットによる試験結果から、乳蛋白質の加水分解物からなる有効成分の量(蛋白質相当量)を基準として少なくとも0.5g/体重kg/1日である。
【0032】
なお、以下に示す試験例において、GLP-2分泌促進活性の測定は、次の方法により行なった。本発明のGLP-2分泌促進剤又はその有効成分である乳蛋白質の加水分解物についても、下記方法又は類似の方法によりGLP-2分泌促進活性の測定を行うことができる。
【0033】
(GLP−2分泌促進活性の測定)
授乳期のSDラット2週齢雄を母獣から隔離し1晩絶食後、経口ゾンデを用いて試験水溶液を一定量(0.5ml〜2.0ml)胃腔内投与した。1〜2時間後、エーテル麻酔下血液を採取し血清を得た。ラット抗GLP−2抗体(矢内原研究所製試薬)を用いたELISA法により、血清GLP−2濃度を測定した。ELISA法において、GLP−2の標準品として、市販品(矢内原研究所製試薬)を用いた。なお、ラット抗GLP−2抗体は、感度が製品ロット間でバラツキがあるものと考えられることから、同一ロットのものを一連の試験に使用することが好ましい。
次に試験例を示して本発明を詳細に説明する。
【0034】
〔試験例1〕
この試験は、乳蛋白質の加水分解物がGLP-2の分泌量(血中濃度)を高める効果を有することを明らかにするために行なった。
【0035】
(1)試料の調製
試料1:カゼインを実施例1と同一の方法により10質量%濃度で溶解した未分解のカゼイン水溶液。
【0036】
試料2:カゼイン溶液を塩酸によりpH3に調整後、蛋白質分解酵素として、ペプシン(天野エンザイム社製)を蛋白質1gあたり200活性単位使用し、4時間の加水分解反応を行なったことを除き、本発明の実施例1と同一の方法により得た分解率12.5%のカゼイン加水分解物を10質量%濃度で溶解したカゼイン加水分解物水溶液。
【0037】
試料3:蛋白質分解酵素として、パンクレアチン(パンクレアチンF(天野エンザイム社製))を蛋白質1gあたり35活性単位使用し、4時間の加水分解反応を行なったことを除き、本発明の実施例1と同一の方法により得た分解率11%のカゼイン加水分解物を10質量%濃度で溶解したカゼイン加水分解物水溶液。
【0038】
(2)試験方法
哺乳期のSDラット雄を、2週齢の時点で体重の偏りが生じないように1群6匹に群分け後、母獣から隔離して1晩絶食した。次いで、試料1〜3の試料溶液1.5mlをゾンデで胃内投与した。2時間後、採血し、得られた血清のGLP-2濃度を前記のELISA法で測定し、各試料群毎の血中GLP-2の平均濃度(ng/ml)を求めた。
【0039】
(3)試験結果
この試験の結果は、表1に示すとおりである。表1から明らかなとおり、血中GLP-2濃度は、未分解のカゼイン(試料1)を投与した群に比較し、カゼインのペプシン加水分解物(試料2)を投与した群ではより高値を示し、カゼインのパンクレアチン加水分解物(試料3)を投与した群ではさらに高値を示した。
【0040】
また、カゼインを乳清蛋白質に変更して試験したが、乳清蛋白質のペプシン加水分解物及びパンクレアチン加水分解物においても同様の結果が得られた。
即ち、乳蛋白質の加水分解物により、GLP-2の分泌量が増大することが判明した。
【0041】
【表1】

Figure 0004219707
【0042】
〔試験例2〕
この試験は、乳蛋白質の加水分解物がGLP-2の分泌量(血中濃度)を高める効果を有することを一層明らかにするために行なった。
【0043】
(1)試料の調製
試料4:精製水(MilliQ水)
【0044】
試料5:カゼインを実施例1と同一の方法により10質量%濃度で溶解した未分解のカゼイン水溶液。
【0045】
試料6:蛋白質分解酵素として、パンクレアチン(パンクレアチンF(天野エンザイム社製))を蛋白質1gあたり780活性単位使用し、18時間の加水分解反応を行なったことを除き、本発明の実施例1と同一の方法により得た分解率27 %のカゼイン加水分解物を10質量%濃度で溶解したカゼイン加水分解物水溶液。
【0046】
試料7:乳清蛋白質分離物(WPI)を実施例4の方法により10質量%濃度で溶解した未分解のWPI水溶液。
【0047】
試料8:蛋白質分解酵素として、パンクレアチン(パンクレアチンF(天野エンザイム社製))を蛋白質1 gあたり780活性単位使用し、18時間の加水分解反応を行なった、本発明の実施例4と同一の方法により得た分解率30 %のWPI加水分解物を10質量%濃度で溶解したWPI加水分解物水溶液。
【0048】
(2)試験方法
哺乳期のSDラット雄を、2週齢の時点で体重の偏りが生じないように1群5匹に群分け後、母獣から隔離して1晩絶食した。次いで、試料4〜8の試料溶液1.5 mlをゾンデで胃内投与した。2時間後、採血し、得られた血清のGLP-2濃度を前記のELISA法で測定し、各試料群毎の血中GLP-2の平均濃度(ng/ml)を求めた。
【0049】
(3)試験結果
この試験の結果は、表2に示すとおりである。表2から明らかなとおり、血中GLP-2濃度は、未分解のカゼイン(試料5)を投与した群に比較し、カゼインのパンクレアチン加水分解物(試料6)を投与した群では高値を示した。また、乳清蛋白質についても、未分解のWPI(試料7)を投与した群に比較し、WPIのパンクレアチン加水分解物(試料8)を投与した群では高値を示した。それぞれの値についてSAS institueの統計解析ソフトウェアStat Viewを使用して解析したところ、分散分析のpost hocテストの一つであるFisherのPLSD(Fisher’s Protected Least Significant Difference)において、試料5と6、試料7と8の間で、危険率5 %で有意差が認められた。
【0050】
即ち、乳蛋白質の加水分解物により、GLP-2の分泌量が増大することが一層明らかとなった。
【0051】
なお、前記試験例1の試料1と本試験例2の試料5は同一であるにもかかわらず、血中GLP-2の平均濃度(ng/ml)に若干の相違が認められた。これは、血清GLP-2濃度の測定に使用されたラット抗GLP-2抗体の製品ロット間の感度のバラツキ等によるものであるものと考えられる。しかしながら、乳蛋白質の未分解物に比べて加水分解物が有意に血中GLP-2の平均濃度が高いという点では一致しており、本発明の結論に影響を及ぼすものでないことは明らかである。
【0052】
一連の試験には、精製水(MilliQ水)を対照とし、かつ同一ロットのラット抗GLP-2抗体を使用する必要があると考えられる。
【0053】
【表2】
Figure 0004219707
【0054】
〔試験例3〕
この試験は、乳清蛋白質から精製分離した蛋白質成分であるα−ラクトアルブミンの加水分解物がGLP-2の分泌量(血中濃度)を高める効果を有することを明らかにするために行なった。
【0055】
(1)試料の調製
試料9:精製水(MilliQ水)
【0056】
試料10:蛋白質分解酵素として、パンクレアチンであるパンクレアチンF(天野エンザイム社製)を蛋白質1gあたり780活性単位使用し、18時間の加水分解反応を行なったことを除き、本発明の実施例1と同一の方法により得た分解率27%のカゼイン加水分解物を10質量%濃度で溶解したカゼイン加水分解物水溶液。
【0057】
試料11:α−ラクトアルブミン(Davisco社製)溶液を、蛋白質分解酵素として、プロテアーゼA「アマノ」(天野エンザイム社製)を蛋白質1gあたり300活性単位使用し、18時間の加水分解反応を行なった、本発明の実施例5と同一の方法により得た分解率34%のα−ラクトアルブミン加水分解物を10質量%濃度で溶解したα−ラクトアルブミン加水分解物水溶液。
【0058】
試料12: α−ラクトアルブミン(Davisco社製)を実施例5の方法により10質量%濃度で溶解した未分解のα−ラクトアルブミン水溶液。
【0059】
(2)試験方法
哺乳期のSDラット雄を、2週齢の時点で体重の偏りが生じないように1群8匹に群分け後、母獣から隔離して1晩絶食した。次いで、試料9〜12の試料溶液1.5 mlをゾンデで胃内投与した。2時間後、採血し、得られた血清のGLP-2濃度を前記のELISA法で測定し、各試料群毎の血中GLP-2の平均濃度(ng/ml)を求めた。
【0060】
(3)試験結果
この試験の結果は、表3に示すとおりである。表3から明らかなとおり、血中GLP-2濃度は、カゼインのパンクレアチン分解物(試料10)を投与した群に比較し、α−ラクトアルブミンのプロテアーゼA「アマノ」加水分解物(試料11)を投与した群では一層高値を示した。また、未分解のα−ラクトアルブミン(試料12)を投与した群に比較し、α−ラクトアルブミンのプロテアーゼA「アマノ」加水分解物(試料11)を投与した群では高値を示した。それぞれの値についてSAS institueの統計解析ソフトウェアStat Viewを使用して解析したところ、分散分析のpost hocテストの一つであるFisherのPLSD(Fisher’s Protected Least Significant Difference)において、試料10と11、試料12と11の間で、危険率5 %で有意差が認められた。
【0061】
以上の結果から、α−ラクトアルブミンの加水分解物が、消化管ホルモンGLP-2分泌促進作用において優れていることが判明した。
【0062】
【表3】
Figure 0004219707
【0063】
【実施例】
次に実施例を示して本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0064】
【実施例1】
市販の牛乳カゼイン1.2kg(ニュー・ジーランド・ミルク・プロダクツ社製。蛋白質相当量として1kg)をイオン交換水8.8kgに分散し、10質量%水酸化ナトリウム水溶液を使用して、pHを7.0に調整し、カゼインを完全に溶解し、蛋白質濃度約10質量%のカゼイン水溶液約10kgを調製した。次いで、該カゼイン水溶液を85℃で10分間加熱殺菌し、液温を50℃に調整し、蛋白質分解酵素として、パンクレアチンF(天野エンザイム社製)を蛋白質1gあたり50活性単位の割合で添加し、蛋白質加水分解反応を開始した。5時間後、分解率が13.5%となった時点で、90℃で15分間加熱して酵素を失活させ、酵素反応を停止し10℃に冷却後凍結乾燥によりカゼイン加水分解物の粉末約1.2kg(蛋白質相当量として990g)を得た。
【0065】
得られたカゼイン加水分解物600gを有効成分として使用して、これを日本薬局方1号ゼラチンカプセル(アリメント工業社製)に300mgずつ充填し、カプセルのキャップとボディーの接合部をゼラチンを用いてシールし、カゼイン加水分解物を有効成分として含有する消化管ホルモンGLP-2分泌促進用カプセル剤1900個を製造した。
【0066】
【実施例2】
前記実施例1と同一の方法で得られた分解率13.5%のカゼイン加水分解物800gを使用し、これに酸味料としてクエン酸(三栄源エフ・エフ・アイ社製)150g、甘味料としてショ糖(日本甜菜製糖社製)30g、及び香料(高砂香料社製)適量を配合し、均一に混合し、消化管ホルモンGLP-2分泌促進作用を有する栄養組成物粉末約900gを調製した。
【0067】
【実施例3】
市販の牛乳乳清蛋白質濃縮物1.3kg(アーラフーズ社製。蛋白質相当量として1kg)をイオン交換水11.7kgに溶解し、蛋白質濃度約10質量%の乳清蛋白質水溶液13kgを調製した。次いで、該乳清蛋白質水溶液をプレート式熱交換器を使用して72℃で45秒間殺菌し、液温を55℃に調整し、10質量%水酸化ナトリウム水溶液及び20質量%炭酸カリウム水溶液を使用して、pH9.2に調整し、蛋白質分解酵素として、パンクレアチンF(天野エンザイム社製)及びトリプシンPTN6.0S(ノボザイムズ・ジャパン社製)をそれぞれ蛋白質1g当たり1250活性単位及び500活性単位の割合で添加し、蛋白質加水分解反応を開始した。10時間後、分解率が22.3%となった時点で、プレート式熱交換器を使用して120℃で15秒間加熱して酵素を失活させ、酵素反応を停止し、10℃に冷却した。
【0068】
この加水分解液を、分画分子量10,000の限外ろ過膜(旭化成社製)によりろ過し、ろ液を噴霧乾燥し、粉末状の蛋白質加水分解物約950g(蛋白質相当量として740g)を得た。
【0069】
得られた乳清蛋白質加水分解物50gを使用し、これにデキストリン(昭和産業社製)45g、ビタミン混合物(田辺製薬社製)5g、及びミネラル混合物(富田製薬社調製)5gを添加し配合し、均一化することにより、消化管ホルモンGLP-2分泌促進作用を有する母乳添加用粉末約100gを調製した。
【0070】
【実施例4】
市販の乳清蛋白質分離物(WPI)粉末1.2kg(ミライ社製。蛋白質相当量として1.08kg)をイオン交換水8.8kgに完全に溶解し、蛋白質濃度約10質量%のWPI水溶液約10kgを調製した。次いで、該WPI水溶液を0.22 μm口径の膜を用いたマイクロフィルトレーションで除菌し、液温を50℃に調整し、蛋白質分解酵素として、パンクレアチンF(天野エンザイム社製)を蛋白質1gあたり780活性単位の割合で添加し、蛋白質加水分解反応を開始した。18時間後、分解率が30%となった時点で、90℃で15分間加熱して酵素を失活させ、酵素反応を停止し10℃に冷却後凍結乾燥によりWPI加水分解物の粉末約1.1kg(蛋白質相当量として990 g)を得た。
【0071】
得られたWPI加水分解物600gを有効成分として使用して、これを日本薬局方1号ゼラチンカプセル(アリメント工業社製)に300mgずつ充填し、カプセルのキャップとボディーの接合部をゼラチンを用いてシールし、カゼイン加水分解物を有効成分として含有する消化管ホルモンGLP-2分泌促進用カプセル剤1900個を製造した。
【0072】
【実施例5】
市販のα−ラクトアルブミン粉末1.2kg(Davisco社製。α−ラクトアルブミン含有量として1.14kg:純度95%)をイオン交換水8.8kgに完全に溶解し、蛋白質濃度約10質量%のα−ラクトアルブミン水溶液約10kgを調製した。次いで、該α−ラクトアルブミン水溶液を0.22 μm口径の膜を用いたマイクロフィルトレーションで除菌し、液温を50℃に調整し、蛋白質分解酵素として、プロテアーゼA「アマノ」(天野エンザイム社製)を蛋白質1gあたり300活性単位の割合で添加し、蛋白質加水分解反応を開始した。18時間後、分解率が34%となった時点で、90℃で15分間加熱して酵素を失活させ、酵素反応を停止し10℃に冷却後凍結乾燥によりα−ラクトアルブミン加水分解物の粉末約1.2kg(蛋白質相当量として1.10 kg)を得た。
【0073】
得られたα−ラクトアルブミン加水分解物600gを有効成分として使用して、これを日本薬局方1号ゼラチンカプセル(アリメント工業社製)に300mgずつ充填し、カプセルのキャップとボディーの接合部をゼラチンを用いてシールし、カゼイン加水分解物を有効成分として含有する消化管ホルモンGLP-2分泌促進用カプセル剤1900個を製造した。
【0074】
【実施例6】
市販の牛乳カゼイン1.2kg(ニュー・ジーランド・ミルク・プロダクツ社製。蛋白質相当量として1kg)をイオン交換水8.8kgに分散し、10質量%水酸化ナトリウム水溶液を使用して、pHを7.0に調整し、カゼインを完全に溶解し、蛋白質濃度約10質量%のカゼイン水溶液約10kgを調製した。次いで、該カゼイン水溶液を85℃で10分間加熱殺菌し、液温を50℃に調整し、蛋白質分解酵素として、アクチナーゼAS(科研ファルマ社製)を蛋白質1gあたり15,000活性単位の割合で添加し、蛋白質加水分解反応を開始した。18時間後、分解率が30.5%となった時点で、90℃で15分間加熱して酵素を失活させ、酵素反応を停止し10℃に冷却後凍結乾燥によりカゼイン加水分解物の粉末約1.2kg(蛋白質相当量として990g)を得た。
【0075】
得られたカゼイン加水分解物600gを有効成分として使用して、これを日本薬局方1号ゼラチンカプセル(アリメント工業社製)に300mgずつ充填し、カプセルのキャップとボディーの接合部をゼラチンを用いてシールし、カゼイン加水分解物を有効成分として含有する消化管ホルモンGLP-2分泌促進用カプセル剤を製造する。
【0076】
【発明の効果】
以上詳記したとおり、本発明は、消化管ホルモンGLP-2分泌促進作用を有する剤及び飲食品に関するものであり、本発明により奏せられる効果は次のとおりである。
(1)本発明の消化管ホルモンGLP-2分泌促進作用を有する剤及び飲食品は、GLP-2の分泌量を増大させ、糖類の吸収性を向上する。
(2)本発明の消化管ホルモンGLP-2分泌促進作用を有する剤及び飲食品は糖類の吸収能の未熟な又は低下した乳幼児、老人等に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gastrointestinal hormone GLP that promotes the secretion of the gastrointestinal hormone GLP-2 (glucagon-like peptide-2) having an action of improving the absorbability of sugars of infants, the elderly, etc., whose ability to absorb sugars is immature or reduced -2 It relates to a food and drink having a secretagogue and gastrointestinal hormone GLP-2 secretion promoting action.
[0002]
More specifically, the present invention relates to a gastrointestinal hormone GLP-2 secretion promoter containing a milk protein hydrolyzate as an active ingredient and a milk protein hydrolyzate. The present invention relates to a food or drink having a secretion promoting action.
[0003]
[Prior art]
GLP-2, which is a secretion promoting target of the present invention, is one of glucagon-related gastrointestinal hormones. In 1983, the entire amino acid sequence of a hamster glucagon precursor was submitted, and the existence of GLP-2 having an amino acid sequence similar to glucagon was revealed (Non-patent Document 1). Glucagon-related peptides such as GLP-2 are secreted from the pancreas or intestinal tract (especially the lower small intestine) as the precursor preproglucagon, and then undergo organ-specific processing. In pancreatic A cells, mainly glucagon and glicentin-related pancreatic It has been clarified that peptides and major proglucagon fragments are produced, and GLP-1, GLP-2, glicentin, and oxyntomodulin are produced in L cells of the digestive tract (Non-patent Document 2). Regarding the physiological action, GLP-1 is already known to be involved in the secretion of insulin, glucagon, somatostatin, and gastric acid (Non-patent Document 2), but GLP-2 also has sugars such as glucose from the diet. Has recently been reported (Non-patent Document 3), and its physiological significance has been recognized.
[0004]
[Non-Patent Document 1]
GIBell et al., "Nature", 1983, 304, p.368
[Non-Patent Document 2]
Hiroshi Kakinuma, "Hormones and Clinical Practice", 1997, 45, 929
[Non-Patent Document 3]
CICheeseman, "American Journal of Physiology", 1997, 273, p.R1965
[0005]
[Problems to be solved by the invention]
As disclosed in the above prior art, although GLP-2 has recently been found to have useful physiological actions, application of these physiological actions has not yet been sufficiently studied.
[0006]
The present invention has been made in view of the above-described situation, and it is also used in foods and drinks that increase the amount of GLP-2 secretion and enhance the useful physiological functions of GLP-2 such as improving the absorbability of sugars. It is an object of the present invention to provide a novel gastrointestinal hormone GLP-2 secretion-promoting agent and a food or drink comprising as an active ingredient a hydrolyzate derived from milk protein, which is a possible natural product.
[0007]
[Means for Solving the Problems]
In view of the situation as described above, the present inventors have tested natural products that can be used for various foods and drinks in order to search for substances having a gastrointestinal hormone GLP-2 secretion promoting action from among natural products. I did it.
As a result, the milk protein hydrolyzate was found to have a high effect of increasing the secretion amount of GLP-2, as apparent from the results of test examples described later, and the present invention was completed.
[0008]
The first invention of the present invention that solves the above-mentioned problems is a gastrointestinal hormone GLP-2 secretion promoter containing a milk protein hydrolyzate as an active ingredient.
In the first invention of the present invention, it is also desirable that the decomposition rate of the hydrolyzate of milk protein is 10% or more.
Furthermore, in the first invention of the present invention, it is also desirable that the milk protein is casein or whey protein. In particular, a desirable embodiment is that the whey protein is α-lactalbumin.
[0009]
In the first invention of the present invention, the hydrolyzate of milk protein is selected from the group consisting of pancreatin, protease derived from Aspergillus oryzae, and protease derived from Streptomyces griseus. A desirable mode is one hydrolyzed by one or more selected proteases.
[0010]
A second invention of the present invention that solves the above-mentioned problems is a food or drink product having a gastrointestinal hormone GLP-2 secretion promoting action, characterized by containing a hydrolyzate of milk protein.
In the second invention of the present invention, the degradation rate of the hydrolyzate of milk protein is 10% or more, the milk protein is casein or whey protein, and in particular, the whey protein is α-lacto. 1 or 2 wherein the milk protein hydrolyzate is selected from the group consisting of pancreatin, a protease from Aspergillus oryzae, and a protease from Streptomyces griseus. It is desirable that the product is hydrolyzed by the above protease.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
The preparation method of the hydrolyzate of milk protein which is an active ingredient of the agent which has the digestive tract hormone GLP-2 secretion promoting effect of this invention and food-drinks is as follows.
[0012]
(Protein degradation product preparation method)
The raw material protein is a milk-derived protein, casein or whey protein, or a protein component obtained by further purifying and separating each of them (whey protein concentrate (WPC), whey protein isolate (WPI), α-lactalbumin, etc.) ). In particular, it is preferable to use casein or whey protein, particularly α-lactalbumin, because it is possible to use a commercially available product and is excellent in the gastrointestinal hormone GLP-2 secretion promoting action, as is apparent from the results of test examples described later. . Moreover, the above milk-derived protein can also be refine | purified by a conventional method from cow's milk, skim milk, whole milk powder, skim milk powder, and cheese whey.
[0013]
The method for hydrolyzing the milk protein as described above is not particularly limited as long as the obtained hydrolyzate has a GLP-2 secretion promoting action. For example, a method using a protease (proteolytic enzyme) that hydrolyzes the protein is used. Can be mentioned.
[0014]
Examples of the protease include pancreatin (eg, pancreatin F (manufactured by Amano Enzyme)), pepsin, trypsin, chymotrypsin, Aspergillus oryzae (eg, protease A “Amano” (manufactured by Amano Enzyme)). , Sumiteam LP (manufactured by Shin Nihon Kagaku)), proteases derived from Streptomyces griseus (for example, actinase AS (manufactured by Kaken Pharma)), etc., and any one or two of these enzymes More than one type can be used in combination, but as is clear from the results of test examples described later, pancreatin and protease A “Amano” are particularly preferable. Endo-type proteases can also be used in combination with exo-type proteases. These enzymes are used alone or in combination, and preferably a degradation product having a degradation rate of 10% or more is prepared.
[0015]
Next, a method for hydrolyzing milk-derived protein with protease will be described. The above-mentioned raw material protein is dispersed in water or hot water and dissolved. The concentration of the lysate is not particularly limited, but it is usually desirable from the viewpoint of efficiency and operability to make the concentration range around 5 to 15% in terms of protein.
[0016]
From the standpoint of preventing deterioration due to contamination by various bacteria, it is possible to heat sterilize the solution containing the raw material protein at 70 to 90 ° C. for about 15 seconds to 10 minutes, or to sterilize by microfiltration using a membrane. desirable.
Subsequently, it is preferable to add an alkali agent or an acid agent to the solution containing the raw material protein and adjust the pH to or near the optimum pH of the protease using the pH. The alkali agent or acid agent used in the method of the present invention may be any alkali agent or acid agent as long as it is acceptable for foods or pharmaceuticals. Specifically, examples of the alkali agent include sodium hydroxide, potassium hydroxide, potassium carbonate and the like, and examples of the acid agent include hydrochloric acid, citric acid, phosphoric acid, acetic acid and the like.
[0017]
Next, a protease solution is added to the raw protein solution. The protease used in the present invention may be one type or two or more types. When using 2 or more types of enzymes, each enzyme reaction may be performed simultaneously or separately. The amount of protease to be used is appropriately adjusted in consideration of the reaction temperature and reaction time.
[0018]
The solution to which the protease is added is maintained at an appropriate temperature, for example, 30 to 60 ° C., preferably 45 to 55 ° C. according to the type of protease, to start hydrolysis of the milk-derived protein. The hydrolysis reaction time is continued until the desired decomposition rate is reached while monitoring the decomposition rate of the enzyme reaction. In order to obtain a milk-derived protein hydrolyzate which is an active ingredient of the GLP-2 secretion promoter of the present invention, the degradation rate is preferably 10% or more, more preferably 15% or more, particularly preferably 20% or more. It is desirable to be. The decomposition rate is preferably 45% or less, more preferably 40% or less, and particularly preferably 35% or less.
The method for calculating the protein degradation rate is as follows.
[0019]
(Calculation method of protein degradation rate)
The total nitrogen content of the sample was measured by the Kjeldahl method (edited by the Japan Food Industry Association, “Food Analysis Method”, p. 102, Korin Co., Ltd., 1984). ”, Vol. Pp. 547, Yokendo, 1970), the amount of formol-type nitrogen in the sample is measured, and the decomposition rate is calculated from the measured value according to the following equation.
[0020]
[Expression 1]
Decomposition rate (%) = (formol nitrogen amount / total nitrogen amount) × 100
[0021]
In addition, about the protein equivalent amount of the milk protein used for this invention and its hydrolyzate, it computed by following Formula from the total nitrogen amount of the milk protein and its hydrolyzate calculated | required by the said Kjeldahl method.
[0022]
[Expression 2]
Protein equivalent amount = total nitrogen amount × 6.38 (milk nitrogen-protein conversion factor)
[0023]
As the nitrogen-protein conversion factor of the milk, values described in the literature (supervised by Kagawa, “Fiveth Food Composition Table 2001”, page 14, Women's Nutrition University Press, April 2001) were used.
[0024]
The enzymatic reaction is stopped by inactivating the protease in the hydrolyzed solution, and can be carried out by heat inactivation treatment by a conventional method. The heating temperature and holding time of the heat deactivation treatment can be set as appropriate under conditions that allow for sufficient deactivation in consideration of the thermal stability of the protease used. It can be performed with a holding time of ˜30 minutes.
[0025]
The milk protein raw material and the method for producing the same used in the present invention are generally widely used for foods. Therefore, the level of safety and toxicity of the prepared degradation product is equivalent to that of commercially available protein degradation products.
[0026]
Therefore, the milk protein hydrolyzate, which is the active ingredient of the present invention, has extremely low toxicity, can be used safely in humans or animals, and has very few side effects. It can also be used.
[0027]
The milk-derived protein hydrolyzate obtained as described above has a GLP-2 secretion promoting action. Therefore, conditions for producing a hydrolyzate of milk-derived protein can be appropriately set by using GLP-2 secretion promoting action as an index. In the present invention, “GLP-2 secretion promotion” means that GLP-2 secretion of cells secreting GLP-2 is promoted.
[0028]
The solution containing the obtained hydrolyzate of milk-derived protein can be used as it is for the production of the GLP-2 secretion-promoting agent and food and drink of the present invention, and if necessary, A concentrated solution obtained by concentrating this solution by a known method, and a powder obtained by drying the concentrated solution by a known method can also be used. Furthermore, a peptide having a GLP-2 secretion promoting action can be isolated and purified from a hydrolyzate of milk-derived protein.
[0029]
The gastrointestinal hormone GLP-2 secretion promoter of the present invention can be administered to humans or animals by, for example, oral, tube, and enteral as an administration method, and depending on these administration methods and therapeutic purposes, Various dosage forms which are general pharmaceutical preparation forms can be selected. Typical examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules and the like.
[0030]
In addition, as a food or drink having a gastrointestinal hormone GLP-2 secretion promoting action of the second invention of the present invention, a milk protein hydrolyzate can be blended, and infants, elderly people, etc. with immature or reduced sugar absorption capacity Examples thereof include powdery nutritional compositions such as prepared milk powder, liquid foods, powders for adding breast milk used for strengthening various nutrients, sports drinks, and the like.
[0031]
The effective dose of the present invention is based on the amount of active ingredient (protein equivalent) consisting of a hydrolyzate of milk protein based on the test results in rats when administered orally (the same applies to oral feeding of food and drink). At least 0.5 g / kg body weight / day.
[0032]
In the test examples shown below, GLP-2 secretion promoting activity was measured by the following method. The GLP-2 secretion promoting activity of the GLP-2 secretion promoting agent of the present invention or a hydrolyzate of milk protein which is an active ingredient thereof can be measured by the following method or a similar method.
[0033]
(Measurement of GLP-2 secretion promoting activity)
A 2-week-old male SD rat during lactation was isolated from the mother animal and fasted overnight, and then a fixed amount (0.5 ml to 2.0 ml) of an aqueous test solution was administered intragastrically using an oral sonde. After 1-2 hours, blood was collected under ether anesthesia to obtain serum. Serum GLP-2 concentration was measured by ELISA using a rat anti-GLP-2 antibody (reagent manufactured by Yauchihara Laboratory). In the ELISA method, a commercially available product (a reagent manufactured by Yanaihara Laboratories) was used as a standard product of GLP-2. Since rat anti-GLP-2 antibody is considered to vary in sensitivity among product lots, the same lot should be used for a series of tests. Ruko Are preferred.
Next, the present invention will be described in detail with reference to test examples.
[0034]
[Test Example 1]
This test was conducted to clarify that the hydrolyzate of milk protein has the effect of increasing the secretion amount (blood concentration) of GLP-2.
[0035]
(1) Sample preparation
Sample 1: An undecomposed casein aqueous solution in which casein was dissolved at a concentration of 10% by mass in the same manner as in Example 1.
[0036]
Sample 2: After adjusting the casein solution to pH 3 with hydrochloric acid, pepsin (manufactured by Amano Enzyme) was used as a proteolytic enzyme at 200 activity units per gram of protein, and the hydrolysis reaction was carried out for 4 hours. Casein hydrolyzate aqueous solution obtained by dissolving a casein hydrolyzate having a decomposition rate of 12.5% obtained at the concentration of 10% by mass by the same method as in Example 1 of the above.
[0037]
Sample 3: Example 1 of the present invention except that pancreatin (pancreatin F (manufactured by Amano Enzyme)) as a proteolytic enzyme was used at 35 activity units per gram of protein and subjected to a hydrolysis reaction for 4 hours. Casein hydrolyzate aqueous solution in which a casein hydrolyzate having a decomposition rate of 11% obtained by the same method was dissolved at a concentration of 10% by mass.
[0038]
(2) Test method
Male SD rats in the feeding period were divided into 6 groups per group so that there was no weight bias at the age of 2 weeks, and then isolated from the mother animals and fasted overnight. Subsequently, 1.5 ml of the sample solution of samples 1 to 3 was intragastrically administered with a sonde. Two hours later, blood was collected, and the GLP-2 concentration of the obtained serum was measured by the above-mentioned ELISA method, and the average concentration (ng / ml) of blood GLP-2 for each sample group was determined.
[0039]
(3) Test results
The results of this test are as shown in Table 1. As is clear from Table 1, the blood GLP-2 concentration was higher in the group administered casein pepsin hydrolyzate (sample 2) than in the group administered undegraded casein (sample 1). In the group administered with casein pancreatin hydrolyzate (sample 3), higher values were observed.
[0040]
Moreover, although the casein was changed to whey protein and tested, similar results were obtained with the pepsin hydrolyzate and pancreatin hydrolyzate of whey protein.
That is, it was found that the amount of GLP-2 secreted was increased by the hydrolyzate of milk protein.
[0041]
[Table 1]
Figure 0004219707
[0042]
[Test Example 2]
This test was conducted to further clarify that the hydrolyzate of milk protein has the effect of increasing the secretion amount (blood concentration) of GLP-2.
[0043]
(1) Sample preparation
Sample 4: Purified water (MilliQ water)
[0044]
Sample 5: An undecomposed casein aqueous solution in which casein was dissolved at a concentration of 10% by mass in the same manner as in Example 1.
[0045]
Sample 6: Example 1 of the present invention except that pancreatin (pancreatin F (manufactured by Amano Enzyme)) was used as a proteolytic enzyme at 780 activity units per gram of protein and subjected to a hydrolysis reaction for 18 hours. Casein hydrolyzate aqueous solution obtained by dissolving the casein hydrolyzate having a decomposition rate of 27% at a concentration of 10% by mass, obtained by the same method.
[0046]
Sample 7: An undecomposed WPI aqueous solution in which whey protein isolate (WPI) was dissolved at a concentration of 10% by mass by the method of Example 4.
[0047]
Sample 8: As a proteolytic enzyme, pancreatin (pancreatin F (manufactured by Amano Enzyme)) was used at 780 activity units per gram of protein, and the hydrolysis reaction was performed for 18 hours. The same as in Example 4 of the present invention. An aqueous WPI hydrolyzate solution obtained by dissolving the WPI hydrolyzate having a decomposition rate of 30% obtained by the above method at a concentration of 10% by mass.
[0048]
(2) Test method
The male SD rats in the feeding period were divided into 5 groups per group so that there was no weight bias at the age of 2 weeks, and then isolated from the mother animals and fasted overnight. Next, 1.5 ml of the sample solution of Samples 4 to 8 was intragastrically administered with a sonde. Two hours later, blood was collected, and the GLP-2 concentration of the obtained serum was measured by the above-mentioned ELISA method, and the average concentration (ng / ml) of blood GLP-2 for each sample group was determined.
[0049]
(3) Test results
The results of this test are shown in Table 2. As is clear from Table 2, the blood GLP-2 concentration was higher in the group administered with the pancreatin hydrolyzate of casein (sample 6) than in the group administered with undegraded casein (sample 5). It was. Whey protein was also higher in the group administered with WPI pancreatin hydrolyzate (sample 8) than in the group administered with undegraded WPI (sample 7). Each value was analyzed using the statistical analysis software Stat View of SAS institue. In Fisher's Protected Least Significant Difference (PLSD), which is one of the post hoc tests of analysis of variance, Samples 5 and 6, Sample 7 A significant difference was observed between 5 and 8 with a risk rate of 5%.
[0050]
That is, it was further clarified that the amount of GLP-2 secretion increased by the hydrolyzate of milk protein.
[0051]
In addition, although the sample 1 of the test example 1 and the sample 5 of the test example 2 were the same, a slight difference was observed in the mean concentration (ng / ml) of blood GLP-2. This is considered to be due to variations in sensitivity among product lots of rat anti-GLP-2 antibody used for measurement of serum GLP-2 concentration. However, it is clear that the hydrolyzate is significantly higher in mean blood GLP-2 concentration than the undegraded product of milk protein, and does not affect the conclusion of the present invention. .
[0052]
For a series of tests, it may be necessary to use purified water (MilliQ water) as a control and use the same lot of rat anti-GLP-2 antibody.
[0053]
[Table 2]
Figure 0004219707
[0054]
[Test Example 3]
This test was conducted to clarify that the hydrolyzate of α-lactalbumin, which is a protein component purified and separated from whey protein, has the effect of increasing the secretion amount (blood concentration) of GLP-2.
[0055]
(1) Sample preparation
Sample 9: Purified water (MilliQ water)
[0056]
Sample 10: Example 1 of the present invention, except that pancreatin F (manufactured by Amano Enzyme), which is pancreatin, was used as a proteolytic enzyme at 780 active units per gram of protein and subjected to a hydrolysis reaction for 18 hours. Decomposition rate 2 obtained by the same method as 7% Casein hydrolyzate aqueous solution in which the casein hydrolyzate was dissolved at a concentration of 10% by mass.
[0057]
Sample 11: α-lactalbumin (Davisco) solution was used as a proteolytic enzyme, and protease A “Amano” (Amano Enzyme) was used at 300 activity units per gram of protein for 18 hours of hydrolysis reaction. An α-lactalbumin hydrolyzate aqueous solution in which an α-lactalbumin hydrolyzate having a degradation rate of 34% obtained by the same method as in Example 5 of the present invention was dissolved at a concentration of 10% by mass.
[0058]
Sample 12: An undecomposed α-lactalbumin aqueous solution in which α-lactalbumin (manufactured by Davisco) was dissolved at a concentration of 10% by mass by the method of Example 5.
[0059]
(2) Test method
The male SD rats in the feeding period were divided into 8 groups per group so that there was no weight bias at the age of 2 weeks, and then isolated from the mother animals and fasted overnight. Subsequently, 1.5 ml of the sample solution of samples 9 to 12 was intragastrically administered with a sonde. Two hours later, blood was collected, and the GLP-2 concentration of the obtained serum was measured by the above-mentioned ELISA method, and the average concentration (ng / ml) of blood GLP-2 for each sample group was determined.
[0060]
(3) Test results
The results of this test are as shown in Table 3. As is apparent from Table 3, the blood GLP-2 concentration was compared to the group administered with the pancreatin degradation product of casein (sample 10), and the protease A “Amano” hydrolyzate of α-lactalbumin (sample 11). The group to which was administered showed a higher value. Moreover, compared with the group which administered undegraded alpha-lactalbumin (sample 12), the group which administered protease A "Amano" hydrolyzate (sample 11) of alpha-lactalbumin showed a high value. Each value was analyzed using the SAS institue statistical analysis software Stat View.Fisher's Protected Least Significant Difference (PLSD), one of the post hoc tests for analysis of variance, There was a significant difference between 5 and 11 with a risk rate of 5%.
[0061]
From the above results, it was found that the hydrolyzate of α-lactalbumin was excellent in the action of promoting secretion of the gastrointestinal hormone GLP-2.
[0062]
[Table 3]
Figure 0004219707
[0063]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[0064]
[Example 1]
1.2 kg of commercially available milk casein (manufactured by New Zealand Milk Products Co., Ltd., 1 kg as protein equivalent) is dispersed in 8.8 kg of ion-exchanged water, and the pH is adjusted to 7 using a 10% by mass sodium hydroxide aqueous solution. The casein was completely dissolved to prepare about 10 kg of a casein aqueous solution having a protein concentration of about 10% by mass. Next, the casein aqueous solution was sterilized by heating at 85 ° C. for 10 minutes, the liquid temperature was adjusted to 50 ° C., and pancreatin F (manufactured by Amano Enzyme) was added as a proteolytic enzyme at a rate of 50 active units per gram of protein. The protein hydrolysis reaction was started. After 5 hours, when the decomposition rate reached 13.5%, the enzyme was deactivated by heating at 90 ° C. for 15 minutes, the enzyme reaction was stopped, cooled to 10 ° C., and freeze-dried powder of casein hydrolyzate About 1.2 kg (990 g as protein equivalent) was obtained.
[0065]
Using 600 g of the obtained casein hydrolyzate as an active ingredient, 300 mg each of this was filled into a Japanese Pharmacopoeia No. 1 gelatin capsule (manufactured by Aliment Kogyo Co., Ltd.), and the joint between the capsule cap and the body was gelatinized. After sealing, 1900 capsules for promoting secretion of the gastrointestinal hormone GLP-2 containing casein hydrolyzate as an active ingredient were produced.
[0066]
[Example 2]
800 g of casein hydrolyzate having a degradation rate of 13.5% obtained by the same method as in Example 1 was used, and 150 g of citric acid (manufactured by San-Ei Gen FFI Co., Ltd.) as a sour agent was used. As a mixture, 30 g of sucrose (manufactured by Nippon Sugar Sugar Co., Ltd.) and an appropriate amount of fragrance (manufactured by Takasago Fragrance Co., Ltd.) were mixed and mixed uniformly to prepare about 900 g of a nutritional composition powder having a gastrointestinal hormone GLP-2 secretion promoting action .
[0067]
[Example 3]
A commercially available milk whey protein concentrate (1.3 kg, manufactured by Arafuse, 1 kg as protein equivalent) was dissolved in 11.7 kg of ion-exchanged water to prepare 13 kg of a whey protein aqueous solution having a protein concentration of about 10% by mass. Next, the whey protein aqueous solution was sterilized at 72 ° C. for 45 seconds using a plate heat exchanger, the liquid temperature was adjusted to 55 ° C., and 10% by mass sodium hydroxide aqueous solution and 20% by mass potassium carbonate aqueous solution were used. Then, the pH was adjusted to 9.2, and pancreatin F (manufactured by Amano Enzyme) and trypsin PTN6.0S (manufactured by Novozymes Japan) were used as proteolytic enzymes at a ratio of 1250 activity units and 500 activity units per gram of protein, respectively. The protein hydrolysis reaction was started. After 10 hours, when the decomposition rate reached 22.3%, the enzyme was deactivated by heating at 120 ° C. for 15 seconds using a plate heat exchanger, the enzyme reaction was stopped, and the mixture was cooled to 10 ° C. did.
[0068]
This hydrolyzed liquid is filtered through an ultrafiltration membrane (manufactured by Asahi Kasei Co., Ltd.) having a molecular weight cut-off of 10,000, and the filtrate is spray-dried to obtain about 950 g of powdered protein hydrolyzate (740 g as protein equivalent). Obtained.
[0069]
Using 50 g of the obtained whey protein hydrolyzate, 45 g of dextrin (manufactured by Showa Sangyo Co., Ltd.), 5 g of vitamin mixture (manufactured by Tanabe Seiyaku Co., Ltd.), and 5 g of mineral mixture (prepared by Tomita Pharmaceutical Co., Ltd.) are added and blended. By homogenizing, about 100 g of powder for breast milk addition having a gastrointestinal hormone GLP-2 secretion promoting action was prepared.
[0070]
[Example 4]
Commercially available whey protein isolate (WPI) powder 1.2 kg (produced by Mirai Co., Ltd., 1.08 kg as protein equivalent) is completely dissolved in 8.8 kg of ion-exchanged water, and about 10 kg of WPI aqueous solution having a protein concentration of about 10% by mass. Was prepared. Next, the WPI aqueous solution was sterilized by microfiltration using a 0.22 μm membrane, the liquid temperature was adjusted to 50 ° C., and pancreatin F (manufactured by Amano Enzyme) was used as a proteolytic enzyme per gram of protein. The protein hydrolysis reaction was initiated by adding 780 active units. After 18 hours, when the degradation rate reached 30%, the enzyme was inactivated by heating at 90 ° C. for 15 minutes, the enzyme reaction was stopped, cooled to 10 ° C., and freeze-dried to obtain about 1 WPI hydrolyzate powder. .1 kg (990 g as protein equivalent) was obtained.
[0071]
Using 600 g of the obtained WPI hydrolyzate as an active ingredient, 300 mg each of this was filled into a Japanese Pharmacopoeia No. 1 gelatin capsule (manufactured by Aliment Kogyo Co., Ltd.), and the joint between the capsule cap and the body was gelatinized. After sealing, 1900 capsules for promoting secretion of the gastrointestinal hormone GLP-2 containing casein hydrolyzate as an active ingredient were produced.
[0072]
[Example 5]
1.2 kg of commercially available α-lactalbumin powder (Davisco, 1.14 kg as content of α-lactalbumin: purity 95%) was completely dissolved in 8.8 kg of ion-exchanged water, and α having a protein concentration of about 10% by mass was obtained. -About 10 kg of lactalbumin aqueous solution was prepared. Next, the α-lactalbumin aqueous solution was sterilized by microfiltration using a 0.22 μm membrane, the liquid temperature was adjusted to 50 ° C., and protease A “Amano” (manufactured by Amano Enzyme Co., Ltd.) was used as a proteolytic enzyme. ) Was added at a rate of 300 active units per gram of protein to initiate the protein hydrolysis reaction. After 18 hours, when the degradation rate reached 34%, the enzyme was inactivated by heating at 90 ° C. for 15 minutes, the enzyme reaction was stopped, cooled to 10 ° C., and freeze-dried to obtain α-lactalbumin hydrolyzate. About 1.2 kg of powder (1.10 kg as protein equivalent) was obtained.
[0073]
Using 600 g of the obtained α-lactalbumin hydrolyzate as an active ingredient, 300 mg each of this was filled into Japanese Pharmacopoeia No. 1 gelatin capsule (manufactured by Aliment Kogyo Co., Ltd.), and the capsule cap and body joint were gelatinized. 1900 capsules for promoting secretion of the gastrointestinal hormone GLP-2 containing casein hydrolyzate as an active ingredient were produced.
[0074]
[Example 6]
1.2 kg of commercially available milk casein (manufactured by New Zealand Milk Products Co., Ltd., 1 kg as protein equivalent) is dispersed in 8.8 kg of ion-exchanged water, and the pH is adjusted to 7 using a 10% by mass sodium hydroxide aqueous solution. The casein was completely dissolved to prepare about 10 kg of a casein aqueous solution having a protein concentration of about 10% by mass. Next, the aqueous casein solution was sterilized by heating at 85 ° C. for 10 minutes, the liquid temperature was adjusted to 50 ° C., and actinase AS (manufactured by Kaken Pharma) was added as a proteolytic enzyme at a rate of 15,000 active units per gram of protein. The protein hydrolysis reaction was started. After 18 hours, when the decomposition rate reached 30.5%, the enzyme was inactivated by heating at 90 ° C. for 15 minutes, the enzyme reaction was stopped, cooled to 10 ° C., and freeze-dried to powder of casein hydrolyzate About 1.2 kg (990 g as protein equivalent) was obtained.
[0075]
Using 600 g of the obtained casein hydrolyzate as an active ingredient, 300 mg each of this was filled into a Japanese Pharmacopoeia No. 1 gelatin capsule (manufactured by Aliment Kogyo Co., Ltd.), and the joint between the capsule cap and the body was gelatinized. Seal and produce capsule for promoting secretion of gastrointestinal hormone GLP-2 containing casein hydrolyzate as an active ingredient.
[0076]
【The invention's effect】
As described in detail above, the present invention relates to an agent having a gastrointestinal hormone GLP-2 secretion promoting action and food and drink, and the effects exhibited by the present invention are as follows.
(1) The agent and food-drinks which have the gastrointestinal hormone GLP-2 secretion promoting effect of this invention increase the secretion amount of GLP-2, and improve the absorbability of saccharides.
(2) The agent and food and drink having the gastrointestinal hormone GLP-2 secretion-promoting action of the present invention are useful for infants, the elderly and the like who have immature or reduced sugar absorption ability.

Claims (3)

カゼインの加水分解物又はα−ラクトアルブミンの加水分解物を有効成分として含有する消化管ホルモンGLP−2分泌促進剤。A gastrointestinal hormone GLP-2 secretion promoter containing a hydrolyzate of casein or a hydrolyzate of α-lactalbumin as an active ingredient. カゼインの加水分解物又はα−ラクトアルブミンの加水分解物の分解率が10%以上である請求項1に記載の消化管ホルモンGLP−2分泌促進剤。The gastrointestinal hormone GLP-2 secretion promoter according to claim 1, wherein the degradation rate of the hydrolyzate of casein or the hydrolyzate of α-lactalbumin is 10% or more. カゼインの加水分解物又はα−ラクトアルブミンの加水分解物が、パンクレアチン、アスペルギルス・オリゼ(Aspergillus oryzae)由来のプロテアーゼ、及びストレプトマイセス・グリセウス(Streptomyces griseus)由来のプロテアーゼから成る群から選ばれる1又は2以上のプロテアーゼにより加水分解されたものである請求項1又は2に記載の消化管ホルモンGLP−2分泌促進剤。The casein hydrolyzate or α-lactalbumin hydrolyzate is selected from the group consisting of pancreatin, a protease derived from Aspergillus oryzae, and a protease derived from Streptomyces griseus Alternatively, the gastrointestinal hormone GLP-2 secretion promoter according to claim 1 or 2, which is hydrolyzed by two or more proteases.
JP2003056049A 2002-05-30 2003-03-03 Gastrointestinal hormone GLP-2 secretion promoter and food and drink having gastrointestinal hormone GLP-2 secretion promoting action Expired - Lifetime JP4219707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056049A JP4219707B2 (en) 2002-05-30 2003-03-03 Gastrointestinal hormone GLP-2 secretion promoter and food and drink having gastrointestinal hormone GLP-2 secretion promoting action

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002157546 2002-05-30
JP2003056049A JP4219707B2 (en) 2002-05-30 2003-03-03 Gastrointestinal hormone GLP-2 secretion promoter and food and drink having gastrointestinal hormone GLP-2 secretion promoting action

Publications (2)

Publication Number Publication Date
JP2004051623A JP2004051623A (en) 2004-02-19
JP4219707B2 true JP4219707B2 (en) 2009-02-04

Family

ID=31949084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056049A Expired - Lifetime JP4219707B2 (en) 2002-05-30 2003-03-03 Gastrointestinal hormone GLP-2 secretion promoter and food and drink having gastrointestinal hormone GLP-2 secretion promoting action

Country Status (1)

Country Link
JP (1) JP4219707B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058609A1 (en) 2017-09-19 2019-03-28 森永乳業株式会社 Composition for promoting energy consumption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058609A1 (en) 2017-09-19 2019-03-28 森永乳業株式会社 Composition for promoting energy consumption

Also Published As

Publication number Publication date
JP2004051623A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US6258383B1 (en) Dietary supplement combining colostrum and lactoferrin in a mucosal delivery format
EP2543382A1 (en) Agent for preventing muscular atrophy
JP2004182630A (en) Long-acting muscle fatigue ameliorant
US10022417B2 (en) Peptides and compositions thereof for improvement of glycaemic management in a mammal
EP1161881B1 (en) Method of producing fractions containing a high concentration of milk basic cystatin and decomposition products thereof
JP4808218B2 (en) Protein hydrolyzate with anti-diabetic activity
JPWO2009057287A1 (en) Food material for inhibiting osteoclast formation
WO1990013228A1 (en) Oligopeptide mixture and composition containing the same
JPH0648955A (en) Activator for digestive tract cell
JP4219707B2 (en) Gastrointestinal hormone GLP-2 secretion promoter and food and drink having gastrointestinal hormone GLP-2 secretion promoting action
JPWO2009057281A1 (en) Food material for promoting osteoblast differentiation and inhibiting osteoclast differentiation
JP3979543B2 (en) Antiallergic agent and method for producing the same
AU5185301A (en) Method of producing fractions containing a high concentration of milk basic cystatin and decomposition products thereof
JP2008195618A (en) Peptide composition for introducing oral immune tolerance and method for producing the same
JPWO2009057282A1 (en) Food material for suppressing bone resorption
JP2016210725A (en) Malnutrition improving agent
JP2005139084A (en) Cysteine proteinase inhibitor
JP5717433B2 (en) Bile acid adsorption composition
JPH0873375A (en) Suppressant for alimentary canal permeation
JP2008214241A (en) Immunomodulator
JPH03272694A (en) Oligopeptide mixture, production thereof and nutrition feeding composition for patient of heptic disease
JP2001026753A (en) Composition for prophylaxis or treatment of hypertension
CN102573880A (en) Fat accumulation suppressor
WO2018139624A1 (en) Composition for promoting insulin secretion
AU2014226865B2 (en) Anti-inflammatory agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4219707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term