JP4218935B2 - Method for manufacturing voltage nonlinear resistor - Google Patents

Method for manufacturing voltage nonlinear resistor Download PDF

Info

Publication number
JP4218935B2
JP4218935B2 JP2002233450A JP2002233450A JP4218935B2 JP 4218935 B2 JP4218935 B2 JP 4218935B2 JP 2002233450 A JP2002233450 A JP 2002233450A JP 2002233450 A JP2002233450 A JP 2002233450A JP 4218935 B2 JP4218935 B2 JP 4218935B2
Authority
JP
Japan
Prior art keywords
sintered body
body element
electrode
spraying
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002233450A
Other languages
Japanese (ja)
Other versions
JP2004079561A (en
Inventor
清和 梅原
治通 飯沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002233450A priority Critical patent/JP4218935B2/en
Publication of JP2004079561A publication Critical patent/JP2004079561A/en
Application granted granted Critical
Publication of JP4218935B2 publication Critical patent/JP4218935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛を主成分とし、過電圧保護装置の内部要素として使用される電圧非直線抵抗体の製造方法に関する。
【0002】
【従来の技術】
一般に電力系統においては、送電線路に設けた遮断器などの開閉時や雷放電が生じた場合、開閉サージや、雷インパルスなどの過電圧が発生し、系統に接続された電機機器などに絶縁破壊を生じさせ損傷させる恐れがある。このため、過電圧から電機機器、あるいは系統を保護する目的で、過電圧がある限度を超えた時、これを放電し、続流を短時間のうちに遮断することによって系統を早期に正常状態に復帰させるための避雷器やサ−ジアブソ−バといった過電圧保護装置が用いられている。この過電圧保護装置の内部要素には、電圧非直線抵抗体が主に使用されている。
【0003】
ここで、電圧非直線抵抗体とは、正常な電圧ではほぼ絶縁特性を示し、過電圧が印加された時には比較的低抵抗となって過電圧を放電させるような電圧―電流非直線特性を有する抵抗体である。このような電圧非直線抵抗体は一般にセラミックス、即ち焼結体から構成されている。
【0004】
従来、この種の電圧非直線抵抗体は図9に示すように、主成分である酸化亜鉛(ZnO)に、非直線抵抗特性を得るための添加物としてビスマス(Bi)、アンチモン(Sb)、コバルト(Co)、マンガン(Mn)、クロム(Cr)、ニッケル(Ni)、ケイ素(Si)などの金属酸化物を添加したものを混合し、造粒し、成形し、焼結して円板状に形成し、この円板1の端面2を研磨後電極3を付与することにより焼結体素子4が形成される。また、焼結体素子4の側面には過電圧が印加した場合のフラッシュオーバーを防止するため側面高抵抗層5が形成されている。
このように形成された円板状の焼結体素子4を放電容量に応じて複数枚電極が接するように積み重ねて過電圧保護装置を構成する。
【0005】
また、このような円板状の焼結体素子4にはフラッシュオーバーをさらに確実に防止するために、例えば特公平5−74921号公報、特開平8−195303号公報、特開平11−186006号公報などで開示されているように、焼結体素子4の端面2に形成した電極3の外側の縁部が焼結体素子4の端面2の縁部にかからない様に、端面2の外周部に沿って電極3の縁から寸法が0.01〜1.0mmとなるようなリング状の電極非形成部6を形成することが一般的に行われている。
【0006】
【発明が解決しようとする課題】
電力需要の伸びと高度情報化社会の発展がめざましい近年、安定且つ安価な信頼性の高い電力供給が強く求められている。一方、都市部での用地不足による受変電設備の設置スペース不足から、高信頼性に加えて送変電機器の小型化への要求はさらに強くなっている。その要求に応えるために最近では、電圧非直線抵抗体の単位厚み当たりの電圧値を大きくして高さ寸法を低く抑え、さらにはエネルギー吸収能力を向上させるなどして、電圧非直線抵抗体の小型化が推進されている。
また、当然のことながら、小型化された過電圧保護装置においても、長期間の使用における安定した運転状態も要求されている。
【0007】
前記したように、従来の電圧非直線抵抗体においては、図9に示すように、焼結体素子4への電極3形成時に、焼結体素子4端面2の外周部および側面に常温硬化性樹脂などでできたゴムマスクによってマスキング7を施し、これにより、外周部にリング状の電極非形成部6を形成するようにしている。
【0008】
ところが、このような構成の従来の電圧非直線抵抗体では、電流を印加した時に電極3形成部には電流が流れるが、焼結体素子4の端面2の外周部に形成されたリング状の電極非形成部6には電流が流れないため、電極3形成部と電極非形成部6との間に温度差が生じる。これにより、この温度差を原因とする熱応力が発生し、焼結体素子4にクラックが発生し破壊に至り、電極層間での放電や、これによるSF6ガスの発生により結果として電圧非直線抵抗体の過電圧保護能力の信頼性を低下させると言う問題点があった。
【0009】
したがって、焼結体素子4の単位厚み当たりの電圧の増大や小径化により電圧非直線抵抗体を小型化した時に要求される開閉サージ、雷インパルスや過電圧等のサージに対する保護能力に応えることが困難であった。
【0010】
このような問題を解決する手段として、電極形成面積を極力広くすることが考えられる。しかしながら、従来の電圧非直線抵抗体の製造で使用しているようなマスクを用いて、電極3を側面高抵抗層5部ぎりぎりまで形成しようとすると、結果的に側面高抵抗層5の側面まで電極材料が付着されてしまうため、電極形成面積を極力広くすることも困難であった。また、焼結体素子4の側面に粘着テ−プ等を貼り付けてマスキングを施し、側面高抵抗層5への電極材料付着防止をすることも考えられるが、粘着テ−プの取り付け、取り外しによる工程と手間が発生し、生産効率を低下させるという問題があった。
【0011】
本発明は以上の課題を解決し、生産効率を低下させることなく、側面高抵抗層へ電極材料が付着するのを防止し、電極の形成面積を最大限に広げ、通常の使用状態において優れた放電エネルギー耐量特性および課電寿命特性を実現し、かつ開閉サージ、雷インパルスや過電圧等のサージに対する保護能力を向上させた電圧非直線抵抗体の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、酸化亜鉛を主成分とする円板状の焼結体素子の端面に、端面の外周部に沿ってリング状の電極非形成部を形成するように溶射により電極を形成する際に、焼結体素子の端面にマスキングを施さずに端面に対してほぼ直角に溶射し、溶射方向とヒューム等を集塵する集塵方向とを同一方向にした電圧非直線抵抗体の製造方法において、焼結体素子を回転させながら焼結体素子の端面の外周より中心部に向かって溶射を進めていくとともに、アーク溶射に使用するアルミ線を送るサーボモーターの動作を溶射開始時はスロースタートさせて、溶射終了時、前記アルミ線を3mm戻して電極を形成することを特徴とする。
【0015】
この発明によれば、焼結体素子の端面の外周部より溶射を進めていき、中心部で溶射を終了させ、放射状に放出される溶射粒子の中心より外の部分が直接焼結体の側面へ溶射されず、焼結体素子の外周部において電極に空隙が形成されない。
【0017】
この発明によれば、また、溶射開始時、徐々にアルミ線を接触させ、スパッタが起きにくくなる。
【0018】
【発明の実施の形態】
以下本発明の実施の形態を図を参照して説明する。まず、酸化亜鉛(ZnO)に、二酸化マンガン(MnO2)、酸化コバルトム(Co23)を例えばそれぞれ0.5mol%、酸化ビスマス(Bi23)、酸化アンチモン(Sb23)、酸化ニッケル(NiO)を例えばそれぞれ1mol%添加する。次いで、この原料を水と有機分散剤、バインダー類とともに混合装置に入れ混合し、この混合物を例えばスプレードライヤーで噴霧造粒する。これら造粒粉を金型に入れ加圧し、図1に示すような直径100mm、厚さ30mmの円板1に成形し、この成形体を例えば1200℃で焼成する。
【0019】
次に焼成した焼結体素子4の側面に例えばアルミナ系の無機絶縁物を塗布し例えば400℃の温度で焼き付けて側面高抵抗層5を形成する。側面高抵抗層5を形成した焼結体素子4の上下の端面2を研磨した後、その研磨面に電極3を溶射ガン8を用いて溶射により形成し、電圧非直線抵抗体を製作する。
【0020】
ここで電極3を溶射により形成する場合、従来の方法のように焼結体素子4にマスキングを施して行った例と本発明のようにマスキングを施さずに行った2種類の方法についてその特性試験の結果を説明する。
【0021】
まず、上記のように製作した焼結体素子4を3枚積層して電圧非直線抵抗体を形成し、焼結体素子4に2msの矩形波放電エネルギーを200J/cm3から、徐々に増加させながら印加してゆき、3枚の焼結体素子4の内、1枚でも電気的に破壊するまでの破壊試験を実施した。このとき、焼結体素子4が破壊するまでに吸収した最大値の放電エネルギー量を放電エネルギー耐量(J/cm3)とした。また、各電極形成条件、電極形状の焼結体素子について各10pの放電エネルギー耐量試験を実施した。
【0022】
図2は焼結体素子4の電極3を形成する溶射を種々、変化させた場合の放電エネルギー耐量試験の結果である。図2において電極形成方法Aはマスキングを施して溶射を行なった焼結体素子、Bはマスキングを施さずに溶射を行なった焼結体素子の場合の放電エネルギー耐量特性をそれぞれ示す。
【0023】
図3は焼結体素子4を3枚積層して電圧非直線抵抗体を形成し、SF6ガス中、80℃の雰囲気中において、焼結体素子4に180J/cm3の矩形波放電エネルギーを5回、5分間隔で印加した後、室温の焼結体素子4に1mAの抵抗分電流IRが流れる交流電圧を1000時間課電し、課電開始直後の抵抗分漏れ電流(IR(0h))と1000時間課電後の抵抗分電流(IR(1000h))を測定し、IR(1000h)/IR(0h)により課電寿命特性の評価を行った特性図である。
【0024】
図3において電極形成方法Cはマスキングを施して溶射を行なった焼結体素子、Dはマスキング施さずに溶射を行なった焼結体素子の場合の特性をそれぞれ示す。
図2、図3の試験結果から明らかなように、溶射による電極形成において、マスキング施さずに行なった焼結体素子において顕著に優れた放電エネルギー耐量特性、課電寿命特性を示している。
【0025】
この電極形成においてマスキングを施さずに行なった焼結体素子が優れた特性を呈する理由としては、マスクを使用して、電極形成を行なう際、マスクを取り外した時にマスクに付着した電極材料が一緒に焼結体素子上面部分より一部剥離を生じる。そのため、電極端部に空隙が生じ、エネルギーを印加した際、局部的に熱応力が発生し破壊に至る。マスキングを施さずに電極形成を行なった場合、端部の剥離がなく破壊しにくく、これにより電極層間での放電や、局部的な電界集中も起こりにくくなるためと考えられる。
【0026】
このような理由により、図2、図3に示した通り、電圧非直線抵抗体における焼結体素子の電極形成をマスキングを施さないで行なうことにより、優れた放電エネルギー耐量特性および課電寿命特性の電圧非直線抵抗体が得られる。
【0027】
次に、図4乃至図8に示す図は、上記の方法で製作した電圧非直線抵抗体において、焼結体素子4にマスキングを施さないで溶射して電極形成を行ない、かつ電極3を形成する時、その溶射時の条件を種々変化させた場合の放電エネルギー耐量試験および課電寿命特性試験の結果を示す図である。
【0028】
図4はマスキングを施さずに溶射することにより電極形成する際、焼結体素子4の端面2に対して常に溶射ガン8から直角に溶射を行なった電圧非直線抵抗体と、溶射ガン8を焼結体素子4の端面2に対して斜めに配置し、斜めに溶射を行なった電圧非直線抵抗体との放電エネルギー耐量試験の結果である。図4において溶射角Eは直角に溶射した場合、溶射角Fは斜めに溶射した場合の特性をそれぞれ示す。
【0029】
図4から明らかなように、溶射ガン8から発射される溶射粒子は、その構造上、金属線を短絡ショ−トさせ、空気圧力により吹き飛ばすため、放射状に飛散する。焼結体素子4の端面2に対して常に直角に溶射することにより、放射状に放出された溶射粒子が焼結体素子4の側面に回り込むことがなく、付着を防止することができる。これに対し、斜め溶射を行なうことにより、焼結体素子4の側面へ溶射粒子が付着し、側面高抵抗層5の絶縁距離が短くなる。焼結体素子4の端面2に対して直角に溶射を行なった場合は優れた放電エネルギー耐量を示しているが、斜め溶射を施した場合には放電エネルギー耐量が低い。
【0030】
図4においては放電エネルギー耐量試験結果のみを示したが、課電寿命特性についても焼結体素子4の端面2に直角に溶射を行なった電圧非直線抵抗体において、良好な特性が得られていた。
【0031】
このように、焼結体素子4の電極形成において、溶射ガン8を焼結体素子4の端面2に対して常に直角にすることにより、優れた放電エネルギー耐量特性、課電寿命特性の電圧非直線抵抗体が得られる。
【0032】
図5は溶射ガン8の溶射方向と焼結体素子4に付着しない粉塵やヒュ−ムを集塵する方向を変化させた場合の電圧非直線抵抗体の放電エネルギー耐量試験を行った結果を示す図である。図5において、集塵方向Gは溶射方向と集塵方向とを同一にした場合、集塵方向Hは溶射方向と集塵方向とを異ならせた場合の特性をそれぞれ示す。
【0033】
図5から明らかなように、焼結体素子4に付着しない溶射粒子は、溶射室内に滞留しないように集塵し処理する。溶射粒子は、空気にさらされ、固形となり、通常集塵されるが、溶融している状態では、一番近い物質へ付着する性質を有している。そのため、溶射方向と集塵の風の流れが同一でない場合は、溶射粒子が浮遊しながら焼結体素子4の側面へ付着する。溶射方向と集塵方向とを同一方向にした場合、浮遊する間もなく直接集塵されるため、焼結体素子4の側面への回り込みがなく、付着を防止することができる。そのため、溶射方向と集塵の方向を同一にした場合は優れた放電エネルギー耐量を示しているが、異種方向にて溶射を施した場合には放電エネルギー耐量が低い。
【0034】
図5においては放電エネルギー耐量試験結果のみを示したが、課電寿命特性についても溶射方向と集塵の方向を同一に溶射を行なった電圧非直線抵抗体において、良好な特性が得られていた。
【0035】
このように、電圧非直線抵抗体の電極形成において、溶射ガンから飛散する溶射粒子の溶射方向と集塵の方向とを同一とすることにより、優れた放電エネルギー耐量特性、課電寿命特性の電圧非直線抵抗体が得られる。
【0036】
図6は、焼結体素子4を回転させ、溶射ガン8の軌跡により電極形成を行なった場合と、焼結体素子4を固定し電極形成を行なった場合の放電エネルギー耐量試験を行った結果を示す図である。図6において、溶射方法Iは焼結体素子4を回転させた場合、溶射方法Jは焼結体素子4を固定した場合の特性をそれぞれ示す。
【0037】
図6から明らかなように、焼結体素子4を回転させ、溶射ガン8の軌跡で電極を形成した方法では、外周部より溶射を進めていき、中心部で溶射を終了させる。そのため、放射状に放出される溶射粒子の中心より外の部分が直接焼結体4の側面へ溶射されないため、焼結体素子4の端面2の外周部において電極に空隙がを形成されない。しかし、焼結体素子4を固定し溶射を行なった場合、焼結体素子4の面積に合わせて溶射ガン8を移動させることが、大変難しく、渦巻き状に移動したり、正方形に移動させたりする必要がある。そのため、焼結体素子4の端面2の外周部を超えて溶射された溶射粒子は、焼結体素子4の側面へ付着する。
【0038】
一般に溶射ガン8より放出される溶射面積に対して、焼結体素子4の電極3の面積が大きい場合、溶射ガンを焼結体素子4の電極3の面積分動かし溶射する必要がある。しかし、溶射ガン8を高速にて動かす時、アルミ線、電力線、信号線などの接続線が邪魔となりうまく動作できない。また、重量がある溶射ガン8を高速に動かすためのロボットはより大きくなり大きな設置スペ−スを必要とする。そのため、溶射ガン8の動作距離を限りなく小さくし、焼結体素子4を回転させ、その軌跡で溶射を行なうことにより、設置スペ−スを小さくできる。焼結体素子4を回転させて溶射を行なった場合は優れた放電エネルギー耐量を示しているが、焼結体素子4を固定して溶射を施した場合には放電エネルギー耐量が低い。
【0039】
図6においては放電エネルギー耐量試験結果のみを示したが、課電寿命特性についても焼結体素子4を回転させて溶射を行なった電圧非直線抵抗体において、良好な特性が得られていた。
【0040】
このように、電圧非直線抵抗体の電極形成において、焼結体素子4を回転させ、溶射ガン8の軌跡で溶射することにより、優れた放電エネルギー耐量特性、課電寿命特性の電圧非直線抵抗体が得られる。
【0041】
図7は、焼結体素子4を回転させた時、脱落防止として下部に吸着治具を設置した例を示す図である。前記焼結体素子4の回転機構を設けた場合、焼結体素子4を回転させながら溶射を行なうため、その遠心力により焼結体素子4が台座9より脱落し、側面への付着により電極形成ができない恐れがある。そのため、焼結体素子4を台座9に吸着させ回転させることにより、脱落を防止し、安定した電極形成ができるようにする。一例として、焼結体素子4の形状に合わせてOリング10設け、図示しない真空装置により吸着させる。
【0042】
次に、図8において、線送りKは、アルミ溶射においてアルミ線を送るサ−ボモ−タ−の動作を溶射開始時スロ−スタ−トさせ、溶射終了時、3mm戻して電極を形成し製作した焼結体素子4、線送りLは、線送りの制御無しに電極を形成した焼結体素子4の場合の特性をそれぞれ示す図である。
【0043】
図8から明らかなように溶射時の線送り制御を行ない電極3を形成した焼結体素子4が優れた放電エネルギー耐量特性を示すことがわかる。線送りKは、溶射開始時、電圧が瞬間的に掛かり、短絡ショ−トさせた際、スパッタが発生しやすい。スパッタとは、電圧を印加しアルミ線の接触により溶融させているが、その際完全に溶融せずにアルミ線のまま溶射されたものである。そのため、スパッタが起きにくくするためスロ−スタ−ト(遅送り)させ、徐々にアルミ線を接触させる。また、溶射終了時、3mm戻すことで確実に行なうようにする。線送りLは、線送りの制御無しの状態で、スパッタが発生し、電極厚さ100μmにアルミ線約1mmが上に乗っている状態となり、放電耐量エネルギー試験時の電極間に空隙が起こり、電流集中が発生し耐量特性が低くなる。図9においては放電エネルギー耐量試験結果のみを示したが、課電寿命特性についても電極形成時線送りの制御を行なった電圧非直線抵抗体において、良好な特性が得られていた。
【0044】
このように、電圧非直線抵抗体を構成する焼結体素子4の電極形成において、線送りの制御を行なうことにより、優れた放電エネルギー耐量特性、課電寿命特性の電圧非直線抵抗体が得られる。
【0045】
【発明の効果】
以上説明したように本発明によれば、酸化亜鉛を主成分とする円板状の焼結体素子の端面に、端面の外周部に沿ってリング状の電極非形成部を形成するように溶射により電極を形成した電圧非直線抵抗体の製造方法において、焼結体素子の端面にマスキングを施さずに端面に対してほぼ直角に溶射するようにしたので、生産効率を低下させることなく、側面高抵抗層へ電極材料が付着するのを防止し、電極の形成面積を最大限に広げ、通常の使用状態において優れた放電エネルギー耐量特性および課電寿命特性を実現し、かつ開閉サージ、雷インパルスや過電圧等のサージに対する保護能力を向上させた電圧非直線抵抗体の製造方法を得ることができる。。
【図面の簡単な説明】
【図1】本発明の実施の形態により製作される電圧非直線抵抗体の断面図。
【図2】本発明による電圧非直線抵抗体と従来の電圧非直線抵抗体との放電エネルギー耐量特性を示すグラフ。
【図3】本発明による電圧非直線抵抗体と従来の電圧非直線抵抗体との課電寿命特性を示すグラフ。
【図4】電極を形成する溶射ガンの角度と放電エネルギー耐量特性との関係を示すグラフ。
【図5】溶射ガンより放出される溶射粒子と集塵方向とを変化させ電極形成を行なった放電エネルギー耐量特性を示すグラフ。
【図6】溶射軌跡と放電エネルギー耐量特性との関係を示すグラフ。
【図7】本発明の製造方法に使用される吸着治具の断面図。
【図8】線送り制御と放電エネルギー耐量特性との関係を示すグラフ。
【図9】従来のマスキングによる電圧非直線抵抗体の製造方法を示す断面図。
【符号の説明】
1…円板、2…端面、3…電極、4…焼結体素子、5…側面高抵抗層、6…電極非形成部、7…マスキング、8…溶射ガン、9…台座、10…Oリング。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a voltage non-linear resistor which is mainly composed of zinc oxide and is used as an internal element of an overvoltage protection device.
[0002]
[Prior art]
Generally, in a power system, when a circuit breaker provided on a power transmission line is opened or closed, or when a lightning discharge occurs, an overvoltage such as a switching surge or a lightning impulse is generated, causing dielectric breakdown to electrical equipment connected to the system. May cause damage. For this reason, in order to protect electrical equipment or the system from overvoltage, when the overvoltage exceeds a certain limit, it is discharged and the system is quickly restored to the normal state by interrupting the follow-up in a short time. Overvoltage protection devices such as lightning arresters and surge absorbers are used. A voltage nonlinear resistor is mainly used as an internal element of the overvoltage protection device.
[0003]
Here, the voltage non-linear resistor is a resistor having a voltage-current non-linear characteristic that exhibits a substantially insulating characteristic at a normal voltage and has a relatively low resistance when an overvoltage is applied to discharge the overvoltage. It is. Such voltage non-linear resistors are generally made of ceramics, that is, sintered bodies.
[0004]
Conventionally, as shown in FIG. 9, this type of voltage non-linear resistor is composed of zinc oxide (ZnO) as a main component and additives for obtaining non-linear resistance characteristics such as bismuth (Bi), antimony (Sb), Discs made by mixing, granulating, molding, sintering and adding metal oxides such as cobalt (Co), manganese (Mn), chromium (Cr), nickel (Ni), silicon (Si) The sintered body element 4 is formed by applying the electrode 3 after polishing the end face 2 of the disk 1. A side high resistance layer 5 is formed on the side surface of the sintered body element 4 to prevent flashover when an overvoltage is applied.
The disk-shaped sintered body elements 4 formed in this way are stacked so that a plurality of electrodes are in contact with each other according to the discharge capacity, thereby constituting an overvoltage protection device.
[0005]
Further, in order to further prevent flashover in such a disk-shaped sintered body element 4, for example, Japanese Patent Publication No. 5-74921, Japanese Patent Application Laid-Open No. 8-195303, Japanese Patent Application Laid-Open No. 11-186006. As disclosed in publications and the like, the outer peripheral portion of the end surface 2 is arranged such that the outer edge of the electrode 3 formed on the end surface 2 of the sintered body element 4 does not cover the edge of the end surface 2 of the sintered body element 4. In general, the ring-shaped electrode non-forming portion 6 having a dimension of 0.01 to 1.0 mm from the edge of the electrode 3 is formed.
[0006]
[Problems to be solved by the invention]
In recent years, the growth of power demand and the development of an advanced information society are remarkable, and there is a strong demand for stable, inexpensive and reliable power supply. On the other hand, due to the lack of installation space for receiving and transforming equipment due to the lack of land in urban areas, there is an increasing demand for miniaturization of transmission and transformation equipment in addition to high reliability. In order to meet this demand, recently, the voltage value per unit thickness of the voltage nonlinear resistor is increased to keep the height dimension low, and further the energy absorption capacity is improved. Miniaturization is being promoted.
Of course, even in a downsized overvoltage protection device, a stable operating state for a long period of use is required.
[0007]
As described above, in the conventional voltage non-linear resistor, as shown in FIG. 9, when the electrode 3 is formed on the sintered body element 4, the outer peripheral portion and the side surface of the end face 2 of the sintered body element 4 are cured at room temperature. Masking 7 is applied with a rubber mask made of resin or the like, thereby forming a ring-shaped electrode non-forming portion 6 on the outer peripheral portion.
[0008]
However, in the conventional voltage non-linear resistor having such a configuration, a current flows through the electrode 3 forming portion when a current is applied, but a ring-like shape formed on the outer peripheral portion of the end face 2 of the sintered body element 4. Since no current flows through the electrode non-forming portion 6, a temperature difference is generated between the electrode 3 forming portion and the electrode non-forming portion 6. As a result, thermal stress due to this temperature difference is generated, and the sintered body element 4 is cracked and leads to breakdown. As a result, discharge between electrode layers and generation of SF6 gas thereby result in voltage nonlinear resistance. There was a problem that the reliability of the overvoltage protection ability of the body was lowered.
[0009]
Therefore, it is difficult to meet the protection capability against surges such as switching surges, lightning impulses and overvoltages required when the voltage non-linear resistor is downsized by increasing the voltage or reducing the diameter per unit thickness of the sintered body element 4. Met.
[0010]
As a means for solving such a problem, it is conceivable to increase the electrode formation area as much as possible. However, if an attempt is made to form the electrode 3 to the limit of 5 parts of the side high resistance layer 5 using a mask such as that used in the manufacture of a conventional voltage non-linear resistor, the result is to the side of the side high resistance layer 5 as a result. Since the electrode material is attached, it is difficult to increase the electrode formation area as much as possible. It is also conceivable to attach an adhesive tape or the like to the side surface of the sintered body element 4 to perform masking to prevent the electrode material from adhering to the side high resistance layer 5. There is a problem that the production process and labor are reduced and the production efficiency is lowered.
[0011]
The present invention solves the above problems, prevents the electrode material from adhering to the side high resistance layer without reducing the production efficiency, maximizes the electrode formation area, and is excellent in normal use conditions. It is an object of the present invention to provide a method for manufacturing a voltage non-linear resistor that realizes discharge energy withstand characteristics and electric charging life characteristics, and has improved protection against surges such as switching surges, lightning impulses and overvoltages.
[0012]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 is directed to an end face of a disk-shaped sintered body element mainly composed of zinc oxide and a ring-shaped electrode non-formation portion along the outer peripheral portion of the end face. When forming the electrode by thermal spraying to form a thermal spraying , the end face of the sintered body element is sprayed almost at right angles to the end face without masking, and the spraying direction and the dust collecting direction for collecting fume and the like are set. In the method of manufacturing a voltage non-linear resistor in the same direction, while the sintered body element is rotated, the thermal spraying proceeds from the outer periphery of the end face of the sintered body element toward the center, and the aluminum wire used for arc spraying The operation of the servo motor for feeding is slow-started at the start of spraying, and at the end of spraying, the aluminum wire is returned 3 mm to form an electrode .
[0015]
According to the present invention, will promote spray from the outer peripheral portion of the end surface of the sintered body element, to terminate the spraying in the center, the side surface of the outer part directly sintered body from the center of the sprayed particles emitted radially No gap is formed in the electrode at the outer peripheral portion of the sintered body element.
[0017]
According to the present invention, or, when spraying begins, gradually into contact with aluminum wire, sputtering is unlikely to occur.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. First, zinc oxide (ZnO), manganese dioxide (MnO 2 ), cobalt oxide (Co 2 O 3 ), for example, 0.5 mol%, bismuth oxide (Bi 2 O 3 ), antimony oxide (Sb 2 O 3 ), For example, 1 mol% of nickel oxide (NiO) is added. Next, the raw material is mixed with water, an organic dispersant, and binders in a mixing apparatus, and the mixture is spray-granulated using, for example, a spray dryer. These granulated powders are put into a mold and pressed to form a disk 1 having a diameter of 100 mm and a thickness of 30 mm as shown in FIG. 1, and this molded body is fired at 1200 ° C., for example.
[0019]
Next, for example, an alumina-based inorganic insulator is applied to the side surface of the fired sintered body element 4 and baked at a temperature of 400 ° C., for example, to form the side surface high resistance layer 5. After polishing the upper and lower end surfaces 2 of the sintered body element 4 on which the side high resistance layer 5 is formed, the electrode 3 is formed on the polished surface by thermal spraying using a thermal spray gun 8 to manufacture a voltage nonlinear resistor.
[0020]
Here, when the electrode 3 is formed by thermal spraying, the characteristics of the example in which the sintered body element 4 is masked as in the conventional method and the two types of methods in which the masking is not performed as in the present invention are described. Explain the results of the test.
[0021]
First, three pieces of the sintered body element 4 manufactured as described above are stacked to form a voltage non-linear resistor, and the 2 ms rectangular wave discharge energy is gradually increased from 200 J / cm 3 to the sintered body element 4. While being applied, a destructive test was conducted until one of the three sintered body elements 4 was electrically destroyed. At this time, the maximum amount of discharge energy absorbed until the sintered body element 4 was destroyed was defined as discharge energy resistance (J / cm 3 ). In addition, a 10 p discharge energy withstand test was performed for each electrode forming condition and electrode-shaped sintered body element.
[0022]
FIG. 2 shows the results of a discharge energy resistance test when various thermal sprays forming the electrode 3 of the sintered body element 4 are changed. In FIG. 2, the electrode forming method A shows the discharge energy withstand characteristics in the case of the sintered body element subjected to the thermal spraying with masking, and B represents the sintered body element subjected to the thermal spraying without masking.
[0023]
FIG. 3 shows a voltage non-linear resistor formed by laminating three sintered body elements 4, and a rectangular wave discharge energy of 180 J / cm 3 in the sintered body element 4 in an atmosphere of 80 ° C. in SF 6 gas. Is applied to the sintered body element 4 at room temperature for 1000 hours, and the resistance leakage current (IR (0h )) And a resistance current (IR (1000 h)) after 1000 hours of power application, and a characteristic diagram in which the electric life characteristics are evaluated by IR (1000 h) / IR (0 h).
[0024]
In FIG. 3, the electrode forming method C shows the characteristics in the case of a sintered body element subjected to thermal spraying with masking, and D represents the characteristics in the case of a sintered body element subjected to thermal spraying without masking.
As is apparent from the test results of FIGS. 2 and 3, the discharge element withstand energy characteristics and the electric charge life characteristics are remarkably excellent in the sintered body element formed without masking in the electrode formation by thermal spraying.
[0025]
The reason why the sintered body element without masking in this electrode formation exhibits excellent characteristics is that when the electrode is formed using a mask, the electrode material attached to the mask when the mask is removed is together. Partly peels off from the upper surface portion of the sintered body element. Therefore, a gap is generated at the end of the electrode, and when energy is applied, a thermal stress is locally generated, leading to destruction. When electrode formation is performed without masking, it is considered that the end portions are not peeled off and are not easily broken, which makes it difficult to cause discharge between the electrode layers and local electric field concentration.
[0026]
For these reasons, as shown in FIG. 2 and FIG. 3, by performing electrode formation of the sintered body element in the voltage non-linear resistor without masking, excellent discharge energy withstand characteristics and electric charging life characteristics A voltage non-linear resistor is obtained.
[0027]
Next, in the figures shown in FIGS. 4 to 8, in the voltage non-linear resistor manufactured by the above method, the sintered body element 4 is sprayed without masking to form an electrode, and the electrode 3 is formed. It is a figure which shows the result of the discharge energy tolerance test and the electrical charging lifetime characteristic test at the time of changing various conditions at the time of the thermal spraying.
[0028]
FIG. 4 shows a voltage non-linear resistor that is always sprayed at right angles from the spray gun 8 to the end face 2 of the sintered body 4 when the electrode is formed by spraying without masking, and the spray gun 8. It is the result of the discharge energy tolerance test with the voltage non-linear resistance body which was arranged diagonally with respect to the end surface 2 of the sintered compact element 4, and sprayed diagonally. In FIG. 4, the spray angle E indicates the characteristics when sprayed at right angles, and the spray angle F indicates the characteristics when sprayed obliquely.
[0029]
As apparent from FIG. 4, the spray particles emitted from the spray gun 8 are scattered in a radial manner because the metal wire is short-circuited and blown off by the air pressure due to its structure. By spraying at right angles to the end face 2 of the sintered body element 4 at all times, the spray particles released radially do not wrap around the side face of the sintered body element 4 and can prevent adhesion. On the other hand, by performing the oblique spraying, the sprayed particles adhere to the side surface of the sintered body element 4, and the insulating distance of the side surface high resistance layer 5 is shortened. When spraying at right angles to the end face 2 of the sintered body element 4, excellent discharge energy resistance is shown, but when oblique spraying is performed, the discharge energy resistance is low.
[0030]
In FIG. 4, only the discharge energy withstand test results are shown. However, with regard to the chargeable life characteristics, good characteristics are obtained in the voltage non-linear resistance body sprayed at right angles to the end face 2 of the sintered body element 4. It was.
[0031]
As described above, in forming the electrode of the sintered body element 4, the spray gun 8 is always perpendicular to the end face 2 of the sintered body element 4, so that the voltage non-reliability of the excellent discharge energy withstand characteristics and the charging life characteristics is improved. A linear resistor is obtained.
[0032]
FIG. 5 shows the results of a discharge energy withstand test of a voltage non-linear resistor when the spraying direction of the spray gun 8 and the direction of collecting dust and fumes not adhering to the sintered body element 4 are changed. FIG. In FIG. 5, the dust collection direction G shows the characteristics when the spraying direction and the dust collection direction are the same, and the dust collection direction H shows the characteristics when the spraying direction and the dust collection direction are different.
[0033]
As is apparent from FIG. 5, the spray particles that do not adhere to the sintered body element 4 are collected and processed so as not to stay in the spray chamber. The spray particles are exposed to air, become solid, and usually collect dust, but have a property of adhering to the closest substance in a molten state. Therefore, when the spraying direction and the wind flow of the dust collection are not the same, the sprayed particles adhere to the side surface of the sintered body element 4 while floating. When the spraying direction and the dust collection direction are the same direction, the dust is collected directly without floating, so that there is no wraparound to the side surface of the sintered body element 4 and adhesion can be prevented. Therefore, when the spraying direction and the dust collection direction are the same, excellent discharge energy resistance is shown, but when spraying is performed in different directions, the discharge energy resistance is low.
[0034]
In FIG. 5, only the discharge energy withstand test results are shown, but with regard to the electric charge life characteristics, good characteristics were obtained in the voltage non-linear resistor in which the spraying direction and the dust collection direction were the same. .
[0035]
As described above, in forming the electrode of the voltage non-linear resistor, by making the spraying direction of the sprayed particles scattered from the spray gun the same as the direction of dust collection, the voltage of the excellent discharge energy withstand characteristics and the charging life characteristics can be obtained. A non-linear resistor is obtained.
[0036]
FIG. 6 shows a result of conducting a discharge energy resistance test when the sintered body element 4 is rotated and the electrode is formed by the trajectory of the spray gun 8 and when the sintered body element 4 is fixed and the electrode is formed. FIG. In FIG. 6, the thermal spray method I shows the characteristics when the sintered body element 4 is rotated, and the thermal spray method J shows the characteristics when the sintered body element 4 is fixed.
[0037]
As apparent from FIG. 6, in the method in which the sintered body element 4 is rotated and the electrode is formed by the trajectory of the spray gun 8, the spraying is advanced from the outer peripheral portion and the spraying is terminated at the central portion. For this reason, since the portion outside the center of the spray particles that are radially emitted is not directly sprayed onto the side surface of the sintered body 4, no gap is formed in the electrode at the outer peripheral portion of the end surface 2 of the sintered body element 4. However, when the sintered body element 4 is fixed and thermal spraying is performed, it is very difficult to move the spray gun 8 in accordance with the area of the sintered body element 4, and it moves in a spiral or square shape. There is a need to. Therefore, the thermal spray particles sprayed over the outer peripheral portion of the end face 2 of the sintered body element 4 adhere to the side surface of the sintered body element 4.
[0038]
In general, when the area of the electrode 3 of the sintered body element 4 is larger than the sprayed area released from the spray gun 8, it is necessary to spray the spray gun by moving the area of the electrode 3 of the sintered body element 4. However, when the thermal spray gun 8 is moved at a high speed, connection lines such as aluminum wires, power wires, and signal wires are obstructive and cannot operate properly. Further, the robot for moving the heavy spray gun 8 at a high speed becomes larger and requires a large installation space. Therefore, the installation space can be reduced by making the operating distance of the thermal spray gun 8 as small as possible, rotating the sintered body element 4 and performing thermal spraying along the trajectory. When spraying is performed by rotating the sintered body element 4, excellent discharge energy resistance is shown, but when the sintered body element 4 is fixed and spraying is performed, the discharge energy resistance is low.
[0039]
In FIG. 6, only the discharge energy withstand test results are shown, but with regard to the electric charge life characteristics, good characteristics were obtained in the voltage non-linear resistor which was sprayed by rotating the sintered body element 4.
[0040]
Thus, in forming the electrode of the voltage non-linear resistor, the sintered body element 4 is rotated and sprayed along the trajectory of the thermal spray gun 8, whereby the voltage non-linear resistance having excellent discharge energy withstand characteristics and electric charging life characteristics. The body is obtained.
[0041]
FIG. 7 is a view showing an example in which an adsorption jig is installed at the lower portion to prevent the dropout when the sintered body element 4 is rotated. In the case where the rotating mechanism of the sintered body element 4 is provided, since the thermal spraying is performed while the sintered body element 4 is rotated, the sintered body element 4 is detached from the pedestal 9 by the centrifugal force, and the electrode is attached to the side surface. There is a risk that it cannot be formed. For this reason, the sintered body element 4 is attracted to the base 9 and is rotated to prevent the sintered body element 4 from falling off and to form a stable electrode. As an example, an O-ring 10 is provided in accordance with the shape of the sintered body element 4 and is adsorbed by a vacuum device (not shown).
[0042]
Next, in FIG. 8, the wire feed K is manufactured by causing the servo motor that feeds the aluminum wire in aluminum spraying to slow start at the start of spraying, returning 3 mm at the end of spraying, and forming an electrode. The sintered body element 4 and the line feed L are respectively diagrams showing the characteristics in the case of the sintered body element 4 in which the electrode is formed without controlling the line feed.
[0043]
As is apparent from FIG. 8, it can be seen that the sintered body element 4 in which the wire feed control at the time of thermal spraying is performed and the electrode 3 is formed exhibits excellent discharge energy withstand characteristics. In the wire feed K, a voltage is instantaneously applied at the start of spraying, and sputtering is likely to occur when short-circuiting is performed. Sputtering is a process in which a voltage is applied and the aluminum wire is melted by contact, but at that time, the aluminum wire is thermally sprayed without being completely melted. Therefore, in order to make it difficult for spatter to occur, it is slow-started (slow feed), and the aluminum wire is gradually brought into contact. In addition, when spraying is finished, it is surely performed by returning 3 mm. In the line feed L, spatter is generated without the control of the line feed, an aluminum thickness of about 1 mm is placed on the electrode thickness of 100 μm, and a gap occurs between the electrodes during the discharge withstand energy test, Current concentration occurs and the withstand characteristics are lowered. In FIG. 9, only the discharge energy withstand test results are shown, but good characteristics were also obtained in the voltage nonlinear resistor in which the line feed was controlled during electrode formation.
[0044]
As described above, in the formation of the electrode of the sintered body element 4 constituting the voltage non-linear resistor, by controlling the wire feed, a voltage non-linear resistor having excellent discharge energy withstand characteristics and charging life characteristics can be obtained. It is done.
[0045]
【The invention's effect】
As described above, according to the present invention, thermal spraying is performed so that a ring-shaped electrode non-formation portion is formed along the outer peripheral portion of the end face on the end face of the disk-shaped sintered body element mainly composed of zinc oxide. In the method of manufacturing a voltage non-linear resistor in which electrodes are formed by the above method, the end face of the sintered body element is sprayed at a substantially right angle with respect to the end face without masking. Prevents the electrode material from adhering to the high-resistance layer, maximizes the electrode formation area, achieves excellent discharge energy withstand characteristics and charging life characteristics under normal use conditions, and switching surge and lightning impulse And a method for manufacturing a voltage non-linear resistor with improved protection against surges such as overvoltage. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a voltage nonlinear resistor manufactured according to an embodiment of the present invention.
FIG. 2 is a graph showing discharge energy resistance characteristics of a voltage nonlinear resistor according to the present invention and a conventional voltage nonlinear resistor.
FIG. 3 is a graph showing a voltage-life characteristic of a voltage nonlinear resistor according to the present invention and a conventional voltage nonlinear resistor.
FIG. 4 is a graph showing the relationship between the angle of a thermal spray gun forming an electrode and the discharge energy withstand characteristics.
FIG. 5 is a graph showing discharge energy withstand characteristics in which electrodes are formed by changing spray particles discharged from a spray gun and a dust collection direction.
FIG. 6 is a graph showing the relationship between the thermal spray trajectory and the discharge energy withstand characteristics.
FIG. 7 is a cross-sectional view of a suction jig used in the manufacturing method of the present invention.
FIG. 8 is a graph showing the relationship between line feed control and discharge energy withstand characteristics.
FIG. 9 is a cross-sectional view showing a conventional method for manufacturing a voltage nonlinear resistor by masking.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Disk 2, 2 End face, 3 ... Electrode, 4 ... Sintered body element, 5 ... Side high resistance layer, 6 ... Electrode non-formation part , 7 ... Masking , 8 ... Thermal spray gun, 9 ... Base, 10 ... O ring.

Claims (1)

酸化亜鉛を主成分とする円板状の焼結体素子の端面に、端面の外周部に沿ってリング状の電極非形成部を形成するように溶射により電極を形成する際に、焼結体素子の端面にマスキングを施さずに端面に対してほぼ直角に溶射し、溶射方向とヒューム等を集塵する集塵方向とを同一方向にした電圧非直線抵抗体の製造方法において、
焼結体素子を回転させながら焼結体素子の端面の外周より中心部に向かって溶射を進めていくとともに、アーク溶射に使用するアルミ線を送るサーボモーターの動作を溶射開始時はスロースタートさせて、溶射終了時、前記アルミ線を3mm戻して電極を形成することを特徴とする電圧非直線抵抗体の製造方法。
When forming an electrode by thermal spraying so as to form a ring-shaped electrode non-formation part along the outer peripheral part of the end face on the end face of the disk-like sintered body element mainly composed of zinc oxide , the sintered body In the method of manufacturing a voltage non-linear resistor in which the end face of the element is sprayed almost at right angles to the end face without masking, and the spraying direction and the dust collecting direction for collecting fume and the like are in the same direction ,
While rotating the sintered body element, the thermal spraying proceeds from the outer periphery of the end face of the sintered body element toward the center, and the servo motor that sends the aluminum wire used for arc spraying is started slowly at the start of spraying. Then, at the end of spraying, the electrode is formed by returning the aluminum wire by 3 mm, and the method for producing a voltage non-linear resistor.
JP2002233450A 2002-08-09 2002-08-09 Method for manufacturing voltage nonlinear resistor Expired - Lifetime JP4218935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233450A JP4218935B2 (en) 2002-08-09 2002-08-09 Method for manufacturing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233450A JP4218935B2 (en) 2002-08-09 2002-08-09 Method for manufacturing voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JP2004079561A JP2004079561A (en) 2004-03-11
JP4218935B2 true JP4218935B2 (en) 2009-02-04

Family

ID=32018578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233450A Expired - Lifetime JP4218935B2 (en) 2002-08-09 2002-08-09 Method for manufacturing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP4218935B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203733541U (en) * 2013-12-24 2014-07-23 爱普科斯公司 Rheostat device

Also Published As

Publication number Publication date
JP2004079561A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US7095310B2 (en) Nonlinear resistor and method of manufacturing the same
JP4218935B2 (en) Method for manufacturing voltage nonlinear resistor
US6163245A (en) Nonlinear resistor with electrodes formed by plasma spraying
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JP2020092105A (en) Voltage nonlinear resistor
JP2000182808A (en) Nonlinear resistance member
JPH07106108A (en) Nonlinear resistor
JP2000182807A (en) Nonlinear resistance member
JP2003229302A (en) Voltage nonlinear resistor
JP2002217005A (en) Nonlinear resistor and its manufacturing method
JPS63114103A (en) Manufacture of nonlinear resistor
JP2001217104A (en) Nonlinear resistor
JPS62102502A (en) Manufacture of nonlinear resistance element
JPH0574921B2 (en)
JP2002289409A (en) Ceramic element, its manufacturing method, and lightening arrestor using the element
JPH08124717A (en) Nonlinear resistor
JPH10289807A (en) Functional ceramic element
JP2000252105A (en) Ceramics element and formation of material layer thereof
JP2001052907A (en) Ceramic element and manufacturing method
JPH08264305A (en) Non-linear resistor
JPH07130506A (en) Manufacture of resisting body nonlinear in voltage
JPH0574922B2 (en)
JPH0927404A (en) Nonlinear resistor, and life evaluation thereof
CN117497267A (en) Zinc oxide high-gradient nonlinear resistor and preparation method thereof
JPS63114104A (en) Manufacture of nonlinear resistor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4218935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term