JP4218669B2 - Manufacturing workplace evaluation method - Google Patents

Manufacturing workplace evaluation method Download PDF

Info

Publication number
JP4218669B2
JP4218669B2 JP2005255824A JP2005255824A JP4218669B2 JP 4218669 B2 JP4218669 B2 JP 4218669B2 JP 2005255824 A JP2005255824 A JP 2005255824A JP 2005255824 A JP2005255824 A JP 2005255824A JP 4218669 B2 JP4218669 B2 JP 4218669B2
Authority
JP
Japan
Prior art keywords
workplace
defect
evaluation
manufacturing
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005255824A
Other languages
Japanese (ja)
Other versions
JP2006073014A (en
Inventor
辰哉 鈴木
敏二郎 大橋
正威 宮川
匡昭 浅野
▲たかし▼ 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005255824A priority Critical patent/JP4218669B2/en
Publication of JP2006073014A publication Critical patent/JP2006073014A/en
Application granted granted Critical
Publication of JP4218669B2 publication Critical patent/JP4218669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Description

本発明は、家電品、OA製品など、部品を組立または加工して製造する製造職場における製造職場の不良の起こし易さ(実力)と、職場環境のうち不良発生の原因となる不良原因項目の改善余地を評価する製造職場の評価方法に関する。   The present invention relates to the ease of occurrence of defects in manufacturing workplaces (capabilities) in manufacturing workplaces that are manufactured by assembling or processing parts such as home appliances and OA products, and the causes of defects that cause defects in the workplace environment. The present invention relates to a manufacturing workplace evaluation method for evaluating room for improvement.

従来技術は、実際に起こった不良現象や故障現象から、その発生原因を推定する技術が主である。このように製造段階で発生した不良現象内容から不良の原因を推定する技術の公知例としては、特許文献1や特許文献2がある。特許文献1には、ワークの検査を行った後の適・不適項目の組合せに対応させて不良原因を設定し、これら適・不適項目の組合せと不良原因との相関度合を、不良原因の手直しの結果に基いて評価し、適・不適項目の組合せに対応する不良原因のうち相関度合を基準に不良原因を推定して不良原因を手直しによって解消させるワークの手直し方法が記載されている。従来技術2には、電子部品を実装するための印刷・装着・半田付けの各工程において入力された品質結果をプリント基板別に比較し、各工程間に関連して不良が起こる可能性を示す品質不良関連規則を参照して最終不良に対する各工程の影響度を算出して予測する実装工程不良要因分析方法が記載されている。   The conventional technique is mainly a technique for estimating the cause of occurrence from a defect phenomenon or failure phenomenon that has actually occurred. Patent Documents 1 and 2 are known examples of techniques for estimating the cause of a defect from the contents of a defect phenomenon that has occurred in the manufacturing stage. In Patent Document 1, a cause of failure is set in correspondence with a combination of appropriate and inappropriate items after the workpiece is inspected, and the degree of correlation between the combination of appropriate and inappropriate items and the cause of the failure is corrected. A work reworking method is described in which the cause is evaluated based on the result of the above, and the cause of the failure is estimated based on the degree of correlation among the failure causes corresponding to the combination of appropriate and inappropriate items, and the cause of the failure is resolved by reworking. Prior art 2 compares the quality results input in each process of printing, mounting, and soldering for mounting electronic components by printed circuit board, and shows the possibility that defects may occur in relation to each process. There is described a mounting process failure factor analysis method for calculating and predicting the degree of influence of each process on the final failure with reference to failure related rules.

また、同様の手法を故障診断に用いた例としては、特許文献3や特許文献4がある。特許文献3には、各不具合事象ごとに、不具合事象の状況を表わす現象群とその不具合事象を発生させる原因群を対比して、各現象ごとに関連する原因に対する関連の度合を示す関連値を定めた関連表を作成し、不具合事象に付随して発生した現象を求め、関連表の各原因について、求めた現象に対する関連値に所定の方法で重み付けした値を積算した積算値を算出し、この積算値の最大となる原因を不具合現象の原因とする不具合事象の原因推定方法が記載されている。従来技術4には、故障原因と不具合現象とを一義的に記述した知識データを利用して不具合現象を探究して仮説を生成し、次いで不具合現象と故障原因との因果関係を理論的に分析して構成した知識データを利用して、上記仮説を検証する故障診断装置が記載されている。   Examples of using the same method for failure diagnosis include Patent Document 3 and Patent Document 4. In Patent Document 3, for each malfunction event, a phenomenon group representing the situation of the malfunction event is compared with a cause group that causes the malfunction event, and a related value indicating the degree of relation to the cause associated with each phenomenon is obtained. Create a defined relationship table, determine the phenomenon that occurred in association with the failure event, calculate the integrated value of each cause of the relationship table by integrating the related value for the determined phenomenon, weighted in a predetermined way, There is described a cause estimation method of a failure event in which the cause of the maximum integrated value is the cause of the failure phenomenon. Prior Art 4 uses knowledge data that uniquely describes the cause of failure and the failure phenomenon, searches for the failure phenomenon, generates a hypothesis, and then theoretically analyzes the causal relationship between the failure phenomenon and the cause of failure. A failure diagnosis apparatus that verifies the hypothesis using knowledge data configured as described above is described.

上記特許文献1、2、3、4は、いずれも、不良現象や故障現象が起きた時に、実際に起きた現象の内容を基に、その手直しや修理を迅速に的確に行うためのものであり、過去の事象に基づいて直接的原因を推定する技術である。   The above Patent Documents 1, 2, 3, and 4 are all for quickly and accurately performing repairs and repairs based on the contents of the phenomena that actually occurred when a failure or failure occurs. There is a technique for estimating the direct cause based on past events.

一方、実際に不良や故障が起きる前に、製造する製品の品質評価を行う手法としては、主に製品の設計段階で用いられるFMEA(Failure Mode Effect Analysis)(非特許文献1に記載されている。)が知られている。これは評価者自身が「製品を構成する部品個々の起き得る故障現象」を推定し、各部品に対する故障現象を表形式にまとめるものである。これにより、評価者自身が「それがおきた場合、製品にはどのような影響を及ぼすか」を推定をすることが可能となり、抜けのない品質設計が可能となる。   On the other hand, FMEA (Failure Mode Effect Analysis) mainly used in the product design stage (described in Non-Patent Document 1) is a method for evaluating the quality of a product to be manufactured before a defect or failure actually occurs. .)It has been known. In this method, the evaluator himself estimates “a failure phenomenon that can occur in each part of the product” and summarizes the failure phenomenon for each part in a table format. As a result, the evaluator himself can estimate “what effect will the product have when it occurs”, and quality design without omission becomes possible.

また、FMECA(Failure Mode、Effect & Criticalty Analysis)のように、FMEAにおいて、評価者が推定した個々の部品の故障現象の起きる確率(故障率)を与え、更にその個々の部品の故障によって起こると推定される製品故障の重要度を与え、部品個々の不良や故障の重要度を推察する手法もある。   Also, in FMEA (Failure Mode, Effect & Criticalty Analysis), FMEA gives the probability (failure rate) of failure phenomenon of individual parts estimated by the evaluator, and further, it is caused by failure of the individual parts There is also a method for inferring the importance of an estimated product failure and inferring the importance of each component failure or failure.

また、工場の製造する製品の品質の高さのレベルを評価するものとしては、一般に外注工場審査のために種々の企業で作成している外注工場審査チェックシートが知られている。その他、工場の生産性を評価するものとして、「工場診断装置」(特許文献5)や、「実装工場診断システム」(特許文献6)などが知られている。
特開平1-167631号公報 特開平6-196900号公報 特開平7-13617号公報 特開平7-271587号公報 特開平9−62309号公報 特開平10−79599号公報 日科技連信頼性工学シリーズ7「FMEA、FTAの活用」
Further, as a method for evaluating the high quality level of products manufactured by factories, subcontract factory inspection check sheets prepared by various companies for the purpose of subcontract factory inspection are generally known. In addition, “factory diagnostic apparatus” (Patent Document 5), “mounting factory diagnostic system” (Patent Document 6), and the like are known as methods for evaluating the productivity of a factory.
Japanese Patent Laid-Open No. 1-167631 JP-A-6-196900 JP-A-7-13617 Japanese Patent Laid-Open No. 7-271587 JP-A-9-62309 JP 10-79599 A Nikkan Technology Reliability Engineering Series 7 “Utilization of FMEA and FTA”

しかし、上記した過去の事象に基づいて直接的原因を推定する技術、FMEAおよびFMECAは、いずれも実際に起きうる故障現象の大部分を把握する必要があるため、その製品の有する不良となるポテンシャルを精度良く推定することは出来ない。   However, the techniques for estimating the direct cause based on the above-mentioned past events, FMEA and FMECA, both need to grasp most of the failure phenomena that can actually occur, so the potential of the product has defects. Cannot be estimated with high accuracy.

従って、現状では検討漏れによる製造不良が多数起き、品質低下の一要因となっている。   Therefore, at present, many manufacturing defects due to omission of examination occur, which is a factor of quality deterioration.

また、外注工場審査チェックシートでは、評価対象の工場の開発、製造、品質保証などの体制やシステムの良さを評価するものではあるが、その評価結果から該評価対象の工場の不良発生度を定量的に評価することはできない。また、上記工場の生産性を評価する従来技術5、6では、製造職場の有する不良発生度合いを評価することはできない。   In addition, the subcontracting factory examination check sheet evaluates the quality of the system and system for development, manufacturing, quality assurance, etc. of the factory to be evaluated, and quantifies the degree of defect occurrence at the factory to be evaluated from the evaluation results. Cannot be evaluated. In addition, the conventional techniques 5 and 6 for evaluating the productivity of the factory cannot evaluate the degree of occurrence of defects in the manufacturing workplace.

このように、製造職場に関するいずれの従来技術も製造職場の不良発生度を定量的に評価することに対して十分ではない。例えば、二つの工場の評価をして、どちらの工場がどれだけ不良発生度が高いかといったことを評価するのは難しい。   Thus, none of the conventional techniques related to the manufacturing workplace is sufficient for quantitatively evaluating the degree of occurrence of defects in the manufacturing workplace. For example, it is difficult to evaluate two factories and evaluate which factor has a high degree of defect occurrence.

本発明の目的は、上記課題を解決すべく、設計段階や製造工程計画段階等の製造前の段階で、その製品を製造する予定の製造職場(工場も含む)において組立または加工等の製造作業を行った場合における製造職場の不良の起こし易さを評価推定して、その製造職場において不良発生要因になりうると予測され、かつ事前に対策することによって比較的に効果が大きいと見込める評価カテゴリ、および職場条件不良影響項目を本発明の方法を実装したシステムのユーザが選択することを支援するための製造職場の評価方法を提供することにある。 An object of the present invention is to solve the above-described problems by performing manufacturing work such as assembly or processing in a manufacturing workplace (including a factory) where the product is to be manufactured at a pre-manufacturing stage such as a design stage or a manufacturing process planning stage. Evaluation category that is estimated to be likely to cause defects in the manufacturing workplace by estimating the likelihood of occurrence of defects in the manufacturing workplace when performing the inspection, and is expected to be relatively effective by taking countermeasures in advance It is another object of the present invention to provide a manufacturing workplace evaluation method for assisting a user of a system that implements the method of the present invention to select a work condition bad influence item .

上記目的を達成するために、本発明は、記憶手段と入力手段と評価手段と出力手段とを備えた評価装置を用いて評価対象の製造職場における不良の起こし易さを評価して、改善余地の大きい不良原因項目を提示する製造職場の評価方法を提供する。すなわち、予め設定された作業者、製造設備、製造条件、製造物理的環境、およびマネージメントからなる評価カテゴリに関する複数の職場条件不良影響項目と、該各職場条件不良影響項目について少なくとも基準職場水準レベルにおける基準製造作業に対する不良発生抑制力となる不良作り込み係数、不良発生時対処力となる不良対処時間係数、および不良検出力となる不良摘出度係数を設定し、並びに前記各職場条件不良影響項目における項目間相対的重み係数を設定した職場評価用データベースを予め作成して前記記憶手段に記憶しておく職場データベース記憶過程と、前記入力手段を用いて、評価対象の製造職場における前記各職場条件不良影響項目についての少なくとも職場水準レベルを入力する職場水準入力過程と、前記評価手段を用いて、前記職場評価用データベースにおける少なくとも基準職場水準レベルにおける基準製造作業に対する不良作り込み係数、不良対処時間係数、および不良摘出度係数の各設定値を基に、前記職場水準入力過程で入力された各職場条件不良影響項目についての職場水準レベルに対応させ、更に前記各職場条件不良影響項目における項目間相対的重み係数を掛算して不良作り込み度の指標、不良対処時間度合の指標、及び不良摘出度の指標の各々を算出し、前記職場条件不良影響項目毎に、不良作り込み度の指標、不良対処時間度合の指標、及び不良摘出度の指標の合計である不良発生度と、理想職場の不良発生度との差分により改善余地の指標を算出して評価対象の製造職場における各職場条件不良影響項目の不良発生度低減効果の大きさを評価する評価過程と、前記出力手段を用いて、前記改善余地の大きい順に、複数の前記職場条件不良影響項目を提示して取り組むべき対策決定を支援する提示過程とを有することを特徴とする製造職場の評価方法である。 In order to achieve the above object, the present invention evaluates the ease of occurrence of defects in a manufacturing workplace to be evaluated using an evaluation apparatus including a storage means, an input means, an evaluation means, and an output means, and there is room for improvement. Provide an evaluation method for manufacturing workplaces that presents large cause-of-failure items. That is, a plurality of workplace condition defect effect items related to an evaluation category consisting of preset workers, production equipment, production conditions, production physical environment, and management, and each workplace condition defect effect item at least at the standard workplace level level A defect creation coefficient that is a defect generation suppression ability for a standard manufacturing operation, a defect handling time coefficient that is a countermeasure capacity when a defect occurs, and a defect extraction degree coefficient that is a defect detection capability are set, and the above-mentioned workplace condition defect influence items A workplace database storage process in which a workplace evaluation database in which a relative weighting coefficient between items is set is created in advance and stored in the storage means, and the workplace conditions are poor in the manufacturing workplace to be evaluated using the input means. The workplace level input process for inputting at least the workplace level for the impact item, and the evaluation method Is input in the workplace level input process based on the set values of the defect creation coefficient, defect handling time coefficient, and defect extraction degree coefficient for the standard manufacturing work at least at the standard workplace level in the workplace evaluation database. Corresponding to the workplace level level for each of the workplace condition defect affecting items, and by multiplying the relative weight coefficient between items in each workplace condition defect affecting item, an index of the degree of defect creation, an index of the degree of defect handling time, And the degree of defect extraction, and for each workplace condition defect influence item, a defect occurrence degree that is a sum of a defect creation degree index, a defect handling time degree index, and a defect extraction degree index; An index of room for improvement is calculated based on the difference from the degree of failure occurrence in the ideal workplace, and the effect of reducing the degree of failure occurrence in each workplace condition failure effect item in the manufacturing workplace to be evaluated. An evaluation process for evaluating the severity, and a presentation process for supporting the determination of measures to be addressed by presenting the plurality of work condition defect effect items in the descending order of the room for improvement using the output means. It is a manufacturing workplace evaluation method.

また、本発明は、前記職場データベース記憶過程において、前記職場評価用データベースには更に各職場条件不良影響項目に対応させて、職場水準レベルが理想職場には達しないレベルにおいて不良発生度を低減させるための対策案を示すアドバイス、またはコメントの情報を予め作成して記憶させておき、前記出力手段による提示過程において、前記各職場条件不良影響項目に添付して、前記職場評価用データベースから読み出した不良発生度を低減させるための対策案を示すアドバイス、またはコメントを合わせて提示することを特徴とする。 Further, in the workplace database storing process, the workplace evaluation database further corresponds to each workplace condition bad influence item in the workplace evaluation database, and reduces the degree of failure occurrence at a level where the workplace level does not reach the ideal workplace. Information indicating advice or a comment indicating a countermeasure plan is prepared and stored in advance, and in the presentation process by the output means, the information is read from the workplace evaluation database, attached to each of the work condition adverse effect items. It is characterized by presenting advice or a comment indicating a countermeasure plan for reducing the degree of defect occurrence.

また、本発明は、記憶手段と入力手段と評価手段と出力手段とを備えた評価装置を用いて評価対象の製造職場における不良の起こし易さを評価推定する製造職場の評価方法を提供する。すなわち、予め設定された作業者、製造設備、製造条件、製造物理的環境、およびマネージメントからなる評価カテゴリに関する複数の職場条件不良影響項目と、該各職場条件不良影響項目について少なくとも基準職場水準レベルにおける基準製造作業に対する不良発生抑制力となる不良作り込み係数、不良発生時対処力となる不良対処時間係数、および不良検出力となる不良摘出度係数を設定し、並びに前記各職場条件不良影響項目における項目間相対的重み係数を設定した職場評価用データベースを予め作成して前記記憶手段に記憶しておく職場データベース記憶過程と、前記入力手段を用いて、評価対象の製造職場における前記各職場条件不良影響項目についての少なくとも職場水準レベルを入力する職場水準入力過程と、前記評価手段を用いて、前記職場評価用データベースにおける少なくとも基準職場水準レベルにおける基準製造作業に対する不良作り込み係数、不良対処時間係数、および不良摘出度係数の各設定値を基に、前記職場水準入力過程で入力された各職場条件不良影響項目についての職場水準レベルに対応させ、更に前記各職場条件不良影響項目における項目間相対的重み係数を掛算して不良作り込み度の指標、不良対処時間度合の指標、及び不良摘出度の指標の各々を算出し、前記評価カテゴリ毎に、不良作り込み度の指標の合計、不良対処時間度合の指標の合計、および不良摘出度の指標の合計、並びにそれらの合計を算出して、評価カテゴリ毎の評価対象の製造職場における不良の起こし易さを評価する職場評価過程と、前記出力手段を用いて、評価カテゴリ毎に不良発生度を提示して取り組むべき対策決定を支援する提示過程とを有することを特徴とする製造職場の評価方法である。 The present invention also provides a manufacturing workplace evaluation method that evaluates and estimates the likelihood of occurrence of defects in a manufacturing workplace to be evaluated using an evaluation device that includes a storage means, an input means, an evaluation means, and an output means. That is, a plurality of workplace condition defect effect items related to an evaluation category consisting of preset workers, production equipment, production conditions, production physical environment, and management, and each workplace condition defect effect item at least at the standard workplace level level A defect creation coefficient that is a defect generation suppression ability for a standard manufacturing operation, a defect handling time coefficient that is a countermeasure capacity when a defect occurs, and a defect extraction degree coefficient that is a defect detection capability are set, and the above-mentioned workplace condition defect influence items A workplace database storage process in which a workplace evaluation database in which a relative weighting coefficient between items is set is created in advance and stored in the storage means, and the workplace conditions are poor in the manufacturing workplace to be evaluated using the input means. The workplace level input process for inputting at least the workplace level for the impact item, and the evaluation method Is input in the workplace level input process based on the set values of the defect creation coefficient, defect handling time coefficient, and defect extraction degree coefficient for the standard manufacturing work at least at the standard workplace level in the workplace evaluation database. Corresponding to the workplace level level for each of the workplace condition defect affecting items, and by multiplying the relative weight coefficient between items in each workplace condition defect affecting item, an index of the degree of defect creation, an index of the degree of defect handling time, And for each of the evaluation categories, the sum of the indicators of the degree of defect creation, the sum of the indicators of the degree of defect handling time, the sum of the indicators of the degree of defect extraction, and the total thereof are calculated. Using the output means, a workplace evaluation process for calculating and evaluating the likelihood of occurrence of defects in the manufacturing workplace subject to evaluation for each evaluation category, An evaluation method of manufacturing workplace and having a presentation step of supporting the presentation to measures decided to tackle the failure of every categories.

以上説明したように、前記構成によれば、製品製造時の不良の発生度は、製品の製造構造条件と、該製品の製造を行う製造職場における職場条件によって決まることになる。   As described above, according to the above configuration, the degree of occurrence of defects during product manufacture is determined by the manufacturing structure conditions of the product and the workplace conditions in the manufacturing workplace where the product is manufactured.

特に、人間が組付または加工等の製造作業動作を確実に行えない確率(以下、不確実度と称す)に影響を与える因子に関する情報を基に、組立または加工等による不良率の推定値を算出することとした。人間が製造作業動作を確実に行えない確率(以下、不確実度と称す)に影響を与える因子とは、製品構造がもつ製造作業の難しさと、職場環境の大きく2種類の因子がある。   In particular, based on information on factors that affect the probability that humans cannot reliably perform manufacturing work operations such as assembly or processing (hereinafter referred to as uncertainty), estimate the defect rate estimated by assembly or processing. It was decided to calculate. Factors that affect the probability of humans not being able to reliably perform manufacturing work operations (hereinafter referred to as uncertainties) include two types of factors: difficulty of manufacturing work of the product structure and workplace environment.

そこで、本発明では、まず第一に、評価対象製品の構造条件によって、どの程度製品の不良率が高くなるかを、製品製造の際の製造作業の動作内容の情報と、製造対象の部品の性質に関する情報とを基に推定し、第二に、該製品を製造する職場の職場環境条件によって、どの程度製造不良率が高くなるかを、不良発生原因となる1以上の職場環境項目に関して該職場がどのような水準状態であるかを示す情報を基に推定し、更に、上記第一、および第二の推定結果を基に、製品を製造職場で製造したときの不良率を推定することとした。   Therefore, in the present invention, first of all, to what extent the defect rate of a product is increased depending on the structural condition of the evaluation target product, information on the operation content of the manufacturing operation at the time of product manufacture, and the part to be manufactured Secondly, the degree of the manufacturing defect rate is increased depending on the workplace environment conditions of the workplace where the product is manufactured, with respect to one or more workplace environment items causing the defect. Estimate based on information indicating what level the workplace is in, and also estimate the defect rate when the product is manufactured at the manufacturing workplace based on the first and second estimation results above. It was.

前記評価対象製品の構造条件によって、どの程度製造不良率が高くなるかを推定する方法は、具体的には、製造作業(組立の場合部品組付作業)の動作内容の情報と、部品の性質に関する情報とを基に製品不良率の推定値を算出することとした。   Specifically, a method for estimating how much the manufacturing defect rate is increased depending on the structural condition of the evaluation target product is specifically information on the operation content of the manufacturing operation (part assembly operation in the case of assembly), and the property of the part. The estimated value of the product defect rate was calculated based on the information regarding the product.

また、組立の場合、部品組付作業の動作内容を表現するために必要な動作種類を決定し(下移動動作、横移動動作、等;標準組付動作と称す)、該決定した標準組付動作毎に、予め定めた「ある作業者条件、ある部品条件、ある作業職場条件」(基準条件と称す)の下で該標準組付動作を行う場合にその標準組付動作を確実に行うことの出来ない確率の大小を示す数値(標準組付動作別不良率係数と称す)を設定することとした。また、評価対象をこの予め設定した標準組付動作要素の組み合わせで表現することで、ユーザインタフェースの使い勝手を向上させた。また、更に組立不良率の推定精度を高くするために、前記した部品組付作業の組付動作内容を表現した標準組付動作要素に加えて、その組付動作の不確実度に影響を与える部品(組付部品および被組付品)の性質を以下に示す部品条件補正因子で表現し、該表現された部品条件補正因子を基に組立不良率の推定値を算出する。すなわち、部品の持つ性質のうちで人間の行う組付作業動作の不確実度に影響を与える因子(以下、部品条件補正因子と称す)を決定し、該決定した各影響因子毎にその影響因子の組付動作への影響度合いを示す数値(以下、部品条件補正係数と称す)を決定しておき、組立不良率推定の対象の部品組付作業に関し、組付動作内容を前記標準組付動作の組み合わせで表現するのに加えて、上記予め設定した部品条件補正因子の中から当該の部品組付作業の部品の持つ性質に当てはまるものを選び出して表現する。   Also, in the case of assembly, the type of operation necessary to express the operation content of the part assembly work is determined (downward movement operation, lateral movement operation, etc .; referred to as standard assembly operation), and the determined standard assembly For each operation, when performing the standard assembling operation under the “predetermined worker conditions, certain parts conditions, certain work workplace conditions” (referred to as reference conditions), ensure that the standard assembling operation is performed. It was decided to set a numerical value (referred to as the defective rate coefficient by standard assembly operation) indicating the magnitude of the probability of failure. In addition, the usability of the user interface has been improved by expressing the evaluation target as a combination of the preset standard assembly operation elements. Further, in order to further increase the accuracy of estimation of the assembly failure rate, in addition to the standard assembly operation element expressing the assembly operation content of the component assembly operation described above, it affects the uncertainty of the assembly operation. The properties of the parts (the parts to be assembled and the parts to be assembled) are expressed by the following component condition correction factors, and an estimated value of the assembly failure rate is calculated based on the expressed component condition correction factors. That is, a factor (hereinafter referred to as a component condition correction factor) that affects the uncertainty of the assembly operation performed by humans among the properties of the component is determined, and the influence factor is determined for each determined influence factor. A numerical value (hereinafter referred to as a component condition correction coefficient) indicating the degree of influence on the assembly operation is determined, and the assembly operation content is related to the standard assembly operation with respect to the component assembly operation subject to assembly failure rate estimation. In addition to the above-described combination, the component condition correction factor is selected from the preset component condition correction factors and applied to the property of the component in the component assembly work.

本発明によれば、設計段階や製造工程計画段階等の製造前の段階で、その製品を製造する予定の製造職場(工場も含む)において組立または加工等の製造作業を行った場合における製造職場の不良の起こし易さを評価推定して、その製造職場において一連の製造作業によって製造される製品の作業不良率等の品質を高精度で評価推定することができ、その結果、設計・製造・品質保証の各部門で不良発生防止・不良摘出活動が的確にでき、出荷製品の信頼性を大幅に高めることができる効果を奏する。   According to the present invention, in the pre-manufacturing stage such as the design stage or the manufacturing process planning stage, the manufacturing workplace when the manufacturing work such as assembly or processing is performed in the manufacturing workplace (including the factory) where the product is to be manufactured. It is possible to evaluate and estimate the easiness of occurrence of defects, and to evaluate and estimate the quality of work defects, etc. of products manufactured by a series of manufacturing operations at the manufacturing workplace with high accuracy. Each department of quality assurance can accurately prevent and detect defects, and can greatly improve the reliability of shipped products.

また、本発明によれば、製品設計段階、製造工程計画段階、等の製品生産前に、その製品の製造作業毎に不良率の推定値を高精度に推定できるので、不良率係数の高い製造作業を容易に摘出でき、その結果、それらを改良を施すことで、効率良く効果的に製品の不良率を低減でき、信頼性の高い製品設計、製造が可能となる。   In addition, according to the present invention, since the estimated value of the defect rate can be estimated with high accuracy for each manufacturing operation of the product before product production at the product design stage, the manufacturing process planning stage, etc., the production with a high defect rate coefficient The work can be easily extracted, and as a result, by improving them, it is possible to efficiently and effectively reduce the defect rate of the product, and it is possible to design and manufacture the product with high reliability.

また、本発明によれば、設計段階や製造工程計画段階等の製造前の段階で、その製品を製造する予定の製造職場(工場も含む)において組立等の製造作業を行った場合における製造職場の不良の起こし易さを高い精度で評価推定することができ、予め製造職場の改善を図ることができる効果を奏する。   In addition, according to the present invention, a manufacturing workplace in the case where manufacturing work such as assembly is performed in a manufacturing workplace (including a factory) where the product is to be manufactured at a pre-production stage such as a design stage or a manufacturing process planning stage. It is possible to evaluate and estimate the easiness of occurrence of defects with high accuracy and to improve the manufacturing workplace in advance.

以下、本発明に係る製造職場の評価の実施の形態について図面を用いて説明する。
本発明に係る製造職場の評価手法を用いて定量評価することによって、不良の実績データが無くとも職場の不良の起こし易さ(不良発生度:不良発生率)を推定できることにある。即ち、本発明は、製造職場の評価手法を用いて定量評価すれば、不良の実績データとほぼ一致することを見出したことにある。
Embodiments of manufacturing workplace evaluation according to the present invention will be described below with reference to the drawings.
By quantitatively evaluating using the manufacturing workplace evaluation method according to the present invention, it is possible to estimate the ease of occurrence of a failure in the workplace (defect occurrence rate: defect occurrence rate) even without actual defect data. In other words, the present invention has found that if quantitative evaluation is performed using an evaluation method in a manufacturing workplace, it substantially matches the actual result data of defects.

製造職場の不良起こし易さ(不良発生度)、即ち製造職場の実力としては、[不良発生抑制力]×[不良発生時対処力]×[不良検出力]で表わすことができる。   Ease of occurrence of defects in the manufacturing workplace (defect occurrence level), that is, the capability of the manufacturing workplace, can be expressed as [defect generation suppression force] × [defect generation response capability] × [defect detection capability].

[不良発生抑制力]は、不良品を製造しないという職場の力であり、図1において不良作り込み度=(ab)/(AB)で表わすことが可能となる。[不良発生時対処力]は、不良品が発生してしまったとき、不良対処時間をできるだけ短くして不良品を発生しないようにする職場の力であり、図1において不良発生時から対処完了時までの間の不良対処時間度合で表わすことが可能となる。[不良検出力]は、製造職場からその後工程の職場に不良品を送り込まないように不良品を検出(摘出)できる職場の力であり、図1において不良摘出度=(ab')/(ab)で表わすことが可能となる。   [Defect occurrence suppression power] is a workplace power that does not produce defective products, and can be expressed as defect creation level = (ab) / (AB) in FIG. [Defect occurrence coping power] is the power of the workplace to prevent defective products by shortening the defect coping time as much as possible when a defective product occurs. It is possible to express it by the degree of defect handling time until the time. [Defect detection power] is the power of the workplace that can detect (extract) defective products so that defective products are not sent from the manufacturing workplace to the workplace in the subsequent process. In FIG. 1, the degree of defect extraction = (ab ′) / (ab ).

そこで、基準の製造作業(組立作業の場合、基準組立作業は例えば最も単純な下移動作業とする。)に対する[不良発生抑制力]×[不良発生時対処力]×[不良検出力]を算出することによって、製造職場の実力を評価することが可能となる。   Therefore, calculate [defect generation suppression force] × [defect generation response force] × [defect detection capability] for the standard manufacturing operation (in the case of assembly operation, the standard assembly operation is, for example, the simplest downward movement operation). By doing so, it becomes possible to evaluate the ability of the manufacturing workplace.

ところで、製造職場は、製造作業を行う作業者、該作業者を監督(マネージメント)する監督者、製造作業に使用する工具・治具や製造ライン設備等の製造設備、および作業者等が存在する気温、湿度、明るさ、騒音などの職場環境で形成される。従って、製造職場における不良発生要因(不良発生カテゴリ)としては、製造作業者に関するもの、製造設備に関するもの、製造ラインスピードや生産ロット数/単位時間等の製造条件に関するもの、製造物理的環境に関するもの、および製造職場のマネージメントに関するもの等に分類されることが我々の研究から明らかになった。   By the way, the manufacturing workplace includes a worker who performs manufacturing work, a supervisor who supervises (manages) the worker, manufacturing equipment such as tools and jigs used in the manufacturing work, manufacturing line equipment, and workers. Formed in the workplace environment such as temperature, humidity, brightness, noise. Therefore, the causes of defects in manufacturing workplaces (defect occurrence categories) are related to manufacturing workers, related to manufacturing equipment, related to manufacturing conditions such as manufacturing line speed and the number of production lots / unit time, and related to the manufacturing physical environment. It is clear from our research that it is classified into things related to manufacturing workplace management.

しかしながら、これら製造職場における不良発生要因と、[不良発生抑制力である不良作り込み度]、[不良発生時対処力である不良対処時間度合]、[不良検出力である不良摘出度]との対応を取ることができない。そこで、[不良発生抑制力である不良作り込み度]、[不良発生時対処力である不良対処時間度合]、[不良検出力である不良摘出度]との対応を取ることができる職場条件不良影響項目に細分類する必要がある。   However, the cause of defects in these manufacturing workplaces and [defect creation degree as defect generation suppression ability], [defect handling time degree as defect coping ability], and defect extraction degree as defect detection ability I cannot take action. Therefore, poor workplace conditions that can correspond to [defect creation degree as defect generation suppression ability], [defect handling time degree as defect handling ability], and defect extraction degree as defect detection ability It is necessary to subdivide into impact items.

製造作業者に関する細分類された職場条件不良影響項目(評価要素)としては、製造作業者の出勤率、製造作業者の性質や能力、製造作業者の作業熟練度、製造作業者への作業指示体制等がある。   The subordinately categorized work condition impact items (evaluation factors) for manufacturing workers include the attendance rate of manufacturing workers, the nature and capabilities of manufacturing workers, the level of work skills of manufacturing workers, and work instructions to manufacturing workers. There is a system.

製造設備に関する細分類された職場条件不良影響項目(評価要素)としては、設備の性能や信頼性、設備についての保守を含む管理体制、設備に対する担当者の決定度合等がある。   The sub-category workplace condition impact items (evaluation factors) related to manufacturing equipment include equipment performance and reliability, a management system including maintenance of equipment, and the degree of determination of persons in charge of equipment.

製造条件に関する細分類された職場条件不良影響項目(評価要素)としては、製造ラインスピード、生産ロット数/単位時間等の生産形態がある。   As the work condition defect influence items (evaluation factors) subdivided into the production conditions, there are production forms such as production line speed, number of production lots / unit time, and the like.

製造物理的環境に関する細分類された職場条件不良影響項目としては、気温、湿度、明るさ、騒音等の物理的環境がある。   The sub-category workplace condition influence items related to the manufacturing physical environment include physical environments such as temperature, humidity, brightness, and noise.

製造職場のマネージメントに関する細分類された職場条件不良影響項目(評価要素)としては、作業者への教育・訓練、作業者への作業指示・配分、不良発生時対処方法、作業チェック方法等がある。   The sub-category workplace condition defect impact items (evaluation factors) related to manufacturing workplace management include education / training for workers, work instructions / distribution to workers, countermeasures when defects occur, work check methods, etc. .

以上説明したように、細分類された職場条件不良影響項目(評価要素)を設定することによって、図2に矢印で示すように、[不良作り込み度]、[不良対処時間度合]、[不良摘出度]との相関をとることが可能となり、予め、これら各項目毎に、基準製造作業(組立作業の場合、基準組立作業は例えば最も単純な下移動作業とする。)に対する基準レベル(例えば最も不良を発生しない高いレベル)における不良発生度係数である不良作り込み係数、不良摘出度係数、不良対処時間係数、および項目間相対的重み係数からなる職場評価用データベース4a1(図3に示す。)を用意しておくことによって、製造職場の不良起こし易さ(不良発生度)、即ち製造職場の実力を推定することが可能となる。即ち、細分類された職場条件不良影響項目を設定することによって、これら各項目毎に、基準製造作業に対する[不良作り込み度]、[不良対処時間度合]、[不良摘出度]との相関を示す基準レベルにおける不良発生度係数である不良作り込み係数、不良摘出度係数、不良対処時間係数、および項目間相対的重み係数を決めておくことが可能となる。なお、項目間相対的重み係数は、不良発生度係数の中に盛り込むことも可能である。   As described above, by setting the work condition defect influence items (evaluation factors) subdivided, as shown by arrows in FIG. 2, [Defect creation degree], [Defect handling time degree], [Defect] It is possible to obtain a correlation with the degree of extraction], and for each of these items, a reference level (for example, in the case of assembly work, the reference assembly work is the simplest downward movement work) for each item in advance. The workplace evaluation database 4a1 (shown in FIG. 3) is composed of a defect creation coefficient, a defect extraction coefficient, a defect handling time coefficient, and an inter-item relative weight coefficient, which are defect occurrence coefficients at the highest level at which no defect occurs. ) Is prepared, it is possible to estimate the ease of occurrence of defects in the manufacturing workplace (defect occurrence degree), that is, the ability of the manufacturing workplace. That is, by setting the subordinately classified work condition defect influence items, for each of these items, the correlation with [Defect creation degree], [Defect handling time degree], and [Defect extraction degree] with respect to the standard manufacturing work is obtained. It is possible to determine a defect creation coefficient, a defect extraction coefficient, a defect handling time coefficient, and a relative weight coefficient between items, which are defect occurrence coefficients at the reference level shown. Note that the relative weight coefficient between items can be included in the defect occurrence coefficient.

なお、職場評価用データベースの作り方として、代表する製造職場において実測される職場条件不良影響項目毎のレベルに応じた基準製造作業に対する不良発生度度である不良作り込み度、不良摘出度、および不良対処時間度合を基に、職場条件不良影響項目毎の基準レベルにおける不良発生度係数である不良作り込み係数、不良摘出度係数、不良対処時間係数、および項目間相対的重み係数を算出すればよい。当然、代表する製造職場における不良起こし易さ(不良発生度)、即ち実力を示す不良発生度合計、および職場不良率も実測されることになる。   In addition, as a method for creating a database for workplace evaluation, the degree of defect creation, the degree of defect extraction, and the defect, which are the degree of occurrence of defects relative to the standard manufacturing work according to the level of each item affected by the bad condition of workplace conditions measured in the representative manufacturing workplace Based on the degree of coping time, it is only necessary to calculate the defect creation coefficient, defect extraction degree coefficient, defect coping time coefficient, and inter-item relative weight coefficient at the standard level for each item affected by defect in workplace conditions. . Naturally, the ease of occurrence of defects in the representative manufacturing workplace (defect occurrence rate), that is, the total defect occurrence rate indicating ability and the workplace defect rate are also measured.

このように、代表する製造職場における実測値に基いて職場評価用データベースを作って用意しておくことによって、様々な製造職場において職場条件不良影響項目毎のレベルを入力するだけでその製造職場における実力(不良発生度合計、および職場不良率)を評価推定することが可能となる。これも、代表する製造職場以外の複数の製造職場において実測値と推定値とがほぼ一致することが発明者等によって確認できているからである。   In this way, by creating and preparing a database for workplace evaluation based on actual measured values at representative manufacturing workplaces, it is possible to simply enter the level for each item affected by poor work condition conditions at various manufacturing workplaces. It is possible to estimate and evaluate the ability (total defect occurrence rate and workplace defect rate). This is also because the inventors have confirmed that the measured values and the estimated values almost coincide with each other in a plurality of manufacturing workplaces other than the representative manufacturing workplace.

以上説明したように、様々な製造職場において職場条件不良影響項目毎のレベルを入力するだけでその製造職場における実力(不良発生度合計、および職場不良率)を評価推定することが可能となり、この推定された製造職場の実力を図3に示す製品構造評価用データベース(作業対象評価用データベース)4b1内の職場定数(各製造職場の製造作業の信頼性の実力を示す指標)として登録することによって、特開平10−334151号公報に記載されているようにその製造職場において製造(例えば組立)する製品の不良率を推定することが可能となる。   As explained above, it is possible to evaluate and estimate the ability (total defect occurrence rate and workplace defect rate) in a manufacturing workplace simply by entering the level for each item affected by poor workplace conditions in various manufacturing workplaces. By registering the estimated capability of the manufacturing workplace as a workplace constant in the product structure evaluation database (work target evaluation database) 4b1 shown in FIG. 3 (an index indicating the reliability of the manufacturing operation reliability in each manufacturing workplace) As described in Japanese Patent Application Laid-Open No. 10-334151, it is possible to estimate a defective rate of a product manufactured (for example, assembled) in the manufacturing workplace.

次に、本発明に係る様々な製造職場において職場条件不良影響項目毎のレベルを入力するだけでその製造職場における実力(不良発生度合計、および職場不良率)を評価推定する方法の実施例について説明する。   Next, an embodiment of a method for evaluating and estimating the ability (total defect occurrence rate and workplace defect rate) in the manufacturing workplace simply by inputting the level for each item affected by the poor working condition in various manufacturing workplaces according to the present invention. explain.

図3は、本発明に係る製造職場における実力(不良発生度合計、および職場不良率)を評価推定する職場評価部10aおよびその製造職場における製品もしくは製品の部分品を製造する際の不良率を推定する製品評価部(製造作業対象評価部)10bの一実施例を示す構成図である。以下は、製造として組立して製品を製造する場合について説明する。なお、製造職場における製品もしくは製品の部分品を製造する際の不良率を推定する製品評価部10bについては、特開平10−334151号公報に記載されているため、簡単に説明する。   FIG. 3 shows the workplace evaluation unit 10a that evaluates and estimates the ability (total defect occurrence rate and workplace failure rate) in the manufacturing workplace according to the present invention, and the failure rate when manufacturing a product or a part of the product in the manufacturing workplace. It is a block diagram which shows one Example of the product evaluation part (manufacturing object evaluation part) 10b to estimate. In the following, a case where a product is manufactured by assembling as a manufacture will be described. The product evaluation unit 10b that estimates the defective rate when manufacturing a product or a part of the product in a manufacturing workplace is described in Japanese Patent Application Laid-Open No. 10-334151, and will be briefly described.

本発明に係る評価装置10は、バス35に接続されたCPU32、所定のプログラムを記憶したROM31、および各種データを一時記憶するRAM33等で構成される計算手段3と、該計算手段3にインターフェース34を介して接続された入力手段1、表示手段2、記憶装置4、および出力手段5とから構成される。入力手段1は、部品の組付作業時の組付動作の情報1b1、組付部品及び被組付品の性質情報1b2、チェック工程有無の情報1b3、および製造職場名の情報1b4、並びに製造職場を評価する時の製造職場条件情報1a等を入力することができるように、キーボードやマウスや記録媒体やネットワーク等から構成される。表示手段2は、入力手段1で各種の情報を入力するための入力用画面を表示したり、製造職場の評価結果(診断結果および改善アドバイス等)を表示したり、製品構造(製造作業対象)の評価結果(製品の不良率、不良現象、および製造コスト等)を表示したりすることができるように構成される。記憶装置4は、製造職場評価用データベース4a1、製造職場評価用計算プログラム4a2、および製造職場評価用入出力制御プログラム4a3を格納した製造職場評価用記憶部分4aと、製品構造評価用データベース4b1、製品構造評価用計算プログラム4b2、および製品構造評価用入出力制御プログラム4b3を格納した製品構造評価用記憶部分4bとで構成される。出力手段5は、製造職場の評価結果や製品構造の評価結果を出力できるように、表示手段2とは別に設けられた記録媒体やネットワーク等で構成される。更に、評価装置10は、設計システム20をネットワークまたは記録媒体等で接続し、製造する製品の設計データを入力できるように構成される。   The evaluation apparatus 10 according to the present invention includes a calculation unit 3 including a CPU 32 connected to a bus 35, a ROM 31 that stores predetermined programs, a RAM 33 that temporarily stores various data, and the like, and an interface 34 to the calculation unit 3. It is comprised from the input means 1, the display means 2, the memory | storage device 4, and the output means 5 which were connected through this. The input means 1 includes assembling operation information 1b1 at the time of assembling the parts, property information 1b2 of the assembling parts and the assembled parts, information 1b3 of presence / absence of the checking process, information 1b4 of the manufacturing workplace name, and manufacturing workplace It is composed of a keyboard, a mouse, a recording medium, a network, etc. so that manufacturing workplace condition information 1a and the like can be input. The display means 2 displays an input screen for inputting various types of information with the input means 1, displays the evaluation results (diagnosis results and improvement advice, etc.) of the manufacturing workplace, and the product structure (manufacturing work target) Evaluation results (product defect rate, defect phenomenon, manufacturing cost, etc.) can be displayed. The storage device 4 includes a manufacturing workplace evaluation storage section 4a storing a manufacturing workplace evaluation database 4a1, a manufacturing workplace evaluation calculation program 4a2, and a manufacturing workplace evaluation input / output control program 4a3, a product structure evaluation database 4b1, and a product. The structure evaluation calculation program 4b2 and the product structure evaluation storage section 4b that stores the product structure evaluation input / output control program 4b3. The output unit 5 includes a recording medium, a network, or the like provided separately from the display unit 2 so that the evaluation result of the manufacturing workplace and the evaluation result of the product structure can be output. Furthermore, the evaluation apparatus 10 is configured to connect the design system 20 via a network or a recording medium, and to input design data of a product to be manufactured.

以上説明したように、本発明に係る評価装置10は、機能的には、大きく、製造職場の有する不良発生度を評価処理する職場評価部10a(図5に示す。)と、製造職場で製造する製品の不良発生度評価をする製品評価部10b(図13に示す。)とから構成されている。ところで、職場評価部10aだけで、職場評価を行うことができるが、機能的に、製品評価部10bとつないで、職場評価部10aによる製造職場の不良発生度の評価情報と、製品評価部10bによる製品の不良発生度評価とを用いることによって、ある製品をある製造職場で製造したときの具体的な不良率を推定することが可能となる。   As described above, the evaluation apparatus 10 according to the present invention is functionally large and manufactured at the workplace evaluation unit 10a (shown in FIG. 5) that evaluates the degree of occurrence of defects in the manufacturing workplace. The product evaluation unit 10b (shown in FIG. 13) that evaluates the degree of occurrence of defects of the product to be manufactured. By the way, although workplace evaluation can be performed only by the workplace evaluation unit 10a, functionally connected to the product evaluation unit 10b, the evaluation information on the degree of occurrence of defects in the manufacturing workplace by the workplace evaluation unit 10a, and the product evaluation unit 10b It is possible to estimate a specific defect rate when a certain product is manufactured in a certain manufacturing workplace by using the defect occurrence evaluation of the product.

本発明に係る評価装置10は、上記した様々な製造職場条件の中から、特に不良発生度に影響のある条件項目(職場条件不良影響項目)を多数選定して、該選定した職場条件不良影響項目毎に、該職場条件の基準レベルに対して、製造職場の有する不良発生度にどの程度影響するのか、その影響する不良発生度の大きさを示す値(「不良作り込み係数」、「不良摘出度係数」、「不良対処時間係数」からなる「不良発生度係数」および「項目間相対的重み係数」)を定めて職場評価用データベース4a1として記憶しておき、そして、計算手段3は、入力手段1によって入力された様々な職場条件の中から多数の職場条件不良影響項目の各々に対する評価対象の職場はどの程度のレベルであるかの情報を基に、各々の職場条件不良影響項目の当該職場の基準レベルに対して設定されている「不良発生度係数」および「項目間相対的重み係数」を読み出して、該読み出した各「不良発生度係数」および「項目間相対的重み係数」により、多数の職場条件不良影響項目に亘る評価対象製造職場の不良発生度および不良率を計算し、記憶装置4の製品構造評価用データベース4b1の職場定数の領域に登録する。   The evaluation apparatus 10 according to the present invention selects a large number of condition items (work condition adverse effect items) that particularly affect the degree of occurrence of defects from the various manufacturing workplace conditions described above, and the selected adverse effects on the workplace conditions. For each item, a value indicating the degree of the degree of defect occurrence ("defect creation coefficient", "defect “Defect occurrence coefficient” and “Relative weight coefficient between items”) are defined and stored as the workplace evaluation database 4a1, and the calculation means 3 Based on the information on the level of the workplace to be evaluated for each of a number of work condition bad influence items among the various work conditions input by the input means 1, each work condition bad influence item The “defect occurrence coefficient” and “inter-item relative weight coefficient” set with respect to the reference level of the workplace are read out, and the read “defect occurrence coefficient” and “inter-item relative weight coefficient” Thus, the degree of failure occurrence and the failure rate of the evaluation target manufacturing workplace over a large number of workplace condition failure influence items are calculated and registered in the workplace constant area of the database 4b1 for product structure evaluation in the storage device 4.

予め、記憶装置4の職場評価用記憶部分4aの職場評価用データベース4a1としては、図4に示すように、製造職場における不良発生要因(不良発生カテゴリ)の情報60と、該不良発生要因を細分類した職場条件不良影響項目の内容を記述する情報(複数の職場水準(レベル)毎の職場状態を記述する情報63も含む)62、63と、各職場条件不良影響項目に対して設定された基準の製造作業に対する基準レベル(例えばレベル1)における「不良作り込み係数」65a、「不良摘出度係数」65b、「不良対処時間係数」65cからなる「不良発生度係数」65および「項目間相対的重み係数」64の情報と、製造職場における少なくとも不良発生要因毎、もしくは細分類した職場条件不良影響項目毎に不良発生度が著しく悪い場合の改善(対策)アドバイス等を情報66から構成されたものが用意されている。   As shown in FIG. 4, the workplace evaluation database 4a1 of the workplace evaluation storage portion 4a of the storage device 4 is preliminarily described with information 60 on the cause of failure (defect occurrence category) in the manufacturing workplace and the cause of failure. Information describing the contents of the classified work condition bad influence items (including information 63 describing work conditions for each of a plurality of work levels) 62, 63, and each work condition bad influence item are set “Defect occurrence coefficient” 65 and “Relative between items” which are composed of “Defect creation coefficient” 65 a, “Defect extraction degree coefficient” 65 b, “Defect handling time coefficient” 65 c at the reference level (for example, level 1) for the reference manufacturing operation When the degree of failure occurrence is extremely bad for each of the information on the "automatic weighting factor" 64 and at least for each cause of failure in the manufacturing workplace, or for each subordinate item of the workplace condition failure Improved one configured (measures) advice or the like from the information 66 is prepared.

図4に示す例では、評価カテゴリ1(製造作業者)に関する細分類された職場条件不良影響項目(No.1)としては、製造作業者の出勤率を示し、評価カテゴリ2(製造設備)に関する細分類された職場条件不良影響項目(No.8)としては、設備の担当者の決定を示し、評価カテゴリ4(製造物理的環境)に関する細分類された職場条件不良影響項目(No.13)としては、明るさ(照度)を示している。   In the example shown in FIG. 4, the work condition defect effect item (No. 1) subdivided regarding the evaluation category 1 (manufacturing worker) indicates the attendance rate of the manufacturing worker and relates to the evaluation category 2 (manufacturing equipment). The sub-category workplace condition defect influence item (No. 8) indicates the determination of the person in charge of the equipment, and the sub-category workplace condition defect influence item (No. 13) related to evaluation category 4 (manufacturing physical environment) Indicates brightness (illuminance).

そして、各職場条件不良影響項目62に対して基準レベル(例えばレベル1(レベルが高い))を基準にして複数のレベル(職場水準)63が設定される。例えば、職場条件不良影響項目「出勤率」に対しては、レベル1(レベルが高い)が「出勤率97%以上」、レベル2(中)が「出勤率90%以上97%未満」、レベル3(低い)が「出勤率90%未満」というように3つの職場水準が設定される。例えば、職場条件不良影響項目「設備の担当者」に対しては、レベル1が「すべてきまっている」、レベル2が「決まっている(全設備の90%以上)」、レベル3が「決まっている(全設備90%未満)」というように3つの職場水準が設定される。例えば、職場条件不良影響項目「照度(L)」に対しては、レベル1が「L≧1000lx」、レベル2が「1000lx>L≧600lx」、レベル3が「600lx>L」というように3つの職場水準が設定されている。このように、図4の例では各職場条件不良影響項目毎の職場水準63をレベル1〜3の3段階に設定しており、レベル1が最も不良が起きにくい職場状態に該当し、レベル3が最も不良が起きやすい職場状況に該当し、レベル2はレベル1とレベル3の中間レベルの不良の起こし易さをもつ職場状態に該当する。設定する職場水準は少なくとも、その職場状態に該当するか否かを示すための2水準は必要であるが、上限は特に無い。水準数が多くなると、評価精度が向上できる長所はあるが、逆に入力時の選択肢が増え、入力の手間は増えることになる。   Then, a plurality of levels (workplace levels) 63 are set for each workplace condition defect influence item 62 with reference to a reference level (for example, level 1 (high level)). For example, with respect to the item “attendance rate” affected by poor workplace conditions, level 1 (high level) is “attendance rate 97% or more”, level 2 (medium) is “attendance rate 90% to less than 97%”, level Three workplace levels are set such that 3 (low) is “less than 90% attendance rate”. For example, for the item “worker in charge of equipment” affected by poor workplace conditions, level 1 is “complete”, level 2 is “fixed (90% or more of all facilities)”, and level 3 is “fixed” Three workplace standards are set, such as “Yes (all facilities less than 90%)”. For example, level 1 is “L ≧ 1000 lx”, level 2 is “1000 lx> L ≧ 600 lx”, and level 3 is “600 lx> L” for the work condition bad influence item “illuminance (L)”. There are two workplace standards. In this way, in the example of FIG. 4, the workplace level 63 for each work condition defect effect item is set in three stages of levels 1 to 3, and level 1 corresponds to the workplace state in which defects are most unlikely to occur. Corresponds to a workplace situation in which defects are most likely to occur, and level 2 corresponds to a workplace state having an intermediate level of failure between level 1 and level 3. The workplace level to be set is at least two levels for indicating whether or not the workplace state is applicable, but there is no particular upper limit. If the number of levels increases, there is an advantage that the evaluation accuracy can be improved, but conversely, the choices at the time of input increase and the labor of input increases.

更に、各職場条件不良影響項目62に対して設定された基準の製造作業(組立作業の場合、基準組立作業は例えば最も単純な下移動作業とする。)に対する基準職場水準レベル(例えばレベル1)における「不良作り込み係数」65a、「不良摘出度係数」65b、「不良対処時間係数」65cからなる「不良発生度係数」65および「項目間相対的重み係数」64が設定されている。例えば、職場条件不良影響項目「出勤率」に対しては、「不良作り込み係数」が「3」、「不良摘出度係数」が「1」、「不良対処時間係数」が「2」からなる「不良発生度係数」65および「項目間相対的重み係数」が「2」として設定されている。職場条件不良影響項目「設備の担当者」に対しては、「不良作り込み係数」が「2」、「不良摘出度係数」が「2」、「不良対処時間係数」が「1」からなる「不良発生度係数」65および「項目間相対的重み係数」が「1」として設定されている。職場条件不良影響項目「照度(L)」に対しては、「不良作り込み係数」が「2」、「不良摘出度係数」が「2」、「不良対処時間係数」が「0」からなる「不良発生度係数」65および「項目間相対的重み係数」が「1」として設定されている。ここで、項目間相対的重み係数が「2」であることは、他の項目に比べて「不良発生度」が2倍であることを意味する。不良作り込み係数、不良摘出度係数、不良対処時間係数が「2」または「3」であることは、「1」に比べて2倍、3倍であることを意味する。また、不良作り込み係数、不良摘出度係数、不良対処時間係数が「0」であることは、無関係であることを意味する。これら係数は、図4においては判り易く全て整数で示しているが、整数で示す必要はない。   Furthermore, a reference workplace level level (for example, level 1) for a reference manufacturing operation set for each work condition defect effect item 62 (in the case of assembly operation, the reference assembly operation is the simplest downward movement operation, for example). The “defect occurrence coefficient” 65 and the “relative weight coefficient between items” 64, which are composed of “defect creation coefficient” 65 a, “defect extraction degree coefficient” 65 b and “defect handling time coefficient” 65 c in FIG. For example, for the work condition defect effect item “attendance rate”, “defect creation coefficient” is “3”, “defect extraction degree coefficient” is “1”, and “defect handling time coefficient” is “2”. “Defect occurrence degree coefficient” 65 and “Relative weight coefficient between items” are set as “2”. For the work condition defect effect item “person in charge of equipment”, “defect creation coefficient” is “2”, “defect extraction coefficient” is “2”, and “defect handling time coefficient” is “1”. “Defect occurrence degree coefficient” 65 and “Relative weight coefficient between items” are set as “1”. For the work condition defect effect item “illuminance (L)”, “defect creation coefficient” is “2”, “defect extraction degree coefficient” is “2”, and “defect handling time coefficient” is “0”. “Defect occurrence degree coefficient” 65 and “Relative weight coefficient between items” are set as “1”. Here, the relative weight coefficient between items being “2” means that the “defect occurrence degree” is twice that of the other items. If the defect creation coefficient, defect extraction degree coefficient, and defect handling time coefficient are “2” or “3”, it means that they are twice or three times as compared with “1”. In addition, the fact that the defect creation coefficient, defect extraction degree coefficient, and defect handling time coefficient are “0” means that they are irrelevant. These coefficients are all shown as integers in FIG. 4 for easy understanding, but need not be shown as integers.

更に、製造職場における少なくとも不良発生要因(評価カテゴリ)毎、もしくは細分類した職場条件不良影響項目毎に不良発生度が著しく悪い場合の改善(対策)アドバイス66やコメント67が不良発生度の悪さのレベル2、3に応じて短期的対策案と長期的対策案が設定されている。   Further, improvement (measures) advice 66 and comment 67 when the defect occurrence level is extremely bad for each factor causing the defect in the manufacturing workplace (evaluation category), or for each of the subordinately classified work condition defect influence items, is a bad defect occurrence level. Short-term measures and long-term measures are set according to Levels 2 and 3.

次に、職場評価部10aを用いて製造職場における実力(不良発生度合計、および職場不良率)を評価推定する処理フローについて、図6を用いて説明する。 まず、評価しようとする製造職場における製造職場条件情報1aを、入力手段1を用いて入力する(ステップ100a〜100h)。具体的には、各職場条件不良影響項目に対して、該当する職場の水準を選択して入力する。   Next, a processing flow for evaluating and estimating the ability (total defect occurrence rate and workplace defect rate) in the manufacturing workplace using the workplace evaluation unit 10a will be described with reference to FIG. First, manufacturing workplace condition information 1a in the manufacturing workplace to be evaluated is input using the input means 1 (steps 100a to 100h). Specifically, the level of the corresponding workplace is selected and entered for each work condition adverse effect item.

即ち、評価者(例えば製造職場の監督者)などによって本評価装置が起動されると、まず、計算手段3は、図7に示すような「新規入力」51aか、「既登録ファイル開く」51bのか、どちらかを選択させる画面51を表示手段2に表示する(ステップS100a)。既登録ファイルを開く場合は、一旦評価された製造職場を参照して新たな製造職場を評価する場合や一旦評価した製造職場について再度評価しなおす場合に使用する。   That is, when this evaluation apparatus is activated by an evaluator (for example, a supervisor at a manufacturing workplace) or the like, first, the calculation means 3 performs “new input” 51a or “open registered file” 51b as shown in FIG. A screen 51 for selecting either of them is displayed on the display means 2 (step S100a). When the registered file is opened, it is used when a new manufacturing workplace is evaluated with reference to the once evaluated manufacturing workplace or when the evaluated manufacturing workplace is re-evaluated.

評価者が、「新規入力」51aを選択した場合(ステップS100b)、その情報を計算手段3が認知して、図8に示す入力画面70を表示手段2に表示する(ステップS100c)。なお、評価者が、「既存ファイルを開く」51bを選択した場合(ステップS100b)、図7(b)に示すファイル指定画面52が表示され(ステップS100f)、ファイル名を指定することによってファイル指定情報が受付され(ステップS100g)、該当ファイル(入力画面70に既入力情報を反映して)が開くことになる(ステップS100h)。   When the evaluator selects “new input” 51a (step S100b), the calculation means 3 recognizes the information and displays the input screen 70 shown in FIG. 8 on the display means 2 (step S100c). When the evaluator selects “open existing file” 51b (step S100b), the file designation screen 52 shown in FIG. 7B is displayed (step S100f), and file designation is performed by designating the file name. The information is accepted (step S100g), and the corresponding file (reflecting the input information on the input screen 70) is opened (step S100h).

入力情報となる質問項目75、回答選択肢76は、記憶装置4の職場評価用記憶部分4aに記憶されている評価カテゴリ毎の各職場条件不良影響項目の情報62と、各職場条件不良影響項目に対してレベル分けして記憶された職場水準項目の情報63とを読み出して、入力画面70上に表示される。こうすることで、評価するべき項目や職場水準の設定の変更は、記憶装置4に記憶されている情報を変更するだけで良いので、評価装置の保守、改良が容易である。   The question item 75 and the answer option 76 which are input information are information 62 on each workplace condition defect influence item for each evaluation category and each workplace condition defect influence item stored in the workplace evaluation storage portion 4a of the storage device 4. On the other hand, the information 63 of the workplace level items stored by dividing into levels is read out and displayed on the input screen 70. By doing so, the items to be evaluated and the setting of the workplace level need only be changed by changing the information stored in the storage device 4, so that the evaluation device can be easily maintained and improved.

次いで、評価者が入力画面70および入力手段1を用いて評価しようとする評価対象職場の情報を入力することによって計算手段3は該情報を受け付けて例えばRAM33に一時記憶される(ステップS100e)。まず、評価しようとする評価対象職場名「製造職場X」を入力する。そして、評価カテゴリ毎の質問項目(職場条件不良影響項目62)75の各々について補足説明のボタン75aを押すことによって別ウインドウとして得られる質問項目を定義した文書を参照しながら、回答76におけるどの職場水準レベルか76a〜76cを指定することによって入力される。即ち、質問項目すなわち各職場条件不良影響項目毎に、3つの回答選択肢(すなわち3つの水準の職場状態)が予め表示されており、評価対象職場の職場条件に該当するもののラジオボタンをマウスでクリックしていくだけで入力することが可能となる。このように入力は、キーボードやマウスなどによる入力手段1からの入力の他、コンピュータネットワークを通じて他の記憶装置に記憶されている職場情報を取り込むようにしてもよい。なお、フレキシブルディスクなどの記憶媒体を介して、計算手段3に入力することも可能である。必要に応じて、評価に必要な情報を検索でき読み出せるように構成すれば良い。   Next, when the evaluator uses the input screen 70 and the input unit 1 to input information on the evaluation target workplace, the calculation unit 3 receives the information and temporarily stores it in the RAM 33, for example (step S100e). First, an evaluation target workplace name “manufacturing workplace X” to be evaluated is input. Then, referring to the document defining the question item obtained as a separate window by pressing the supplementary explanation button 75a for each question item (workplace condition defect influence item 62) 75 for each evaluation category, It is input by designating a level or 76a-76c. In other words, for each question item, that is, for each work condition adverse effect item, three answer options (that is, three levels of work conditions) are displayed in advance, and the radio button corresponding to the work condition of the work place to be evaluated is clicked with the mouse It becomes possible to input just by doing. In this way, for the input, in addition to the input from the input means 1 using a keyboard, a mouse, or the like, workplace information stored in another storage device may be taken in via a computer network. In addition, it is also possible to input into the calculation means 3 via storage media, such as a flexible disk. If necessary, it may be configured so that information necessary for evaluation can be retrieved and read.

評価者の入力終了後、計算手段3であるCPU32は、評価計算実行指示が与えられたのを認知し、RAM33等に入力されて記憶された職場条件情報に基づき、記憶装置4の職場評価用記憶部分4aより各職場条件不良影響項目に対して設定された基準の製造作業に対する基準職場水準レベルにおける「不良作り込み係数」65a、「不良摘出度係数」65b、「不良対処時間係数」65cからなる「不良発生度係数」65および「項目間相対的重み係数」64の情報を読み出し、RAM33に一時記憶する(ステップS110)。   After the evaluator's input is completed, the CPU 32 which is the calculation means 3 recognizes that the evaluation calculation execution instruction has been given, and based on the work condition information input and stored in the RAM 33 or the like, From the “defect creation coefficient” 65 a, “defect extraction degree coefficient” 65 b, and “defect handling time coefficient” 65 c at the standard workplace level level for the standard manufacturing work set for each work condition defect influence item from the storage portion 4 a The information of “defect occurrence coefficient” 65 and “inter-item relative weight coefficient” 64 is read out and temporarily stored in the RAM 33 (step S110).

図5に示す職場評価部(CPU32を有する計算手段3)10aにおける判定部51は、入力手段1によって各職場条件不良影響項目毎に入力された職場水準レベル情報を判定し、職場条件不良影響項目を示す番号の情報と、職場水準レベルを示す情報を検索キーとして、記憶装置4の職場評価用記憶部分4aより該当する「不良発生度係数」65および「項目間相対的重み係数」64の情報を検索し読み出し、RAM33に一時記憶していく。これを、全ての評価するべき職場条件不良影響項目に関して繰り返して行う。   The determination unit 51 in the workplace evaluation unit (calculation unit 3 having the CPU 32) 10a shown in FIG. 5 determines the workplace level level information inputted for each workplace condition defect affecting item by the input unit 1, and the workplace condition defect affecting item The information on the number of defects and the information indicating the workplace level level are used as search keys, and the information on the “defect occurrence coefficient” 65 and the “inter-item relative weight coefficient” 64 corresponding to the storage portion 4a for workplace evaluation of the storage device 4 Is retrieved and temporarily stored in the RAM 33. This is repeated for all the adverse workplace condition items to be evaluated.

図8に示す入力情報を用いて説明する。職場条件不良影響項目が、「出勤率」に対して職場水準レベル「2」、「設備の担当者」に対して職場水準レベル「3」、「照度」に対して職場水準レベル「1」で入力されている。この入力より、本職場評価部10aにおけるCPU32は、職場条件不良影響項目を示す番号が「1」、「8」、「13」の項目に対しては、「レベル2」、「レベル3」、「レベル1」の水準であると判断し、これらの職場条件不良影響項目を示す番号情報「1」、「8」、「13」と職場水準レベルを示す情報「レベル2」、「レベル3」、「レベル1」の2つの情報を検索キーとして、それに該当する基準職場水準レベルに対する職場水準レベルの係数(不良発生度係数)、「不良作り込み係数」65a、「不良摘出度係数」65b、「不良対処時間係数」65cからなる「不良発生度係数」65および「項目間相対的重み係数」64の情報を、記憶装置4の職場評価用記憶部分4aに記憶されている不良発生度係数データベースから検索して、RAM33に記憶する。図4に示すデータベースの場合、基準職場水準レベルに対する職場水準レベルの係数(不良発生度係数)は、職場水準レベルに対応させている。   This will be described using the input information shown in FIG. The impact of poor working conditions is “working level” of “2” for “attendance rate”, “3” of working level for “person in charge of equipment”, and “1” of working level of “illuminance”. Have been entered. From this input, the CPU 32 in the workplace evaluation unit 10a determines that the number indicating the workplace condition defect effect item is “level 2”, “level 3”, “1”, “8”, “13”. The number information “1”, “8”, “13” indicating these workplace condition defect effect items and the information “level 2”, “level 3” indicating the workplace level level are judged to be “level 1” levels. , Using the two pieces of information of “level 1” as search keys, a coefficient (defect occurrence coefficient) of the workplace level with respect to the corresponding reference workplace level, “defect creation coefficient” 65a, “defect extraction degree coefficient” 65b, A defect occurrence coefficient database in which information of “defect occurrence coefficient” 65 and “inter-item relative weight coefficient” 64 composed of “defect handling time coefficient” 65 c is stored in the workplace evaluation storage portion 4 a of the storage device 4. From And search, and stored in the RAM33. In the case of the database shown in FIG. 4, the workplace level level coefficient (defect occurrence coefficient) relative to the reference workplace level level corresponds to the workplace level level.

次に、計算手段3のCPU32(図5に示す職場条件項目別影響度算出部52)は、図9に示す如く、ステップS121aにおいて、職場条件不良影響項目の番号iが指定されることによって、職場評価用記憶部分4aに記憶された職場評価用計算プログラムを用いて、RAM33に記憶された製造職場Xにおける職場条件不良影響項目毎の基準職場水準レベルに対する職場水準レベルの係数(不良発生度係数)(図4においては職場水準レベルで示している。)、「不良作り込み係数」65a、「不良摘出度係数」65b、「不良対処時間係数」65cからなる「不良発生度係数」65および「項目間相対的重み係数」64の情報に基いて、職場条件不良影響項目毎の不良発生度92(「不良作り込み度」92a(ステップS121b)、「不良摘出度」92b(ステップS121c)、「不良対処時間度合」92c(ステップS121d)、これら「不良作り込み度」「不良摘出度」「不良対処時間度合」を総計した「不良発生度」92d(ステップS121e)、および「改善余地」92e(ステップS121g))、「理想職場不良発生度」93a、および「最悪職場不良発生度」93b(ステップS121f)を計算し、一時RAM33に記憶する。「理想職場不良発生度」93aは、例えば職場水準レベル1(最もレベルが高い。)場合の不良発生度を示すことになる。「最悪職場不良発生度」93bは、例えば職場水準レベル3(最もレベルが低い。)場合の不良発生度を示すことになる。「改善余地」92eは、「不良発生度」92dと「理想職場不良発生度」93aとの差で示される。例えば、図10に示す評価カテゴリが「1」の場合、職場水準レベルが「2」であり、項目間相対的重み係数が「2」であるため、「不良作り込み度」、「不良摘出度」、「不良対処時間度合」の各々は、不良作り込み係数「3」、不良摘出度係数「1」、不良対処時間係数「2」の4倍となり、「不良発生度」はそれらの総計「24」となる。「理想職場不良発生度」が「12」であることから、「改善余地」は「12」となる。   Next, as shown in FIG. 9, the CPU 32 of the calculation means 3 (workplace condition item-specific influence calculation unit 52), as shown in FIG. Using the workplace evaluation calculation program stored in the workplace evaluation storage portion 4a, the coefficient of the workplace level with respect to the reference workplace level level for each of the adverse effects of the workplace condition in the manufacturing workplace X stored in the RAM 33 (defect occurrence coefficient) ) (Shown at the workplace level in FIG. 4), “Defect occurrence coefficient” 65 a, “Defect creation coefficient” 65 a, “Defect extraction degree coefficient” 65 b, “Defect handling time coefficient” 65 c Based on the information of the “relative weight coefficient between items” 64, the defect occurrence degree 92 (“defect creation degree” 92a (step S121b) for each work condition defect influence item, “Defect extraction degree” 92b (step S121c), “Defect handling time degree” 92c (step S121d), “Defect occurrence degree” 92d (total of these “defect preparation degree”, “defect extraction degree”, “defect handling time degree”) Step S121e), “room for improvement” 92e (step S121g)), “ideal workplace failure occurrence” 93a, and “worst workplace failure occurrence” 93b (step S121f) are calculated and stored in the temporary RAM 33. “Ideal workplace failure occurrence degree” 93a indicates, for example, the failure occurrence degree in the case of workplace level level 1 (the highest level). The “worst workplace defect occurrence degree” 93b indicates, for example, the defect occurrence degree when the workplace level is 3 (the lowest level). The “room for improvement” 92e is indicated by the difference between the “defect occurrence degree” 92d and the “ideal workplace defect occurrence degree” 93a. For example, when the evaluation category shown in FIG. 10 is “1”, the workplace level level is “2”, and the relative weight coefficient between items is “2”. Therefore, “Defect creation degree”, “Defect extraction degree” ”And“ Defect handling time degree ”are four times the defect creation coefficient“ 3 ”, defect extraction degree coefficient“ 1 ”, and defect handling time coefficient“ 2 ”. 24 ". Since “Ideal workplace defect occurrence degree” is “12”, “room for improvement” is “12”.

そして、計算手段3のCPU32(図5に示す職場定数算出部53)は、ステップS121hにおいて、全ての不良発生要因(評価カテゴリ)に亘る職場条件不良影響項目の全てについて累計の計算をして、図10に示す如く「不良作り込み度」の合計98a、「不良摘出度」の合計98b、および「不良対処時間度合」の合計98c並びにそれらの合計98を算出して一時RAM33に記憶させる(ステップS121i)。次に、計算手段3のCPU32は、RAM33に記憶された「不良作り込み度」、「不良摘出度」、および「不良対処時間度合」の合計98を基に、職場不良率99を算出し、記憶装置4の作業対象評価用記憶部分4bの作業対象評価用データベース4b1の職場定数の部分に記憶させる(ステップS121j)。このように、図10に示す如く、評価しようとする製造職場Xにおける実力(不良発生度合計98、および職場不良率99)が評価推定されて作業対象評価用データベース4b1の職場定数の部分に記憶されることになる。   Then, the CPU 32 of the calculation means 3 (the workplace constant calculation unit 53 shown in FIG. 5) calculates the total for all the workplace condition defect affecting items over all defect occurrence factors (evaluation categories) in step S121h, As shown in FIG. 10, the total 98a of “defect creation degree”, the total 98b of “defect extraction degree”, the total 98c of “defect handling time degree” and their total 98 are calculated and stored in the temporary RAM 33 (step S121i). Next, the CPU 32 of the calculation means 3 calculates a workplace defect rate 99 based on the total 98 of “defect creation degree”, “defect extraction degree”, and “defect handling time degree” stored in the RAM 33, The data is stored in the workplace constant portion of the work target evaluation database 4b1 in the work target evaluation storage portion 4b of the storage device 4 (step S121j). In this way, as shown in FIG. 10, the ability in the manufacturing workplace X to be evaluated (total defect occurrence rate 98 and workplace failure rate 99) is estimated and stored in the workplace constant portion of the work target evaluation database 4b1. Will be.

ところで、製造職場毎に、得意な製造動作(例えば組付動作)・不得意な製造動作(組付動作)がある。それを職場評価に反映するためには、単一の職場定数ではなく、複数の職場定数を、作業対象評価用データベース4b1の職場定数の部分に記憶設定することによって解決することができる。例えば、製造作業をいくつかに分類される製造動作(組付動作の場合、「圧入」「はんだ付け」「ねじ締め」など)別に職場定数を設定すればよい。この場合、職場評価部10aにおいて製造動作別に、それに対応する職場条件不良影響項目に基いて職場の不良の起こし易さを評価することが必要となる。そして、製造職場評価のための入力情報である製造職場条件情報1aとして、職場を細分類するための、製造動作種別の情報を入力する必要がある。当然、製品を評価するときにも、入力情報である製造職場名情報1b4として、細分類された製造職場名情報か、あるいは製造動作種別を追加させる必要がある。   By the way, each manufacturing workplace has a good manufacturing operation (for example, an assembling operation) and a poor manufacturing operation (for an assembling operation). In order to reflect this in the workplace evaluation, it can be solved by storing and setting a plurality of workplace constants in the workplace constant portion of the work target evaluation database 4b1 instead of a single workplace constant. For example, workplace constants may be set for each of the manufacturing operations classified into several manufacturing operations (in the case of assembly operations, such as “press-fit”, “soldering”, and “screw tightening”). In this case, it is necessary for the workplace evaluation unit 10a to evaluate the easiness of occurrence of a workplace failure based on the corresponding work condition failure effect item for each manufacturing operation. Then, as manufacturing workplace condition information 1a which is input information for manufacturing workplace evaluation, it is necessary to input information on a manufacturing operation type for subdividing the workplace. Needless to say, when evaluating a product, it is necessary to add the subdivided manufacturing workplace name information or the manufacturing operation type as the manufacturing workplace name information 1b4 which is input information.

次に、ステップS130において、製造職場Xについて評価した評価計算結果として、職場不良率99の外、職場診断結果1(評価カテゴリ別評点86や、評価カテゴリ別コメント87)、職場診断結果2(改善ポイントアドバイス)等を図11に画面80で示すように例えば表示手段2に表示して出力しようとする場合、計算手段3のCPU32(図5に示すメッセージ制御部54におけるカテゴリ別影響度算出部54a)は、ステップS122において、評価カテゴリ毎に、「不良作り込み度」の合計、「不良摘出度」の合計、および「不良対処時間度合」の合計並びにそれらの合計(不良発生度)を算出し、この算出された不良発生度に応じた評点(不良率)を求めて例えば記憶装置4に記憶する。ついで、CPU32は、ステップS123において、評価カテゴリ毎に、カテゴリに属する職場条件不良影響項目の「改善余地」92eの中から値の最も大きい職場条件不良影響項目を判定し、この判定された職場条件不良影響項目に対応するコメントを職場評価用テーブル4a1から検索して例えば記憶装置4に記憶する。さらに、CPU32は、ステップS124において、職場条件不良影響項目の「改善余地」92eの値が大きい順に複数の職場条件不良影響項目を選出し、該選出された職場条件不良影響項目と、その項目に対して入力された職場水準レベルとから、改善ポイントアドバイスを職場評価用テーブル4a1から検索して例えば記憶装置4に記憶する。従って、ステップS130において、製造職場Xについて評価した評価計算結果が出力されることになり、改善することが可能となる。特に、評価カテゴリ毎の評点を、円グラフや折線グラフ表示等をすれば、何が影響しているかどうかを一目瞭然に把握することが可能となる。   Next, in step S130, as an evaluation calculation result evaluated for the manufacturing workplace X, in addition to the workplace defect rate 99, workplace diagnosis result 1 (score 86 by evaluation category and comment 87 by evaluation category), workplace diagnosis result 2 (improvement) 11 is displayed on the display means 2 as shown on the screen 80 in FIG. 11, for example, the CPU 32 of the calculation means 3 (the category-specific influence calculation section 54a in the message control section 54 shown in FIG. 5). ), In step S122, for each evaluation category, the sum of the “defect creation degree”, the “defect extraction degree”, the “defect handling time degree”, and the total (defect occurrence degree) are calculated. A score (failure rate) corresponding to the calculated failure occurrence degree is obtained and stored in, for example, the storage device 4. Next, in step S123, the CPU 32 determines, for each evaluation category, the workplace condition bad influence item having the largest value from the “room for improvement” 92e of the work condition bad influence item belonging to the category. A comment corresponding to the defect-affected item is retrieved from the workplace evaluation table 4a1 and stored in the storage device 4, for example. Further, in step S124, the CPU 32 selects a plurality of workplace condition failure effect items in descending order of the “room for improvement” 92e value of the workplace condition failure impact item, and selects the selected workplace condition failure impact item and the selected item. On the other hand, the improvement point advice is retrieved from the workplace evaluation table 4a1 based on the workplace level level input, and stored in the storage device 4, for example. Accordingly, in step S130, the evaluation calculation result evaluated for the manufacturing workplace X is output, which can be improved. In particular, if the score for each evaluation category is displayed as a pie chart or a line graph, it is possible to grasp at a glance what is affected.

以上説明したように、製造職場Xについての評価推定結果の内必要とするデータが記憶装置4に記憶されて保存されることになる。   As described above, necessary data among the evaluation estimation results for the manufacturing workplace X is stored and stored in the storage device 4.

ところで、図11には、本発明に係る職場評価部10aの出力画面の一例を示す。図11の出力例では(1)不良発生度として「職場基準不良率推定値」、(2)職場診断結果1、(3)職場診断結果2の3種類の評価結果を出力する。   FIG. 11 shows an example of an output screen of the workplace evaluation unit 10a according to the present invention. In the output example of FIG. 11, three types of evaluation results are output: (1) “workplace standard failure rate estimated value” as the degree of failure occurrence, (2) workplace diagnosis result 1, and (3) workplace diagnosis result 2.

上記(1)に示す「職場基準不良率推定値」は、評価対象製造職場Xにおける基準製造作業をした場合の平均的な推定される不良率値であり、これにより製造職場間で不良発生度の比較が可能となる。   The “workplace standard defect rate estimated value” shown in (1) above is an average estimated defect rate value when the standard production work is performed in the production workplace X to be evaluated. Can be compared.

更に、2種類の職場診断結果を出力している。まず、職場診断結果1としては、評価カテゴリ毎における職場レベルの評価点である。この評価点は、例えば、理想の製造職場を100点、最も水準の低い製造職場を0点として、評価対象製造職場Xにおける評価カテゴリ毎の各係数値の合計値が、それらの間のどこに位置するかを示すものである。職場診断結果2としては、職場改善ポイントのアドバイス内容である。これは、改善余地の大きい、すなわち改善すると不良発生度低減効果の大きい、職場条件不良影響項目を「職場改善ポイント」として提示し、更に、その対策案を短期的にできうる対策案と長期的に取り組むべき対策案とに分けて提示する。これは、記憶装置4の製造職場評価用データベース4a1に、職場条件不良影響項目毎に、短期的にできうる対策案と長期的に取り組むべき対策案とを分けて記憶しておき、それを読み出すことで実現することができる。また、必要に応じて、複数の職場条件不良影響項目の職場水準の組合せに対しても、短期的にできうる対策案と長期的に取り組むべき対策案とを分けて記憶しておいてもよい。   In addition, two types of workplace diagnosis results are output. First, the workplace diagnosis result 1 is a workplace-level evaluation point for each evaluation category. This evaluation score is, for example, where the ideal manufacturing workplace is 100 points and the lowest manufacturing workplace is 0 points, and the total value of each coefficient value for each evaluation category in the evaluation target manufacturing workplace X is located between them. It shows what to do. The workplace diagnosis result 2 is the content of advice on workplace improvement points. This presents the work condition bad impact items that have a lot of room for improvement, that is, if they improve, the effect of reducing the incidence of defects, as “workplace improvement points”. It is presented separately as a countermeasure plan that should be tackled. This means that the manufacturing workplace evaluation database 4a1 of the storage device 4 stores a countermeasure plan that can be achieved in the short term and a countermeasure plan that should be addressed in the long term separately for each item affected by poor workplace conditions, and reads them out. Can be realized. In addition, if necessary, for a combination of workplace levels of multiple items that have adverse effects on work conditions, it is possible to store a countermeasure plan that can be achieved in the short term and a countermeasure plan that should be addressed in the long term separately. .

また、改善余地の大きい、すなわち改善すると不良発生度低減効果の大きい順に表示することが、効率の良く、的を得た対策を行うのには好ましい。改善余地の計算を行い、その大きい順に並べ替えて出力することによってこれは可能である。具体的には、各職場条件不良影響項目毎に、評価対象製造職場の不良発生度係数と理想の製造職場(即ち職場水準がレベル1の職場)の不良発生度係数との差を計算し、その大きさを比較することで大きな順に出力が可能である。   In addition, it is preferable to display in the order of the large extent of room for improvement, that is, the effect of reducing the occurrence rate of defects when it is improved, in order to achieve efficient and targeted countermeasures. This can be done by calculating room for improvement and rearranging in order of output. Specifically, for each workplace condition defect impact item, calculate the difference between the defect occurrence coefficient of the manufacturing workplace subject to evaluation and the defect occurrence coefficient of the ideal manufacturing workplace (that is, the workplace whose level is level 1) By comparing the sizes, output can be performed in descending order.

以上の処理により、簡単な入力により信頼性の高い製造職場評価結果を提供することが可能となる。また、この評価結果として、改善余地の大きな順に製造職場条件項目(即ち職場改善ポイント)を出力するので、すぐに効果的な製造職場改善に取りかかれる。   Through the above processing, it is possible to provide a highly reliable manufacturing workplace evaluation result with a simple input. Moreover, since the manufacturing workplace condition items (namely, workplace improvement points) are output in the descending order of the room for improvement as an evaluation result, the manufacturing workplace improvement can be started immediately.

このように職場評価部10aを用いれば、評価対象の製造職場で実際に製品を作らなくても、その製造職場の不良の起こし易さ(実力)を定量的に把握することができる。   In this way, if the workplace evaluation unit 10a is used, it is possible to quantitatively grasp the probability (ability) of causing a defect in the manufacturing workplace without actually making a product in the manufacturing workplace to be evaluated.

また、製造部門では、その製造職場における不良発生に影響の大きい職場条件項目と、その項目を改善、または対策すればどれだけ不良発生度が低減できるかを定量的に把握することができるため、職場水準向上を効率的に行うための製造職場改善計画立案に役立ち、不良発生防止の効果がある。また、生産前に評価を行えば、製造職場における重点管理ポイントが事前に明らかになるので、的確な検査工程配置、検査方法の選択などが可能になり、不良摘出にも大きな効果がある。また、設計・開発部門においては、事前に、製品を製造する予定の製造職場の不良発生度を推定することができるので、その製造職場に応じた製品開発・設計を効率的に行うことができる。   In addition, because the manufacturing department can quantitatively grasp the workplace condition items that have a large impact on the occurrence of defects in the manufacturing workplace and how much the occurrence of defects can be reduced by improving or taking countermeasures, It helps to formulate a manufacturing workplace improvement plan to efficiently improve workplace standards, and has the effect of preventing defects. In addition, if evaluation is performed before production, the priority management points in the manufacturing workplace will be clarified in advance, so that it is possible to accurately arrange inspection processes and select inspection methods, which has a great effect on defect extraction. In addition, the design / development department can estimate in advance the degree of defect occurrence at the manufacturing workplace where the product is to be manufactured, so that product development / design according to the manufacturing workplace can be performed efficiently. .

次に、製品評価部10bにおいて、以上説明したように作業対象評価用データベース4b1の職場定数の部分に記憶された製品を製造しようとする製造職場の不良率99を基に、その製造職場において製造(例えば組立)する製品の不良率を推定する実施例について簡単に説明する。   Next, in the product evaluation section 10b, as described above, the product is manufactured in the manufacturing workplace based on the defective rate 99 of the manufacturing workplace where the product stored in the workplace constant portion of the work target evaluation database 4b1 is to be manufactured. An embodiment for estimating the defect rate of a product to be assembled (for example, assembly) will be briefly described.

以下、製品を製造する作業の内、組立作業の場合について説明する。   Hereinafter, an assembly operation among the operations for manufacturing the product will be described.

なお、設計システム20からは製品を構成するための部品の部品名、部品番号、材質、重量、単価などの情報が提供されることになる。   The design system 20 provides information such as a part name, a part number, a material, a weight, and a unit price of parts for constituting a product.

本発明に係る製品の不良発生モデルとしては、図12で示される。一つの組立作業の順序として「位置決め動作」と、その後「結合動作」となる。即ち、一つの組立作業は、「位置決め動作」と、その後の「結合動作」とで構成される。不良の発生としては、[動作のばらつき]が[ばらつきの許容範囲]を越えて、しかも不良の発見ができなかった場合と考えられる。[動作のばらつき]は、組付動作および部品の性質によって決まる「位置決め動作」の際生じる「位置決めのばらつき」、および「結合動作」の際生じる「力のばらつき」等から成り立つ。[ばらつきの許容範囲]は、部品の性質から「位置決め動作」の際決まる「寸法精度、損傷し易さ等」と「結合動作」の際決まる「必要動作力」等とによって決まる。そこで、「位置決め」に起因する不良発生としては、損傷変形などがあり、「力」に起因する不良発生としては、挿入未完などがある。   A product defect occurrence model according to the present invention is shown in FIG. One assembly work sequence is a “positioning operation” and then a “joining operation”. That is, one assembling operation is composed of a “positioning operation” and a subsequent “joining operation”. The occurrence of a defect is considered to be a case where the [variation of operation] exceeds the [variable tolerance] and the defect cannot be found. [Operational variation] includes “positioning variation” that occurs during “positioning operation” determined by the assembling operation and the properties of parts, “force variation” that occurs during “joining operation”, and the like. [Allowable variation range] is determined by “dimensional accuracy, ease of damage, etc.” determined during “positioning operation” and “required operating force” determined during “joining operation”, etc. Thus, the occurrence of a defect due to “positioning” includes damage deformation and the like, and the occurrence of a defect due to “force” includes incomplete insertion.

以上説明したように、一つの組立作業動作は、基本的には「位置決め動作」「その後の結合動作」の繰り返しと考えられる。標準組付動作の中には、部品を保持する動作や、電線を整形する動作のような「位置決め動作」だけの動作もあるが、多くの組付動作は「位置決め」をした上で「結合動作」を行っている。   As described above, one assembly work operation is basically considered to be a repetition of “positioning operation” and “subsequent coupling operation”. Among the standard assembly operations, there are only operations for "positioning operations" such as operations for holding parts and operations for shaping electric wires, but many assembly operations are performed after "positioning". Operation ".

このように、標準組付動作は「位置決め動作」「結合動作」から構成され、作業不良も大きく、位置決め動作時に発生するものと、結合動作時に発生するものの2つに分かれる。   As described above, the standard assembling operation is composed of “positioning operation” and “combining operation”, and there is a large work defect, and it is divided into two types, one occurring during the positioning operation and one occurring during the combining operation.

まず、位置決め動作時に発生する不良は、位置決め動作時の部品位置や部品姿勢のばらつき(不正確さ)に起因して発生する不良である。位置決めが不十分なまま、本結合動作へ移行すると、本結合動作が行えない不良(作業不完全不良)が発生するが、組付部品や被組付品の結合部の強度や本動作の動作力によっては、結合部の損傷不良、変形不良に至る。通常、作業者は位置決めが十分である事を確認した上で結合動作へ移行するため、位置決めが不十分であれば、本結合動作へ移行する前に位置決めの修正を行ったうえで結合動作へ移行する。作業部位が見にくいなど位置決め確認が困難であったり、うっかり位置決め確認を忘れてしまったときに上記のような不良が特に発生し易くなる。   First, a defect that occurs during the positioning operation is a defect that occurs due to variations (inaccuracy) in component positions and component orientations during the positioning operation. If you move to this joining operation with insufficient positioning, a failure that prevents this joining operation (incomplete work) will occur. However, the strength of the assembly part and the joint part of the assembled product and the operation of this operation will occur. Depending on the force, the joint may be damaged or deformed. Normally, an operator confirms that positioning is sufficient before proceeding to the coupling operation.If positioning is insufficient, the positioning operation is corrected before proceeding to this coupling operation, and then the coupling operation is performed. Transition. The above-described defects are particularly likely to occur when it is difficult to confirm the positioning, for example, it is difficult to see the work site, or when you forget to confirm the positioning.

その他、結合動作が原因で起こる組立不良は、結合動作の軌跡の制御不良、即ち動作軌跡のばらつきが原因で起こるものと、結合動作力が不足して起こるものとがある。上記結合動作の軌跡の制御不良が原因で起こる組立不良は、特に長区間動作時に発生頻度が高い。一方、結合動作力が不足して起こる組立不良は、組み付けに必要な動作力が発揮できない場合であり、特に、圧入動作など必要動作力が大きい時、または動作や部品の性質条件などにより所定の動作力が発揮できない場合に発生頻度が高い。   In addition, there are assembly failures caused by the coupling operation, which are caused by poor control of the locus of the coupling operation, that is, due to variations in the operation locus, and those caused by insufficient coupling operation force. The assembly failure caused by the poor control of the locus of the coupling operation is frequently generated particularly during the long section operation. On the other hand, defective assembly caused by insufficient combined operating force is a case where the operating force required for assembly cannot be exerted, especially when the required operating force such as press-fitting operation is large, or depending on the operation and the property conditions of parts, etc. The frequency of occurrence is high when the operating force cannot be demonstrated.

従って、評価対象となる製品、部組品の組立作業は、複数の部品を順次組み立てる複数の組立作業から構成されるため、予め設定された複数の標準組付動作(下移動、横移動、反転、圧入、はんだ付け、ねじ締め、整形等)の組み合わせで表現される。そして、評価対象となる製品、部組品の組立作業における組立不良の起き易さ(不良率)は、それぞれの標準組付動作の有する不良率係数を総合することによって算出することができる。そして、それぞれの標準組付動作の有する不良率係数を、任意の組立作業を完成させるまでの組付動作の数、組付部品・被組付部品の性質条件(例えば、機能(意匠品等の部品種)、大きさ、重量、形状(組付部品条件としては微小部品、複数組付け姿勢(多点同時位置合わせ)、被組付品条件としては微細穴/小穴、組付完了判定、位置合わせ箇所数、組付部周囲空間、位置決めガイド無、可動部への組付等)、寸法精度、表面精度、材質(接触不可面有り、特殊な材質)、機能せ)等)、組立職場の条件(職場定数)、組付完了を確認するチェック工程の有無を補正係数として補正することで、評価対象となる製品、部組品の組立作業における組立不良の起き易さ(不良率)の推定精度を向上させることができる。   Therefore, the assembly work of the product and assembly to be evaluated is composed of a plurality of assembly operations for sequentially assembling a plurality of parts, so that a plurality of preset standard assembly operations (downward movement, lateral movement, inversion) , Press fitting, soldering, screw tightening, shaping, etc.). Then, the ease of assembly failure (failure rate) in the assembly work of the products and parts to be evaluated can be calculated by integrating the failure rate coefficients of the respective standard assembly operations. Then, the defect rate coefficient of each standard assembly operation is calculated based on the number of assembly operations up to completion of an arbitrary assembly operation, the property conditions of the assembly parts / parts to be assembled (for example, functions (design products, etc. Part type), size, weight, shape (microparts for assembly part condition, multiple assembly postures (multi-point simultaneous alignment), microhole / small hole, assembly completion judgment, position for assembly part condition The number of alignment points, the space around the assembly, no positioning guide, assembly to moving parts, etc.), dimensional accuracy, surface accuracy, material (with non-contactable surface, special material), function), etc.), assembly workplace Estimating the ease of assembly failure (defective rate) in the assembly work of products and parts to be evaluated by correcting the conditions (workplace constants) and the presence or absence of a check process to confirm assembly completion as correction factors Accuracy can be improved.

すなわち、評価対象を標準組付動作の組み合わせで表現し、それぞれの標準組付動作の有する不良率係数を、組付動作の数、組付部品・被組付部品の性質条件、組立職場の条件、組付完了を確認する工程の有無により補正した値を総合して不良率を算出する。   In other words, the evaluation target is expressed as a combination of standard assembly operations, and the defect rate coefficient of each standard assembly operation is calculated based on the number of assembly operations, the property conditions of the assembled / attached components, and the assembly workplace conditions. Then, the defect rate is calculated by combining the values corrected according to the presence or absence of the process for confirming the completion of assembly.

このように、部品組付作業の組立不良率を、組付作業の動作の内容と、組付部品および被組付品の性質と、作業が適切に完了しているか否かを確認するチェック工程の有無と、組付作業を行う職場の条件とで決定する理由は以下の通りである。 In this way, a check process for confirming the assembly failure rate of the part assembly work, the contents of the operation of the assembly work, the properties of the parts to be assembled and the parts to be assembled, and whether the work has been properly completed. The reasons for determining the presence and absence and the conditions of the workplace where the assembly work is carried out are as follows.

組付動作があれば当然、組立不良が起きうるポテンシャル(組立不良率係数)があり、主として不良の発生し易さに影響の大きいものは組付動作である。   Of course, if there is an assembly operation, there is a potential (assembly failure rate coefficient) at which an assembly failure may occur.

この組付動作の持つ組立不良率係数を増減する要素として、組付部品および被組付品の性質と、組付作業を行う職場の条件がある。   Factors that increase or decrease the assembly failure rate coefficient of the assembling operation include the nature of the assembling parts and the assembling parts and the conditions of the workplace where the assembling work is performed.

組付部品および被組付品の性質に関して言えば、例えば、組み付ける部品や組み付けられる部品の形状が組み付けにくい形状であれば、組付動作の持つ組立不良率係数は増幅される。また、組付部品および被組付品の性質として部品種(機能)を入力出来るようにしたのは、以下の理由による。   Regarding the nature of the assembled part and the assembled part, for example, if the shape of the part to be assembled or the part to be assembled is difficult to assemble, the assembly failure rate coefficient of the assembling operation is amplified. The reason why the component type (function) can be input as the properties of the assembled part and the assembled part is as follows.

即ち、組立不良には大きく分けて、組立不完全と部品損傷・汚れの2種類がある。「組立不完全」は主に人間の作業動作のぶれ(動作精度のばらつき)や間違えにより起こるもので、この種の不良事例としては、コネクタ挿入作業の場合、「挿入不完全(奥まで完全に挿入されていない状態)」や「コネクタの左右逆向き挿入」などがある。一方、「部品損傷・汚れ」は、主に、上記の人間の作業動作のぶれ(動作精度のばらつき)や間違えの結果として起こるものであるが、「部品損傷・汚れ」として不良になるか否かは、同じ損傷・汚れ具合でも部品の種類によって異なる。例えば、外観に露出する意匠部品は、その他の例えば製品内部の部品とは異なり、ちょっとした傷や汚れでも不良となり得る部品種である。つまり、部品種すなわち部品の機能によっては、同じ外力(ストレス)がその部品に働いても、不良になるかどうかは一律ではないのである。そこで、部品種毎にその部品種のもつ外力に対する強さ(抗力)を示す係数値をデータベースに持ち、組付部品および被組付品の部品種の入力を可能とし、評価対象部品の外力に対する強さ(抗力)と、当該部品の組付動作時に部品に働く外力(ストレス)の大きさとを比較して「部品損傷・汚れ」不良となる確率も考慮して推定不良率を算出した。このように組立不良として「組立不完全」の不良だけでなく「部品損傷・汚れ」の不良も考慮して不良率を推定している。   That is, there are two types of assembly failures: incomplete assembly and component damage / dirt. “Incomplete assembly” is mainly caused by fluctuations in human work movements (variations in operation accuracy) or mistakes. This type of failure is often caused by “incomplete insertion (completely into the back) in the case of connector insertion work. Not inserted) ”and“ connector is inserted in the opposite direction ”. On the other hand, “part damage / dirt” mainly occurs as a result of the above-mentioned blurring of human work movement (variation in motion accuracy) and mistakes. It depends on the type of parts even with the same damage and contamination. For example, a design part exposed to the appearance is a part type that can be defective even with a slight scratch or dirt, unlike other parts inside a product. In other words, depending on the type of component, that is, the function of the component, even if the same external force (stress) is applied to the component, it is not uniform whether it becomes defective. Therefore, for each part type, a coefficient value indicating the strength (drag) of the part type against the external force is stored in the database, and it is possible to input the part type of the assembled part and the assembled part, and against the external force of the evaluation target part. The estimated failure rate was calculated by comparing the strength (drag) and the magnitude of external force (stress) acting on the component during the assembly operation of the component, and taking into account the probability of “component damage / dirt” failure. As described above, the defect rate is estimated in consideration of not only “incomplete assembly” defects but also “part damage / dirt” defects.

同様に、組立作業を行う職場の条件によっても組付動作の持つ組立不良率係数は影響を受ける。例えば、作業に用いる設備が不良の出やすいものであれば、同じ組付動作でも組付動作のもつ不良率係数は高くなり、また職場の作業者の技術レベルが全体的に高ければ、同じ組付動作でも、逆にその組付動作のもつ不良率係数は低くなる。   Similarly, the assembly failure rate coefficient of the assembly operation is also affected by the conditions of the workplace where the assembly work is performed. For example, if the equipment used for work is prone to failure, the failure rate coefficient of the assembly operation will be high even in the same assembly operation, and if the overall technical level of workers in the workplace is high, the same assembly Even in the attaching operation, the defective rate coefficient of the assembling operation is low.

その他、不良発見ポテンシャルとして、組立不良率推定対象の組付作業工程の後に、当該組付作業が適切に完了しているか否かを確認するチェック工程が有るならば、もし不良が発生していたとしても、その工程で発見され、手直し対策が施されることにより、最終的に不良となる確率は低下する。   In addition, as a defect detection potential, if there is a check process to check whether or not the assembly work is properly completed after the assembly work process of the assembly defect rate estimation target, a defect has occurred. Even so, the probability of a final failure is reduced by the fact that it is discovered in the process and the rework measures are taken.

このようなことから、製品評価部10bでは、組立不良に大きく影響を与える、組付作業の動作の内容と、組付部品および被組付品の性質と、作業が適切に完了しているか否かを確認するチェック工程の有無と、組付作業を行う職場の条件とに基いて、不良率を算出することとした。   For this reason, in the product evaluation unit 10b, the contents of the operation of the assembling work, the nature of the assembling parts and the assembling parts, and whether the work is properly completed, which greatly affects the assembly failure. The defect rate was calculated based on the presence or absence of a check process to confirm whether or not and the conditions of the workplace where the assembly work was performed.

このため、記憶装置4の製品構造評価用記憶部分4bには、標準組付動作(部品の組付動作)の種類に対応した標準組付動作別不良率係数、任意の組立作業を完成させるまでの組付動作の数(組付数と称す)に対応した動作順補正係数、組付部品および被組付品の性質等に対応した組付部品条件および被組付品条件補正係数、組付作業の後工程において組付完了を確認する工程が設けていた場合のチェック工程補正係数、組立作業を行う組立職場の条件に対応した職場定数を格納した製品構造評価用データベース4b1と、本製品評価部の不良率の算出を実行する算術式を含んだ製品構造評価用計算プログラムを格納した部分4b2と、製品構造評価用入出力制御プログラムを格納した部分4b3等がある。これら製品構造評価用データベース4b1に記憶される係数は、それぞれ不良の発生しやすい項目ほど大きく、もしくは小さくなるように組立不良の発生実績データに基いて設定されている。   For this reason, in the product structure evaluation storage portion 4b of the storage device 4, the defect rate coefficient for each standard assembly operation corresponding to the type of standard assembly operation (part assembly operation), and any assembly work is completed. Motion order correction coefficient corresponding to the number of assembly operations (referred to as assembly number), assembly part conditions and assembly condition correction factors corresponding to the properties of the assembly parts and assembly parts, assembly Product structure evaluation database 4b1 which stores a check process correction coefficient in the case where a process for confirming the completion of assembly is provided in the post-process of work, and a workplace constant corresponding to the conditions of the assembly workplace where the assembly work is performed, and this product evaluation There are a part 4b2 storing a product structure evaluation calculation program including an arithmetic expression for calculating the defective rate of the part, a part 4b3 storing a product structure evaluation input / output control program, and the like. The coefficients stored in the product structure evaluation database 4b1 are set on the basis of actual assembly failure occurrence data so that the items that are likely to cause defects are larger or smaller.

そこで、まず、入力画面を表示手段2に表示し、入力手段1を用いて、図3に示す部品の組付作業時の組付動作の情報(動作の種類、動作の順番)1b1、組付部品及び被組付品の性質情報(組付動作の不確実度に影響を与える因子に関する情報)1b2、チェック工程有無の情報1b3、および組付作業を行う製造職場名の情報1b4を、組付動作に対応させて入力し、RAM33に一時記憶する。   Therefore, first, an input screen is displayed on the display means 2, and using the input means 1, assembly operation information (type of operation, order of operations) 1b1 during assembly of the parts shown in FIG. Assembling information on properties of parts and assembled parts (information on factors affecting the uncertainty of assembly operation) 1b2, information 1b3 on presence / absence of check process, and information 1b4 on the name of the manufacturing workplace where the assembly work is performed An input corresponding to the operation is performed and temporarily stored in the RAM 33.

ついで、CPU32(図13に示す判別部131における抽出部131a〜131c)は、入力されたそれぞれの標準組付動作要素に対応する不良率係数をデータベース4b1に格納された標準組付動作別不良率係数から抽出し、入力されたそれぞれの標準組付動作における組付数(標準組付動作の順番)に対応する補正係数をデータベース4b1に格納された動作順補正係数から抽出し、入力されたそれぞれの標準組付動作における組付部品及び被組付品の性質情報に対応する補正係数をデータベース4b1に格納された組付部品条件および被組付品条件補正係数から抽出し、入力されたそれぞれの標準組付動作におけるチェック工程有無に対応する補正係数をデータベース4b1に格納されたチェック工程補正係数から抽出し、入力された一連の標準組付動作が行われる製造職場名に対応する補正係数をデータベース4b1に格納された職場定数から抽出し、一時RAM33に記憶させる。   Next, the CPU 32 (extracting units 131a to 131c in the discriminating unit 131 shown in FIG. 13) stores the defect rate coefficient corresponding to each input standard assembly operation element by the standard assembly operation failure rate stored in the database 4b1. The correction coefficients corresponding to the number of assembling (order of standard assembling operations) extracted from the coefficients and inputted in the standard assembling operations are extracted from the operation order correction coefficients stored in the database 4b1, and each inputted The correction coefficient corresponding to the property information of the assembled part and the assembled product in the standard assembling operation is extracted from the assembled part condition and the assembled product condition correction coefficient stored in the database 4b1, and each inputted A correction coefficient corresponding to the presence or absence of the check process in the standard assembly operation is extracted from the check process correction coefficient stored in the database 4b1 and input. Extracted from a series of work constants a correction coefficient stored in the database 4b1 corresponding to the manufacturing work name standard assembly operation is performed, is stored in a temporary RAM 33.

ついで、CPU32(図13に示す製品構造の不良率算出部132)は、製品の組立不良率推定値を、部分4b2に格納された製品構造評価用計算プログラムに従って、次に示す(数1)式の関係に基づく(数2)式の組立不良推定式に基いて、部品組付動作毎の不良率推定値を積算することによって算出する。   Next, the CPU 32 (product structure defect rate calculation unit 132 shown in FIG. 13) calculates the product assembly failure rate estimated value according to the following equation (Equation 1) according to the product structure evaluation calculation program stored in the part 4b2. Based on the assembly failure estimation formula (Equation 2) based on the relationship, the failure rate estimation value for each part assembly operation is integrated.

製品の組立不良率推定値
=Σf1(組付動作内容、組付数、部品の性質、職場条件、チェック工程の有
無) (数1)
=Σf2(組付動作別不良率係数、動作順補正係数、部品補正係数、職場補正
係数、チェック工程補正係数) (数2)
なお、上記f1()、f2()は関数を表す。これら関数としては、例えば、組付動作別不良率係数に、動作順補正係数、部品補正係数、職場補正係数、チェック工程補正係数を乗算する方式、または加減算する方式、または指数関数的に補正を加える等の種々の方式がある。
Product assembly failure rate estimate = Σf1 (Assembly operation details, number of assemblies, parts properties, workplace conditions, presence of check process) (Equation 1)
= Σf2 (Defect rate coefficient by assembly operation, operation order correction coefficient, parts correction coefficient, workplace correction coefficient, check process correction coefficient) (Equation 2)
The above f1 () and f2 () represent functions. These functions include, for example, a method for multiplying the defect rate coefficient for each assembly operation by an operation order correction factor, a component correction factor, a workplace correction factor, a check process correction factor, a method for adding and subtracting, or an exponential correction. There are various methods such as adding.

また、一つの組付動作に対し、複数の動作順補正係数、部品補正係数、職場補正係数、チェック工程補正係数がある場合の補正方法についても、当該の組付動作の組付動作別不良率係数に、全ての動作順補正係数、部品補正係数、職場補正係数、チェック工程補正係数を掛け合わせる方式、当該の組付動作の組付動作別不良率係数に、全ての動作順補正係数、部品補正係数、職場補正係数、チェック工程補正係数を加算(減算含む)する方式等がある。   In addition, regarding a correction method when there are a plurality of operation order correction coefficients, component correction coefficients, workplace correction coefficients, and check process correction coefficients for one assembling operation, the defect rate for each assembling operation of the assembling operation The coefficient is multiplied by all motion order correction coefficients, parts correction coefficients, workplace correction coefficients, and check process correction coefficients. There is a method of adding (including subtracting) a correction coefficient, a workplace correction coefficient, and a check process correction coefficient.

本発明では、いずれの手法を選択しても良く、組付動作別不良率係数を、動作順補正係数、部品補正係数、職場補正係数、チェック工程補正係数により補正するもので有ればよい。   In the present invention, any method may be selected as long as the defective rate coefficient for each assembling operation is corrected by an operation order correction coefficient, a component correction coefficient, a workplace correction coefficient, and a check process correction coefficient.

データベース4b1における動作順補正係数は、複数の標準組付動作要素で表現される組付作業の場合に、動作数が増えるに従って、作業の複雑さが増すことから、その組付作業を構成する個々の組付動作の順番に応じて、各々の動作の「組付動作別不良率基本係数」を大きくするための補正係数である。   The operation order correction coefficient in the database 4b1 increases the complexity of the operation as the number of operations increases in the case of an assembly operation expressed by a plurality of standard assembly operation elements. This is a correction coefficient for increasing the “defect rate basic coefficient by assembling operation” of each operation in accordance with the order of the assembling operations.

更に、各組付動作のもつ作業不良の起き易さは、組付部品や被組付品やその周辺部の条件によって、影響を受けることから、部品条件補正係数を設ける。すなわち、各組付動作のもつ作業不良の起き易さは、組付部品の大きさ、重量、材質、合せ箇所数、などの組付部品の性質の条件によって変化する。また、同様に被組付品の性質条件によっても変化する。以上のことからデータベース4b1における組付部品条件補正係数データベースと被組付部品条件補正係数データベースは、組付動作のもつ作業不良の起き易さに重要な影響を及ぼす、組付部品性質因子及び被組付品性質因子を設定し、各因子毎に、標準組付動作別不良率係数を補正するための部品条件補正係数である。なお、組付部品条件補正係数データベースと被組付部品条件補正係数データベースとのデータベースの構造を異ならせても良い。   Furthermore, since the easiness of work failure of each assembling operation is affected by the conditions of the assembling parts and the assembling parts and their peripheral parts, a part condition correction coefficient is provided. That is, the ease of occurrence of work defects in each assembling operation varies depending on the conditions of the properties of the assembling parts, such as the size, weight, material, and number of parts to be assembled. Similarly, it varies depending on the property condition of the assembled product. From the above, the assembly part condition correction coefficient database and the assembly part condition correction coefficient database in the database 4b1 have an important effect on the ease of occurrence of work defects in the assembly operation and the assembly part property factor and the coverage. It is a component condition correction coefficient for setting an assembly product property factor and correcting the defect rate coefficient for each standard assembly operation for each factor. The assembled parts condition correction coefficient database and the assembled parts condition correction coefficient database may have different database structures.

更に、各組付動作のもつ作業不良の起き易さは、組立作業を行なう製造職場の条件によって大きく異なることから、職場評価部10aで評価推定された「下移動」のような基準組立作業(基準製造作業)に対する製造職場の平均的な不良の起き易さ(製造職場の実力の指標)を示す職場定数がデータベース4b1に格納されている。なお、職場定数として、製造職場における平均的な不良の起き易さ(製造職場の実力の指標)を示すものであるが、必ずしも、単一の職場定数にする必要がなく、一連の組付動作を複数の組付動作に分類し、この分類された複数の組付動作毎に職場定数を職場評価部10aにおいて評価してデータベース4b1に格納してもよい。即ち、複数の職場定数を職場評価部10aにおいて評価してデータベース4b1に格納してもよい。このようにすることによって、上記(数2)式において複数の組付動作毎に職場定数である職場補正係数を変えることが可能となる。   Furthermore, since the ease of occurrence of work defects in each assembling operation varies greatly depending on the conditions of the manufacturing workplace where the assembling work is performed, a standard assembly work such as “downward movement” estimated by the workplace evaluation unit 10a ( Stored in the database 4b1 is a workplace constant indicating an average probability of occurrence of defects in the manufacturing workplace relative to the (standard manufacturing work) (an index of the capability of the manufacturing workplace). The workplace constant indicates the average likelihood of occurrence of defects in the manufacturing workplace (an index of the ability of the manufacturing workplace), but it is not necessarily a single workplace constant, and a series of assembly operations May be classified into a plurality of assembly operations, and the workplace constant may be evaluated by the workplace evaluation unit 10a for each of the classified assembly operations and stored in the database 4b1. That is, a plurality of workplace constants may be evaluated by the workplace evaluation unit 10a and stored in the database 4b1. By doing so, it is possible to change the workplace correction coefficient, which is a workplace constant, for each of a plurality of assembling operations in the equation (2).

更に、チェック工程補正係数は、組立不良率推定対象の部品組付作業を行った後に当該部品組付作業が適切に行われているか否かをチェックする工程が有る場合、そのために不良率は低下するため、その効果を反映するための補正係数である。なお、チェック作業の種類によって、不良摘出率が異なる場合は、異なるチェック工程毎にチェック工程補正係数を設定しても良い。なお、チェック工程の有無に関する情報1b3は、必ずしも必要ではなく、該情報が無くとも所望の不良率を算出することができる。   Furthermore, if there is a process for checking whether or not the part assembly work is properly performed after performing the part assembly work for which the assembly failure rate is to be estimated, the check rate correction coefficient decreases for that reason. Therefore, it is a correction coefficient for reflecting the effect. If the defect extraction rate differs depending on the type of check work, a check process correction coefficient may be set for each different check process. Note that the information 1b3 regarding the presence / absence of the check process is not always necessary, and a desired defect rate can be calculated without the information.

以上説明した製品の不良率を評価推定する際、組付部品自身には不良が無いとしているが、実際には組付部品自身にも不良率が存在するので、組付部品自身の不良率を考慮すれば、真の製品の不良率を算出することができる。組付部品自身の不良率は、組付部品を製造している職場あるいはメーカの管理によるものであることからして、製造職場の評価と同様に組付部品自身の不良率による補正係数を算出して、組付部品名に対応させて製品構造評価用データベース4b1に格納することができる。   When evaluating and estimating the defect rate of the product described above, it is assumed that there is no defect in the assembled part itself, but actually there is also a defect rate in the assembled part itself. Considering this, it is possible to calculate the defect rate of the true product. Since the defect rate of the assembled part itself is based on the management of the workplace where the assembled part is manufactured or the manufacturer, the correction coefficient is calculated based on the defective rate of the assembled part itself in the same way as the evaluation of the manufacturing workplace. Then, it can be stored in the product structure evaluation database 4b1 in correspondence with the assembly part name.

次に、製品評価部10bに設けられた不良現象推定部(CPU32)133について説明する。製品構造の不良率算出部132からは、組付動作別の補正された合計の不良率係数もしくは不良率が算出されるので、不良現象推定部133において、この算出された組付動作別の合計の不良率係数もしくは不良率の群の中から例えば最も大きいものから複数選択することによって、不良現象を最も起こしているものと推定される組付動作を選択することができる。そして、不良現象推定部133は、更に、組付動作別の合計の不良率係数を決めている不良率係数、動作順補正係数、部品補正係数等を探索することによって、「位置決め動作」によるものか、「結合動作」によるものか等不良現象を突き止めることができる。   Next, the defect phenomenon estimation unit (CPU 32) 133 provided in the product evaluation unit 10b will be described. Since the defect rate calculation unit 132 of the product structure calculates a corrected total defect rate coefficient or defect rate for each assembly operation, the defect phenomenon estimation unit 133 calculates the calculated total for each assembly operation. By selecting a plurality of failure rate coefficients or failure rate groups from the largest, for example, it is possible to select an assembling operation that is estimated to cause the failure phenomenon most. Then, the defect phenomenon estimation unit 133 further searches for a defect rate coefficient, an operation order correction coefficient, a component correction coefficient, and the like that determine the total defect rate coefficient for each assembly operation, thereby performing the “positioning operation”. It is possible to find out a defective phenomenon such as whether it is due to “coupling operation”.

次に、製品評価部10bに設けられた組立コスト算出部134a、組立不良による損失コスト算出部134b、および総コスト算出部134cからなる製造コスト算出部(CPU32)134について説明する。組付部品の単価は、設計システム20から入力されて製品構造評価用データベース4b1に格納されている。また、製品構造評価用データベース4b1には、標準組付動作別に要する作業時間と、組付部品条件、被組付品条件、動作順、チェック工程有無の補正係数に対応させた作業時間補正係数と、製造職場定数に応じた単位作業時間当たりの費用とが格納されている。従って、組立コスト算出部134aでは、標準組付動作別の作業時間と、作業時間補正係数と、製造職場定数に応じた単位作業時間当たりの費用とを基に組立コストを算出して推定することができる。また、製品全体の不良率、および標準組付動作別の合計不良率が算出できているので、組立不良による損失コスト算出部134bでは、分解して不良の組付部品を良品の組付部品に交換して再度組付ける作業時間を、組立コストを算出する際に使用したデータを基に算出して推定することが可能となる。なお、この際、良品の組付部品の単価や不良の組付部品を廃棄に要する費用を加味する必要が有る。また、不良の組付部品を良品にすることができる場合には、その修理に要する費用を加味すればよい。   Next, a manufacturing cost calculation unit (CPU 32) 134 including an assembly cost calculation unit 134a, a loss cost calculation unit 134b due to assembly failure, and a total cost calculation unit 134c provided in the product evaluation unit 10b will be described. The unit price of the assembled part is input from the design system 20 and stored in the product structure evaluation database 4b1. Further, the product structure evaluation database 4b1 includes a work time required for each standard assembly operation, a work time correction coefficient corresponding to the assembly part condition, the assembled product condition, the operation order, and the correction coefficient for the presence or absence of the check process. The cost per unit work time according to the manufacturing workplace constant is stored. Therefore, the assembly cost calculation unit 134a calculates and estimates the assembly cost based on the work time for each standard assembly operation, the work time correction coefficient, and the cost per unit work time according to the manufacturing workplace constant. Can do. Further, since the defect rate of the entire product and the total defect rate for each standard assembly operation can be calculated, the loss cost calculation unit 134b due to assembly failure disassembles the defective assembly component into a non-defective assembly component. The work time for replacement and reassembly can be calculated and estimated based on the data used when calculating the assembly cost. At this time, it is necessary to consider the unit cost of non-defective assembly parts and the cost required to discard defective assembly parts. In addition, when a defective assembly part can be made a non-defective product, the cost required for the repair may be taken into account.

以上、総コスト算出部134cでは、組立コスト算出部134aで算出された総組立コストと、組立不良による損失コスト算出部134bで算出された総損失コストと、組付部品の総単価とを総計することによって、製品の製造コストを算出することができる。   As described above, the total cost calculation unit 134c totals the total assembly cost calculated by the assembly cost calculation unit 134a, the total loss cost calculated by the loss cost calculation unit 134b due to defective assembly, and the total unit price of the assembled parts. Thus, the manufacturing cost of the product can be calculated.

以上説明したように、製品構造の不良率算出部132で推定された製品または部組品の不良率、不良現象推定部133で推定された不良現象、製造コスト算出部134で推定された製品または部組品の製造コストを製品または部組品の名称と共に表示手段2または出力手段5に出力することができる。   As described above, the defect rate of the product or the assembly estimated by the defect rate calculation unit 132 of the product structure, the defect phenomenon estimated by the defect phenomenon estimation unit 133, the product estimated by the manufacturing cost calculation unit 134, or The manufacturing cost of the assembly can be output to the display means 2 or the output means 5 together with the name of the product or assembly.

なお、製品または部組品の不良率等の推定を、組立作業の場合について説明したが、加工作業の場合にも同様に適用することが可能である。加工作業の場合には、標準組付動作別を細分類した標準加工動作別に置き換え、組付部品、被組付品条件を、加工手段、被加工品の条件(性質)に置き換え、組付動作順を加工動作順に置き換えれば良い。   Note that the estimation of the defect rate of the product or the assembly has been described in the case of the assembly work, but can be similarly applied to the case of the machining work. In the case of machining operations, the standard assembling operation is subdivided according to standard machining operations, and the assembling parts and assembling conditions are replaced with the processing means and conditions (properties) of the assembling work. The order may be replaced with the machining operation order.

以上説明した本評価装置10を、品質保証部門において工場の審査に使用することで、その工場の製造プロセスの評価が可能となり、必要な品質を満たす工場か否かの判定や、品質向上のための指導に活用することができ、品質向上に効果がある。   By using the evaluation apparatus 10 described above for the factory inspection in the quality assurance department, it becomes possible to evaluate the manufacturing process of the factory, and to determine whether or not the factory satisfies the required quality, and to improve the quality. It can be used for the guidance of quality improvement.

また、本評価装置10により、設計・製造・品質保証の各部門で不良発生防止・不良摘出活動が的確にできるようになる。   In addition, the evaluation apparatus 10 can accurately prevent and detect defects in the design, manufacturing, and quality assurance departments.

以上のことより、製品の開発・製造の各プロセスの中で本発明に係る評価装置10を用いることで、製造工程内で発生する不良、市場で発生する不良を大幅に低減することができ、その結果、出荷製品の信頼性を大幅に高めることが可能となる。   From the above, by using the evaluation apparatus 10 according to the present invention in each process of product development / manufacturing, defects occurring in the manufacturing process and defects occurring in the market can be greatly reduced. As a result, the reliability of the shipped product can be greatly increased.

本発明に係る製造職場の不良起こし易さを決める「不良作り込み度」「不良対処時間度合」「不良摘出度」を説明するための図である。It is a figure for demonstrating "defect preparation degree", "defect handling time degree", and "defect extraction degree" which determine the easiness to raise the defect of the manufacturing workplace which concerns on this invention. 本発明に係る製造職場の不良起こし易さを決める「不良発生抑制力」「不良発生時対処力」「不良検出力」が様々な評価要素(細分類された職場条件不良影響項目)に関係していることを説明するための図である。“Defect occurrence suppression ability”, “Defect occurrence response ability”, and “Defect detection ability” that determine the ease of occurrence of defects in the manufacturing workplace according to the present invention are related to various evaluation factors (subjects of subordinately classified work condition defect influence items). It is a figure for demonstrating that it is. 本発明に係る職場評価部と製品評価部とからなる評価装置の一実施例を示すハード構成図である。It is a hardware block diagram which shows one Example of the evaluation apparatus which consists of the workplace evaluation part which concerns on this invention, and a product evaluation part. 図3に示す記憶装置に記憶された製造職場評価用データベースの具体的内容を示す図である。It is a figure which shows the specific content of the database for manufacturing workplace evaluation memorize | stored in the memory | storage device shown in FIG. 本発明に係る評価装置の職場評価部における機能構成の一実施例を示す機能ブロック図である。It is a functional block diagram which shows one Example of the function structure in the workplace evaluation part of the evaluation apparatus which concerns on this invention. 本発明に係る職場評価部において実行する製造職場評価フローの全体を示す図である。It is a figure which shows the whole manufacturing workplace evaluation flow performed in the workplace evaluation part which concerns on this invention. 新規入力/既登録ファイル開くの選択画面、およびファイル指定画面を示す図である。It is a figure which shows the selection screen of a new input / opening of a registered file, and a file designation screen. 職場評価用の評価対象職場名および評価カテゴリ別、職場条件不良影響項目別の職場水準レベルを入力するための入力画面の一実施例を示す図である。It is a figure which shows one Example of the input screen for inputting the workplace level for every evaluation subject workplace name and evaluation category for workplace evaluation, and every workplace condition defect influence item. 図7に示す職場条件不良影響項目別、職場全体の不良発生度および職場全体の平均的な不良率を評価する計算の具体的フローを示す図である。It is a figure which shows the specific flow of the calculation which evaluates the defect incidence degree of the whole workplace, the average defect rate of the whole workplace according to the workplace condition defect influence item shown in FIG. 図9に示すフローで評価された結果である評価カテゴリ別、職場条件不良影響項目別、および職場全体の不良発生度並びに職場全体の平均的な不良率を示す図である。FIG. 10 is a diagram showing evaluation results by the flow shown in FIG. 9, by evaluation category, by work condition defect effect items, by the degree of defect occurrence in the entire workplace, and by the average defect rate of the entire workplace. 職場評価結果を出力する画面の一実施例を示す図である。It is a figure which shows one Example of the screen which outputs a workplace evaluation result. 本発明に係る部品組付動作によって不良が発生するモデルを説明するための図である。It is a figure for demonstrating the model in which a defect generate | occur | produces by the components assembly | attachment operation | movement which concerns on this invention. 本発明に係る評価装置の製品評価部における機能構成の一実施例を示す機能ブロック図である。It is a functional block diagram which shows one Example of the function structure in the product evaluation part of the evaluation apparatus which concerns on this invention.

符号の説明Explanation of symbols

1・・・入力手段、2・・・表示手段、3・・・計算手段、4・・・記憶装置、4a・・・製造職場評価用記憶部分、4a1・・・製造職場評価用データベース、4b・・・製品構造評価用記憶部分、4b1・・・製品構造評価用データベース、5・・・出力手段、10・・・評価装置、10a・・・職場評価部、10b・・・製品評価部、20・・・計算システム、31・・・ROM、32・・・CPU、33・・・RAM、34・・・インターフェース、35・・・バスライン、51・・・判別部、52・・・職場条件項目別影響度算出部、53・・・職場定数算出部、54・・・メッセージ制御部、54a・・・カテゴリ別影響度算出部、54b・・・メッセージ決定部、131・・・判別部、132・・・製品構造の不良率算出部、133・・・不良現象推定部、134・・・製造コスト算出部。   DESCRIPTION OF SYMBOLS 1 ... Input means, 2 ... Display means, 3 ... Calculation means, 4 ... Memory | storage device, 4a ... Memory part for manufacturing workplace evaluation, 4a1 ... Database for manufacturing workplace evaluation, 4b ... storage part for product structure evaluation, 4b1 ... database for product structure evaluation, 5 ... output means, 10 ... evaluation device, 10a ... workplace evaluation part, 10b ... product evaluation part, 20 ... calculation system, 31 ... ROM, 32 ... CPU, 33 ... RAM, 34 ... interface, 35 ... bus line, 51 ... discriminating unit, 52 ... workplace Condition item-specific influence calculation unit, 53 ... workplace constant calculation unit, 54 ... message control unit, 54a ... category-specific influence calculation unit, 54b ... message determination unit, 131 ... discrimination unit 132 ... Product structure defect rate calculation unit, 33 ... bad phenomenon estimation unit, 134 ... production cost calculation unit.

Claims (3)

記憶手段と入力手段と評価手段と出力手段とを備えた評価装置を用いて評価対象の製造職場における不良の起こし易さを評価して、改善余地の大きい不良原因項目を提示する製造職場の評価方法であって、
予め設定された作業者、製造設備、製造条件、製造物理的環境、およびマネージメントからなる評価カテゴリに関する複数の職場条件不良影響項目と、該各職場条件不良影響項目について少なくとも基準職場水準レベルにおける基準製造作業に対する不良発生抑制力となる不良作り込み係数、不良発生時対処力となる不良対処時間係数、および不良検出力となる不良摘出度係数を設定し、並びに前記各職場条件不良影響項目における項目間相対的重み係数を設定した職場評価用データベースを予め作成して前記記憶手段に記憶しておく職場データベース記憶過程と
前記入力手段を用いて、評価対象の製造職場における前記各職場条件不良影響項目についての少なくとも職場水準レベルを入力する職場水準入力過程と
前記評価手段を用いて、前記職場評価用データベースにおける少なくとも基準職場水準レベルにおける基準製造作業に対する不良作り込み係数、不良対処時間係数、および不良摘出度係数の各設定値を基に、前記職場水準入力過程で入力された各職場条件不良影響項目についての職場水準レベルに対応させ、更に前記各職場条件不良影響項目における項目間相対的重み係数を掛算して不良作り込み度の指標、不良対処時間度合の指標、及び不良摘出度の指標の各々を算出し、前記職場条件不良影響項目毎に、不良作り込み度の指標、不良対処時間度合の指標、及び不良摘出度の指標の合計である不良発生度と、理想職場の不良発生度との差分により改善余地の指標を算出して評価対象の製造職場における各職場条件不良影響項目の不良発生度低減効果の大きさを評価する評価過程と
前記出力手段を用いて、前記改善余地の大きい順に、複数の前記職場条件不良影響項目を提示して取り組むべき対策決定を支援する提示過程とを有することを特徴とする製造職場の評価方法。
Evaluation of a manufacturing workplace that evaluates the easiness of occurrence of a defect in an evaluation target manufacturing workplace using an evaluation apparatus having a storage means, an input means, an evaluation means, and an output means, and presents a cause of failure having a large room for improvement. A method,
A plurality of workplace condition bad influence items related to evaluation categories consisting of preset workers, production equipment, production conditions, production physical environment, and management, and reference production at least at the standard workplace level for each of the work condition bad influence items A defect creation coefficient that is a defect generation suppression ability for work, a defect handling time coefficient that is a countermeasure capacity when a defect occurs, and a defect extraction degree coefficient that is a defect detection capability are set, and between the items in each workplace condition defect influence item A workplace database storage process in which a workplace evaluation database in which a relative weight coefficient is set is created in advance and stored in the storage means ;
Using the input means, a workplace level input process of inputting at least a workplace level level for each of the workplace condition defect effect items in the manufacturing workplace to be evaluated ;
Using the evaluation means, the workplace level input is performed based on the set values of the defect creation coefficient, defect handling time coefficient, and defect extraction degree coefficient for at least the reference manufacturing level in the workplace evaluation database. Corresponding to the workplace level level for each workplace condition defect effect item entered in the process, and by multiplying the relative weight coefficient between items in each workplace condition defect impact item, the defect creation degree index and defect handling time degree Each of the index of the defect and the index of the defect extraction degree is calculated, and for each of the workplace condition defect influence items, the defect occurrence that is the sum of the defect creation index, the defect handling time index, and the defect extraction index is calculated. Degree of occurrence of defects in each workplace condition defect item at the manufacturing workplace to be evaluated by calculating an index of room for improvement by the difference between the degree of failure and the degree of occurrence of defects at the ideal workplace And the evaluation process to assess the magnitude of the reduction effect,
A method of evaluating a manufacturing workplace , comprising: using the output means, and presenting a plurality of workplace condition bad influence items in order of increasing room for improvement to support countermeasure determination to be tackled .
前記職場データベース記憶過程において、前記職場評価用データベースには更に各職場条件不良影響項目に対応させて、職場水準レベルが理想職場には達しないレベルにおいて不良発生度を低減させるための対策案を示すアドバイス、またはコメントの情報を予め作成して記憶させておき、
前記出力手段による提示過程において、前記各職場条件不良影響項目に添付して、前記職場評価用データベースから読み出した不良発生度を低減させるための対策案を示すアドバイス、またはコメントを合わせて提示することを特徴とする請求項1に記載の製造職場の評価方法。
In the workplace database storage process, the workplace evaluation database further shows countermeasures for reducing the occurrence of defects at a level where the workplace level does not reach the ideal workplace, corresponding to each work condition defect effect item. Create and store advice or comment information in advance.
In the presentation process by the output means, an advice or comment indicating a countermeasure plan for reducing the degree of occurrence of defects read out from the workplace evaluation database is presented together with each workplace condition defect effect item. The manufacturing workplace evaluation method according to claim 1, wherein:
記憶手段と入力手段と評価手段と出力手段とを備えた評価装置を用いて評価対象の製造職場における不良の起こし易さを評価推定する製造職場の評価方法であって、A manufacturing workplace evaluation method for evaluating and estimating the likelihood of occurrence of defects in a manufacturing workplace to be evaluated using an evaluation apparatus comprising a storage means, an input means, an evaluation means, and an output means,
予め設定された作業者、製造設備、製造条件、製造物理的環境、およびマネージメントからなる評価カテゴリに関する複数の職場条件不良影響項目と、該各職場条件不良影響項目について少なくとも基準職場水準レベルにおける基準製造作業に対する不良発生抑制力となる不良作り込み係数、不良発生時対処力となる不良対処時間係数、および不良検出力となる不良摘出度係数を設定し、並びに前記各職場条件不良影響項目における項目間相対的重み係数を設定した職場評価用データベースを予め作成して前記記憶手段に記憶しておく職場データベース記憶過程と、A plurality of workplace condition bad influence items related to evaluation categories consisting of preset workers, production equipment, production conditions, production physical environment, and management, and reference production at least at the standard workplace level for each of the work condition bad influence items A defect creation coefficient that is a defect generation suppression ability for work, a defect handling time coefficient that is a countermeasure capacity when a defect occurs, and a defect extraction degree coefficient that is a defect detection capability are set, and between the items in each workplace condition defect influence item A workplace database storage process in which a workplace evaluation database in which a relative weight coefficient is set is created and stored in the storage means;
前記入力手段を用いて、評価対象の製造職場における前記各職場条件不良影響項目についての少なくとも職場水準レベルを入力する職場水準入力過程と、Using the input means, a workplace level input process of inputting at least a workplace level level for each of the workplace condition defect effect items in the manufacturing workplace to be evaluated;
前記評価手段を用いて、前記職場評価用データベースにおける少なくとも基準職場水準レベルにおける基準製造作業に対する不良作り込み係数、不良対処時間係数、および不良摘出度係数の各設定値を基に、前記職場水準入力過程で入力された各職場条件不良影響項目についての職場水準レベルに対応させ、更に前記各職場条件不良影響項目における項目間相対的重み係数を掛算して不良作り込み度の指標、不良対処時間度合の指標、及び不良摘出度の指標の各々を算出し、前記評価カテゴリ毎に、不良作り込み度の指標の合計、不良対処時間度合の指標の合計、および不良摘出度の指標の合計、並びにそれらの合計を算出して、評価カテゴリ毎の評価対象の製造職場における不良の起こし易さを評価する職場評価過程と、  Using the evaluation means, the workplace level input is performed based on the set values of the defect creation coefficient, defect handling time coefficient, and defect extraction degree coefficient for at least the reference manufacturing level in the workplace evaluation database. Corresponding to the workplace level level for each workplace condition defect effect item entered in the process, and by multiplying the relative weight coefficient between items in each workplace condition defect impact item, the defect creation degree index and defect handling time degree For each of the evaluation categories, the total of the defect creation degree index, the total of the defect handling time degree index, and the total of the defect extraction degree index, and those A workplace assessment process that evaluates the likelihood of defects in the production workplace subject to assessment for each assessment category,
前記出力手段を用いて、評価カテゴリ毎に不良発生度を提示して取り組むべき対策決定を支援する提示過程とを有することを特徴とする製造職場の評価方法。A method for evaluating a manufacturing workplace, comprising: using the output means, and presenting a degree of occurrence of defects for each evaluation category to assist in determining measures to be taken.
JP2005255824A 2005-09-05 2005-09-05 Manufacturing workplace evaluation method Expired - Fee Related JP4218669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255824A JP4218669B2 (en) 2005-09-05 2005-09-05 Manufacturing workplace evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255824A JP4218669B2 (en) 2005-09-05 2005-09-05 Manufacturing workplace evaluation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27336899A Division JP3732053B2 (en) 1999-09-27 1999-09-27 Method and apparatus for evaluating the likelihood of occurrence of defects in a manufacturing workplace, method and apparatus for evaluating defective product assembly work rate, and recording medium

Publications (2)

Publication Number Publication Date
JP2006073014A JP2006073014A (en) 2006-03-16
JP4218669B2 true JP4218669B2 (en) 2009-02-04

Family

ID=36153498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255824A Expired - Fee Related JP4218669B2 (en) 2005-09-05 2005-09-05 Manufacturing workplace evaluation method

Country Status (1)

Country Link
JP (1) JP4218669B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929837A1 (en) 2020-06-22 2021-12-29 Denso Corporation Work content analyzing apparatus, work content analyzing method, program, and sensor
WO2022014339A1 (en) 2020-07-16 2022-01-20 株式会社 東芝 Determination device, determination method, and program
WO2022034751A1 (en) 2020-08-14 2022-02-17 東芝デジタルソリューションズ株式会社 Work content analysis device, work content analysis method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087882B2 (en) 2018-09-26 2022-06-21 オムロン株式会社 Quality prediction device, quality prediction method, and quality prediction program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929837A1 (en) 2020-06-22 2021-12-29 Denso Corporation Work content analyzing apparatus, work content analyzing method, program, and sensor
WO2022014339A1 (en) 2020-07-16 2022-01-20 株式会社 東芝 Determination device, determination method, and program
KR20230011998A (en) 2020-07-16 2023-01-25 가부시끼가이샤 도시바 Judging apparatus, judging method and program
WO2022034751A1 (en) 2020-08-14 2022-02-17 東芝デジタルソリューションズ株式会社 Work content analysis device, work content analysis method, and program
KR20230038242A (en) 2020-08-14 2023-03-17 도시바 데지타루 소류숀즈 가부시키가이샤 Work content analysis device, work content analysis method and program

Also Published As

Publication number Publication date
JP2006073014A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP3732053B2 (en) Method and apparatus for evaluating the likelihood of occurrence of defects in a manufacturing workplace, method and apparatus for evaluating defective product assembly work rate, and recording medium
Antony et al. A conceptual framework for the effective implementation of statistical process control
JP4736733B2 (en) Production management apparatus, production management system, production management method, control program, and recording medium
JP4244768B2 (en) Defect influence degree evaluation method and design support system
Markeset et al. R&M and risk-analysis tools in product design, to reduce life-cycle cost and improve attractiveness
JP4911080B2 (en) Quality improvement system
US6401000B1 (en) Fraction defective estimating method and system for estimating an assembly fraction defective of an article
JP4981479B2 (en) Equipment fault diagnosis system
JP5336850B2 (en) Computer system and computer-based method for safety assessment of process industry plants
JP4218669B2 (en) Manufacturing workplace evaluation method
JP6559525B2 (en) Remote work support system and remote work support method
JP2007280012A (en) Operation instruction system and its method
JP2002312017A (en) Work evaluation device, work evaluation method and program to realize work evaluation method in computer
JP6823025B2 (en) Inspection equipment and machine learning method
JP2001273025A (en) Method for estimating generation rate of inferiority of work, and method and device for estimating probability of inferiority in production workshop
JP3570211B2 (en) Failure rate estimation method, failure rate estimation system, and recording medium
JP2002230337A (en) Method for inter-enterprise dealings and method for mediation in inter-enterprise dealings
JP2007193456A (en) Factor estimation system, factor estimation program, recording medium for recording factor estimation program, and factor estimation method
JP4921917B2 (en) Software safety diagnostic device and program
JPH08287154A (en) Manufacture defect analysis system, method therefor and method for generating relative database
JP4277434B2 (en) Defective rate estimation method and recording medium
Widyanty et al. Toward a model of the linkages between safety culture and employee performance in gold mining companies
JP3639466B2 (en) Manufacturing workplace evaluation method and system
Awedikian et al. Design of a validation test process of an automotive software
US6526326B2 (en) Fraction defective estimating method and system for estimating an assembly fraction defective of an article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees