JP4218591B2 - Control device for vehicle drive device - Google Patents

Control device for vehicle drive device Download PDF

Info

Publication number
JP4218591B2
JP4218591B2 JP2004156884A JP2004156884A JP4218591B2 JP 4218591 B2 JP4218591 B2 JP 4218591B2 JP 2004156884 A JP2004156884 A JP 2004156884A JP 2004156884 A JP2004156884 A JP 2004156884A JP 4218591 B2 JP4218591 B2 JP 4218591B2
Authority
JP
Japan
Prior art keywords
continuously variable
speed
transmission
gear ratio
stepped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004156884A
Other languages
Japanese (ja)
Other versions
JP2005337373A (en
JP2005337373A5 (en
Inventor
淳 田端
豊 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004156884A priority Critical patent/JP4218591B2/en
Priority to US11/019,337 priority patent/US7822524B2/en
Priority to KR1020077025340A priority patent/KR100863172B1/en
Priority to EP04808093A priority patent/EP1701061B1/en
Priority to EP11002541.8A priority patent/EP2375103B1/en
Priority to KR1020077025341A priority patent/KR100863173B1/en
Priority to CN2004800421005A priority patent/CN1926356B/en
Priority to PCT/JP2004/019743 priority patent/WO2005064199A1/en
Priority to KR1020077025344A priority patent/KR20070112304A/en
Priority to CN201110079155.5A priority patent/CN102166950B/en
Priority to KR1020077025343A priority patent/KR100882177B1/en
Priority to KR1020077025345A priority patent/KR20070112430A/en
Priority to KR1020077025342A priority patent/KR100882176B1/en
Priority to KR1020067015144A priority patent/KR100887204B1/en
Priority to CN2011100791521A priority patent/CN102166946B/en
Publication of JP2005337373A publication Critical patent/JP2005337373A/en
Publication of JP2005337373A5 publication Critical patent/JP2005337373A5/ja
Priority to US12/269,633 priority patent/US7941259B2/en
Priority to US12/269,659 priority patent/US7848858B2/en
Priority to US12/269,591 priority patent/US20090075774A1/en
Application granted granted Critical
Publication of JP4218591B2 publication Critical patent/JP4218591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of a driving device for a vehicle, controlling the gear ratio of a continuously variable speed transmission part and the gear ratio of a stepped shifting part to obtain favorable fuel consumption. <P>SOLUTION: In a continuously variable speed running state in which a differential part (a continuously variable transmission part) 11 is steplessly shifted, the gear ratio &gamma; of a stepped shifting part 20 and the gear ratio &gamma; of the differential part (the continuously variable transmission part) 11 are controlled by a gear ratio control means 86 (S5, S6) to obtain the optimum fuel consumption, whereby as compared with the case of individually controlling the gear ratios, the optimum fuel economy of the vehicle can be obtained. For example, in the comparatively high-speed steady running, the gear ratio &gamma; of the stepped shifting part 20 is controlled not to cause reversion of a first electric motor M1 in the differential part 11, whereby the optimum fuel economy as the whole vehicle can be obtained. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、車両用駆動装置の制御装置に係り、差動機構を有する無段変速部と有段変速部とを動力伝達経路に備える車両用駆動装置において、特に、その無段変速部の変速比と有段変速部の変速比とを適切に制御する変速制御技術に関するものである。   The present invention relates to a control device for a vehicle drive device, and more particularly to a vehicle drive device including a continuously variable transmission unit having a differential mechanism and a stepped transmission unit in a power transmission path. The present invention relates to a shift control technique for appropriately controlling the ratio and the gear ratio of the stepped transmission unit.

3つの要素のうちの第1要素は第1電動機に連結され、第2要素は原動機に連結され、第3要素は出力軸に連結された差動歯車装置と、前記出力軸と駆動輪との間に設けられた有段変速機を含む動力伝達機構と、その動力伝達機構に連結された第2電動機とを、備えた車両用駆動装置が知られている。例えば、特許文献1に記載されたハイブリッド車両用駆動装置がそれである。このようなハイブリッド車両用駆動装置では差動歯車装置が例えば遊星歯車装置で構成され、その差動作用によりエンジンからの動力の主部を駆動輪へ機械的に伝達し、そのエンジンからの動力の残部を第1電動機から第2電動機への電気パスを用いて電気的に伝達することにより電気的に変速比が変更される電気的無段変速機として機能させられ、エンジンを最適な作動状態に維持しつつ車両を走行させるように制御装置により制御されて燃費が向上させられる。また、比較的車体が大きい車両に適用したとき、差動歯車装置や、その第1要素に連結された第1電動機や第3要素に連結された第2電動機に比較的出力の小さいものを採用してもその後段の有段変速機によって変速されるので、比較的大きな駆動力が得られるという特徴がある。   Of the three elements, the first element is connected to the first electric motor, the second element is connected to the prime mover, the third element is a differential gear device connected to the output shaft, and the output shaft and the drive wheel. 2. Description of the Related Art A vehicle drive device is known that includes a power transmission mechanism including a stepped transmission provided therebetween and a second electric motor coupled to the power transmission mechanism. For example, this is a hybrid vehicle drive device described in Patent Document 1. In such a hybrid vehicle drive device, the differential gear device is composed of, for example, a planetary gear device, and the main part of the power from the engine is mechanically transmitted to the drive wheels by the differential action, and the power from the engine is transmitted. The remaining portion is electrically transmitted using an electric path from the first motor to the second motor, thereby functioning as an electric continuously variable transmission in which the gear ratio is electrically changed, and the engine is brought into an optimum operating state. The fuel consumption is improved by being controlled by the control device so that the vehicle travels while maintaining. In addition, when applied to a vehicle having a relatively large vehicle body, a differential gear device, a first motor connected to the first element, or a second motor connected to the third element adopts a relatively small output. Even so, there is a feature that a relatively large driving force can be obtained because the gear is shifted by the subsequent stepped transmission.

特開2003−130202号公報JP 2003-130202 A

しかしながら、電気的無段変速機の変速比と有段変速機の変速比との間で種々の組み合わせが存在し、電気的無段変速機の変速比をどのようにするかなどにおいて未だ燃費改善の余地が残されていた。たとえば、電気的無段変速機において、第1電動機が正転力行されてエンジン出力と共に車両を駆動する加速時の伝達効率はよいが、無段変速部の出力軸を比較的高速回転させるために第1電動機を逆転力行させる必要がある比較的高速の定常走行では、十分な伝達効率が得られない場合があった。   However, there are various combinations between the gear ratio of the electric continuously variable transmission and the gear ratio of the stepped transmission, and the fuel efficiency is still improved in how to change the gear ratio of the electric continuously variable transmission. There was room for. For example, in an electric continuously variable transmission, the first motor is driven in the normal direction to drive the vehicle together with the engine output, and the transmission efficiency during acceleration is good. However, in order to rotate the output shaft of the continuously variable transmission at a relatively high speed In a relatively high-speed steady running that requires the first electric motor to be reversely rotated, sufficient transmission efficiency may not be obtained.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、無段変速部の変速比と有段変速部の変速比とを好適な燃費が得られるように制御する車両用駆動装置の制御装置を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to control the gear ratio of the continuously variable transmission unit and the gear ratio of the stepped transmission unit so that suitable fuel consumption can be obtained. Another object of the present invention is to provide a control device for a vehicle drive device.

すなわち、請求項1にかかる発明の要旨とするところは、(a) 3つの要素のうちの第1要素は第1電動機に連結され、第2要素は原動機に連結され、第3要素は出力軸に連結された差動歯車装置と、その出力軸と駆動輪との間の動力伝達経路に作動的に連結された第2電動機とを備えて電気的に無段変速作動させられる無段変速部と、(b) 前記動力伝達経路内に設けられて有段変速させられる有段変速部と、(c) 前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比と無段変速部の変速比とを、最適燃費が得られるように制御する変速比制御手段とを、備える車両用駆動装置の制御装置であって、(d)前記変速比制御手段は、予め記憶された関係から駆動力関連値に基づいて目標エンジン回転速度を決定し、その目標エンジン回転速度と車速とからその目標エンジン回転速度を得るためのトータル変速比を決定し、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記トータル変速比を得るための前記有段変速部の変速比と前記無段変速部の変速比とを変速機構全体の伝達効率が最大となるように決定してその有段変速部の変速比と前記無段変速部の変速比とを制御するものであることにある。
That is, the gist of the invention according to claim 1 is that: (a) The first element of the three elements is connected to the first motor, the second element is connected to the prime mover, and the third element is the output shaft. And a second gear motor operatively connected to a power transmission path between the output shaft and the drive wheel, and a continuously variable transmission unit that is electrically continuously variable speed-operated. (B) a stepped transmission that is provided in the power transmission path and is stepped, and (c) in the continuously variable speed running state in which the continuously variable transmission is operated continuously. A control device for a vehicle drive device, comprising: a transmission ratio control means for controlling the transmission ratio of the transmission unit and the transmission ratio of the continuously variable transmission unit so as to obtain optimum fuel efficiency, and (d) the transmission ratio the control means determines a target engine rotational speed based on a predetermined stored relationship to the drive-force-related value, the A total speed ratio for obtaining the target engine speed is determined from the target engine speed and the vehicle speed, and the total speed ratio is obtained based on the efficiency of the first motor and the second motor of the continuously variable transmission. The transmission ratio of the stepped transmission unit and the transmission ratio of the continuously variable transmission unit are determined so as to maximize the transmission efficiency of the entire transmission mechanism, and the transmission ratio of the stepped transmission unit and the continuously variable transmission unit Is to control the transmission ratio .

また、請求項2に係る発明の要旨とするところは、3つの要素のうちの第1要素は第1電動機に連結され、第2要素は原動機に連結され、第3要素は出力軸に連結された差動歯車装置と、その出力軸と駆動輪との間の動力伝達経路に作動的に連結された第2電動機とを備えて電気的に無段変速作動させられる無段変速部と、その無段変速部を変速比が連続的に変化させられる無段変速状態と変速比が固定の有段変速状態とに切り換えるための切換装置と、前記動力伝達経路内に設けられて有段変速させられる有段変速部と、前記無段変速部が無段変速作動させられる無段変速走行状態で前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御する変速比制御手段とを備える車両用駆動装置の制御装置であって、前記変速比制御手段は、前記切換装置の切換えによる有段変速走行状態では、前記無段変速走行状態に比較して異なる変速点で変速を実行することにある。
また、請求項3に係る発明の要旨とするところは、請求項1或いは請求項2に係る発明において、前記変速比制御手段は、前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比に応じて前記無段変速部の変速比を変更することにある。
The gist of the invention according to claim 2 is that the first element of the three elements is connected to the first motor, the second element is connected to the prime mover, and the third element is connected to the output shaft. A continuously variable transmission that includes a differential gear device and a second electric motor that is operatively connected to a power transmission path between the output shaft and the drive wheel, A switching device for switching the continuously variable transmission unit between a continuously variable transmission state in which the transmission gear ratio is continuously changed and a stepped transmission state in which the transmission gear ratio is fixed, and a stepped transmission provided in the power transmission path. The stepped transmission unit and the continuously variable transmission state in which the continuously variable transmission unit is operated continuously variable so that the optimum fuel efficiency is obtained between the transmission ratio of the stepped transmission unit and the transmission ratio of the continuously variable transmission unit. A control device for a vehicle drive device comprising a gear ratio control means for controlling The speed change ratio control means is to execute a shift at a different shift point in the stepped variable speed traveling state by switching of the switching device as compared with the continuously variable speed variable traveling state.
Further, the gist of the invention according to claim 3 is that, in the invention according to claim 1 or claim 2, the speed ratio control means is a continuously variable speed travel in which the continuously variable transmission portion is operated with a continuously variable speed. state, in the Turkey change the speed ratio of the continuously variable transmission unit in accordance with the speed ratio of the step-variable shifting portion.

また、請求項4に係る発明の要旨とするところは、上記請求項の発明において、前記変速比制御手段は、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記有段変速部の変速比と無段変速部の変速比とを制御することにある。
According to a fourth aspect of the present invention, in the second aspect of the invention, the transmission ratio control means is based on the efficiency of the first motor and the efficiency of the second motor of the continuously variable transmission unit. It is to control the gear ratio of the stepped transmission unit and the gear ratio of the continuously variable transmission unit.

また、請求項に係る発明の要旨とするところは、上記請求項1乃至3のいずれか1の発明において、前記変速比制御手段は、前記有段変速部の変速比を調整することにより前記無段変速部の出力軸回転速度を変更することにある。
The gist of the invention according to claim 5 is that, in the invention according to any one of claims 1 to 3 , the speed ratio control means adjusts the speed ratio of the stepped speed change unit. The purpose is to change the output shaft rotation speed of the continuously variable transmission.

また、請求項に係る発明の要旨とするところは、請求項1乃至3のいずれか1の発明において、前記無段変速部を変速比が連続的に変化させられる無段変速状態と変速比が固定の有段変速状態とに切り換えるための切換装置と、その切換装置により前記無段変速部が前記無段変速状態に切換えられたことを判定する無段変速走行判定手段とを備え、前記変速比制御手段は、その無段変速走行判定手段によって無段変速状態に切換えられたことが判定されると、前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御することにある。
The gist of the invention according to claim 6 is that, in the invention of any one of claims 1 to 3, the continuously variable transmission portion and the gear ratio in which the gear ratio is continuously changed. Comprises a switching device for switching to a fixed stepped gear shift state, and a continuously variable transmission travel determining means for determining that the continuously variable transmission portion has been switched to the continuously variable gear shift state by the switching device, When it is determined by the continuously variable shift travel determining means that the gear ratio control means has been switched to the continuously variable transmission state, the gear ratio of the stepped transmission part and the gear ratio of the continuously variable transmission part are determined as optimum fuel efficiency. It is in controlling to obtain.

請求項1にかかる発明の車両用駆動装置の制御装置では、3つの要素のうちの第1要素は第1電動機に連結され、第2要素は原動機に連結され、第3要素は出力軸に連結された差動歯車装置を備えて電気的に無段変速作動させられる無段変速部と、その出力軸と駆動輪との間の動力伝達経路内に設けられて有段変速させられる有段変速部と、その動力伝達経路に作動的に連結された第2電動機と、前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比と無段変速部の変速比とを、最適燃費が得られるように制御する変速比制御手段とを、備える車両用駆動装置の制御装置であって、前記変速比制御手段は、予め記憶された関係から駆動力関連値に基づいて目標エンジン回転速度を決定し、その目標エンジン回転速度と車速とからその目標エンジン回転速度を得るためのトータル変速比を決定し、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記トータル変速比を得るための前記有段変速部の変速比と前記無段変速部の変速比とを変速機構全体の伝達効率が最大となるように決定してその有段変速部の変速比と前記無段変速部の変速比とを制御するものであることから、個別に変速比が制御される場合に比較して車両の最適燃費が得られる。たとえば比較的高速な定常走行において無段変速部の第1電動機の逆転力行が発生しないように有段変速部の変速比が制御されることにより、車両全体として最適燃費が得られるようになる。また、それら第1電動機の効率および第2電動機の効率が考慮された上で、変速機構全体の伝達効率が最大となるように決定された有段変速部の変速比と無段変速部の変速比とが得られるように制御されるので、一層高い伝達効率や最適燃費が得られる。
In the control apparatus for a vehicle drive device according to the first aspect, the first element of the three elements is connected to the first motor, the second element is connected to the prime mover, and the third element is connected to the output shaft. A continuously variable transmission that is provided with a differential gear device that is electrically continuously variable and is provided in a power transmission path between the output shaft and the drive wheel and is continuously variable. , A second electric motor operatively connected to the power transmission path, and a continuously variable transmission state in which the continuously variable transmission is operated continuously variable, and the gear ratio and continuously variable transmission of the stepped transmission And a gear ratio control means for controlling the gear ratio of the vehicle so as to obtain an optimum fuel consumption, wherein the gear ratio control means drives the driving force from a previously stored relationship. It determines a target engine rotational speed based on the relevant values, the target engine A total speed ratio for obtaining the target engine speed is determined from the rotational speed and the vehicle speed, and the total speed ratio is obtained based on the efficiency of the first motor and the efficiency of the second motor of the continuously variable transmission. The transmission ratio of the stepped transmission unit and the transmission ratio of the continuously variable transmission unit are determined so that the transmission efficiency of the entire transmission mechanism is maximized, and the transmission ratio of the stepped transmission unit and the transmission of the continuously variable transmission unit are changed. Since the ratio is controlled, the optimum fuel consumption of the vehicle can be obtained as compared with the case where the gear ratio is controlled individually. For example, by controlling the speed ratio of the stepped transmission unit so that the reverse rotation of the first motor of the continuously variable transmission unit does not occur during relatively high-speed steady traveling, the optimum fuel consumption can be obtained for the entire vehicle. In addition, the efficiency of the first motor and the efficiency of the second motor are taken into consideration, and the gear ratio of the stepped transmission unit and the speed of the continuously variable transmission unit determined to maximize the transmission efficiency of the entire transmission mechanism. Therefore, higher transmission efficiency and optimum fuel efficiency can be obtained.

また、請求項にかかる発明の車両用駆動装置の制御装置では、請求項1または2に係る発明において、前記無段変速部が無段変速作動させられる無段変速制御モードでは、変速比制御手段により前記有段変速部の変速比に応じて無段変速部の変速比が変更されることから、車両全体として高伝達効率となるように有段変速部および無段変速部の変速比が制御される。
According to a third aspect of the present invention, there is provided the control device for a vehicle drive device according to the first or second aspect, wherein in the continuously variable transmission control mode in which the continuously variable transmission section is operated continuously variablely, the gear ratio control is performed. Since the gear ratio of the continuously variable transmission section is changed according to the gear ratio of the stepped transmission section by the means, the transmission gear ratio of the stepped transmission section and the continuously variable transmission section is set so as to achieve high transmission efficiency as a whole vehicle. Be controlled.

また、請求項4に係る発明の車両用駆動装置の制御装置では、上記請求項に係る発明において、前記変速比制御手段は、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記有段変速部の変速比と無段変速部の変速比とを制御するものであることから、それら第1電動機の効率および第2電動機の効率が考慮された上で、有段変速部の変速比と無段変速部の変速比とが制御されるので、一層高い伝達効率や最適燃費が得られる。 According to a fourth aspect of the present invention, there is provided a control device for a vehicle drive device according to the second aspect, wherein the transmission ratio control means includes the efficiency of the first motor of the continuously variable transmission and the second motor. Since the gear ratio of the stepped transmission unit and the gear ratio of the continuously variable transmission unit are controlled based on the efficiency, the efficiency of the first motor and the efficiency of the second motor are taken into consideration. Since the gear ratio of the step transmission unit and the gear ratio of the continuously variable transmission unit are controlled, higher transmission efficiency and optimum fuel consumption can be obtained.

また、請求項にかかる発明の車両用駆動装置の制御装置では、上記請求項1乃至3のいずれか1に係る発明において、前記変速比制御手段は、前記有段変速部の変速比を調整して前記無段変速部の出力軸回転速度を変更するものであることから、車両全体として高い伝達効率や最適燃費が得られるようになる。
According to a fifth aspect of the present invention, there is provided the control device for a vehicle drive device according to any one of the first to third aspects, wherein the gear ratio control means adjusts the gear ratio of the stepped transmission section. Since the output shaft rotational speed of the continuously variable transmission unit is changed, high transmission efficiency and optimum fuel consumption can be obtained as a whole vehicle.

また、請求項に係る発明の車両用駆動装置の制御装置では、上記請求項1乃至3のいずれか1に係る発明において、前記無段変速部を変速比が連続的に変化させられる無段変速状態と変速比が固定の有段変速状態とに切り換えるための切換装置と、その切換装置により前記無段変速部が前記無段変速状態に切換えられたことを判定する無段変速走行判定手段とが備えられ、前記変速比制御手段により、その無段変速走行判定手段によって無段変速状態に切換えられたことが判定されると、前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御されるので、車両全体として高い伝達効率や最適燃費が得られるようになる。
According to a sixth aspect of the present invention, there is provided a control device for a vehicle drive device according to any one of the first to third aspects, wherein the continuously variable transmission section is continuously variable with a gear ratio continuously changed. A switching device for switching between a speed change state and a stepped speed change state with a fixed speed ratio, and a continuously variable speed travel determination means for determining that the continuously variable transmission unit has been switched to the continuously variable speed change state by the switching device. And the gear ratio control means determines that the continuously variable transmission state is switched to the continuously variable transmission state by the continuously variable speed travel determining means. Since the gear ratio is controlled so as to obtain optimum fuel consumption, high transmission efficiency and optimum fuel consumption can be obtained as a whole vehicle.

ここで、好適には、エンジン燃費マップを予め記憶するエンジン燃費マップ記憶手段が設けられ、前記変速比制御手段は、そのエンジン燃費マップから実際のアクセル開度に基づいてエンジンの目標エンジン回転速度を決定する目標エンジン回転速度算出手段と、実際の車速に基づいてその目標エンジン回転速度を得るための有段変速部の変速比と無段変速部の変速比とを決定する両変速比決定手段とを備えている。   Here, preferably, an engine fuel consumption map storage unit that stores an engine fuel consumption map in advance is provided, and the speed ratio control unit calculates a target engine rotational speed of the engine based on an actual accelerator opening degree from the engine fuel consumption map. Target engine speed calculating means for determining, and both speed ratio determining means for determining the speed ratio of the stepped transmission unit and the speed ratio of the continuously variable transmission unit for obtaining the target engine speed based on the actual vehicle speed; It has.

また、好適には、上記目標エンジン回転速度算出手段は、上記エンジン燃費マップから実際のアクセル開度Accに基づいて運転者の要求駆動力を満たすためのエンジン出力に対応する等馬力曲線を決定し、決定された等馬力曲線と最適燃費曲線との交点に対応するエンジン回転速度を目標エンジン回転速度として決定するものである。   Preferably, the target engine speed calculation means determines an equal horsepower curve corresponding to the engine output for satisfying the driver's required driving force based on the actual accelerator opening Acc from the engine fuel consumption map. The engine speed corresponding to the intersection of the determined equal horsepower curve and the optimum fuel consumption curve is determined as the target engine speed.

また、好適には、上記両変速比決定手段は、上記目標エンジン回転速度と実際の車速とに基づいてその目標エンジン回転速度を得るための変速機構のトータル変速比を決定し、その変速機構のトータル変速比を得るための有段変速部の変速比と無段変速部の変速比を、その変速機構全体の伝達効率が最大となるように決定する。   Preferably, the both speed ratio determining means determines a total speed ratio of the speed change mechanism for obtaining the target engine speed based on the target engine speed and the actual vehicle speed, and The transmission ratio of the stepped transmission unit and the transmission ratio of the continuously variable transmission unit for obtaining the total transmission ratio are determined so that the transmission efficiency of the entire transmission mechanism is maximized.

また、好適には、上記両変速比決定手段は、上記目標エンジン回転速度よりも大きいエンジン回転速度を発生させ得る有段変速部の変速比候補値を、エンジン回転速度と車速との関係から実際の車速Vに基づいて複数種類設定し、予め記憶された燃料消費量算出式から前記目標エンジン回転速度NEMを得るためのトータル変速比とその変速比候補値とに基づいてそれら変速比候補値毎に車両消費量を算出し、車両消費量が最小となる変速比候補値を有段変速部の変速比として決定し、その変速比と上記目標エンジン回転速度を得るためのトータル変速比とから無段変速部の変速比を決定する。 Preferably, the both gear ratio determining means actually determines a gear ratio candidate value of the stepped transmission unit capable of generating an engine speed higher than the target engine speed from the relationship between the engine speed and the vehicle speed. A plurality of types are set based on the vehicle speed V of the vehicle, and based on the total gear ratio and the gear ratio candidate value for obtaining the target engine speed NEM from the fuel consumption amount calculation formula stored in advance, the gear ratio candidate values are set. The vehicle consumption amount is calculated every time, the gear ratio candidate value that minimizes the vehicle consumption amount is determined as the gear ratio of the stepped transmission unit, and the gear ratio and the total gear ratio for obtaining the target engine rotation speed are determined. The transmission ratio of the continuously variable transmission unit is determined.

また、好適には、上記燃料消費量算出式は、第1電動機の効率および第2電動機の効率に基づいて車両の燃料消費量を算出するものである。   Preferably, the fuel consumption calculation formula calculates the fuel consumption of the vehicle based on the efficiency of the first motor and the efficiency of the second motor.

また、好適には、前記出力軸と駆動輪との間に設けられた変速機は、たとえば複数組の遊星歯車装置から構成される遊星歯車型有段変速機や、同期噛合装置によって択一的に動力伝達可能とされるギヤ比が異なる複数組のギヤ対が平行な2軸間に設けられた常時噛み合い型平行2軸型有段変速機から成る。   Preferably, the transmission provided between the output shaft and the drive wheel is alternatively selected by, for example, a planetary gear type stepped transmission including a plurality of planetary gear devices or a synchronous meshing device. It consists of a constant mesh type parallel two-axis stepped transmission in which a plurality of pairs of gears having different gear ratios capable of transmitting power are provided between two parallel shafts.

また、好適には、前記差動歯車装置は、その第1要素に連結された第1電動機の回転速度を電気的に制御することによって、入力軸回転速度と出力軸回転速度との比である変速比が連続的に変化させられる電気的無段変速機として作動させられるものである。   Preferably, the differential gear device has a ratio between an input shaft rotational speed and an output shaft rotational speed by electrically controlling a rotational speed of a first electric motor connected to the first element. It is operated as an electric continuously variable transmission whose gear ratio is continuously changed.

また、好適には、前記差動歯車装置を有する有段変速部を差動状態とロック状態とに切り換えるための切換装置が設けられる。この切換装置は、その差動歯車装置の第1要素と第2要素との間に設けられたクラッチを備え、そのクラッチの係合によってその差動歯車装置の3要素を一体的に回転させるものである。   Preferably, there is provided a switching device for switching the stepped transmission having the differential gear device between a differential state and a locked state. The switching device includes a clutch provided between the first element and the second element of the differential gear device, and integrally rotates the three elements of the differential gear device by engagement of the clutch. It is.

また、好適には、前記差動歯車装置は、サンギヤと、リングギヤと、それらサンギヤおよびリングギヤと噛み合う遊星歯車を回転可能に支持するキャリヤとを備えた遊星歯車装置から好適に構成されるが、入力軸および出力軸に連結された一対の笠歯車と、それら一対の笠歯車と噛み合うピニオンを回転可能に支持する回転要素とからなるものであってもよい。   Preferably, the differential gear device is preferably composed of a planetary gear device including a sun gear, a ring gear, and a carrier that rotatably supports planet gears meshing with the sun gear and the ring gear. You may consist of a pair of bevel gears connected with the axis | shaft and the output shaft, and the rotating element which rotatably supports the pinion which meshes with these pair of bevel gears.

また、好適には、前記有段変速部は、遊星歯車型有段式変速機や、段階的に変速比が変化させられる有段作動の無段変速機であってもよい。   Preferably, the stepped transmission unit may be a planetary gear type stepped transmission or a continuously variable continuously variable transmission whose speed ratio is changed stepwise.

また、好適には、差動歯車装置を差動状態とロック状態とに切り換えるための切換装置は、差動歯車装置の構成要素の一部を相互に或いは非回転部材に選択的に連結する油圧式摩擦係合装置、パウダー(磁粉)クラッチ、電磁クラッチ、噛み合い型のドグクラッチなどの磁粉式、電磁式、機械式係合装置から構成される。   Preferably, the switching device for switching the differential gear device between a differential state and a locked state is a hydraulic pressure that selectively connects some of the components of the differential gear device to each other or to a non-rotating member. It is composed of magnetic powder type, electromagnetic type and mechanical type engaging devices such as a type friction engagement device, a powder (magnetic powder) clutch, an electromagnetic clutch, and a meshing type dog clutch.

また、好適には、前記第2電動機は、差動歯車装置の出力軸から駆動輪までの間の動力伝達経路のうちのいずれかの部位に作動的に連結された状態で設けられる。たとえば、第2電動機は、差動歯車装置の出力軸、上記動力伝達経路に設けられた自動変速機内の回転部材、その自動変速機の出力軸等のいずれかの回転部材に連結されていてもよい。   Preferably, the second electric motor is provided in a state of being operatively connected to any part of a power transmission path between the output shaft of the differential gear device and the drive wheels. For example, the second electric motor may be connected to any one of rotating members such as an output shaft of the differential gear device, a rotating member in an automatic transmission provided in the power transmission path, and an output shaft of the automatic transmission. Good.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例である制御装置が適用されるハイブリッド車両の駆動装置の一部を構成する変速機構10を説明する骨子図である。図1において、変速機構10は、車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された差動部11と、その差動部11の出力軸である伝達部材(伝動軸)18と駆動輪38との間の動力伝達経路に設けられた有段式の自動変速機である有段式自動変速部20(以下、有段変速部20という)と、この有段変速部20に連結されている出力回転部材である出力軸22とを直列に備えている。この変速機構10は、車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪38との間に設けられており、図7に示すようにエンジン8からの動力を、上記駆動装置の他の一部であって動力伝達経路の一部を構成する終減速機36および一対の車軸等を順次介して一対の駆動輪38へ伝達する。なお、変速機構10はその軸心に対して対称的に構成されているため、図1の変速機構10を表す部分においてはその下側が省略されている。以下の各実施例についても同様である。   FIG. 1 is a skeleton diagram illustrating a speed change mechanism 10 that constitutes a part of a drive device of a hybrid vehicle to which a control device according to an embodiment of the present invention is applied. In FIG. 1, a transmission mechanism 10 includes an input shaft 14 as an input rotation member disposed on a common axis in a transmission case 12 (hereinafter referred to as case 12) as a non-rotation member attached to a vehicle body, A differential unit 11 directly connected to the input shaft 14 or indirectly via a pulsation absorbing damper (vibration damping device) (not shown), and a transmission member (transmission shaft) 18 that is an output shaft of the differential unit 11 A stepped automatic transmission 20 (hereinafter referred to as a stepped transmission 20), which is a stepped automatic transmission provided in a power transmission path between the drive wheel 38 and the drive wheel 38; An output shaft 22 that is a connected output rotating member is provided in series. The speed change mechanism 10 is suitably used for an FR (front engine / rear drive) type vehicle vertically installed in a vehicle, and is an internal combustion engine such as a gasoline engine or a diesel engine as a driving power source for traveling. It is provided between the engine 8 and the pair of drive wheels 38, and as shown in FIG. 7, the power from the engine 8 is another part of the drive device and constitutes a part of the power transmission path. The power is transmitted to the pair of drive wheels 38 through the final reduction gear 36 and the pair of axles in order. Since the speed change mechanism 10 is configured symmetrically with respect to its axis, the lower side is omitted in the portion representing the speed change mechanism 10 in FIG. The same applies to each of the following embodiments.

差動部11は、第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動歯車装置である動力分配機構16と、その動力分配機構16の出力軸として機能する伝達部材18に連結されてそれと一体的に回転する第2電動機M2とを備えている。本実施例の第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータが用いられるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は駆動力を出力するためのモータ(電動機)機能を少なくとも備える。   The differential unit 11 is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first electric motor M1 and the input shaft 14, and distributes the output of the engine 8 to the first electric motor M1 and the transmission member 18. And a second electric motor M2 connected to the transmission member 18 functioning as an output shaft of the power distribution mechanism 16 and rotating integrally therewith. A so-called motor generator having a power generation function is used for the first motor M1 and the second motor M2 of the present embodiment, but the first motor M1 has at least a generator (power generation) function for generating a reaction force, The electric motor M2 has at least a motor (electric motor) function for outputting a driving force.

動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24と、切換クラッチC0および切換ブレーキB0とを主体的に備えている。この第1遊星歯車装置24は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素(要素)として備えている。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。   The power distribution mechanism 16 mainly includes, for example, a single pinion type first planetary gear unit 24 having a predetermined gear ratio ρ1 of about “0.418”, a switching clutch C0, and a switching brake B0. The first planetary gear unit 24 includes a first sun gear S1, a first planetary gear P1, a first carrier CA1 that supports the first planetary gear P1 so as to rotate and revolve, and a first sun gear via the first planetary gear P1. A first ring gear R1 meshing with S1 is provided as a rotating element (element). When the number of teeth of the first sun gear S1 is ZS1 and the number of teeth of the first ring gear R1 is ZR1, the gear ratio ρ1 is ZS1 / ZR1.

この動力分配機構16においては、第1キャリヤCA1は入力軸14すなわちエンジン8に連結され、第1サンギヤS1は第1電動機M1に連結され、第1リングギヤR1は伝達部材18に連結されている。また、切換ブレーキB0は第1サンギヤS1とケース12との間に設けられ、切換クラッチC0は第1サンギヤS1と第1キャリヤCA1との間に設けられている。それら切換クラッチC0および切換ブレーキB0が解放されると、動力分配機構16は第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、例えば所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11がその変速比γ0(入力軸14の回転速度/伝達部材18の回転速度)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。   In the power distribution mechanism 16, the first carrier CA1 is connected to the input shaft 14, that is, the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18. Further, the switching brake B0 is provided between the first sun gear S1 and the case 12, and the switching clutch C0 is provided between the first sun gear S1 and the first carrier CA1. When the switching clutch C0 and the switching brake B0 are released, the power distribution mechanism 16 causes the first sun gear S1, the first carrier CA1, and the first ring gear R1, which are the three elements of the first planetary gear device 24, to rotate relative to each other. Since the differential action is enabled, that is, the differential action is activated, the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18, and the distributed engine 8 is stored with the electric energy generated from the first electric motor M1 and the second electric motor M2 is rotationally driven, so that, for example, a so-called continuously variable transmission state (electric CVT state) is established. The rotation of the transmission member 18 is continuously changed regardless of the predetermined rotation of 8. That is, when the power distribution mechanism 16 is in a differential state, the differential unit 11 continuously changes its speed ratio γ0 (the rotational speed of the input shaft 14 / the rotational speed of the transmission member 18) from the minimum value γ0min to the maximum value γ0max. A continuously variable transmission state that functions as an electrical continuously variable transmission to be changed is set.

この状態で、上記切換クラッチC0或いは切換ブレーキB0が係合させられると動力分配機構16は前記差動作用が不能な非差動状態とされる。具体的には、上記切換クラッチC0が係合させられて第1サンギヤS1と第1キャリヤCA1とが一体的に係合させられると、動力分配機構16は第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1が共に回転すなわち一体回転させられるロック状態とされて前記差動作用が不能な非差動状態とされることから、エンジン8の回転と伝達部材18の回転速度とが一致する状態となるので、差動部11は変速比γ0が「1」に固定された変速機として機能する定変速状態とされる。次いで、上記切換クラッチC0に替えて切換ブレーキB0が係合させられて第1サンギヤS1がケース12に連結させられると、動力分配機構16は第1サンギヤS1が非回転状態とさせられる状態とされて前記差動作用が不能な非差動状態とされることから、第1リングギヤR1は第1キャリヤCA1よりも増速回転されるので、差動部11は変速比γ0が「1」より小さい値例えば0.7程度に固定された増速変速機として機能する定変速状態とされる。このように、本実施例では、上記切換クラッチC0および切換ブレーキB0は、差動部11を、変速比が連続的変化可能な無段変速機として作動する無段変速状態と、無段変速機として作動させず無段変速作動を非作動として変速比変化を一定にし1または2種類以上の変速比の単段または複数段の変速機として作動する定変速状態、換言すれば変速比が一定の1段または複数段の変速機として作動する有段変速状態とに選択的に切換える切換装置として機能している。   In this state, when the switching clutch C0 or the switching brake B0 is engaged, the power distribution mechanism 16 is brought into a non-differential state where the differential action is impossible. Specifically, when the switching clutch C0 is engaged and the first sun gear S1 and the first carrier CA1 are integrally engaged, the power distribution mechanism 16 includes three elements of the first planetary gear device 24. Since the first sun gear S1, the first carrier CA1, and the first ring gear R1 are all in a locked state where they are rotated, that is, are integrally rotated, the differential action cannot be performed. Since the rotational speed of the transmission member 18 coincides, the differential section 11 is set to a constant transmission state that functions as a transmission in which the transmission ratio γ0 is fixed to “1”. Next, when the switching brake B0 is engaged instead of the switching clutch C0 and the first sun gear S1 is connected to the case 12, the power distribution mechanism 16 is brought into a state where the first sun gear S1 is brought into the non-rotating state. Since the first ring gear R1 is rotated at a higher speed than the first carrier CA1 because the differential action is impossible, the differential unit 11 has a gear ratio γ0 smaller than “1”. A constant speed change state that functions as a speed increasing transmission fixed at a value, for example, about 0.7 is set. Thus, in the present embodiment, the switching clutch C0 and the switching brake B0 have the continuously variable transmission state in which the differential unit 11 operates as a continuously variable transmission in which the gear ratio can be continuously changed, and the continuously variable transmission. A constant transmission state in which a continuously variable transmission operation is not operated and a change in the transmission ratio is made constant and a single or multiple transmission of one or more transmission ratios is operated, in other words, the transmission ratio is constant. It functions as a switching device that selectively switches to a stepped transmission state that operates as a single-stage or multiple-stage transmission.

有段変速部20は、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28、およびシングルピニオン型の第4遊星歯車装置30を備えている。第2遊星歯車装置26は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.562」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.425」程度の所定のギヤ比ρ3を有している。第4遊星歯車装置30は、第4サンギヤS4、第4遊星歯車P4、その第4遊星歯車P4を自転および公転可能に支持する第4キャリヤCA4、第4遊星歯車P4を介して第4サンギヤS4と噛み合う第4リングギヤR4を備えており、例えば「0.421」程度の所定のギヤ比ρ4を有している。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3、第4サンギヤS4の歯数をZS4、第4リングギヤR4の歯数をZR4とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3、上記ギヤ比ρ4はZS4/ZR4である。   The stepped transmission unit 20 includes a single pinion type second planetary gear device 26, a single pinion type third planetary gear device 28, and a single pinion type fourth planetary gear device 30. The second planetary gear unit 26 includes a second sun gear S2 via a second sun gear S2, a second planetary gear P2, a second carrier CA2 that supports the second planetary gear P2 so as to rotate and revolve, and a second planetary gear P2. The second ring gear R2 that meshes with the second gear R2 and has a predetermined gear ratio ρ2 of about “0.562”, for example. The third planetary gear device 28 includes a third sun gear S3 via a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear P3 so as to rotate and revolve, and a third planetary gear P3. A third ring gear R3 that meshes with the gear, and has a predetermined gear ratio ρ3 of, for example, about “0.425”. The fourth planetary gear unit 30 includes a fourth sun gear S4, a fourth planetary gear P4, a fourth carrier gear CA4 that supports the fourth planetary gear P4 so as to rotate and revolve, and a fourth sun gear S4 via the fourth planetary gear P4. And has a predetermined gear ratio ρ4 of about “0.421”, for example. The number of teeth of the second sun gear S2 is ZS2, the number of teeth of the second ring gear R2 is ZR2, the number of teeth of the third sun gear S3 is ZS3, the number of teeth of the third ring gear R3 is ZR3, the number of teeth of the fourth sun gear S4 is ZS4, When the number of teeth of the fourth ring gear R4 is ZR4, the gear ratio ρ2 is ZS2 / ZR2, the gear ratio ρ3 is ZS3 / ZR3, and the gear ratio ρ4 is ZS4 / ZR4.

有段変速部20では、第2サンギヤS2と第3サンギヤS3とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第2キャリヤCA2は第2ブレーキB2を介してケース12に選択的に連結され、第4リングギヤR4は第3ブレーキB3を介してケース12に選択的に連結され、第2リングギヤR2と第3キャリヤCA3と第4キャリヤCA4とが一体的に連結されて出力軸22に連結され、第3リングギヤR3と第4サンギヤS4とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。   In the stepped transmission unit 20, the second sun gear S2 and the third sun gear S3 are integrally connected and selectively connected to the transmission member 18 via the second clutch C2 and the case via the first brake B1. The second carrier CA2 is selectively connected to the case 12 via the second brake B2, the fourth ring gear R4 is selectively connected to the case 12 via the third brake B3, The second ring gear R2, the third carrier CA3, and the fourth carrier CA4 are integrally connected to the output shaft 22, and the third ring gear R3 and the fourth sun gear S4 are integrally connected to the first clutch C1. Is selectively connected to the transmission member 18.

前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3は従来の車両用自動変速機においてよく用いられている油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介装されている両側の部材を選択的に連結するためのものである。   The switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, the first brake B1, the second brake B2, and the third brake B3 are hydraulic types that are often used in conventional automatic transmissions for vehicles. It is a friction engagement device, and a wet multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, or one end of one or two bands wound around the outer peripheral surface of a rotating drum It is configured by a band brake or the like tightened by a hydraulic actuator, and is for selectively connecting members on both sides on which the brake is interposed.

以上のように構成された変速機構10では、例えば、図2の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第5速ギヤ段(第5変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力軸22の回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、差動部11は前述した無段変速機として作動する無段変速状態に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能とされている。したがって、変速機構10では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた差動部11と有段変速部20とで有段変速機として作動する有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた差動部11と有段変速部20とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、変速機構10は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。また、差動部11も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。 In the speed change mechanism 10 configured as described above, for example, as shown in the engagement operation table of FIG. 2, the switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, and the first brake B1. When the second brake B2 and the third brake B3 are selectively engaged, any one of the first gear (first gear) to the fifth gear (fifth gear) or A reverse gear stage (reverse gear stage) or neutral is selectively established, and a gear ratio γ (= input shaft rotational speed N IN / rotational speed N OUT of the output shaft 22) that changes approximately equidistantly is set to each gear stage. You can get it every time. In particular, in this embodiment, the power distribution mechanism 16 is provided with a switching clutch C0 and a switching brake B0, and the differential unit 11 is configured as described above when either the switching clutch C0 or the switching brake B0 is engaged. In addition to the continuously variable transmission state that operates as a continuously variable transmission, it is possible to configure a constant transmission state that operates as a transmission having a constant gear ratio. Therefore, the transmission mechanism 10 operates as a stepped transmission with the differential unit 11 and the stepped transmission unit 20 that are brought into a constant transmission state by engaging and operating either the switching clutch C0 or the switching brake B0. A stepless speed change state is configured, and the differential portion 11 and the stepped speed change portion 20 which are brought into a stepless speed change state by engaging neither the switching clutch C0 nor the switching brake B0 as an electric continuously variable transmission. A continuously variable transmission state that operates is configured. In other words, the speed change mechanism 10 is switched to the stepped speed change state by engaging either the switching clutch C0 or the switching brake B0, and is not operated by engaging any of the switching clutch C0 or the switching brake B0. It is switched to the step shifting state. Further, it can be said that the differential unit 11 is also a transmission that can be switched between a stepped transmission state and a continuously variable transmission state.

例えば、変速機構10が有段変速機として機能する場合には、図2に示すように、切換クラッチC0、第1クラッチC1および第3ブレーキB3の係合により、変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ5が第4速ギヤ段よりも小さい値例えば「0.705」程度である第5速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換クラッチC0のみが係合される。   For example, when the speed change mechanism 10 functions as a stepped transmission, as shown in FIG. 2, the gear ratio γ1 is set to a maximum value, for example, “by the engagement of the switching clutch C0, the first clutch C1, and the third brake B3” The first speed gear stage of about 3.357 "is established, and the gear ratio γ2 is smaller than the first speed gear stage by engagement of the switching clutch C0, the first clutch C1, and the second brake B2, for example,“ The second speed gear stage which is about 2.180 "is established, and the gear ratio γ3 is smaller than the second speed gear stage by engagement of the switching clutch C0, the first clutch C1 and the first brake B1, for example," The third speed gear stage which is about 1.424 "is established, and the gear ratio γ4 is smaller than the third speed gear stage by engagement of the switching clutch C0, the first clutch C1 and the second clutch C2, for example," The fourth speed gear stage that is about .000 "is established, and the engagement of the first clutch C1, the second clutch C2, and the switching brake B0 causes the gear ratio γ5 to be smaller than the fourth speed gear stage, for example," The fifth gear stage which is about 0.705 "is established. Further, by the engagement of the second clutch C2 and the third brake B3, the reverse gear stage in which the speed ratio γR is a value between the first speed gear stage and the second speed gear stage, for example, about “3.209” is established. Be made. When the neutral “N” state is set, for example, only the switching clutch C0 is engaged.

しかし、変速機構10が無段変速機として機能する場合には、図2に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、差動部11が無段変速機として機能し、それに直列の有段変速部20が有段変速機として機能することにより、有段変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその有段変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体としてのトータル変速比(総合変速比)γTが無段階に得られるようになる。   However, when the transmission mechanism 10 functions as a continuously variable transmission, both the switching clutch C0 and the switching brake B0 in the engagement table shown in FIG. 2 are released. As a result, the differential unit 11 functions as a continuously variable transmission, and the stepped transmission unit 20 in series with the differential unit 11 functions as a stepped transmission, whereby the first speed, the second speed, For each of the third and fourth gears, the rotational speed input to the stepped transmission 20, that is, the rotational speed of the transmission member 18 is changed steplessly, so that each gear step has a stepless gear ratio. A width is obtained. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total speed ratio (total speed ratio) γT of the speed change mechanism 10 as a whole can be obtained steplessly.

図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する有段変速部20とから構成される変速機構10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28、30のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度NEを示し、横線XGが伝達部材18の回転速度を示している。 FIG. 3 illustrates a gear stage in a transmission mechanism 10 including a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and a stepped transmission unit 20 that functions as a stepped transmission unit or a second transmission unit. The collinear diagram which can represent on a straight line the relative relationship of the rotational speed of each rotation element from which a connection state differs for every is shown. The collinear diagram of FIG. 3 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ρ of each planetary gear unit 24, 26, 28, 30 and a vertical axis indicating the relative rotational speed. shows the lower horizontal line X1 rotational speed zero of the horizontal lines, the upper horizontal line X2 the rotational speed of "1.0", that represents the rotational speed N E of the engine 8 connected to the input shaft 14, horizontal line XG Indicates the rotational speed of the transmission member 18.

上記差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する第1サンギヤS1、第1回転要素(第1要素)RE1に対応する第1キャリヤCA1、第3回転要素(第3要素)RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。さらに、有段変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第2サンギヤS2および第3サンギヤS3を、第5回転要素(第5要素)RE5に対応する第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する第4リングギヤR4を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第2リングギヤR2、第3キャリヤCA3、第4キャリヤCA4を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第3リングギヤR3、第4サンギヤS4をそれぞれ表し、それらの間隔は第2、第3、第4遊星歯車装置26、28、30のギヤ比ρ2、ρ3、ρ4に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ1に対応する間隔に設定される。また、有段変速部20では各第2、第3、第4遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。   Three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential section 11 are the first sun gears corresponding to the second rotating element (second element) RE2 in order from the left side. S1, the relative rotational speed of the first ring gear R1 corresponding to the first carrier CA1 corresponding to the first rotating element (first element) RE1 and the third rotating element (third element) RE3, and the distance therebetween. Is determined according to the gear ratio ρ1 of the first planetary gear unit 24. Further, the five vertical lines Y4, Y5, Y6, Y7, Y8 of the stepped transmission unit 20 correspond to the fourth rotating element (fourth element) RE4 in order from the left and are connected to each other. S2 and the third sun gear S3, the second carrier CA2 corresponding to the fifth rotation element (fifth element) RE5, the fourth ring gear R4 corresponding to the sixth rotation element (sixth element) RE6, the seventh rotation element (Seventh element) The second ring gear R2, the third carrier CA3, and the fourth carrier CA4 corresponding to RE7 and connected to each other correspond to the eighth rotating element (eighth element) RE8 and connected to each other. The third ring gear R3 and the fourth sun gear S4 are respectively represented, and the distance between them is determined according to the gear ratios ρ2, ρ3, and ρ4 of the second, third, and fourth planetary gear devices 26, 28, and 30, respectively. In the relationship between the vertical axes of the nomogram, when the distance between the sun gear and the carrier is set to an interval corresponding to “1”, the interval between the carrier and the ring gear is set to an interval corresponding to the gear ratio ρ of the planetary gear device. That is, in the differential unit 11, the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ρ1. Further, in the stepped transmission 20, the interval between the sun gear and the carrier is set at an interval corresponding to “1” for each of the second, third, and fourth planetary gear devices 26, 28, and 30. Is set to an interval corresponding to ρ.

上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構16(差動部11)において、第1遊星歯車装置24の第1回転要素RE1(第1キャリヤCA1)が入力軸14すなわちエンジン8に連結されるとともに切換クラッチC0を介して第2回転要素(第1サンギヤS1)RE2と選択的に連結され、第2回転要素RE2が第1電動機M1に連結されるとともに切換ブレーキB0を介してケース12に選択的に連結され、第3回転要素(第1リングギヤR1)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して有段変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。   If expressed using the collinear diagram of FIG. 3 described above, the speed change mechanism 10 of the present embodiment is configured such that the first rotating element RE1 (the first rotating element RE1) of the first planetary gear device 24 in the power distribution mechanism 16 (the differential unit 11). The carrier CA1) is connected to the input shaft 14, that is, the engine 8, and is selectively connected to the second rotating element (first sun gear S1) RE2 via the switching clutch C0, and the second rotating element RE2 is connected to the first electric motor M1. The third rotary element (first ring gear R1) RE3 is connected to the transmission member 18 and the second electric motor M2 to selectively rotate the input shaft 14 through the switching brake B0. It is configured to transmit (input) to the stepped transmission 20 via the transmission member 18. At this time, the relationship between the rotational speed of the first sun gear S1 and the rotational speed of the first ring gear R1 is indicated by an oblique straight line L0 passing through the intersection of Y2 and X2.

図4および図5は上記図3の共線図の差動部11に相当する図である。図4は上記切換クラッチC0および切換ブレーキB0の解放により無段変速状態(差動状態)に切換えられたときの差動部11の状態の一例を表している。例えば、第1電動機M1の発電による反力を制御することによって直線L0と縦線Y1との交点で示される第1サンギヤS1の回転が上昇或いは下降させられると、直線L0と縦線Y3との交点で示される第1リングギヤR1の回転速度が下降或いは上昇させられる。   4 and 5 are diagrams corresponding to the differential unit 11 in the alignment chart of FIG. FIG. 4 shows an example of the state of the differential section 11 when it is switched to the continuously variable transmission state (differential state) by releasing the switching clutch C0 and the switching brake B0. For example, when the rotation of the first sun gear S1 indicated by the intersection of the straight line L0 and the vertical line Y1 is raised or lowered by controlling the reaction force generated by the power generation of the first electric motor M1, the straight line L0 and the vertical line Y3 The rotational speed of the first ring gear R1 indicated by the intersection is lowered or increased.

また、図5は切換クラッチC0の係合により定変速状態(有段変速状態)に切換えられたときの差動部11の状態を表している。つまり、切換クラッチC0の係合により第1サンギヤS1と第1キャリヤCA1とが連結されると、動力分配機構16は上記3回転要素が一体回転する非差動状態とされるので、直線L0は横線X2と一致させられ、エンジン回転速度NEと同じ回転で伝達部材18が回転させられる。或いは、切換ブレーキB0の係合によって第1サンギヤS1の回転が停止させられると動力分配機構16は増速機構として機能する非差動状態とされるので、直線L0は図3に示す状態となり、その直線L0と縦線Y3との交点で示される第1リングギヤR1すなわち伝達部材18の回転速度は、エンジン回転速度NEよりも増速された回転で有段変速部20へ入力される。 FIG. 5 shows the state of the differential section 11 when the gear is switched to the constant speed change state (stepped speed change state) by the engagement of the switching clutch C0. In other words, when the first sun gear S1 and the first carrier CA1 are connected by the engagement of the switching clutch C0, the power distribution mechanism 16 is brought into a non-differential state in which the three rotation elements rotate integrally, so that the straight line L0 is It is aligned with the horizontal line X2, whereby the power transmitting member 18 is rotated at the same rotation to the engine speed N E. Alternatively, when the rotation of the first sun gear S1 is stopped by the engagement of the switching brake B0, the power distribution mechanism 16 is in a non-differential state that functions as a speed increasing mechanism, so the straight line L0 is in the state shown in FIG. rotational speed of the first ring gear R1, i.e., the power transmitting member 18 represented by a point of intersection between the straight line L0 and the vertical line Y3 is input at a rotation speed higher than the engine speed N E to the geared transmission unit 20.

また、有段変速部20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結されている。   In the stepped transmission unit 20, the fourth rotating element RE4 is selectively connected to the transmission member 18 via the second clutch C2, and is selectively connected to the case 12 via the first brake B1, The rotating element RE5 is selectively connected to the case 12 via the second brake B2, the sixth rotating element RE6 is selectively connected to the case 12 via the third brake B3, and the seventh rotating element RE7 is connected to the output shaft. 22 and the eighth rotating element RE8 is selectively connected to the transmission member 18 via the first clutch C1.

有段変速部20では、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線X2との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速の出力軸22の回転速度が示される。上記第1速乃至第4速では、切換クラッチC0が係合させられている結果、エンジン回転速度NEと同じ回転速度で第8回転要素RE8に差動部11すなわち動力分配機構16からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、差動部11からの動力がエンジン回転速度NEよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L5と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第5速の出力軸22の回転速度が示される。 In the stepped transmission unit 20, as shown in FIG. 3, the first clutch C1 and the third brake B3 are engaged, whereby the vertical line Y8 indicating the rotational speed of the eighth rotation element RE8 and the horizontal line X2 An oblique straight line L1 passing through the intersection and the intersection of the vertical line Y6 indicating the rotational speed of the sixth rotational element RE6 and the horizontal line X1, and a vertical line Y7 indicating the rotational speed of the seventh rotational element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 of the first speed is shown at the intersection with. Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the second brake B2 and a vertical line Y7 indicating the rotational speed of the seventh rotating element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 at the second speed is shown, and an oblique straight line L3 determined by engaging the first clutch C1 and the first brake B1 and the seventh rotational element RE7 connected to the output shaft 22 The rotation speed of the output shaft 22 of the third speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed, and the horizontal straight line L4 and the output shaft determined by engaging the first clutch C1 and the second clutch C2. The rotation speed of the output shaft 22 of the fourth speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed of the seventh rotation element RE7 connected to the motor 22. Power from the aforementioned first speed through the fourth speed, as a result of the switching clutch C0 is engaged, the eighth rotary element RE8 differential portion 11 or power distributing mechanism 16 in the same rotational speed as the engine speed N E Is entered. However, when the switching brake B0 in place of the switching clutch C0 is engaged, the drive force received from the differential portion 11 is input at a higher speed than the engine rotational speed N E, first clutch C1, second The output shaft of the fifth speed at the intersection of the horizontal straight line L5 determined by engaging the clutch C2 and the switching brake B0 and the vertical line Y7 indicating the rotational speed of the seventh rotation element RE7 connected to the output shaft 22 A rotational speed of 22 is indicated.

図6は、本実施例の変速機構10を制御するための電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、電動機M1、M2に関するハイブリッド駆動制御、有段変速部20の変速制御等の駆動制御を実行するものである。   FIG. 6 illustrates a signal input to the electronic control device 40 for controlling the speed change mechanism 10 of this embodiment and a signal output from the electronic control device 40. The electronic control unit 40 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing in accordance with a program stored in advance in the ROM while using a temporary storage function of the RAM. By performing the above, drive control such as hybrid drive control for the engine 8 and the electric motors M1 and M2 and shift control for the stepped transmission unit 20 is executed.

電子制御装置40には、図6に示す各センサやスイッチから、エンジン水温を示す信号、シフトポジションを表す信号、エンジン8の回転速度であるエンジン回転速度NEを表す信号、ギヤ比列設定値を示す信号、M(モータ走行)モードを指令する信号、エアコンの作動を示すエアコン信号、出力軸22の回転速度に対応する車速信号、有段変速部20の作動油温を示す油温信号、サイドブレーキ操作を示す信号、フットブレーキ操作を示す信号、触媒温度を示す触媒温度信号、アクセルペダルの操作量を示すアクセル開度(Acc)信号、カム角信号、スノーモード設定を示すスノーモード設定信号、車両の前後加速度を示す加速度信号、オートクルーズ走行を示すオートクルーズ信号、車両の重量を示す車重信号、各駆動輪の車輪速を示す車輪速信号、変速機構10を有段変速機として機能させるために差動部11を定変速状態(非差動状態)に切り換えるための有段スイッチ操作の有無を示す信号、変速機構10を無段変速機として機能させるために差動部11を無段変速状態(差動状態)に切り換えるための無段スイッチ操作の有無を示す信号、第1電動機M1の回転速度NM1を表す信号、第2電動機M2の回転速度NM2を表す信号などが、それぞれ供給される。 The electronic control unit 40, from the sensors and switches shown in FIG. 6, a signal indicative of the engine coolant temperature, a signal representing the shift position, a signal indicative of engine rotational speed N E is the rotational speed of the engine 8, the gear ratio sequence set value A signal indicating the M (motor running) mode, an air conditioner signal indicating the operation of the air conditioner, a vehicle speed signal corresponding to the rotational speed of the output shaft 22, an oil temperature signal indicating the operating oil temperature of the stepped transmission unit 20, Signal indicating side brake operation, signal indicating foot brake operation, catalyst temperature signal indicating catalyst temperature, accelerator opening (Acc) signal indicating accelerator pedal operation amount, cam angle signal, snow mode setting signal indicating snow mode setting , An acceleration signal indicating the longitudinal acceleration of the vehicle, an auto cruise signal indicating auto cruise driving, a vehicle weight signal indicating the weight of the vehicle, and a wheel speed of each drive wheel A wheel speed signal, a signal indicating the presence or absence of a stepped switch operation for switching the differential portion 11 to a constant speed change state (non-differential state) in order to make the speed change mechanism 10 function as a stepped transmission, and no speed change mechanism 10 are provided. A signal indicating the presence or absence of a continuously variable switch for switching the differential unit 11 to a continuously variable transmission state (differential state) in order to function as a continuously variable transmission, a signal indicating the rotational speed NM1 of the first electric motor M1, a second A signal indicating the rotational speed NM2 of the electric motor M2 is supplied.

また、上記電子制御装置40からは、スロットル弁の開度を操作するスロットルアクチュエータへの駆動信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、エンジン8の点火時期を指令する点火信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や有段変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42に含まれる電磁弁を作動させるバルブ指令信号、上記油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。   Further, the electronic control device 40 receives a drive signal for a throttle actuator for operating the throttle valve opening, a boost pressure adjustment signal for adjusting the boost pressure, and an electric air conditioner drive signal for operating the electric air conditioner. An ignition signal for instructing the ignition timing of the engine 8, an instruction signal for instructing the operation of the motors M1 and M2, a shift position (operation position) display signal for operating the shift indicator, and a gear ratio display for displaying the gear ratio A signal, a snow mode display signal for displaying that it is in the snow mode, an ABS operation signal for operating an ABS actuator for preventing wheel slipping during braking, and an M mode for displaying that the M mode is selected Controlling the hydraulic actuators of the hydraulic friction engagement device of the display signal, differential unit 11 and stepped transmission unit 20 A valve command signal for operating an electromagnetic valve included in the hydraulic control circuit 42, a drive command signal for operating an electric hydraulic pump that is a hydraulic source of the hydraulic control circuit 42, a signal for driving an electric heater, Signals to the cruise control computer are output.

図7は、電子制御装置40による制御機能の要部を説明する機能ブロック線図である。図7において、有段変速制御手段54は、例えば変速線図記憶手段56に予め記憶された図8の実線および一点鎖線に示す変速線図(変速マップ)から車速Vおよび有段変速部20の出力トルクTOUTで示される車両状態に基づいて有段変速部20の変速を実行すべきか否かを判断してすなわち有段変速部20の変速すべき変速段を判断して有段変速部20の自動変速制御を実行する。 FIG. 7 is a functional block diagram illustrating a main part of the control function by the electronic control unit 40. In FIG. 7, the stepped speed change control means 54 is configured such that, for example, the vehicle speed V and the stepped speed change unit 20 Based on the vehicle state indicated by the output torque T OUT , it is determined whether or not the shift of the stepped transmission unit 20 is to be executed, that is, the shift stage of the stepped transmission unit 20 is determined and the stepped transmission unit 20 is determined. The automatic shift control is executed.

ハイブリッド制御手段52は、変速機構10の前記無段変速状態すなわち差動部11の差動状態においてエンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速において、アクセルペダル操作量Accや車速Vから運転者の要求出力を算出し、運転者の要求出力と充電要求値から必要な駆動力を算出し、エンジン回転速度NEとトータル出力とを算出し、そのトータル出力とエンジン回転速度NEとに基づいて、エンジン出力を得るようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。 The hybrid control means 52 operates the engine 8 in an efficient operating range in the continuously variable transmission state of the transmission mechanism 10, that is, the differential state of the differential unit 11, while driving force between the engine 8 and the second electric motor M2. The transmission ratio γ0 of the differential unit 11 as an electric continuously variable transmission is controlled by changing the distribution of the power and the reaction force generated by the first electric motor M1 so as to be optimized. For example, at the traveling vehicle speed at that time, the driver's required output is calculated from the accelerator pedal operation amount Acc and the vehicle speed V, the required driving force is calculated from the driver's required output and the required charging value, and the engine speed N E and it calculates the total output, based on its total output and engine rotational speed N E, to control the amount of power generated by the first electric motor M1 controls the engine 8 to obtain the engine output.

ハイブリッド制御手段52は、その制御を燃費向上などのために有段変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度NEと車速Vおよび有段変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は無段変速走行の時に運転性と燃費性とを両立した予め記憶されたエンジン8の最適燃費率曲線に沿ってエンジン8が作動させられるように変速機構10のトータル変速比γTの目標値を定め、その目標値が得られるように差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御する。 The hybrid control means 52 executes the control in consideration of the gear position of the stepped transmission unit 20 for the purpose of improving fuel efficiency. In such a hybrid control, align the rotational speed of the power transmitting member 18 determined by the gear position of the engine rotational speed N E and vehicle speed V and the step-variable transmission portion 20 determined to operate the engine 8 in an operating region at efficient Therefore, the differential unit 11 is caused to function as an electric continuously variable transmission. That is, the hybrid control means 52 performs the total speed change of the speed change mechanism 10 so that the engine 8 can be operated along the pre-stored optimum fuel consumption rate curve of the engine 8 that achieves both drivability and fuel efficiency during continuously variable speed travel. A target value of the ratio γT is determined, and the speed ratio γ0 of the differential unit 11 is controlled so that the target value is obtained, and the total speed ratio γT is within a changeable range of the speed change, for example, within a range of 13 to 0.5. Control.

このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通して電気エネルギが第2電動機M2或いは第1電動機M1へ供給され、その第2電動機M2或いは第1電動機M1から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。また、ハイブリッド制御手段52は、エンジン8の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能によって電動機のみ例えば第2電動機M2のみを駆動力源としてモータ走行させることができる。さらに、ハイブリッド制御手段52は、エンジン8の停止状態で差動部11が有段変速状態(定変速状態)であっても第1電動機M1および/または第2電動機M2を作動させてモータ走行させることもできる。   At this time, the hybrid control means 52 supplies the electric energy generated by the first electric motor M1 to the power storage device 60 and the second electric motor M2 through the inverter 58, so that the main part of the power of the engine 8 is mechanically transmitted. However, a part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1 and converted there to electric energy, and the electric energy is supplied to the second electric motor M2 or the first electric motor M1 through the inverter 58. Then, it is transmitted from the second electric motor M2 or the first electric motor M1 to the transmission member 18. An electric path from conversion of a part of the power of the engine 8 into electric energy and conversion of the electric energy into mechanical energy by a device related from the generation of the electric energy to consumption by the second electric motor M2 Composed. Further, the hybrid control means 52 can run the motor by using only the electric motor, for example, only the second electric motor M2 by the electric CVT function of the differential unit 11 regardless of whether the engine 8 is stopped or in an idle state. Further, the hybrid control means 52 operates the first electric motor M1 and / or the second electric motor M2 to run the motor even when the differential unit 11 is in the stepped speed change state (constant speed change state) while the engine 8 is stopped. You can also

ハイブリッド制御手段52は、減速走行時或いは制動操作時において、たとえば車速および/または制動操作量等に基づいて電動機M1および/またはM2における発電量を調節する回生制動制御を実行する。このときに電動機M1および/またはM2から発生させられた電気エネルギはインバータ58を通して蓄電装置60において蓄電される。   The hybrid control means 52 executes regenerative braking control that adjusts the amount of power generation in the electric motors M1 and / or M2 based on, for example, the vehicle speed and / or the braking operation amount during deceleration traveling or braking operation. At this time, the electric energy generated from the motors M1 and / or M2 is stored in the power storage device 60 through the inverter 58.

図9は、車両走行のための駆動力源をエンジン8と電動機M1、M2とで切り換えるための言い換えればエンジン走行とモータ走行とを切り換えるためのエンジン走行領域とモータ走行領域との境界線を有する予め記憶された関係であり、車速Vと駆動力関連値である出力トルクTOUTとをパラメータとする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。また、図9の実線に対して一点鎖線に示すようにヒステリシスが設けられている。この図9の駆動力源切換線図は例えば変速線図記憶手段56に予め記憶されている。このように、ハイブリッド制御手段52による前記モータ走行は、図9から明らかなように一般的にエンジン効率が高トルク域に比較して低いとされる比較的低出力トルクTOUT時或いは車速の比較的低車速時すなわち低負荷域で実行される。 FIG. 9 has a boundary line between the engine travel region and the motor travel region for switching between engine travel and motor travel for switching the driving force source for vehicle travel between the engine 8 and the electric motors M1 and M2. It is a relationship stored in advance, and is an example of a driving force source switching diagram (driving force source map) composed of two-dimensional coordinates using the vehicle speed V and the output torque T OUT as a driving force related value as parameters. Further, hysteresis is provided as shown by a one-dot chain line with respect to the solid line in FIG. 9 is stored in advance in the shift diagram storage means 56, for example. As described above, the motor running by the hybrid control means 52 is compared with the vehicle speed at the time of relatively low output torque T OUT or the vehicle speed, which is generally considered to be low in engine efficiency as compared with the high torque range, as is apparent from FIG. It is executed at low vehicle speed, that is, in a low load range.

また、ハイブリッド制御手段52は上記モータ走行時には、フューエルカットされることにより作動していないエンジン8の引き摺りを抑制して燃費を向上させるために、差動部11の差動作用によりエンジン回転速度NEを略零すなわちエンジン回転速度NEを零或いは零に近い値例えば零と判定される値に維持する。例えば、第2電動機M2の回転トルクで車両走行中には車速Vに対応する第2電動機M2の回転速度に対してエンジン回転速度NE(第1キャリヤCA1の回転速度)が略零に維持されるように第1電動機M1が負の回転速度で制御例えば空転させられる。 Further, when the motor is running, the hybrid control means 52 suppresses dragging of the engine 8 that is not operated due to fuel cut, thereby improving fuel efficiency. E is maintained at substantially zero, that is, the engine speed N E is maintained at zero or a value close to zero, for example, a value determined to be zero. For example, while the vehicle is running with the rotational torque of the second electric motor M2, the engine rotational speed N E (the rotational speed of the first carrier CA1) is maintained substantially zero with respect to the rotational speed of the second electric motor M2 corresponding to the vehicle speed V. Thus, the first electric motor M1 is controlled, for example, idling at a negative rotational speed.

増速側ギヤ段判定手段62は、変速機構10を有段変速状態とする際に切換クラッチC0および切換ブレーキB0のいずれを係合させるかを判定するために、例えば車両状態に基づいて変速線図記憶手段56に予め記憶された図8に示す変速線図に従って変速機構10の変速されるべき変速段が増速側ギヤ段例えば第5速ギヤ段であるか否かを判定する。   The speed-increasing gear stage determining means 62 determines, for example, the shift line based on the vehicle state in order to determine which of the switching clutch C0 and the switching brake B0 is engaged when the transmission mechanism 10 is in the stepped shift state. It is determined whether or not the gear position to be shifted of the speed change mechanism 10 is the speed increasing side gear stage, for example, the fifth speed gear stage, according to the shift diagram shown in FIG.

切換制御手段50は、例えば変速線図記憶手段56に予め記憶された前記図8の破線および二点鎖線に示す切換線図(切換マップ、関係)から車速Vおよび出力トルクTOUTで示される車両状態に基づいて変速機構10の切り換えるべき変速状態を判断してすなわち変速機構10を無段変速状態とする無段制御領域内であるか或いは変速機構10を有段変速状態とする有段制御領域内であるかを判定して、変速機構10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える。 The switching control means 50 is, for example, a vehicle indicated by the vehicle speed V and the output torque T OUT from the switching diagram (switching map, relationship) indicated by the broken line and the two-dot chain line in FIG. Based on the state, the shift state of the transmission mechanism 10 to be switched is determined, that is, within the continuously variable control region where the transmission mechanism 10 is in a continuously variable transmission state, or the stepped control region where the transmission mechanism 10 is in a continuously variable transmission state. And the transmission mechanism 10 is selectively switched between the continuously variable transmission state and the stepped transmission state.

具体的には、切換制御手段50は有段変速制御領域内であると判定した場合は、ハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速制御を許可する。このときの有段変速制御手段54は、変速線図記憶手段56に予め記憶された例えば図8に示す変速線図に従って有段変速部20の自動変速制御を実行する。図2は、このときの変速制御において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。すなわち、変速機構10全体すなわち差動部11および有段変速部20が所謂有段式自動変速機として機能し、図2に示す係合表に従って変速段が達成される。   Specifically, when it is determined that the switching control means 50 is within the stepped shift control region, the hybrid control means 52 outputs a signal that disables or prohibits the hybrid control or continuously variable shift control. The step-variable shift control means 54 is permitted to perform shift control at the time of a step-variable shift set in advance. At this time, the stepped shift control means 54 executes automatic shift control of the stepped transmission unit 20 in accordance with, for example, the shift diagram shown in FIG. FIG. 2 shows a combination of operations of the hydraulic friction engagement devices, that is, C0, C1, C2, B0, B1, B2, and B3 selected in the shift control at this time. That is, the transmission mechanism 10 as a whole, that is, the differential unit 11 and the stepped transmission unit 20 function as a so-called stepped automatic transmission, and the shift stage is achieved according to the engagement table shown in FIG.

例えば、増速側ギヤ段判定手段62により第5速ギヤ段が判定される場合には、変速機構10全体として変速比が1.0より小さな増速側ギヤ段所謂オーバードライブギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が0.7の副変速機として機能させられるように切換クラッチC0を解放させ且つ切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。また、増速側ギヤ段判定手段62により第5速ギヤ段でないと判定される場合には、変速機構10全体として変速比が1.0以上の減速側ギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が1の副変速機として機能させられるように切換クラッチC0を係合させ且つ切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。このように、切換制御手段50によって変速機構10が有段変速状態に切り換えられるとともに、その有段変速状態における2種類の変速段のいずれかとなるように選択的に切り換えられて、差動部11が副変速機として機能させられ、それに直列の有段変速部20が有段変速機として機能することにより、変速機構10全体が所謂有段式自動変速機として機能させられる。   For example, when the fifth gear is determined by the acceleration-side gear determination means 62, the so-called overdrive gear that has a gear ratio smaller than 1.0 is obtained for the entire transmission mechanism 10. Therefore, the switching control means 50 instructs the differential unit 11 to release the switching clutch C0 and engage the switching brake B0 so that the differential unit 11 can function as a sub-transmission with a fixed gear ratio γ0, for example, a gear ratio γ0 of 0.7. Is output to the hydraulic control circuit 42. Further, when it is determined by the acceleration side gear stage determination means 62 that the gear ratio is not the fifth speed gear stage, the speed change gear 10 as a whole can obtain a reduction side gear stage having a gear ratio of 1.0 or more, so that the switching control means. 50 indicates a command to the hydraulic control circuit 42 to engage the switching clutch C0 and release the switching brake B0 so that the differential unit 11 can function as a sub-transmission with a fixed gear ratio γ0, for example, a gear ratio γ0 of 1. To do. In this manner, the transmission mechanism 10 is switched to the stepped speed change state by the switching control means 50 and is selectively switched to be one of the two types of speed steps in the stepped speed change state. Is made to function as a sub-transmission, and the stepped transmission unit 20 in series therewith functions as a stepped transmission, whereby the entire transmission mechanism 10 is made to function as a so-called stepped automatic transmission.

しかし、切換制御手段50は、変速機構10を無段変速状態に切り換える無段変速制御領域内であると判定した場合は、変速機構10全体として無段変速状態が得られるために差動部11を無段変速状態として無段変速可能とするように切換クラッチC0および切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号を出力するか、或いは変速線図記憶手段56に予め記憶された例えば図8に示す変速線図に従って有段変速部20を自動変速することを許可する信号を出力する。この場合、有段変速制御手段54により、図2の係合表内において切換クラッチC0および切換ブレーキB0の係合を除いた作動により自動変速が行われる。このように、切換制御手段50により無段変速状態に切り換えられた差動部11が無段変速機として機能し、それに直列の有段変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、有段変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその有段変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体として無段変速状態となりトータル変速比γTが無段階に得られるようになる。   However, if the switching control means 50 determines that it is within the continuously variable transmission control region for switching the transmission mechanism 10 to the continuously variable transmission state, the transmission mechanism 10 as a whole can obtain the continuously variable transmission state, so that the differential section 11. Is output to the hydraulic control circuit 42 so as to release the switching clutch C0 and the switching brake B0 so that the continuously variable transmission can be performed. At the same time, a signal for permitting hybrid control is output to the hybrid control means 52, and a signal for fixing to a preset gear position at the time of continuously variable transmission is output to the stepped shift control means 54, or For example, a signal for permitting automatic shifting of the stepped transmission 20 according to the shift diagram shown in FIG. 8 stored in advance in the shift diagram storage means 56 is output. In this case, the stepped shift control means 54 performs an automatic shift by an operation excluding the engagement of the switching clutch C0 and the switching brake B0 in the engagement table of FIG. Thus, the differential unit 11 switched to the continuously variable transmission state by the switching control means 50 functions as a continuously variable transmission, and the stepped transmission unit 20 in series functions as a continuously variable transmission. At the same time that a large driving force is obtained, and the rotation input to the stepped transmission unit 20 for each of the first, second, third, and fourth speeds of the stepped transmission unit 20. The speed, that is, the rotational speed of the transmission member 18 is changed steplessly, and a stepless speed ratio width is obtained for each gear stage. Therefore, the gear ratio between the gear stages can be continuously changed continuously and the transmission mechanism 10 as a whole is in a continuously variable transmission state, and the total gear ratio γT can be obtained continuously.

ここで前記図8について詳述すると、図8は有段変速部20の変速判断の基となる変速線図記憶手段56に予め記憶された変速線図(関係)であり、車速Vと駆動力関連値である出力トルクTOUTとをパラメータとする二次元座標で構成された変速線図(変速マップ)の一例である。図8の実線はアップシフト線であり一点鎖線はダウンシフト線である。また、図8の破線は切換制御手段50による有段制御領域と無段制御領域との判定のための判定車速V1および判定出力トルクT1を示している。つまり、図8の破線はハイブリッド車両の高速走行を判定するための予め設定された高速走行判定値である判定車速V1の連なりである高車速判定線と、ハイブリッド車両の駆動力に関連する駆動力関連値例えば有段変速部20の出力トルクTOUTが高出力となる高出力走行を判定するための予め設定された高出力走行判定値である判定出力トルクT1の連なりである高出力走行判定線とを示している。さらに、図8の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判定にヒステリシスが設けられている。つまり、この図8は判定車速V1および判定出力トルクT1を含む、車速Vと出力トルクTOUTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための予め記憶された切換線図(切換マップ、関係)である。なお、この切換線図を含めて変速マップとして変速線図記憶手段56に予め記憶されてもよい。また、この切換線図は判定車速V1および判定出力トルクT1の少なくとも1つを含むものであってもよいし、車速Vおよび出力トルクTOUTの何れかをパラメータとする予め記憶された切換線であってもよい。上記変速線図や切換線図等は、マップとしてではなく実際の車速Vと判定車速V1とを比較する判定式、出力トルクTOUTと判定出力トルクT1とを比較する判定式等として記憶されてもよい。 Referring now to FIG. 8 in detail, FIG. 8 is a shift diagram (relationship) stored in advance in the shift diagram storage means 56, which is the basis for the shift determination of the stepped transmission 20, and the vehicle speed V and the driving force. It is an example of a shift diagram (shift map) composed of two-dimensional coordinates using an output torque T OUT as a related value as a parameter. The solid line in FIG. 8 is an upshift line, and the alternate long and short dash line is a downshift line. 8 indicates the determination vehicle speed V1 and the determination output torque T1 for determining the stepped control region and the stepless control region by the switching control means 50. That is, the broken line in FIG. 8 indicates a high vehicle speed determination line that is a series of determination vehicle speeds V1 that are preset high-speed traveling determination values for determining high-speed traveling of the hybrid vehicle, and a driving force related to the driving force of the hybrid vehicle. A high output travel determination line that is a series of determination output torque T1 that is a preset high output travel determination value for determining a high output travel in which the output torque T OUT of the stepped transmission unit 20 is a high output, for example. It shows. Further, as indicated by a two-dot chain line with respect to the broken line in FIG. 8, hysteresis is provided for the determination of the stepped control region and the stepless control region. In other words, the area or FIG. 8 includes a vehicle-speed limit V1 and the upper output torque T1, which one of the step-variable control region and the continuously variable control region by switching control means 50 and an output torque T OUT with the vehicle speed V as a parameter It is the switching diagram (switching map, relationship) memorize | stored beforehand for determination. The shift diagram including the switching diagram may be stored in advance in the shift diagram storage means 56 as a shift map. Further, this switching diagram may include at least one of the determination vehicle speed V1 and the determination output torque T1, or is a switching line stored in advance using either the vehicle speed V or the output torque T OUT as a parameter. There may be. The shift diagram, the switching diagram, and the like are stored not as a map but as a judgment formula for comparing the actual vehicle speed V and the judgment vehicle speed V1, a judgment formula for comparing the output torque T OUT and the judgment output torque T1, and the like. Also good.

上記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば有段変速部20の出力トルクTOUT、エンジントルクTE、車両加速度や、例えばアクセル開度或いはスロットル開度(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度NEとによって算出されるエンジントルクTEなどの実際値や、運転者のアクセルペダル操作量或いはスロットル開度に基づいて算出される要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力トルクTOUT等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。 The driving force-related value is a parameter that corresponds to the driving force of the vehicle on a one-to-one basis, and includes not only the driving torque or driving force at the driving wheels 38 but also the output torque T OUT of the stepped transmission 20, for example. Engine torque T E , vehicle acceleration, actual value such as engine torque T E calculated by accelerator opening or throttle opening (or intake air amount, air-fuel ratio, fuel injection amount) and engine rotational speed N E , Further, it may be an estimated value such as a required driving force calculated based on a driver's accelerator pedal operation amount or a throttle opening. The vehicle drive torque differential ratio from the output torque T OUT or the like, and a radius of each drive wheel 38 may be calculated in consideration of, for example, may be directly detected using a torque sensor or the like. The same applies to the other torques described above.

また、例えば判定車速V1は、高速走行において変速機構10が無段変速状態とされるとかえって燃費が悪化するのを抑制するように、その高速走行において変速機構10が有段変速状態とされるように設定されている。また、判定トルクT1は、車両の高出力走行において第1電動機M1の反力トルクをエンジンの高出力域まで対応させないで第1電動機M1を小型化するために、例えば第1電動機M1からの電気エネルギの最大出力を小さくして配設可能とされた第1電動機M1の特性に応じて設定されることになる。   Further, for example, the determination vehicle speed V1 is set so that the speed change mechanism 10 is set to the stepped speed change state at the high speed so that the fuel consumption is prevented from deteriorating if the speed change mechanism 10 is set to the stepless speed change state at the time of high speed drive. Is set to The determination torque T1 is, for example, an electric power from the first electric motor M1 in order to reduce the size of the first electric motor M1 without causing the reaction torque of the first electric motor M1 to correspond to the high output range of the engine in the high output traveling of the vehicle. It is set according to the characteristics of the first electric motor M1 that can be disposed with the maximum energy output reduced.

図10は、エンジン回転速度NEとエンジントルクTEとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための境界線としてのエンジン出力線を有する例えば変速線図記憶手段56に予め記憶された切換線図(切換マップ、関係)である。切換制御手段50は、図8の切換線図に替えてこの図10の切換線図からエンジン回転速度NEとエンジントルクTEとに基づいて、それらのエンジン回転速度NEとエンジントルクTEとで表される車両状態が無段制御領域内であるか或いは有段制御領域内であるかを判定してもよい。また、この図10は図8の破線を作るための概念図でもある。言い換えれば、図8の破線は図10の関係図(マップ)に基づいて車速Vと出力トルクTOUTとをパラメータとする二次元座標上に置き直された切換線でもある。 10, the engine output as a boundary for the area determining which of the step-variable control region and the continuously variable control region by switching control means 50 and the engine rotational speed N E and engine torque T E as a parameter It is a switching diagram (switching map, relationship) stored in advance in, for example, the shift diagram storage means 56 having a line. Switching control means 50, based on the switching diagram of FIG. 10 on the engine rotational speed N E and engine torque T E in place of the switching diagram of Figure 8, those of the engine speed N E and engine torque T E It may be determined whether the vehicle state represented by is in the stepless control region or in the stepped control region. FIG. 10 is also a conceptual diagram for making a broken line in FIG. In other words, the broken line in FIG. 8 is also a switching line relocated on the two-dimensional coordinates using the vehicle speed V and the output torque T OUT as parameters based on the relationship diagram (map) in FIG.

図8の関係に示されるように、出力トルクTOUTが予め設定された判定出力トルクT1以上の高トルク領域、或いは車速Vが予め設定された判定車速V1以上の高車速領域が、有段制御領域として設定されているので有段変速走行がエンジン8の比較的高トルクとなる高駆動トルク時、或いは車速の比較的高車速時において実行され、無段変速走行がエンジン8の比較的低トルクとなる低駆動トルク時、或いは車速の比較的低車速時すなわちエンジン8の常用出力域において実行されるようになっている。同様に、図10の関係に示されるように、エンジントルクTEが予め設定された所定値TE1以上の高トルク領域、エンジン回転速度NEが予め設定された所定値NE1以上の高回転領域、或いはそれらエンジントルクTEおよびエンジン回転速度NEから算出されるエンジン出力が所定以上の高出力領域が、有段制御領域として設定されているので、有段変速走行がエンジン8の比較的高トルク、比較的高回転速度、或いは比較的高出力時において実行され、無段変速走行がエンジン8の比較的低トルク、比較的低回転速度、或いは比較的低出力時すなわちエンジン8の常用出力域において実行されるようになっている。図10における有段制御領域と無段制御領域との間の境界線は、高車速判定値の連なりである高車速判定線および高出力走行判定値の連なりである高出力走行判定線に対応している。 As shown in the relationship of FIG. 8, stepped control is performed in a high torque region where the output torque T OUT is equal to or higher than the predetermined determination output torque T1 or a high vehicle speed region where the vehicle speed V is equal to or higher than the predetermined determination vehicle speed V1. Since it is set as a region, the stepped variable speed travel is executed at the time of a high driving torque at which the engine 8 has a relatively high torque or at a relatively high vehicle speed, and the continuously variable speed travel is performed at a relatively low torque of the engine 8. The engine 8 is executed at a low driving torque or at a relatively low vehicle speed, that is, in a normal output range of the engine 8. Similarly, as indicated by the relationship shown in FIG. 10, the engine torque T E is a predetermined value TE1 more high torque region, the engine speed N E preset predetermined value NE1 or a high-speed drive region in which, or high output region where the engine output is higher than the predetermined calculated from engine torque T E and the engine speed N E, because it is set as a step-variable control region, relatively high torque of the step-variable shifting running the engine 8 This is executed at a relatively high rotational speed or at a relatively high output, and continuously variable speed travel is performed at a relatively low torque, a relatively low rotational speed, or a relatively low output of the engine 8, that is, in a normal output range of the engine 8. It is supposed to be executed. The boundary line between the stepped control region and the stepless control region in FIG. 10 corresponds to a high vehicle speed determination line that is a series of high vehicle speed determination values and a high output travel determination line that is a series of high output travel determination values. ing.

これによって、例えば、車両の低中速走行および低中出力走行では、変速機構10が無段変速状態とされて車両の燃費性能が確保されるが、実際の車速Vが前記判定車速V1を越えるような高速走行では変速機構10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されて燃費が向上させられる。また、出力トルクTOUTなどの前記駆動力関連値が判定トルクT1を越えるような高出力走行では変速機構10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる領域が車両の低中速走行および低中出力走行となって、第1電動機M1が発生すべき電気的エネルギ換言すれば第1電動機M1が伝える電気的エネルギの最大値を小さくできて第1電動機M1或いはそれを含む車両の駆動装置が一層小型化される。また、他の考え方として、この高出力走行においては燃費に対する要求より運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態(定変速状態)に切り換えられるのである。これによって、ユーザは、例えば図11に示すような有段自動変速走行におけるアップシフトに伴うエンジン回転速度NEの変化すなわち変速に伴うリズミカルなエンジン回転速度NEの変化が楽しめる。 As a result, for example, in low-medium speed traveling and low-medium power traveling of the vehicle, the speed change mechanism 10 is set to a continuously variable transmission state to ensure fuel efficiency of the vehicle, but the actual vehicle speed V exceeds the determination vehicle speed V1. In such high speed running, the transmission mechanism 10 is in a stepped transmission state in which it operates as a stepped transmission, and the output of the engine 8 is transmitted to the drive wheels 38 exclusively through a mechanical power transmission path, so that the electric continuously variable transmission. As a result, the conversion loss between the power and the electric energy generated when the power is operated is suppressed, and the fuel efficiency is improved. Further, in high output traveling such that the driving force related value such as the output torque T OUT exceeds the determination torque T1, the speed change mechanism 10 is set to a stepped shift state in which it operates as a stepped transmission, and is exclusively a mechanical power transmission path. Thus, the region in which the output of the engine 8 is transmitted to the drive wheels 38 to operate as an electric continuously variable transmission is the low / medium speed travel and the low / medium power travel of the vehicle. In other words, the maximum value of the electric energy transmitted by the first electric motor M1 can be reduced, and the first electric motor M1 or a vehicle drive device including the first electric motor M1 can be further downsized. As another concept, in this high-power running, the demand for the driver's driving force is more important than the demand for fuel consumption, so that the stepless speed change state is switched to the stepped speed change state (constant speed change state). Thus, the user, for example, changes i.e. changes in the rhythmic engine rotational speed N E due to the shift of the engine speed N E with the stepped up-shift of the automatic shifting control, as shown in FIG. 11 can enjoy.

図12は手動操作により動力分配機構16の差動状態と非差動状態すなわち変速機構10の無段変速状態と有段変速状態との切換え選択するための変速状態手動選択装置としてのシーソー型スイッチ44(以下、スイッチ44と表す)の一例でありユーザにより手動操作可能に車両に備えられている。このスイッチ44は、ユーザが所望する変速状態での車両走行を択一的に選択可能とするものであり、無段変速走行に対応するスイッチ44の無段と表示された位置(部分)或いは有段変速走行に対応する有段と表示された位置(部分)をユーザにより押されることで、それぞれ無段変速走行すなわち変速機構10を電気的な無段変速機として作動可能な無段変速状態とするか、或いは有段変速走行すなわち変速機構10を有段変速機として作動可能な有段変速状態とするかが選択可能とされる。例えば、ユーザは無段変速機のフィーリングや燃費改善効果が得られる走行を所望すれば変速機構10が無段変速状態とされるように手動操作により選択すればよいし、また有段変速機の変速に伴うエンジン回転速度の変化によるフィーリング向上を所望すれば変速機構10が有段変速状態とされるように手動操作により選択すればよい。切換制御手段50は、上記スイッチ44の手動操作によって無段変速状態或いは有段変速状態が選択されると、優先的に変速機構10を無段変速状態或いは有段変速状態に切り換える。   FIG. 12 shows a seesaw type switch as a shift state manual selection device for selecting switching between a differential state and a non-differential state of the power distribution mechanism 16 by manual operation, that is, a stepless shift state and a stepped shift state of the transmission mechanism 10. 44 (hereinafter referred to as a switch 44), which is provided in the vehicle so that it can be manually operated by the user. This switch 44 allows the user to selectively select vehicle travel in a speed change state desired by the user. The switch 44 corresponding to continuously variable speed travel indicates the position (part) or presence or absence of the switch 44. When the user presses the position (part) indicated as stepped corresponding to the step-variable travel, the continuously variable-speed travel, that is, the continuously variable transmission state in which the transmission mechanism 10 can be operated as an electrical continuously variable transmission, It is possible to select whether to make a stepped speed change, that is, a stepped state in which the speed change mechanism 10 can operate as a stepped transmission. For example, if the user desires a travel that can achieve the feeling of the continuously variable transmission and the effect of improving the fuel efficiency, the user may select the transmission mechanism 10 by a manual operation so that the continuously variable transmission is brought into the continuously variable transmission state. If it is desired to improve the feeling due to the change in the engine rotation speed associated with the speed change, the speed change mechanism 10 may be selected manually so as to be in the stepped speed change state. When the stepless speed change state or the stepped speed change state is selected by manual operation of the switch 44, the switching control means 50 preferentially switches the speed change mechanism 10 to the stepless speed change state or the stepped speed change state.

図13は手動変速操作装置であるシフト操作装置90の一例を示す図である。シフト操作装置90は、例えば運転席の横に配設され、複数種類のシフトポジションを選択するために操作されるシフトレバー92を備えている。そのシフトレバー92は、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれもが係合されないような変速機構10内つまり有段変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ有段変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、変速機構10内の動力伝達経路が遮断された中立状態とする中立ポジション「N(ニュートラル)」、前進自動変速走行ポジション「D(ドライブ)」、または前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。上記「P」乃至「M」ポジションに示す各シフトポジションは、「P」ポジションおよび「N」ポジションは車両を走行させないときに選択される非走行ポジションであり、「R」ポジション、「D」ポジションおよび「M」ポジションは車両を走行させるときに選択される走行ポジションである。また、「D」ポジションは最高速走行ポジションでもあり、「M」ポジションにおける例えば「4」レンジ乃至「L」レンジはエンジンブレーキ効果が得られるエンジンブレーキレンジでもある。   FIG. 13 is a diagram showing an example of a shift operation device 90 which is a manual transmission operation device. The shift operation device 90 includes a shift lever 92 that is disposed next to the driver's seat, for example, and is operated to select a plurality of types of shift positions. For example, as shown in the engagement operation table of FIG. 2, the shift lever 92 has power in the speed change mechanism 10, that is, in the stepped speed change portion 20 so that neither the first clutch C <b> 1 nor the second clutch C <b> 2 is engaged. A parking position “P (parking)” for setting the neutral state, that is, neutral state with the transmission path cut off, and locking the output shaft 22 of the stepped transmission 20, and a reverse traveling position “R (reverse)” for reverse traveling The neutral position “N (neutral)”, the forward automatic shift travel position “D (drive)”, or the forward manual shift travel position “M (manual)”, which is a neutral state where the power transmission path in the speed change mechanism 10 is interrupted. It is provided so that it can be operated manually. The shift positions shown in the “P” to “M” positions are the “P” position and the “N” position, which are non-traveling positions selected when the vehicle is not traveling, and are “R” position and “D” position. The “M” position is a traveling position selected when the vehicle is traveling. Further, the “D” position is also the fastest running position, and the “M” position, for example, the “4” range to the “L” range is also an engine brake range in which an engine brake effect can be obtained.

上記「M」ポジションは、例えば車両の前後方向において上記「D」ポジションと同じ位置において車両の幅方向に隣接して設けられており、シフトレバー92が「M」ポジションへ操作されることにより、「D」レンジ乃至「L」レンジの何れかがシフトレバー92の操作に応じて変更される。具体的には、この「M」ポジションには、車両の前後方向にアップシフト位置「+」、およびダウンシフト位置「−」が設けられており、シフトレバー92がそれ等のアップシフト位置「+」またはダウンシフト位置「−」へ操作されると、「D」レンジ乃至「L」レンジの何れかへ切り換えられる。例えば、「M」ポジションにおける「D」レンジ乃至「L」レンジの5つの変速レンジは、変速機構10の自動変速制御が可能なトータル変速比γTの変化範囲における高速側(変速比が最小側)のトータル変速比γTが異なる複数種類の変速レンジであり、また有段変速部20の変速が可能な最高速側変速段が異なるように変速段(ギヤ段)の変速範囲を制限するものである。また、シフトレバー92はスプリング等の付勢手段により上記アップシフト位置「+」およびダウンシフト位置「−」から、「M」ポジションへ自動的に戻されるようになっている。また、シフト操作装置90にはシフトレバー92の各シフトポジションを検出するための図示しないシフトポジションセンサが備えられており、そのシフトレバー92のシフトポジションや「M」ポジションにおける操作回数等を電子制御装置40へ出力する。   The “M” position is provided adjacent to the width direction of the vehicle at the same position as the “D” position in the longitudinal direction of the vehicle, for example, and when the shift lever 92 is operated to the “M” position, Any of the “D” range to the “L” range is changed according to the operation of the shift lever 92. Specifically, at the “M” position, an upshift position “+” and a downshift position “−” are provided in the front-rear direction of the vehicle, and the shift lever 92 has their upshift position “+”. ”Or the downshift position“ − ”, the“ D ”range to the“ L ”range is selected. For example, the five shift ranges from the “D” range to the “L” range at the “M” position are the high speed side (the minimum gear ratio side) in the change range of the total gear ratio γT that allows automatic transmission control of the transmission mechanism 10. The speed range of the gear stage (gear stage) is limited so that there are a plurality of types of gear ranges with different total gear ratios γT, and the maximum speed side gear stage at which the stepped transmission unit 20 can change gears is different. . The shift lever 92 is automatically returned from the upshift position “+” and the downshift position “−” to the “M” position by a biasing means such as a spring. The shift operating device 90 is provided with a shift position sensor (not shown) for detecting each shift position of the shift lever 92, and electronically controls the shift position of the shift lever 92 and the number of operations at the “M” position. Output to the device 40.

例えば、「D」ポジションがシフトレバー92の操作により選択された場合には、図8に示す予め記憶された切換マップに基づいて切換制御手段50により変速機構10の変速状態の自動切換制御が実行され、ハイブリッド制御手段52により動力分配機構16の無段変速制御が実行され、有段変速制御手段54により有段変速部20の自動変速制御が実行される。例えば、変速機構10が有段変速状態に切り換えられる有段変速走行時には変速機構10が例えば図2に示すような第1速ギヤ段乃至第5速ギヤ段の範囲で自動変速制御され、或いは変速機構10が無段変速状態に切り換えられる無段変速走行時には変速機構10が動力分配機構16の無段的な変速比幅と有段変速部20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の変速可能なトータル変速比γTの変化範囲内で自動変速制御される。この「D」ポジションは変速機構10の自動変速制御が実行される制御様式である自動変速走行モード(自動モード)を選択するシフトポジションでもある。   For example, when the “D” position is selected by operating the shift lever 92, automatic switching control of the shift state of the transmission mechanism 10 is executed by the switching control means 50 based on the switching map stored in advance shown in FIG. Then, the continuously variable transmission control of the power distribution mechanism 16 is executed by the hybrid control unit 52, and the automatic transmission control of the stepped transmission unit 20 is executed by the stepped transmission control unit 54. For example, when the speed change mechanism 10 is switched to the stepped speed change state, the speed change mechanism 10 is automatically controlled in the range of the first to fifth speed gears as shown in FIG. When the mechanism 10 is switched to the continuously variable transmission state, the speed change mechanism 10 is connected to the continuously variable transmission ratio width of the power distribution mechanism 16 and the first to fourth gears of the stepped transmission 20. The automatic transmission control is performed within the change range of the total speed ratio γT that can be changed by the transmission mechanism 10 obtained by each gear stage that is automatically controlled within the range. This “D” position is also a shift position for selecting an automatic shift traveling mode (automatic mode) which is a control mode in which automatic shift control of the transmission mechanism 10 is executed.

或いは、「M」ポジションがシフトレバー92の操作により選択された場合には、変速レンジの最高速側変速段或いは変速比を越えないように、切換制御手段50、ハイブリッド制御手段52、および有段変速制御手段54により変速機構10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。例えば、変速機構10が有段変速状態に切り換えられる有段変速走行時には変速機構10が各変速レンジで変速機構10が変速可能なトータル変速比γTの範囲で自動変速制御され、或いは変速機構10が無段変速状態に切り換えられる無段変速走行時には変速機構10が動力分配機構16の無段的な変速比幅と各変速レンジに応じた有段変速部20の変速可能な変速段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。この「M」ポジションは変速機構10の手動変速制御が実行される制御様式である手動変速走行モード(手動モード)を選択するシフトポジションでもある。   Alternatively, when the “M” position is selected by operating the shift lever 92, the switching control means 50, the hybrid control means 52, and the stepped gear are set so as not to exceed the maximum speed side shift speed or gear ratio of the shift range. The shift control means 54 performs automatic shift control within the range of the total gear ratio γT that can be shifted in each shift range of the transmission mechanism 10. For example, when the transmission mechanism 10 is switched to the stepped transmission state, the transmission mechanism 10 is automatically controlled to shift within the range of the total transmission ratio γT at which the transmission mechanism 10 can shift in each shift range, or the transmission mechanism 10 During continuously variable speed driving that can be switched to a continuously variable speed state, the speed change mechanism 10 automatically operates within the range of the stepless speed ratio range of the power distribution mechanism 16 and the shift speed range of the stepped speed changer 20 corresponding to each speed range. Automatic shift control is performed within the range of the total gear ratio γT that can be shifted in each shift range of the transmission mechanism 10 obtained by each gear stage subjected to shift control. This “M” position is also a shift position for selecting a manual shift traveling mode (manual mode) which is a control mode in which manual shift control of the transmission mechanism 10 is executed.

図7に戻り、フューエルカット制御手段78は、たとえば車両走行中にアクセル開度Acc、スロットル開度θth、燃料噴射量などのいずれかが要求駆動力関連値が零とされた減速走行が所定時間以上継続する等のフューエルカット条件が成立したときにエンジン8に対する燃料供給を遮断し、エンジン8を停止させる。このエンジン8は、前記ハイブリッド制御手段52によって始動制御される。 Returning to FIG. 7, the fuel cut control means 78 performs predetermined deceleration driving in which the required driving force-related value of any one of the accelerator opening Acc, the throttle opening θ th , the fuel injection amount, etc. is zero during vehicle traveling. When the fuel cut condition such as continuing for more than the time is satisfied, the fuel supply to the engine 8 is cut off and the engine 8 is stopped. The engine 8 is start-controlled by the hybrid control means 52.

無段変速走行判定手段80は、車両の無段変速走行が選択されたか否かを、切換制御手段50の出力、或いはスイッチ44による無段変速状態の選択操作などに基づいて判定する。エンジン燃費マップ記憶手段82は、たとえば図14に示すエンジン燃費マップを予め記憶する。このエンジン燃費マップは、予め実験的に求められた関係であって、エンジン回転速度軸AX1とエンジン出力トルク軸AX2との二次元座標内において設定された、実線により等高線状に示す等燃費曲線L1と、破線に示す最適燃費曲線L2と、1点鎖線の曲線により示す等馬力曲線L3とを備えている。最適燃費曲線L2は、中央ほどよい燃費を示し、等馬力曲線L3は高エンジン回転側ほど高い馬力を示している。また、電動機効率マップ記憶手段84は、たとえば図15に示す第1電動機M1の効率マップと、たとえば図16に示す第2電動機M2の効率マップとを予め記憶している。この第1電動機M1の効率マップおよび第2電動機M2の効率マップは、回転速度軸と出力トルク軸との二次元座標内において、実線の等高線状に示される効率曲線L4を備えている。この効率曲線L4は、中央ほど高い効率を示している。   The continuously variable speed travel determining means 80 determines whether or not the continuously variable speed travel of the vehicle has been selected based on the output of the switching control means 50 or the selection operation of the continuously variable speed state by the switch 44. The engine fuel consumption map storage means 82 stores, for example, an engine fuel consumption map shown in FIG. 14 in advance. This engine fuel consumption map is a relationship experimentally obtained in advance, and is an isofuel consumption curve L1 indicated by a contour line by a solid line, which is set in the two-dimensional coordinates of the engine rotation speed axis AX1 and the engine output torque axis AX2. And an optimal fuel consumption curve L2 indicated by a broken line and an equal horsepower curve L3 indicated by a one-dot chain line curve. The optimum fuel consumption curve L2 indicates better fuel consumption at the center, and the equal horsepower curve L3 indicates higher horsepower at the higher engine rotation side. Further, the motor efficiency map storage means 84 stores in advance, for example, an efficiency map of the first motor M1 shown in FIG. 15 and an efficiency map of the second motor M2 shown in FIG. 16, for example. The efficiency map of the first motor M1 and the efficiency map of the second motor M2 include an efficiency curve L4 indicated by a solid contour line in the two-dimensional coordinates of the rotation speed axis and the output torque axis. This efficiency curve L4 shows higher efficiency toward the center.

無段変速走行時変速比制御手段(以下、変速比制御手段という)86は、無段変速走行判定手段80により差動部(無段変速部)11が無段変速作動させられる車両の無段変速走行状態であると判定されると、第1電動機M1の効率ηM1および第2電動機M2の効率ηM2と有段変速部20の効率とに基づいて最適燃費が得られるように、有段変速部20の変速比γとその差動部(無段変速部)11の変速比γ0とを制御する。たとえば、比較的高速の定常走行時でも第1電動機M1の逆転力行を発生させないことを目的として差動部(無段変速部)11の出力軸回転速度(有段変速部20の入力軸回転速度)NINが抑制されるように、有段変速部20の変速比γを調整することによりその変速比γに応じて差動部(無段変速部)11の変速比γ0を変更する。 A continuously variable speed traveling speed ratio control means (hereinafter referred to as a speed ratio control means) 86 is a continuously variable vehicle for which the differential section (the continuously variable transmission section) 11 is operated by the continuously variable speed travel determining means 80. When it is determined that the vehicle is in the variable speed running state, the stepped transmission unit is configured so that the optimum fuel consumption is obtained based on the efficiency ηM1 of the first electric motor M1, the efficiency ηM2 of the second electric motor M2, and the efficiency of the stepped transmission unit 20. The transmission gear ratio γ of 20 and the transmission gear ratio γ0 of the differential portion (continuously variable transmission portion) 11 are controlled. For example, the output shaft rotation speed of the differential section (continuously variable transmission section) 11 (the input shaft rotation speed of the stepped transmission section 20) for the purpose of preventing reverse rotation of the first electric motor M1 even during relatively high-speed steady running. ) By adjusting the gear ratio γ of the stepped transmission unit 20 so as to suppress N IN, the gear ratio γ0 of the differential unit (continuously variable transmission unit) 11 is changed according to the gear ratio γ.

上記変速比制御手段86は、エンジン燃費マップ記憶手段82において記憶された図14に示すエンジン燃費マップから実際のアクセル開度Accに基づいてエンジン8の目標エンジン回転速度NEMを決定する目標エンジン回転速度算出手段88と、実際の車速Vに基づいてその目標エンジン回転速度NEMを得るための有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0を決定する両変速比決定手段90とを備えている。 The gear ratio control means 86 determines the target engine speed N EM for determining the target engine speed N EM of the engine 8 based on the actual accelerator opening Acc from the engine fuel efficiency map shown in FIG. 14 stored in the engine fuel efficiency map storage means 82. a speed calculating unit 88, determines the target engine rotational speed ratio γ and the differential portion of the geared transmission unit 20 to obtain a speed N EM (continuously variable transmission portion) 11 of the gear ratio γ0 based on the actual vehicle speed V Both transmission ratio determining means 90 are provided.

上記目標エンジン回転速度算出手段88では、図14に示すように、実際のアクセル開度Accに基づいて運転者の要求駆動力を満たすためのエンジン8の出力に対応するいずれかの等馬力曲線L3aがよく知られた関係から決定され、決定された等馬力曲線L3aと最適燃費曲線L2との交点Caに対応するエンジン回転速度が目標エンジン回転速度NEMとして決定される。 In the target engine speed calculation means 88, as shown in FIG. 14, any equal horsepower curve L3a corresponding to the output of the engine 8 for satisfying the driver's required driving force based on the actual accelerator opening Acc. Is determined from a well-known relationship, and the engine speed corresponding to the intersection point Ca between the determined equal horsepower curve L3a and the optimum fuel efficiency curve L2 is determined as the target engine speed NEM .

上記両変速比決定手段90では、上記目標エンジン回転速度NEMと実際の車速Vとに基づいてその目標エンジン回転速度NEMを得るための変速機構10のトータル変速比γTが、たとえば式(1) に示す関係から決定される。なお、有段変速部20の出力軸22の回転速度NOUT (rpm)と車速V(km/h)との関係は、終減速機36の変速比をγfとし、車輪38の半径をrとすると、式2に示される関係にある。次いで、その変速機構10のトータル変速比γT(=γ×γ0)を得るための有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0が、式(1) 、(2) 、(3) 、および(4) から、変速機構10全体の伝達効率が最大となるように決定される。 In the both speed ratio determining means 90, the total speed ratio γT of the speed change mechanism 10 for obtaining the target engine speed NEM based on the target engine speed NEM and the actual vehicle speed V is, for example, the formula (1 ) Is determined from the relationship shown in The relationship between the rotational speed N OUT (rpm) of the output shaft 22 of the stepped transmission unit 20 and the vehicle speed V (km / h) is such that the speed ratio of the final reduction gear 36 is γf and the radius of the wheel 38 is r. Then, there is a relationship shown in Formula 2. Next, the gear ratio γ0 of the stepped transmission unit 20 and the gear ratio γ0 of the differential unit (continuously variable transmission unit) 11 for obtaining the total gear ratio γT (= γ × γ0) of the transmission mechanism 10 are expressed by the equation (1 ), (2), (3), and (4) are determined so that the transmission efficiency of the entire transmission mechanism 10 is maximized.

すなわち、先ず、差動部(無段変速部)11の変速比γ0の変化範囲は零〜1であるので、その変速比γ0が1であると仮定したときにおける上記目標エンジン回転速度NEMより大きいエンジン回転速度NE を発生させ得る有段変速部20の変速比候補値γa 、γb 等が、たとえば式(1) および(2) に示すようなエンジン回転速度NE と車速Vとの関係から実際の車速Vに基づいて複数種類設定される。次に、たとえば式(3) に示す関係から目標エンジン回転速度NEMを得るためのトータル変速比γTと変速比候補値γa 、γb とに基づいてそれら変速比候補値γa、γb毎に車両燃料消費量Mfce が算出され、その車両燃料消費量が最低となる変速比候補値を有段変速部20の変速比γとして決定し、その変速比γと上記目標エンジン回転速度NEMを得るためのトータル変速比γTとから差動部(無段変速部)11の変速比γ0が決定される。 That is, first, because the range of variation of the speed ratio γ0 of the differential portion (continuously-variable transmission portion) 11 is zero to 1, than the target engine rotational speed N EM at the time when the speed ratio γ0 is assumed to be 1 speed ratio candidate value γa of geared transmission unit 20 which can generate a large engine speed N E, .gamma.b etc., for example, formula (1) and (2) the engine speed N E as shown and relationship between the vehicle speed V Are set based on the actual vehicle speed V. Next, for example, based on the total speed ratio γT and the speed ratio candidate values γa and γb for obtaining the target engine speed N EM from the relationship shown in the equation (3), the vehicle fuel is determined for each speed ratio candidate value γa and γb. A consumption ratio Mfce is calculated, a transmission ratio candidate value at which the vehicle fuel consumption is minimized is determined as a transmission ratio γ of the stepped transmission unit 20, and the transmission ratio γ and the target engine speed N EM are obtained. From the total speed ratio γT, the speed ratio γ0 of the differential section (continuously variable speed section) 11 is determined.

式(3) において、Fceは燃料消費率、PLは瞬時必要動力、ηele は電気系の効率、ηCVT は差動部11の伝達効率、k1は差動部11の電気的パスの伝達割合、k2は差動部11の機械的パスの伝達割合、ηgiは有段変速部20の伝達効率である。式(3) の第1電動機M1の効率ηM1および第2電動機M2の効率ηM2は、各変速比候補値γa 、γb 毎に上記目標エンジン回転速度NEMを得るためのトータル変速比γTを得るための差動部11の変速比候補γ0a 、γ0b 毎に決まる回転速度と、必要駆動力を発生させるために各電動機に求められる出力トルクとに基づいて、前記図15および図16に示す関係から求められる。また、上記k1は通常は0.1付近の値であり、k2は通常は0.9付近の値であるが、要求出力の関数であるためその要求出力に従って変化させられる。また、有段変速部20の伝達効率ηgiは、たとえば式(4) に示されるように、ギヤ段i毎に異なる伝達トルクTi および回転部材の回転速度Ni と油温Hとの関数である。なお、燃料消費率Fce、瞬時必要動力PL、電気系効率ηele 、差動部11の伝達効率ηCVT は、便宜的に一定値が用いられる。また、上記有段変速部20の伝達効率ηgi等も実用上の精度に影響が出ない範囲で一定値が用いられてもよい。 In Equation (3), Fce is the fuel consumption rate, PL is the instantaneous required power, ηele is the efficiency of the electrical system, ηCVT is the transmission efficiency of the differential unit 11, k1 is the transmission ratio of the electrical path of the differential unit 11, k2 Is the transmission ratio of the mechanical path of the differential section 11, and ηgi is the transmission efficiency of the stepped transmission section 20. Equation (3) Efficiency ηM2 efficiency ηM1 and the second electric motor M2 of the first electric motor M1 is in each gear ratio candidate value .gamma.a, to obtain the overall speed ratio γT for obtaining the target engine speed N EM for each γb 15 is obtained from the relationship shown in FIG. 15 and FIG. 16 on the basis of the rotational speed determined for each of the transmission ratio candidates γ0a and γ0b of the differential section 11 and the output torque required for each electric motor to generate the required driving force. It is done. In addition, k1 is usually a value near 0.1 and k2 is usually a value near 0.9, but since it is a function of the required output, it is changed according to the required output. Further, the transmission efficiency ηgi of the stepped transmission unit 20 is a function of the transmission torque Ti, the rotational speed Ni of the rotating member, and the oil temperature H, which are different for each gear stage i, for example, as shown in equation (4). For convenience, constant values are used for the fuel consumption rate Fce, the instantaneous required power PL, the electric system efficiency ηele, and the transmission efficiency ηCVT of the differential section 11. Further, a constant value may be used for the transmission efficiency ηgi and the like of the stepped transmission unit 20 as long as the practical accuracy is not affected.

EM=γT×NOUT ・・・(1)
OUT =(V×γf)/2πr・60 ・・・(2)
Mfce =Fce×PL/((ηM1×ηM2×ηele ×k1
+ηCVT ×k2) ×ηgi) ・・・(3)
ηgi=f(Ti 、Ni 、H) ・・・(4)
N EM = γT × N OUT (1)
N OUT = (V × γf) / 2πr · 60 (2)
Mfce = Fce × PL / ((ηM1 × ηM2 × ηele × k1
+ ΗCVT × k2) × ηgi) (3)
ηgi = f (Ti, Ni, H) (4)

変速比制御手段86は、以上のようにして決定された有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0とが無段変速走行における変速比としてそれぞれ実現されるように、有段変速制御手段54およびハイブリッド制御手段52に指令する。   The gear ratio control means 86 is configured so that the gear ratio γ of the stepped transmission unit 20 and the gear ratio γ0 of the differential unit (continuously variable transmission unit) 11 determined as described above are respectively used as gear ratios in continuously variable transmission. The stepped shift control means 54 and the hybrid control means 52 are commanded so as to be realized.

しかし、無段変速走行判定手段80によって無段変速走行ではないと判定される場合、すなわち有段変速走行であると判定される場合は、変速比制御手段86は、変速線図記憶手段56に記憶されたたとえば図17に示す全域有段の変速線図を用いて有段変速制御手段54に変速制御させる。この図17に示す全域有段の変速線図では、エンジンの作動点が燃費最適点に近くなるように換言すればエンジン回転速度NE が前記目標エンジン回転速度NEMに近くなるように変速線が設定されており、結果的に差動部(無段変速部)11が非差動であるときは早めにアップシフトするように変速線が図8に比較して低車速側に設定されている。なお、この図17の変速線図を用いる替わりに、図14のエンジン燃費マップから求められた目標エンジン回転速度NEMに最もエンジン回転速度NE を近くすることができる有段変速部20の変速段すなわち変速比γが求められてもよい。 However, when it is determined by the continuously variable speed travel determining means 80 that the speed is not continuously variable speed travel, that is, when it is determined that the speed is variable speed travel, the speed ratio control means 86 is stored in the shift diagram storage means 56. For example, the stepped shift control means 54 is caused to perform shift control using the stored stepped shift diagram shown in FIG. In the shift diagram of the entire stepped shown in FIG. 17, shift line as in other words, as the operating point of the engine is close to the optimum fuel consumption point engine speed N E becomes closer to the target engine rotational speed N EM As a result, when the differential section (continuously variable transmission section) 11 is non-differential, the shift line is set on the low vehicle speed side so as to upshift earlier. Yes. Note that this instead of using the shift diagram of FIG. 17, the speed change of the engine fuel consumption target engine obtained from the map rotation speed N EM of the most engine rotational speed N geared transmission unit 20 that E can be made closer to 14 The speed, that is, the gear ratio γ may be obtained.

図18は、電子制御装置40の制御作動の要部すなわち無段変速走行時の変速比制御作動を説明するフローチャートであって、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。図19は図18の変速比算出ルーチンを説明するフローチャートである。   FIG. 18 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the gear ratio control operation at the time of continuously variable speed travel, and is repeatedly executed with an extremely short cycle time of, for example, about several milliseconds to several tens of milliseconds. The FIG. 19 is a flowchart for explaining the gear ratio calculation routine of FIG.

図18において、前記無段変速走行判定手段80に対応するステップ(以下、ステップを省略する)S1において、車両の無段変速走行状態であるか否かが、切換制御手段50の出力或いはスイッチ44の選択操作に基づいて判断される。このS1の判断が肯定される場合は、S2においてエンジン燃費マップ記憶手段82に予め記憶されている図14のエンジン燃費マップが読み込まれ、S3において電動機効率マップ記憶手段84に予め記憶された図15の第1電動機M1の効率マップが読み込まれ、S4において電動機効率マップ記憶手段84に予め記憶された図15の第2電動機M2の効率マップが読み込まれる。次いで、前記無段変速走行時変速比制御手段86に対応するS5の変速比算出ルーチンおよびS6の変速比制御出力が実行される。   In FIG. 18, in step (hereinafter, step is omitted) S1 corresponding to the continuously variable speed travel determining means 80, whether or not the vehicle is in a continuously variable speed travel state is determined by the output of the switching control means 50 or the switch 44. It is determined based on the selection operation. If the determination in S1 is affirmative, the engine fuel consumption map of FIG. 14 stored in advance in the engine fuel consumption map storage means 82 is read in S2, and FIG. 15 stored in advance in the motor efficiency map storage means 84 in S3. The efficiency map of the first motor M1 is read, and in S4, the efficiency map of the second motor M2 of FIG. 15 stored in advance in the motor efficiency map storage means 84 is read. Next, a gear ratio calculation routine in S5 and a gear ratio control output in S6 corresponding to the continuously variable speed traveling gear ratio control means 86 are executed.

上記S5の変速比算出ルーチンを示す図19において、S51 において実際の車速Vおよびスロットル開度Accが読み込まれた後、前記目標エンジン回転速度算出手段88に対応するS52およびS53が実行される。S52では、図14に示す等馬力曲線L3から実際のアクセル開度Accに基づいて運転者の要求駆動力を満たすためのエンジン8の出力に対応するいずれかの等馬力曲線L3aが決定される。決定された等馬力曲線L3aが運転者の要求駆動力を満たすための目標エンジン出力を示している。次いで、S53では、図14に示す関係において、上記決定された等馬力曲線L3aと最適燃費曲線L2との交点Caに対応するエンジン回転速度が目標エンジン回転速度NEMとして決定される。次いで、前記両変速比決定手段90に対応するS54では、上記目標エンジン回転速度NEMと実際の車速Vとに基づいてその目標エンジン回転速度NEMを得るための変速機構10のトータル変速比γTが、たとえば式(1) に示す関係から決定され、その変速機構10のトータル変速比γT(=γ×γ0)を得るための有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0が、式(1) 、(2) 、(3) 、および(4) から、変速機構10全体の伝達効率が最大となるように決定される。 In FIG. 19 showing the gear ratio calculation routine of S5, after the actual vehicle speed V and throttle opening Acc are read in S51, S52 and S53 corresponding to the target engine speed calculation means 88 are executed. In S52, any equal horsepower curve L3a corresponding to the output of the engine 8 for satisfying the driver's required driving force is determined based on the actual accelerator opening Acc from the equal horsepower curve L3 shown in FIG. The determined equal horsepower curve L3a indicates the target engine output for satisfying the driver's required driving force. Next, in S53, in the relationship shown in FIG. 14, the engine speed corresponding to the intersection Ca between the determined equal horsepower curve L3a and the optimum fuel efficiency curve L2 is determined as the target engine speed NEM . Next, in S54 corresponding to the both speed ratio determining means 90, the total speed ratio γT of the speed change mechanism 10 for obtaining the target engine speed NEM based on the target engine speed NEM and the actual vehicle speed V. Is determined from, for example, the relationship shown in equation (1), and the gear ratio γ of the stepped transmission unit 20 and the differential unit (continuously variable transmission) for obtaining the total gear ratio γT (= γ × γ0) of the transmission mechanism 10. Part) 11 is determined so as to maximize the transmission efficiency of the entire speed change mechanism 10 from the equations (1), (2), (3), and (4).

図18に戻って、S6では、上記のようにして決定された有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0が得られるように、有段変速制御手段54およびハイブリッド制御手段52に対して指令が出され、変速比が制御される。   Returning to FIG. 18, in step S6, the stepped speed change is performed so that the speed ratio γ of the stepped speed change unit 20 determined as described above and the speed change ratio γ0 of the differential unit (stepless speed change unit) 11 are obtained. A command is issued to the control means 54 and the hybrid control means 52, and the gear ratio is controlled.

前記S1の判断が否定される場合は、S7において、S2と同様にしてエンジン燃費マップ記憶手段82に予め記憶されている図14のエンジン燃費マップが読み込まれる。次いで、S8において、そのエンジン燃費マップからから求められた目標エンジン回転速度NEMに最もエンジン回転速度NE を近くすることができる有段変速部20の変速段すなわち変速比γが、燃費最適有段変速段或いは燃費最適有段変速比として決定される。そして、S6において、上記燃費最適有段変速比として決定された有段変速部20の変速比γが得られるように有段変速制御手段54が制御される。 If the determination in S1 is negative, in S7, the engine fuel consumption map of FIG. 14 stored in advance in the engine fuel consumption map storage means 82 is read in the same manner as in S2. Next, in S8, the gear stage of the stepped transmission unit 20, that is, the gear ratio γ that can bring the engine speed N E closest to the target engine speed N EM obtained from the engine fuel consumption map, is the fuel efficiency optimum existence. It is determined as a step shift stage or a fuel efficiency optimum stepped gear ratio. In step S6, the stepped transmission control means 54 is controlled so that the speed ratio γ of the stepped transmission unit 20 determined as the fuel efficiency optimal stepped transmission ratio is obtained.

上述のように、本実施例によれば、差動部(無段変速部)11が無段変速作動させられる無段変速走行状態では、変速比制御手段86により、有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0とが、最適燃費が得られるように制御されることから、個別に変速比が制御される場合に比較して車両の最適燃費が得られる。たとえば比較的高速な定常走行において図4に示すような差動部(無段変速部)11における第1電動機M1の逆転力行が発生しないように有段変速部20の変速比γが制御されることにより、車両全体として最適燃費が得られるようになる。   As described above, according to this embodiment, in the continuously variable speed running state in which the differential unit (continuously variable transmission unit) 11 is operated continuously variablely, the transmission ratio of the stepped transmission unit 20 is changed by the transmission ratio control means 86. Since the ratio γ and the gear ratio γ0 of the differential unit (continuously variable transmission unit) 11 are controlled so as to obtain the optimum fuel consumption, the optimum fuel consumption of the vehicle is compared with the case where the gear ratio is controlled individually. Is obtained. For example, the gear ratio γ of the stepped transmission unit 20 is controlled so that the reverse rotation of the first electric motor M1 in the differential unit (stepless transmission unit) 11 as shown in FIG. As a result, the optimum fuel consumption can be obtained for the entire vehicle.

また、本実施例によれば、差動部(無段変速部)11が無段変速作動させられる無段変速制御モードでは、変速比制御手段86により有段変速部20の変速比γに応じて差動部(無段変速部)11の変速比γ0が変更されることから、車両全体として高伝達効率となるように有段変速部20および差動部(無段変速部)11の変速比が制御されるので、たとえば比較的高速な定常走行において図4に示すような差動部(無段変速部)11における第1電動機M1の逆転力行が発生しないように有段変速比20の変速比γが制御されると、それに応答して、トータル変速比γTが変化しないように差動部(無段変速部)11の変速比γ0が変化させられることにより、車両全体として最適燃費が得られるようになる。   Further, according to the present embodiment, in the continuously variable transmission control mode in which the differential section (continuously variable transmission section) 11 is operated with a continuously variable transmission, the transmission ratio control means 86 responds to the transmission ratio γ of the stepped transmission section 20. Since the transmission gear ratio γ0 of the differential unit (continuously variable transmission unit) 11 is changed, the transmission of the stepped transmission unit 20 and the differential unit (continuously variable transmission unit) 11 is changed so as to achieve high transmission efficiency as a whole vehicle. Since the ratio is controlled, the stepped gear ratio 20 is set so that the reverse rotation of the first motor M1 does not occur in the differential section (stepless transmission section) 11 as shown in FIG. When the gear ratio γ is controlled, in response thereto, the gear ratio γ0 of the differential section (continuously variable transmission section) 11 is changed so that the total gear ratio γT does not change. It will be obtained.

また、本実施例によれば、変速比制御手段86は、差動部(無段変速部)11の第1電動機M1の効率ηM1および第2電動機M2の効率ηM2に基づいて有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0とを制御するものであることから、それら第1電動機M1の効率ηM1および第2電動機M2の効率ηM2が考慮された上で、有段変速部20の変速比γと差動部(無段変速部)11の変速比γ0とが制御されるので、一層高い伝達効率が得られる。   Further, according to the present embodiment, the gear ratio control means 86 is based on the efficiency ηM1 of the first electric motor M1 and the efficiency ηM2 of the second electric motor M2 of the differential section (continuously variable transmission section) 11. In this case, the efficiency ηM1 of the first electric motor M1 and the efficiency ηM2 of the second electric motor M2 are taken into account. Thus, since the transmission gear ratio γ of the stepped transmission unit 20 and the transmission gear ratio γ0 of the differential unit (stepless transmission unit) 11 are controlled, higher transmission efficiency can be obtained.

また、本実施例によれば、変速比制御手段86は、有段変速部20の変速比γを調整して差動部(無段変速部)11の出力軸回転速度NINを変更するものであることから、たとえば比較的高速な定常走行において図4に示すような差動部(無段変速部)11における第1電動機M1の逆転力行が発生しないように有段変速部20の変速比γが制御されることにより、車両全体として最適燃費が得られるようになる。 Further, according to the present embodiment, the gear ratio control means 86 adjusts the gear ratio γ of the stepped transmission unit 20 to change the output shaft rotational speed N IN of the differential unit (stepless transmission unit) 11. Therefore, for example, the gear ratio of the stepped transmission unit 20 is set so that the reverse rotation of the first electric motor M1 does not occur in the differential unit (stepless transmission unit) 11 as shown in FIG. By controlling γ, the optimum fuel consumption can be obtained for the entire vehicle.

次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。   Next, another embodiment of the present invention will be described. In the following description, parts common to those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

図20は本発明の他の実施例における変速機構70の構成を説明する骨子図、図21はその変速機構70の変速段と油圧式摩擦係合装置の係合の組み合わせとの関係を示す係合表、図22はその変速機構70の変速作動を説明する共線図である。   FIG. 20 is a skeleton diagram illustrating the configuration of the speed change mechanism 70 according to another embodiment of the present invention, and FIG. 21 is a view showing the relationship between the gear position of the speed change mechanism 70 and the engagement combination of the hydraulic friction engagement device. FIG. 22 is a collinear diagram illustrating the speed change operation of the speed change mechanism 70.

変速機構70は、前述の実施例の変速機構10と同様に第1電動機M1、動力分配機構16、および第2電動機M2を備えている差動部11と、その差動部11と出力軸22との間で伝達部材18を介して直列に連結されている前進3段の有段変速部72とを備えている。動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24と切換クラッチC0および切換ブレーキB0とを有している。有段変速部72は、例えば「0.532」程度の所定のギヤ比ρ2を有するシングルピニオン型の第2遊星歯車装置26と例えば「0.418」程度の所定のギヤ比ρ3を有するシングルピニオン型の第3遊星歯車装置28とを備えている。第2遊星歯車装置26の第2サンギヤS2と第3遊星歯車装置28の第3サンギヤS3とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第2遊星歯車装置26の第2キャリヤCA2と第3遊星歯車装置28の第3リングギヤR3とが一体的に連結されて出力軸22に連結され、第2リングギヤR2は第1クラッチC1を介して伝達部材18に選択的に連結され、第3キャリヤCA3は第2ブレーキB2を介してケース12に選択的に連結されている。   The speed change mechanism 70 is similar to the speed change mechanism 10 of the above-described embodiment, and includes the differential unit 11 including the first electric motor M1, the power distribution mechanism 16, and the second electric motor M2, the differential unit 11 and the output shaft 22. And a forward three-stage stepped transmission 72 that is connected in series via the transmission member 18. The power distribution mechanism 16 includes, for example, a single pinion type first planetary gear unit 24 having a predetermined gear ratio ρ1 of about “0.418”, a switching clutch C0, and a switching brake B0. The stepped transmission unit 72 includes a single pinion type second planetary gear unit 26 having a predetermined gear ratio ρ2 of about “0.532”, for example, and a single pinion having a predetermined gear ratio ρ3 of about “0.418”, for example. And a third planetary gear device 28 of the type. The second sun gear S2 of the second planetary gear unit 26 and the third sun gear S3 of the third planetary gear unit 28 are integrally connected and selectively connected to the transmission member 18 via the second clutch C2. The second carrier CA2 of the second planetary gear device 26 and the third ring gear R3 of the third planetary gear device 28 are integrally connected to the output shaft 22 by being selectively connected to the case 12 via one brake B1. The second ring gear R2 is selectively connected to the transmission member 18 via the first clutch C1, and the third carrier CA3 is selectively connected to the case 12 via the second brake B2.

以上のように構成された変速機構70では、例えば、図21の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、および第2ブレーキB2が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第4速ギヤ段(第4変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、差動部11は前述した無段変速機として作動する無段変速状態に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能とされている。したがって、変速機構70では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた差動部11と有段変速部72とで有段変速機として作動する有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた差動部11と有段変速部72とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、変速機構70は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。 In the speed change mechanism 70 configured as described above, for example, as shown in the engagement operation table of FIG. 21, the switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, and the first brake B1. , And the second brake B2 is selectively engaged and operated, so that one of the first gear (first gear) to the fourth gear (fourth gear) or the reverse gear (reverse) Gear ratio) or neutral is selectively established, and a gear ratio γ (= input shaft rotational speed N IN / output shaft rotational speed N OUT ) that changes approximately in a ratio is obtained for each gear stage. ing. In particular, in this embodiment, the power distribution mechanism 16 is provided with a switching clutch C0 and a switching brake B0, and the differential unit 11 is configured as described above when either the switching clutch C0 or the switching brake B0 is engaged. In addition to the continuously variable transmission state that operates as a continuously variable transmission, it is possible to configure a constant transmission state that operates as a transmission having a constant gear ratio. Therefore, the transmission mechanism 70 operates as a stepped transmission with the differential unit 11 and the stepped transmission unit 72 that are brought into a constant transmission state by engaging and operating either the switching clutch C0 or the switching brake B0. A stepless speed change state is configured, and the differential part 11 and the stepped speed change part 72, which are brought into a continuously variable speed state by disengaging neither the switching clutch C0 or the switching brake B0, serve as an electric continuously variable transmission. A continuously variable transmission state that operates is configured. In other words, the speed change mechanism 70 is switched to the stepped speed change state by engaging one of the switching clutch C0 and the switching brake B0, and is disabled by not operating the switching clutch C0 and the switching brake B0. It is switched to the step shifting state.

例えば、変速機構70が有段変速機として機能する場合には、図21に示すように、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ1が最大値例えば「2.804」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「1.531」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.000」程度である第3速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「0.705」程度である第4速ギヤ段が成立させられる。また、第2クラッチC2および第2ブレーキB2の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「2.393」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換クラッチC0のみが係合される。   For example, when the speed change mechanism 70 functions as a stepped transmission, as shown in FIG. 21, the gear ratio γ1 is set to a maximum value, for example, “1” due to the engagement of the switching clutch C0, the first clutch C1, and the second brake B2. A first gear that is approximately 2.804 "is established, and the gear ratio γ2 is smaller than that of the first gear by engaging the switching clutch C0, the first clutch C1, and the first brake B1, for example,“ The second speed gear stage of about 1.531 "is established, and the gear ratio γ3 is smaller than the second speed gear stage by engagement of the switching clutch C0, the first clutch C1, and the second clutch C2, for example," For example, a third speed gear stage of about 1.000 "is established, and the gear ratio γ4 is smaller than that of the third speed gear stage due to engagement of the first clutch C1, the second clutch C2, and the switching brake B0. Fourth gear is approximately "0.705", is established. Further, by the engagement of the second clutch C2 and the second brake B2, a reverse gear stage in which the speed ratio γR is a value between the first speed gear stage and the second speed gear stage, for example, about “2.393” is established. Be made. When the neutral “N” state is set, for example, only the switching clutch C0 is engaged.

しかし、変速機構70が無段変速機として機能する場合には、図21に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、差動部11が無段変速機として機能し、それに直列の有段変速部72が有段変速機として機能することにより、有段変速部72の第1速、第2速、第3速の各ギヤ段に対しその有段変速部72に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構70全体としてのトータル変速比γTが無段階に得られるようになる。   However, when transmission mechanism 70 functions as a continuously variable transmission, both switching clutch C0 and switching brake B0 in the engagement table shown in FIG. 21 are released. Accordingly, the differential unit 11 functions as a continuously variable transmission, and the stepped transmission unit 72 in series with the differential unit 11 functions as a stepped transmission, whereby the first speed, second speed, The rotation speed input to the stepped transmission 72, that is, the rotation speed of the transmission member 18 is changed steplessly for each of the third gear stages, and each gear stage has a stepless speed ratio width. . Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total speed ratio γT of the transmission mechanism 70 as a whole can be obtained continuously.

図22は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する有段変速部72から構成される変速機構70において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。切換クラッチC0および切換ブレーキB0が解放される場合、および切換クラッチC0または切換ブレーキB0が係合させられる場合の動力分配機構16の各要素の回転速度は前述の場合と同様である。   FIG. 22 is a diagram illustrating a transmission mechanism 70 including a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and a stepped transmission unit 72 that functions as a stepped transmission unit or a second transmission unit. The collinear chart which can represent on a straight line the relative relationship of the rotational speed of each rotation element from which a connection state differs is shown. When the switching clutch C0 and the switching brake B0 are released and when the switching clutch C0 or the switching brake B0 is engaged, the rotational speeds of the elements of the power distribution mechanism 16 are the same as those described above.

図22における自動変速機72の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第2サンギヤS2および第3サンギヤS3を、第5回転要素(第5要素)RE5に対応する第3キャリヤCA3を、第6回転要素(第6要素)RE6に対応し且つ相互に連結された第2キャリヤCA2および第3リングギヤR3を、第7回転要素(第7要素)RE7に対応する第2リングギヤR2をそれぞれ表している。また、自動変速機72において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は自動変速機72の出力軸22に連結され、第7回転要素RE7は第1クラッチC1を介して伝達部材18に選択的に連結されている。   The four vertical lines Y4, Y5, Y6, Y7 of the automatic transmission 72 in FIG. 22 correspond to the fourth rotation element (fourth element) RE4 and are connected to each other in order from the left. The third sun gear S3, the third carrier CA3 corresponding to the fifth rotating element (fifth element) RE5, the second carrier CA2 corresponding to the sixth rotating element (sixth element) RE6 and connected to each other and the second carrier CA2 The three ring gear R3 represents the second ring gear R2 corresponding to the seventh rotation element (seventh element) RE7. Further, in the automatic transmission 72, the fourth rotating element RE4 is selectively connected to the transmission member 18 via the second clutch C2, and is also selectively connected to the case 12 via the first brake B1, so that the fifth rotation. The element RE5 is selectively connected to the case 12 via the second brake B2, the sixth rotating element RE6 is connected to the output shaft 22 of the automatic transmission 72, and the seventh rotating element RE7 is connected via the first clutch C1. It is selectively connected to the transmission member 18.

有段変速部72では、図22に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第7回転要素RE7(R2)の回転速度を示す縦線Y7と横線X2との交点と第5回転要素RE5(CA3)の回転速度を示す縦線Y5と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第6回転要素RE6(CA2,R3)の回転速度を示す縦線Y6との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第3速の出力軸22の回転速度が示される。上記第1速乃至第3速では、切換クラッチC0が係合させられている結果、エンジン回転速度NEと同じ回転速度で第7回転要素RE7に差動部11からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、差動部11からの動力がエンジン回転速度NEよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L4と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第4速の出力軸22の回転速度が示される。 In the stepped transmission unit 72, as shown in FIG. 22, when the first clutch C1 and the second brake B2 are engaged, the vertical line Y7 indicating the rotational speed of the seventh rotation element RE7 (R2) and the horizontal line An oblique line L1 passing through the intersection of X2 and the intersection of the vertical line Y5 and the horizontal line X1 indicating the rotation speed of the fifth rotation element RE5 (CA3), and the sixth rotation element RE6 (CA2) connected to the output shaft 22 , R3), the rotational speed of the first-speed output shaft 22 is shown at the intersection with the vertical line Y6 indicating the rotational speed. Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the first brake B1, and a vertical line Y6 indicating the rotational speed of the sixth rotating element RE6 connected to the output shaft 22. The rotation speed of the output shaft 22 at the second speed is shown, and the horizontal straight line L3 determined by engaging the first clutch C1 and the second clutch C2 and the sixth rotation element RE6 connected to the output shaft 22 The rotation speed of the third-speed output shaft 22 is shown at the intersection with the vertical line Y6 indicating the rotation speed. In the first speed to third speed, as a result of the switching clutch C0 is engaged, power from the differential portion 11 to the seventh rotary element RE7 at the same speed as the engine speed N E is input. However, when the switching brake B0 in place of the switching clutch C0 is engaged, the drive force received from the differential portion 11 is input at a higher speed than the engine rotational speed N E, first clutch C1, second The output shaft of the fourth speed at the intersection of the horizontal straight line L4 determined by engaging the clutch C2 and the switching brake B0 and the vertical line Y6 indicating the rotational speed of the sixth rotating element RE6 connected to the output shaft 22 A rotational speed of 22 is indicated.

本実施例の変速機構70においても、無段変速部或いは第1変速部として機能する差動部11と、有段変速部或いは第2変速部として機能する有段変速部72とから構成されるので、前述の実施例と同様の効果が得られる。   The speed change mechanism 70 of the present embodiment also includes a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit, and a stepped transmission unit 72 that functions as a stepped transmission unit or a second transmission unit. Therefore, the same effect as the above-described embodiment can be obtained.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例の式(3) の右辺において、ηgiは必ずしも設けられていなくてもよい。   For example, ηgi does not necessarily have to be provided on the right side of Equation (3) in the above-described embodiment.

また、前述の実施例の変速機構10、70は、差動部11が差動状態と非差動状態とに切り換えられることで電気的な無段変速機としての機能する無段変速状態と有段変速機として機能する有段変速状態とに切り換え可能に構成されていたが、無段変速状態と有段変速状態との切換えは差動部11の差動状態と非差動状態との切換えにおける一態様であり、例えば差動部11が差動状態であっても差動部11の変速比を連続的ではなく段階的に変化させて有段変速機として機能させられてもよい。言い換えれば、変速機構10、70(差動部11)の差動状態/非差動状態と、無段変速状態/有段変速状態とは必ずしも一対一の関係にある訳ではないので、変速機構10、70は必ずしも無段変速状態と有段変速状態とに切り換え可能に構成される必要はなく、変速機構10、70(差動部11、動力分配機構16)が差動状態と非差動状態とに切換え可能に構成されれば本発明は適用され得る。   Further, the transmission mechanisms 10 and 70 of the above-described embodiment have the continuously variable transmission state that functions as an electrical continuously variable transmission by switching the differential unit 11 between the differential state and the non-differential state. Although it was configured to be able to switch to a stepped transmission state that functions as a stepped transmission, switching between the continuously variable transmission state and the stepped transmission state is switched between the differential state and the non-differential state of the differential unit 11. For example, even if the differential unit 11 is in the differential state, the speed ratio of the differential unit 11 may be changed stepwise instead of continuously so as to function as a stepped transmission. In other words, the differential state / non-differential state of the transmission mechanisms 10 and 70 (differential unit 11) and the continuously variable transmission state / stepped transmission state are not necessarily in a one-to-one relationship. 10 and 70 are not necessarily configured to be switchable between a continuously variable transmission state and a stepped transmission state, and the transmission mechanisms 10 and 70 (the differential unit 11 and the power distribution mechanism 16) are in a differential state and a non-differential state. The present invention can be applied if it can be switched to a state.

また、前述の実施例の動力分配機構16では、第1キャリヤCA1がエンジン8に連結され、第1サンギヤS1が第1電動機M1に連結され、第1リングギヤR1が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、第1遊星歯車装置24の3要素CA1、S1、R1のうちのいずれと連結されていても差し支えない。   In the power distribution mechanism 16 of the above-described embodiment, the first carrier CA1 is connected to the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18. However, the connection relationship is not necessarily limited thereto, and the engine 8, the first electric motor M1, and the transmission member 18 are connected to any of the three elements CA1, S1, and R1 of the first planetary gear device 24. It can be done.

また、前述の実施例では、エンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。   In the above-described embodiment, the engine 8 is directly connected to the input shaft 14. However, the engine 8 only needs to be operatively connected via, for example, a gear, a belt, or the like, and needs to be disposed on a common shaft center. Absent.

また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は第1サンギヤS1に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト等を介して作動的に第1電動機M1は第1サンギヤS1に連結され、第2電動機M2は伝達部材18に連結されてもよい。   In the above-described embodiment, the first motor M1 and the second motor M2 are arranged concentrically with the input shaft 14, the first motor M1 is connected to the first sun gear S1, and the second motor M2 is connected to the transmission member 18. However, it is not necessarily arranged as such, and for example, the first electric motor M1 is operatively connected to the first sun gear S1 and the second electric motor M2 is connected to the transmission member 18 through a gear, a belt, or the like. May be.

また、前述の動力分配機構16には切換クラッチC0および切換ブレーキB0が備えられていたが、切換クラッチC0および切換ブレーキB0は必ずしも両方備えられる必要はなく、切換クラッチC0のみが備えられていてもよい。また、上記切換クラッチC0は、サンギヤS1とキャリヤCA1とを選択的に連結するものであったが、サンギヤS1とリングギヤR1との間や、キャリヤCA1とリングギヤR1との間を選択的に連結するものであってもよい。要するに、第1遊星歯車装置24の3要素のうちのいずれか2つを相互に連結するものであればよい。   The power distribution mechanism 16 is provided with the switching clutch C0 and the switching brake B0. However, both the switching clutch C0 and the switching brake B0 are not necessarily provided, and only the switching clutch C0 is provided. Good. The switching clutch C0 selectively connects the sun gear S1 and the carrier CA1, but selectively connects the sun gear S1 and the ring gear R1 or between the carrier CA1 and the ring gear R1. It may be a thing. In short, what is necessary is just to connect any two of the three elements of the first planetary gear unit 24 to each other.

また、前述の実施例の変速機構10、70では、ニュートラル「N」とする場合には切換クラッチC0が係合されていたが、必ずしも係合される必要はない。   Further, in the transmission mechanisms 10 and 70 of the above-described embodiment, the switching clutch C0 is engaged when the neutral "N" is set, but it is not always necessary to be engaged.

また、前述の実施例では、差動部11すなわち動力分配機構16の出力部材である伝達部材18と駆動輪38との間の動力伝達経路に、有段変速部20、72が介装されていたが、例えば自動変速機の一種である無段変速機(CVT)等の他の形式の動力伝達装置が設けられていてもよい。その無段変速機(CVT)の場合には、動力分配機構16が定変速状態とされることで全体として有段変速状態とされる。有段変速状態とは、電気パスを用いないで専ら機械的伝達経路で動力伝達することである。或いは、上記無段変速機は有段変速機における変速段に対応するように予め複数の固定された変速比が記憶され、その複数の固定された変速比を用いて有段変速部20、72の変速が実行されてもよい。或いは、有段変速部20、72は必ずしも備えられてなくとも本発明は適用され得る。   In the above-described embodiment, the stepped transmission units 20 and 72 are interposed in the power transmission path between the differential member 11, that is, the transmission member 18 that is an output member of the power distribution mechanism 16 and the drive wheel 38. However, other types of power transmission devices such as a continuously variable transmission (CVT), which is a kind of automatic transmission, may be provided. In the case of the continuously variable transmission (CVT), the power distribution mechanism 16 is brought into a constant speed change state, whereby the stepped speed change state is made as a whole. The stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path. Alternatively, in the continuously variable transmission, a plurality of fixed gear ratios are stored in advance so as to correspond to the gear positions in the stepped transmission, and the stepped transmission units 20 and 72 are used using the plurality of fixed gear ratios. May be executed. Alternatively, the present invention can be applied even if the stepped transmission units 20 and 72 are not necessarily provided.

また、前述の実施例では、有段変速部20、72は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられそのカウンタ軸上に同心に有段変速部20、72が配設されてもよい。この場合には、差動部11と有段変速部20、72とは、例えば伝達部材18としてのカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。   In the above-described embodiment, the stepped transmission units 20 and 72 are connected in series with the differential unit 11 via the transmission member 18, but a counter shaft is provided in parallel with the input shaft 14 and the counter shaft The stepped transmission units 20 and 72 may be arranged concentrically with each other. In this case, the differential unit 11 and the stepped transmission units 20 and 72 can transmit power via, for example, a pair of transmission members including a counter gear pair as a transmission member 18 and a sprocket and a chain. Connected.

また、前述の実施例の動力分配機構16は、1組の遊星歯車装置から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。   In addition, the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear devices, but is composed of two or more planetary gear devices, and has three or more stages in the non-differential state (constant speed change state). It may function as a transmission.

また、前述の実施例ではシフトレバー92が「M」ポジションへ操作されることにより、変速レンジが設定されるものであったが変速段が設定されることすなわち各変速レンジの最高速変速段が変速段として設定されてもよい。この場合、有段変速部20、72では変速段が切り換えられて変速が実行される。例えば、シフトレバー92が「M」ポジションにおけるアップシフト位置「+」またはダウンシフト位置「−」へ手動操作されると、有段変速部20では第1速ギヤ段乃至第4速ギヤ段の何れかがシフトレバー92の操作に応じて設定される。   In the above-described embodiment, the shift range is set by operating the shift lever 92 to the “M” position. However, the shift speed is set, that is, the highest speed shift speed of each shift range is set. It may be set as a gear position. In this case, in the stepped transmission units 20 and 72, the shift stage is switched and the shift is executed. For example, when the shift lever 92 is manually operated to the upshift position “+” or the downshift position “−” in the “M” position, the stepped transmission unit 20 can select any of the first to fourth gear positions. Is set according to the operation of the shift lever 92.

また、前述の実施例のスイッチ44はシーソー型のスイッチであったが、例えば押しボタン式のスイッチ、択一的にのみ押した状態が保持可能な2つの押しボタン式のスイッチ、レバー式スイッチ、スライド式スイッチ等の少なくとも無段変速走行(差動状態)と有段変速走行(非差動状態)とが択一的に切り換えられるスイッチであればよい。また、スイッチ44に中立位置が設けられる場合にその中立位置に替えて、スイッチ44の選択状態を有効或いは無効すなわち中立位置相当が選択可能なスイッチがスイッチ44とは別に設けられてもよい。   In addition, the switch 44 of the above-described embodiment is a seesaw type switch. For example, a push button type switch, two push button type switches that can be held only alternatively, a lever type switch, Any switch that can selectively switch between at least continuously variable speed travel (differential state) and stepped speed variable travel (non-differential state), such as a slide switch. In addition, when the switch 44 is provided with a neutral position, a switch capable of selecting whether the selection state of the switch 44 is valid or invalid, that is, equivalent to the neutral position, may be provided separately from the switch 44 instead of the neutral position.

また、前述の実施例の切換制御手段50に備えられた変速状態領域変更手段86は、スイッチ44の選択状態に基づいて例えば図8の切換線図に示すような有段変速制御領域或いは無段変速制御領域において一方の領域の全てを他方の領域に変更するものであったが、一方の領域の一部分を他方に変更するものであってもよい。図8を例にすれば、スイッチ44における選択状態に基づいて選択された変速状態に切り替えるための領域が拡大されるように前記判定車速V1或いは判定出力トルクT1が変更され破線に示される境界線が移動させられる。   Further, the shift state area changing means 86 provided in the switching control means 50 of the above-described embodiment is based on the selection state of the switch 44, for example, a stepped shift control area as shown in the switching diagram of FIG. In the shift control area, all of one area is changed to the other area, but a part of one area may be changed to the other area. Taking FIG. 8 as an example, the determination vehicle speed V1 or the determination output torque T1 is changed so that the region for switching to the shift state selected based on the selection state in the switch 44 is expanded, and the boundary line indicated by the broken line Is moved.

また、前述の実施例の図8では変速機構10の変速状態を切り替えるために無段変速制御領域および有段変速制御領域が記憶されているが、基本は図8の全体が無段制御領域として記憶されてもよく、この場合には変速状態領域変更手段86はユーザの操作による有段変速走行の選択時のみ図8の全体または一部を有段制御領域に変更する。言い換えれば、基本は無段変速状態すなわち無段変速走行として予め記憶され、ユーザの操作による有段変速走行の選択時のみ切換制御手段50は有段変速状態に切り替えるようにしてもよい。これによって、ユーザは有段変速走行のみを選択するだけで有段変速走行と無段変速走行とが選択できることになる。この場合には、スイッチ44は少なくとも有段変速走行が選択可能であればよい。   Further, in FIG. 8 of the above-described embodiment, the stepless speed change control region and the stepped speed change control region are stored in order to switch the speed change state of the speed change mechanism 10, but basically the whole of FIG. In this case, the shift state changing unit 86 changes the whole or a part of FIG. 8 to the stepped control region only when the stepped variable speed travel is selected by the user's operation. In other words, the basic may be stored in advance as a continuously variable transmission state, that is, a continuously variable transmission, and the switching control means 50 may be switched to a continuously variable transmission state only when a stepped variable traveling is selected by a user operation. As a result, the user can select step-variable travel and continuously variable-speed travel only by selecting step-variable travel. In this case, the switch 44 only needs to be able to select at least step-variable travel.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

本発明の一実施例であるハイブリッド車両の駆動装置の構成を説明する骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram illustrating a configuration of a hybrid vehicle drive device according to an embodiment of the present invention. 図1の実施例のハイブリッド車両の駆動装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。2 is an operation chart for explaining the relationship between a speed change operation and a combination of operations of a hydraulic friction engagement device used therefor when the hybrid vehicle drive device of the embodiment of FIG. 図1の実施例のハイブリッド車両の駆動装置が有段変速作動させられる場合における各ギヤ段の相対的回転速度を説明する共線図である。FIG. 6 is a collinear diagram illustrating the relative rotational speed of each gear when the drive device for the hybrid vehicle of the embodiment of FIG. 無段変速状態(差動状態)に切換えられたときの差動部(動力分配機構)の状態の一例を表している図であって、図3の共線図の差動部に相当する図である。FIG. 6 is a diagram illustrating an example of a state of a differential unit (power distribution mechanism) when switched to a continuously variable transmission state (differential state), corresponding to the differential unit of the collinear diagram of FIG. 3. It is. 切換クラッチC0の係合により定変速状態(非差動状態、有段変速状態)に切換えられたときの差動部(動力分配機構)の状態を表している図であって、図3の共線図の差動部に相当する図である。FIG. 6 is a diagram showing a state of a differential portion (power distribution mechanism) when the gear is switched to a constant speed change state (non-differential state, stepped speed change state) by engagement of a switching clutch C0. It is a figure equivalent to the differential part of a diagram. 図1の実施例の駆動装置に設けられた電子制御装置の入出力信号を説明する図である。It is a figure explaining the input-output signal of the electronic controller provided in the drive device of the Example of FIG. 図6の電子制御装置の制御作動の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control action of the electronic controller of FIG. 車速と出力トルクとをパラメータとする同じ二次元座標に構成された、有段変速部の変速判断の基となる予め記憶された変速線図と変速機構の変速状態の切換判断の基となる予め記憶された切換線図との関係を示す図である。Pre-stored shift map of the stepped transmission unit, which is based on the same two-dimensional coordinates using the vehicle speed and output torque as parameters, and a shift determination state of the shift mechanism in advance. It is a figure which shows the relationship with the memorize | stored switching diagram. 車速と出力トルクとをパラメータとする二次元座標で構成されたエンジン走行とモータ走行とを切り換えるためのエンジン走行領域とモータ走行領域との境界線を有する予め記憶された関係を示す駆動力源切換線図の一例である。Driving force source switching indicating a prestored relationship having a boundary line between the engine traveling region and the motor traveling region for switching between the engine traveling and the motor traveling configured by two-dimensional coordinates using the vehicle speed and the output torque as parameters. It is an example of a diagram. 無段制御領域と有段制御領域との境界線を有する予め記憶された関係を示す図であって、図8の破線に示す無段制御領域と有段制御領域との境界をマップ化するための概念図でもある。FIG. 9 is a diagram showing a pre-stored relationship having a boundary line between a stepless control region and a stepped control region, in order to map the boundary between the stepless control region and the stepped control region indicated by a broken line in FIG. 8. It is also a conceptual diagram. 有段式変速機におけるアップシフトに伴うエンジン回転速度の変化の一例である。It is an example of the change of the engine rotational speed accompanying the upshift in a stepped transmission. 無段変速状態と有段変速状態とを選択するために操作される変速状態手動選択装置の一例であるシーソー型スイッチを示す図である。It is a figure which shows the seesaw type switch which is an example of the gear-change state manual selection apparatus operated in order to select a continuously variable transmission state and a step-variable transmission state. 複数種類のシフトポジションを選択するために操作されるシフトレバーを備えたシフト操作装置の一例である。It is an example of the shift operation device provided with the shift lever operated in order to select a plurality of kinds of shift positions. 目標エンジン回転速度NEMを算出するために用いられる予め記憶された最適燃費マップの一例を示す図である。It is a figure which shows an example of the optimal fuel consumption map memorize | stored beforehand used in order to calculate target engine speed NEM . 車両の燃料消費量を算出するに際して第1電動機M1の効率ηM1を算出するために用いられる予め記憶された最適燃費マップの一例を示す図である。It is a figure which shows an example of the optimal fuel consumption map memorize | stored previously in order to calculate the efficiency (eta) M1 of the 1st electric motor M1 when calculating the fuel consumption of a vehicle. 車両の燃料消費量を算出するに際して第2電動機M2の効率ηM2を算出するために用いられる予め記憶された最適燃費マップの一例を示す図である。It is a figure which shows an example of the optimal fuel consumption map memorize | stored previously in order to calculate the efficiency (eta) M2 of the 2nd electric motor M2 when calculating the fuel consumption of a vehicle. 差動部(無段変速部)が無段変速状態ではないときに有段変速制御に用いられる変速線図を示す図である。It is a figure which shows the shift diagram used for stepped transmission control when a differential part (continuously variable transmission part) is not a continuously variable transmission state. 図7の電子制御装置の制御作動の要部すなわち減速走行時の有段変速部の変速比変更制御作動を説明するフローチャートである。FIG. 8 is a flowchart for explaining a main part of the control operation of the electronic control device of FIG. 7, that is, a gear ratio change control operation of the stepped transmission unit during deceleration traveling. 図18の変速比算出ルーチンの制御作動を詳しく説明するフローチャートである。It is a flowchart explaining in detail the control operation of the gear ratio calculation routine of FIG. 本発明の他の実施例におけるハイブリッド車両の駆動装置の構成を説明する骨子図であって、図1に相当する図である。FIG. 3 is a skeleton diagram illustrating a configuration of a drive device for a hybrid vehicle according to another embodiment of the present invention, corresponding to FIG. 1. 図21の実施例のハイブリッド車両の駆動装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表であって、図2に相当する図である。FIG. 22 is an operation chart for explaining the relationship between the speed change operation and the operation of the hydraulic friction engagement device used therefor when the drive device of the hybrid vehicle of the embodiment of FIG. FIG. 3 is a diagram corresponding to FIG. 2. 図16の実施例のハイブリッド車両の駆動装置が有段変速作動させられる場合における各ギヤ段の相対的回転速度を説明する共線図であって、図3に相当する図である。FIG. 17 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the hybrid vehicle drive device of the embodiment of FIG.

符号の説明Explanation of symbols

8:エンジン
10、70:変速機構(駆動装置)
11:差動部(無段変速部)
12:トランスミッションケース(非回転部材)
16:動力分配機構(差動歯車装置)
18:伝達部材(出力軸)
20、72:有段式自動変速部(有段変速部)
38:駆動輪
80:無段変速走行判定手段
86:無段変速走行時変速比制御手段
88:目標エンジン回転速度算出手段
90:両変速比決定手段
C0:クラッチ(切換装置)
M1:第1電動機
M2:第2電動機
8: Engine 10, 70: Transmission mechanism (drive device)
11: Differential part (continuously variable transmission part)
12: Transmission case (non-rotating member)
16: Power distribution mechanism (differential gear unit)
18: Transmission member (output shaft)
20, 72: Stepped automatic transmission (stepped transmission)
38: drive wheel 80: continuously variable speed travel determining means 86: continuously variable speed travel speed ratio control means 88: target engine speed calculating means 90: both speed ratio determining means C0: clutch (switching device)
M1: first electric motor M2: second electric motor

Claims (20)

3つの要素のうちの第1要素は第1電動機に連結され、第2要素は原動機に連結され、第3要素は出力軸に連結された差動歯車装置と、該出力軸と駆動輪との間の動力伝達経路に作動的に連結された第2電動機とを備えて電気的に無段変速作動させられる無段変速部と、前記動力伝達経路内に設けられて有段変速させられる有段変速部と、前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御する変速比制御手段とを、備える車両用駆動装置の制御装置であって、
前記変速比制御手段は、予め記憶された関係から駆動力関連値に基づいて目標エンジン回転速度を決定し、該目標エンジン回転速度と車速とから該目標エンジン回転速度を得るためのトータル変速比を決定し、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記トータル変速比を得るための前記有段変速部の変速比と前記無段変速部の変速比とを変速機構全体の伝達効率が最大となるように決定して該有段変速部の変速比と前記無段変速部の変速比とを制御するものであることを特徴とする車両用駆動装置の制御装置。
Of the three elements, the first element is connected to the first electric motor, the second element is connected to the prime mover, the third element is a differential gear device connected to the output shaft, and the output shaft and the drive wheel. A continuously variable transmission that includes a second electric motor that is operatively connected to a power transmission path therebetween and that is electrically continuously variable speed-operated; and a stepped gear that is provided in the power transmission path and is stepped Control the gear ratio of the stepped transmission section and the gear ratio of the continuously variable transmission section so that optimum fuel efficiency can be obtained in a continuously variable running state where the continuously variable transmission section and the continuously variable transmission section are operated continuously variablely. A vehicle drive device control device comprising:
The speed ratio control means determines a target engine speed based on a driving force-related value from a previously stored relationship , and calculates a total speed ratio for obtaining the target engine speed from the target engine speed and the vehicle speed. And determining the gear ratio of the stepped transmission unit and the gear ratio of the continuously variable transmission unit to obtain the total gear ratio based on the efficiency of the first motor and the efficiency of the second motor of the continuously variable transmission unit. Control of a vehicle drive device characterized in that the transmission ratio of the stepped transmission unit and the transmission ratio of the continuously variable transmission unit are controlled by determining the transmission efficiency of the entire transmission mechanism to be maximum. apparatus.
3つの要素のうちの第1要素は第1電動機に連結され、第2要素は原動機に連結され、第3要素は出力軸に連結された差動歯車装置と、該出力軸と駆動輪との間の動力伝達経路に作動的に連結された第2電動機とを備えて電気的に無段変速作動させられる無段変速部と、該無段変速部を変速比が連続的に変化させられる無段変速状態と変速比が固定の有段変速状態とに切り換えるための切換装置と、前記動力伝達経路内に設けられて有段変速させられる有段変速部と、前記無段変速部が無段変速作動させられる無段変速走行状態で前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御する変速比制御手段とを備える車両用駆動装置の制御装置であって、
前記変速比制御手段は、前記切換装置の切換えによる有段変速走行状態では、前記無段変速走行状態に比較して異なる変速点で変速を実行することを特徴とする車両用駆動装置の制御装置。
Of the three elements, the first element is connected to the first electric motor, the second element is connected to the prime mover, the third element is a differential gear device connected to the output shaft, and the output shaft and the drive wheel. A continuously variable transmission that includes a second electric motor that is operatively connected to a power transmission path therebetween, and is configured to be electrically continuously variable, and a variable speed ratio of the continuously variable transmission is continuously changed. A switching device for switching between a stepped shift state and a stepped shift state with a fixed gear ratio, a stepped transmission unit provided in the power transmission path for stepped shifting, and the continuously variable transmission unit are continuously variable. A vehicle drive device comprising: a gear ratio control unit configured to control a gear ratio of the stepped transmission unit and a gear ratio of the continuously variable transmission unit so as to obtain an optimum fuel consumption in a continuously variable driving state in which a gear shift operation is performed. A control device,
The gear ratio control means performs a gear shift at a different shift point in the stepped variable speed traveling state by switching of the switching device as compared with the continuously variable speed variable traveling state. .
前記変速比制御手段は、前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比に応じて前記無段変速部の変速比を変更するものである請求項1または2の車両用駆動装置の制御装置。   The gear ratio control means changes the gear ratio of the continuously variable transmission unit according to the gear ratio of the stepped transmission unit in a continuously variable transmission state in which the continuously variable transmission unit is operated continuously variable. The control device for a vehicle drive device according to claim 1 or 2. 前記変速比制御手段は、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記有段変速部の変速比と前記無段変速部の変速比とを制御するものである請求項の車両用駆動装置の制御装置。 The gear ratio control means controls the gear ratio of the stepped transmission unit and the gear ratio of the continuously variable transmission unit based on the efficiency of the first motor and the efficiency of the second motor of the continuously variable transmission unit. The control device for a vehicle drive device according to claim 2 . 前記変速比制御手段は、前記有段変速部の変速比を調整することにより前記無段変速部の出力軸回転速度を変更するものである請求項1乃至3のいずれか1の車両用駆動装置の制御装置。   The vehicle drive device according to any one of claims 1 to 3, wherein the speed ratio control means changes the output shaft rotation speed of the continuously variable transmission section by adjusting a speed ratio of the stepped transmission section. Control device. 前記無段変速部を変速比が連続的に変化させられる無段変速状態と変速比が固定の有段変速状態とに切り換えるための切換装置と、
該切換装置により前記無段変速部が前記無段変速状態に切換えられたことを判定する無段変速走行判定手段とを備え、
前記変速比制御手段は、該無段変速走行判定手段によって無段変速状態に切換えられたことが判定されると、前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御するものである請求項1乃至3のいずれか1の車両用駆動装置の制御装置。
A switching device for switching the continuously variable transmission portion between a continuously variable transmission state in which a transmission gear ratio is continuously changed and a stepped transmission state in which the transmission gear ratio is fixed;
Continuously variable speed travel determining means for determining that the continuously variable transmission unit has been switched to the continuously variable transmission state by the switching device;
The gear ratio control means optimizes the gear ratio of the stepped transmission section and the gear ratio of the continuously variable transmission section when it is determined by the continuously variable speed travel determination means that the gear is changed to the continuously variable transmission state. The control device for a vehicle drive device according to any one of claims 1 to 3, wherein control is performed so as to obtain fuel consumption.
原動機の出力を第1電動機および出力軸へ分配する差動歯車装置と、駆動輪と動力伝達可能に連結された第2電動機とを有する無段変速部と、原動機の出力軸と駆動輪との間の動力伝達経路内に設けられて有段変速させられる有段変速と、前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御する変速比制御手段とを、備える車両用駆動装置の制御装置であって、
前記変速比制御手段は、予め記憶された関係から駆動力関連値に基づいて目標エンジン回転速度を決定し、該目標エンジン回転速度と車速とから該目標エンジン回転速度を得るためのトータル変速比を決定し、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記トータル変速比を得るための前記有段変速部の変速比と前記無段変速部の変速比とを変速機構全体の伝達効率が最大となるように決定して該有段変速部の変速比と前記無段変速部の変速比とを制御するものであることを特徴とする車両用駆動装置の制御装置。
A differential gear device that distributes the output of the prime mover to the first electric motor and the output shaft, a continuously variable transmission having a second electric motor coupled to the drive wheels so as to be able to transmit power, and the output shaft and the drive wheels of the prime mover A stepped transmission unit provided in a power transmission path between the stepped transmission unit and a stepless transmission unit in which the stepless transmission unit is operated continuously variablely. A control device for a vehicle drive device, comprising: a gear ratio control means for controlling the gear ratio of the continuously variable transmission unit so as to obtain an optimum fuel consumption,
The speed ratio control means determines a target engine speed based on a driving force-related value from a previously stored relationship , and calculates a total speed ratio for obtaining the target engine speed from the target engine speed and the vehicle speed. And determining the gear ratio of the stepped transmission unit and the gear ratio of the continuously variable transmission unit to obtain the total gear ratio based on the efficiency of the first motor and the efficiency of the second motor of the continuously variable transmission unit. Control of a vehicle drive device characterized in that the transmission ratio of the stepped transmission unit and the transmission ratio of the continuously variable transmission unit are controlled by determining the transmission efficiency of the entire transmission mechanism to be maximum. apparatus.
原動機の出力を第1電動機および出力軸へ分配する差動歯車装置と、駆動輪と動力伝達可能に連結された第2電動機とを有する無段変速部と、該無段変速部を変速比が連続的に変化させられる無段変速状態と変速比が固定の有段変速状態とに切り換えるための切換装置と、原動機の出力軸と駆動輪との間の動力伝達経路内に設けられて有段変速させられる有段変速と、前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御する変速比制御手段とを、備える車両用駆動装置の制御装置であって、
前記変速比制御手段は、前記切換装置の切換えによる有段変速走行状態では、前記無段変速走行状態に比較して異なる変速点で変速を実行することを特徴とする車両用駆動装置の制御装置。
A continuously variable transmission unit having a differential gear device that distributes the output of the prime mover to the first motor and the output shaft, a second motor connected to the drive wheels so as to be able to transmit power, and the transmission ratio of the continuously variable transmission unit is A switching device for switching between a continuously variable transmission state that is continuously changed and a stepped transmission state in which the transmission gear ratio is fixed, and a stepped device provided in a power transmission path between the output shaft of the prime mover and the drive wheels. In the continuously variable transmission state in which the stepped transmission unit to be shifted and the continuously variable transmission unit are operated to be continuously variable, the optimum fuel efficiency is obtained by changing the transmission ratio of the stepped transmission unit and the transmission ratio of the continuously variable transmission unit. A control device for a vehicle drive device comprising a gear ratio control means for controlling so as to be obtained,
The gear ratio control means performs a gear shift at a different shift point in the stepped variable speed traveling state by switching of the switching device as compared with the continuously variable speed variable traveling state. .
前記変速比制御手段は、前記無段変速部が無段変速作動させられる無段変速走行状態で、前記有段変速部の変速比に応じて前記無段変速部の変速比を変更するものである請求項7または8の車両用駆動装置の制御装置。   The gear ratio control means changes the gear ratio of the continuously variable transmission unit according to the gear ratio of the stepped transmission unit in a continuously variable transmission state in which the continuously variable transmission unit is operated continuously variable. The control device for a vehicle drive device according to claim 7 or 8. 前記変速比制御手段は、前記無段変速部の第1電動機の効率および第2電動機の効率に基づいて前記有段変速部の変速比と前記無段変速部の変速比とを制御するものである請求項の車両用駆動装置の制御装置。 The gear ratio control means controls the gear ratio of the stepped transmission unit and the gear ratio of the continuously variable transmission unit based on the efficiency of the first motor and the efficiency of the second motor of the continuously variable transmission unit. The control device for a vehicle drive device according to claim 8 . 前記変速比制御手段は、前記有段変速部の変速比を調整することにより前記無段変速部の出力軸回転速度を変更するものである請求項7乃至9のいずれか1の車両用駆動装置の制御装置。   The vehicle drive device according to any one of claims 7 to 9, wherein the gear ratio control means changes the output shaft rotational speed of the continuously variable transmission unit by adjusting a gear ratio of the stepped transmission unit. Control device. 前記無段変速部を変速比が連続的に変化させられる無段変速状態と変速比が固定の有段変速状態とに切り換えるための切換装置と、
該切換装置により前記無段変速部が前記無段変速状態に切換えられたことを判定する無段変速走行判定手段とを備え、
前記変速比制御手段は、該無段変速走行判定手段によって無段変速状態に切換えられたことが判定されると、前記有段変速部の変速比と前記無段変速部の変速比とを最適燃費が得られるように制御するものである請求項7乃至9のいずれか1の車両用駆動装置の制御装置。
A switching device for switching the continuously variable transmission portion between a continuously variable transmission state in which a transmission gear ratio is continuously changed and a stepped transmission state in which the transmission gear ratio is fixed;
Continuously variable speed travel determining means for determining that the continuously variable transmission unit has been switched to the continuously variable transmission state by the switching device;
The gear ratio control means optimizes the gear ratio of the stepped transmission section and the gear ratio of the continuously variable transmission section when it is determined by the continuously variable speed travel determination means that the gear is changed to the continuously variable transmission state. The control device for a vehicle drive device according to any one of claims 7 to 9, wherein control is performed so that fuel consumption is obtained.
予め記憶された関係から車速および駆動力関連値に基づいて、エンジンを駆動源として走行するエンジン走行領域と前記第2電動機を駆動源として走行するモータ走行領域とが選択されており、
前記変速比制御手段は、前記エンジン走行領域において、車速と前記駆動力関連値とをパラメータとして前記有段変速部の変速段を決定するものである請求項1、2、7、8のいずれか1の車両用駆動装置の制御装置。
Based on the vehicle speed and the driving force related value from the relationship stored in advance, an engine travel region that travels using the engine as a drive source and a motor travel region that travels using the second electric motor as a drive source are selected,
The gear ratio control means, in the engine drive region, claim 1,2,7,8 is what determines the gear stage of the geared transmission unit and a vehicle speed and the drive-force-related value as a parameter 1 is a control device for a vehicle drive device.
前記駆動力関連値は、前記有段変速部の出力トルクである請求項13の車両用駆動装置の制御装置。 The control device for a vehicle drive device according to claim 13 , wherein the driving force related value is an output torque of the stepped transmission unit. 前記駆動力関連値は、前記エンジンのトルクである請求項13の車両用駆動装置の制御装置。 The control device for a vehicle drive device according to claim 13 , wherein the driving force related value is a torque of the engine. 前記駆動力関連値は、アクセル開度またはスロットル開度である請求項13の車両用駆動装置の制御装置。 14. The control device for a vehicle drive device according to claim 13 , wherein the driving force related value is an accelerator opening or a throttle opening. 前記変速比制御手段は、前記有段変速部の伝達効率に基づいて前記無段変速部の変速比を決定するものである請求項1、2、7、8のいずれか1の車両用駆動装置の制御装置。   The vehicle drive device according to any one of claims 1, 2, 7, and 8, wherein the transmission ratio control means determines a transmission ratio of the continuously variable transmission unit based on transmission efficiency of the stepped transmission unit. Control device. 前記変速比制御手段は、前記無段変速部の電気パスの伝達割合に基づいて前記無段変速部の変速比を決定するものである請求項1、2、7、8のいずれか1の車両用駆動装置の制御装置。   The vehicle according to any one of claims 1, 2, 7, and 8, wherein the speed ratio control means determines a speed ratio of the continuously variable transmission section based on a transmission ratio of an electric path of the continuously variable transmission section. Drive device controller. 前記変速比制御手段は、前記無段変速部の機械的パスの伝達割合に基づいて前記無段変速部の変速比を決定するものである請求項1、2、7、8のいずれか1の車両用駆動装置の制御装置。   9. The gear ratio control device according to claim 1, wherein the gear ratio control means determines a gear ratio of the continuously variable transmission unit based on a transmission ratio of a mechanical path of the continuously variable transmission unit. A control device for a vehicle drive device. 前記変速比制御手段は、前記切換装置の切換えによる有段変速走行状態では、前記無段変速走行状態に比較して、前記有段変速部の変速を低車速側で実行することを特徴とする請求項2または8の車両用駆動装置の制御装置。   The gear ratio control means executes the gear shifting of the stepped transmission portion on the low vehicle speed side in the stepped variable speed traveling state by switching of the switching device compared to the continuously variable speed traveling state. The control device for a vehicle drive device according to claim 2 or 8.
JP2004156884A 2003-12-26 2004-05-26 Control device for vehicle drive device Active JP4218591B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP2004156884A JP4218591B2 (en) 2004-05-26 2004-05-26 Control device for vehicle drive device
US11/019,337 US7822524B2 (en) 2003-12-26 2004-12-23 Vehicular drive system
KR1020067015144A KR100887204B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle and method of controlling the device
EP11002541.8A EP2375103B1 (en) 2003-12-26 2004-12-24 Vehicular drive system
KR1020077025341A KR100863173B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle
CN2004800421005A CN1926356B (en) 2003-12-26 2004-12-24 Drive system for vehicle
PCT/JP2004/019743 WO2005064199A1 (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
KR1020077025344A KR20070112304A (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
CN201110079155.5A CN102166950B (en) 2003-12-26 2004-12-24 Drive system for vehicle, and method and device for controlling the syste
KR1020077025343A KR100882177B1 (en) 2003-12-26 2004-12-24 Device for controlling drive device for vehicle
KR1020077025340A KR100863172B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle
KR1020077025342A KR100882176B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle
EP04808093A EP1701061B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
CN2011100791521A CN102166946B (en) 2003-12-26 2004-12-24 Drive system for vehicle, method of controlling the system, and device for controlling the system
KR1020077025345A KR20070112430A (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
US12/269,633 US7941259B2 (en) 2003-12-26 2008-11-12 Vehicular drive system
US12/269,659 US7848858B2 (en) 2003-12-26 2008-11-12 Vehicular drive system
US12/269,591 US20090075774A1 (en) 2003-12-26 2008-11-12 Vehicular drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156884A JP4218591B2 (en) 2004-05-26 2004-05-26 Control device for vehicle drive device

Publications (3)

Publication Number Publication Date
JP2005337373A JP2005337373A (en) 2005-12-08
JP2005337373A5 JP2005337373A5 (en) 2007-07-05
JP4218591B2 true JP4218591B2 (en) 2009-02-04

Family

ID=35491170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156884A Active JP4218591B2 (en) 2003-12-26 2004-05-26 Control device for vehicle drive device

Country Status (1)

Country Link
JP (1) JP4218591B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512056B2 (en) * 2006-03-31 2010-07-28 富士重工業株式会社 Drive control apparatus for hybrid vehicle
JP4512057B2 (en) * 2006-03-31 2010-07-28 富士重工業株式会社 Drive control apparatus for hybrid vehicle

Also Published As

Publication number Publication date
JP2005337373A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4155230B2 (en) Control device for vehicle drive device
JP4046103B2 (en) Control device for vehicle drive device
JP4207921B2 (en) Power transmission device
JP4438574B2 (en) Control device for vehicle drive device
JP2007001390A (en) Controller for drive unit for vehicle
JP4134954B2 (en) Control device for vehicle drive device
JP4114643B2 (en) Control device for vehicle drive device
JP4144561B2 (en) Control device for vehicle drive device
JP4192849B2 (en) Control device for vehicle drive device
JP4069903B2 (en) Control device for vehicle drive device
JP4410655B2 (en) Control device for vehicle drive device
JP4151614B2 (en) Control device for vehicle drive device
JP4200955B2 (en) Power transmission device for vehicle
JP4214963B2 (en) Control device for vehicle drive device
JP2006046487A (en) Controller of drive device for vehicle
JP4155265B2 (en) Vehicle drive device
JP4148204B2 (en) Control device for vehicle drive device
JP4289242B2 (en) Control device for vehicle drive device
JP4218591B2 (en) Control device for vehicle drive device
JP4039384B2 (en) Control device for vehicle drive device
JP4259408B2 (en) Control device for vehicle drive device
JP4293070B2 (en) Control device for vehicle drive device
JP4155264B2 (en) Vehicle drive device
JP4131246B2 (en) Control device for vehicle drive device
JP4052283B2 (en) Control device for vehicle drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4218591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5