JP4217635B2 - Overhead power transmission line tower base monitoring system - Google Patents

Overhead power transmission line tower base monitoring system Download PDF

Info

Publication number
JP4217635B2
JP4217635B2 JP2004035534A JP2004035534A JP4217635B2 JP 4217635 B2 JP4217635 B2 JP 4217635B2 JP 2004035534 A JP2004035534 A JP 2004035534A JP 2004035534 A JP2004035534 A JP 2004035534A JP 4217635 B2 JP4217635 B2 JP 4217635B2
Authority
JP
Japan
Prior art keywords
tower
information
station
wireless
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004035534A
Other languages
Japanese (ja)
Other versions
JP2005229715A (en
Inventor
博之 住谷
広治 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2004035534A priority Critical patent/JP4217635B2/en
Publication of JP2005229715A publication Critical patent/JP2005229715A/en
Application granted granted Critical
Publication of JP4217635B2 publication Critical patent/JP4217635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Selective Calling Equipment (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Electric Cable Installation (AREA)

Description

本発明は、架空送電路を構成する送電線鉄塔列の鉄塔基別状況を各鉄塔に設置された検出手段により検出するとともに、この基別の検出情報を情報収集局へ無線伝送させることにより、各鉄塔の状況を遠隔監視するようにした架空送電線鉄塔基別監視システムに関する。   The present invention detects the state of the tower group of the transmission line tower row constituting the overhead power transmission path by the detection means installed in each tower, and wirelessly transmits the detection information of this group to the information collection station, The present invention relates to an overhead power transmission line tower-based monitoring system that remotely monitors the status of each tower.

架空送電路を構成する送電線鉄塔列においては、周辺の安全や無事故送電を阻害する恐れのある状況、たとえば、落雷、風、氷雪などの気象状況、人為的破壊等の異常事態発生等を鉄塔基別に常時監視する必要がある。しかし、送電線鉄塔の設置場所は交通不便なところが多い。そこで、たとえば特許文献1に開示されているように、各鉄塔の状況を無線通信により遠隔監視するシステムが提案されている。この遠隔監視システムは、各鉄塔の状況を鉄塔ごとに設置された検出手段により検出し、この鉄塔基別の検出情報を無線伝送により特定の情報収集局(監視局)に収集させるというものである。   In the transmission line towers that make up the overhead power transmission line, there are situations in which the surrounding safety and accident-free transmission may be hindered, such as weather conditions such as lightning, wind, ice and snow, abnormal occurrences such as human destruction, etc. It is necessary to monitor constantly by group. However, there are many places where the transmission line towers are inconvenient for transportation. Therefore, for example, as disclosed in Patent Document 1, a system for remotely monitoring the status of each steel tower by wireless communication has been proposed. This remote monitoring system detects the status of each tower using detection means installed for each tower, and collects detection information for each tower by a specific information collection station (monitoring station) by wireless transmission. .

上記システムでは、図7に示すように、鉄塔基別の検出情報を各鉄塔(1−1〜1−n)に設置された無線端局(7−1〜7−2)による隣接鉄塔間の無線通信により、鉄塔の並び方向に順次中継して鉄塔列端の情報収集局82へ伝送させるようにしている。このような中継伝送方式によれば、各鉄塔(1−1〜1−n)から監視局82への無線伝送を特定小電力無線等の微弱な電波だけで行わせることができる。特定小電力無線等において定められている微弱電波は、通信エリアが狭い反面、無線エリアの無用な拡大がなく、混信障害等の発生可能性が低いことにより、面倒かつ煩雑な許可手続きを要することなく、簡易に使用できるという利点がある。また、無線送信出力が小さいことにより、無線端局の小型化、低コスト化、低消費電力化にも有利である。
特開平7−107634号公報
In the above system, as shown in FIG. 7, detection information for each tower group is detected between adjacent towers by wireless terminal stations (7-1 to 7-2) installed in each tower (1-1 to 1-n). By wireless communication, the data is relayed sequentially in the direction in which the towers are arranged, and transmitted to the information collecting station 82 at the tower row end. According to such a relay transmission method, wireless transmission from each tower (1-1 to 1-n) to the monitoring station 82 can be performed only with weak radio waves such as specific low-power radio. The weak radio waves specified in specific low-power radio, etc. have a narrow communication area, but there is no unnecessary expansion of the radio area, and the possibility of interference interference is low, requiring complicated and complicated permission procedures. There is an advantage that it can be used easily. In addition, the small wireless transmission output is advantageous in reducing the size, cost and power consumption of the wireless terminal station.
JP-A-7-107634

しかしながら、上述した従来の技術には次のような問題を生じることが判明した。
すなわち、上述した中継伝送方式は、図8の(a)に示すように、送電線鉄塔列内のすべての無線端局(7−1〜7−n)が正常動作することを前提にして成り立っている。仮に、同図の(b)に示すように、鉄塔列内のいずれか1基の鉄塔(1−3)に設置されている無線端局(7−3)にて、何がしかの原因により通信不能の障害が生じた場合に、そこで中継伝送が途絶えてしまう。この状況になると、監視対象となっている鉄塔列内の多くの部分が監視不能になってしまう。
However, it has been found that the above-described conventional technique has the following problems.
That is, the relay transmission method described above is established on the assumption that all the wireless terminal stations (7-1 to 7-n) in the transmission line tower train operate normally, as shown in FIG. ing. Temporarily, as shown in (b) of the figure, at the wireless terminal station (7-3) installed in any one of the towers (1-3) in the tower row, When a communication failure occurs, relay transmission is interrupted there. In this situation, many parts of the tower train that is being monitored become unmonitorable.

そこで、本発明者らは、同図の(b)に示すように、鉄塔列内のいずれかの無線端局(7−3)にて通信不能の障害が生じた場合に、その障害を生じた無線端局(7−3)を飛び越して無線中継伝送を行わせるシステムを検討した。しかし、その飛び越し中継を行わせるためには、各鉄塔の無線端局(7−1〜7−n)の無線送信出力を大きくする必要が生じる。無線送信出力を大きくすると、通信エリアは広がるが、無線エリアの無用な拡大により混信障害等の発生可能性が高くなってしまう。また、大きな出力の電波は、特定小電力無線などで定められている微弱電波の範囲外となるため、その使用には特別の許可手続きが必要になり、さらに、地域によっては利用が制約されることもある。   Therefore, as shown in (b) of the figure, the present inventors cause a failure when a communication failure occurs in any of the wireless terminal stations (7-3) in the tower row. A system for performing wireless relay transmission by skipping the wireless terminal (7-3) was studied. However, in order to perform the interlaced relay, it is necessary to increase the radio transmission output of the radio terminal stations (7-1 to 7-n) of each tower. If the wireless transmission output is increased, the communication area is expanded, but the possibility of occurrence of interference interference and the like increases due to the unnecessary expansion of the wireless area. In addition, because large output radio waves are outside the range of weak radio waves specified by specific low-power radio, special permission procedures are required for their use, and usage is restricted in some areas. Sometimes.

仮に、無線端局(7−1〜7−n)の送信出力を増大させても、同図の(c)に示すように、山や峠の頂上に位置する無線端局(7−3)で障害が生じると、その前後に位置する2つの無線端局(7−2と7−5)が互いに見通し外となって、上記飛び越し中継を行わせることはできない。特定小電力無線あるいはブルートゥース(Bluetooth:商標名)などに割り当てられている微弱電波の周波数帯は、直進性の強いUHF(極超短波)あるいはSHF(マイクロ波)であるため、見通し外での直接波通信には使用できない。   Even if the transmission output of the wireless terminal stations (7-1 to 7-n) is increased, as shown in (c) of the figure, the wireless terminal station (7-3) located at the top of a mountain or mountain pass. When a failure occurs, the two wireless terminal stations (7-2 and 7-5) located before and after that are out of line of sight and cannot perform the interlaced relay. The frequency band of weak radio waves assigned to specific low-power radio or Bluetooth (trademark name) is UHF (ultra-short wave) or SHF (microwave), which has a strong straightness, so that direct waves outside the line of sight It cannot be used for communication.

本発明は、以上のような技術背景を鑑みてなされたもので、その目的は、監視対象である鉄塔列内のいずれかの鉄塔にて通信不能の障害が生じた場合でも、特定小電力などにおいて定められている微弱電波の範囲よる無線通信だけでもって、上記無線端局の障害も含めた各鉄塔の状況を的確かつ継続的に遠隔監視できるようにした技術を提供することにある。   The present invention has been made in view of the technical background as described above. The purpose of the present invention is to specify a specific low power even when a communication failure occurs in any of the towers in the tower row to be monitored. It is an object of the present invention to provide a technique that enables accurate and continuous remote monitoring of the status of each steel tower including the failure of the above-mentioned wireless terminal station only by wireless communication within the weak radio wave range defined in the above.

本発明の手段は、架空送電路を構成する送電線鉄塔列の鉄塔基別状況を各鉄塔に設置された検出手段により検出するとともに、その基別の検出情報を各鉄塔に設置された無線端局による隣接鉄塔間の無線通信により鉄塔の並び方向に順次中継して鉄塔列端の情報収集局へ伝送させることにより、各鉄塔の状況を遠隔監視するようにした架空送電線鉄塔基別監視システムにおいて、上記鉄塔列の両端に情報収集局を設置し、各鉄塔のいずれの無線端局も隣接局間無線通信による中継伝送が可能な正常状態では、各鉄塔での検出情報を鉄塔列の先端から後端へ向けて伝送する単一方向の無線中継ルートを形成させることにより後端側の前記情報収集局で各鉄塔での検出情報を収集する一方、いずれかの鉄塔の無線端局に上記中継伝送が不能な障害が生じた場合には、その障害を生じた前後の無線端局から鉄塔列の先端および後端へ向かう2方向の無線中継ルートを形成させ、先端へ向かう無線中継ルートにより、当該無線中継ルート上の各鉄塔での検出情報を先端側の前記情報収集局にて収集し、後端へ向かう無線中継ルートにより、当該無線中継ルート上の各鉄塔での検出情報を後端側の前記情報収集局で収集するようにしたことを特徴とする。 The means of the present invention detects the status of the steel tower grouping of the transmission line tower row constituting the overhead power transmission path by the detecting means installed in each steel tower, and the detection information of the base is a wireless terminal installed in each steel tower. Overhead transmission line tower-based monitoring system that remotely monitors the status of each tower by relaying to the information collecting station at the end of the tower row by relaying in the direction of the tower tower by wireless communication between adjacent towers by the station In the normal state in which information collection stations are installed at both ends of the steel tower row and any of the wireless terminal stations of each tower is capable of relay transmission by wireless communication between adjacent stations, the detection information at each steel tower is transferred to the tip of the steel tower row. The information collection station on the rear end side collects detection information at each tower by forming a unidirectional wireless relay route that transmits from the rear end to the rear end. Failures that prevent relay transmission If occurs, to form a two-way radio relay route going from the wireless terminal station before and caused the fault to the front end and the rear end of the steel tower column, the radio relay route toward the tip, on the radio relay route Information detected at each tower is collected at the information collection station on the front end side, and the detection information at each tower on the wireless relay route is collected at the information collection station on the rear end side by the wireless relay route toward the rear end. It is characterized by collecting .

上記手段には、次のような手段を付加することが好ましい。
各鉄塔の無線端局はそれぞれ、隣接局から無線受信した情報に自鉄塔での検出情報を付加し、この付加情報を上記隣接局とは反対側の隣接局へ無線送信する手段を備える。
It is preferable to add the following means to the above means.
Each of the radio terminal stations of each tower includes means for adding detection information at the own tower to the information wirelessly received from the adjacent station and wirelessly transmitting the additional information to the adjacent station on the opposite side of the adjacent station.

また、各鉄塔の無線端局はそれぞれ、自鉄塔よりも前側の隣接局からの無線受信が所定時間を超えて途絶えた場合に、その旨の情報を付加した情報を自鉄塔よりも後側の隣接局へ定期的に無線送信する手段と、自鉄塔の後側隣接局への無線送信が不能になった場合に、その旨を付加した情報を自鉄塔の前側隣接局へ無線送信する手段とを備える。   In addition, when the radio reception from the adjacent station on the front side of the tower is interrupted after a predetermined time, the radio terminal station of each tower sends information to that effect to the rear of the tower. Means for periodically wirelessly transmitting to an adjacent station, and means for wirelessly transmitting information to that effect to the front adjacent station of the own tower when wireless transmission to the rear adjacent station of the own tower has become impossible Is provided.

各鉄塔の無線端局はそれぞれ、自鉄塔での検出情報を過去に遡って蓄積する記憶手段と、この記憶手段の蓄積情報を自鉄塔の無線端局を介して特定の無線端局にアクセスさせる制御手段を備える。   Each wireless terminal of each tower has storage means for retrospectively accumulating detection information in the own tower, and the stored information in this storage means is accessed to a specific wireless terminal via the wireless terminal of the own tower. Control means are provided.

各鉄塔にはそれぞれ、自鉄塔の状況を検出する複数種類のセンサとともに、各センサの異常を個別に検出するセンサ異常検出手段を有し、このセンサ異常検出手段の検出内容を自鉄塔での検出情報に含ませて送信する手段を備える。   Each tower has multiple types of sensors that detect the status of the own tower and sensor abnormality detection means that individually detects the abnormality of each sensor, and the detection contents of this sensor abnormality detection means are detected by the own tower. A means for transmitting the information included in the information is provided.

各無線端局はそれぞれパケットデータの無線送受信により情報伝送を行うパケット通信端末を構成している。   Each wireless terminal station constitutes a packet communication terminal that transmits information by wireless transmission and reception of packet data.

監視対象である鉄塔列内のいずれかの鉄塔にて通信不能の障害が生じた場合でも、特定小電力などにおいて定められている微弱電波の範囲よる無線通信だけでもって、上記無線端局の障害も含めた各鉄塔の状況を的確かつ継続的に遠隔監視することができる。   Even if communication failure occurs on any of the towers in the tower row to be monitored, failure of the above wireless terminal station can be achieved only by wireless communication within the range of weak radio waves defined by specific low power. It is possible to remotely and accurately monitor the status of each tower including

図1は、本発明の技術が適用された架空送電線鉄塔基別監視システムの概略を示す。同図に示すように、本発明のシステムでは、まず、架空送電路を構成する送電線鉄塔列の各鉄塔(1−1〜1−n)にそれぞれ、無線端局(2−1〜2−n)が設置されている。各無線端局(2−1〜2−n)はそれぞれ、特定小電力無線などに割り当てられている周波数帯(UHFまたはSHF)の微弱電波により、双方向の無線データ通信を行うように構成されている。無線データ通信では所定フォーマットのパケットデータをやり取りする。   FIG. 1 shows an outline of an overhead transmission line tower-based monitoring system to which the technology of the present invention is applied. As shown in the figure, in the system of the present invention, first, each of the towers (1-1 to 1-n) of the transmission line tower row constituting the overhead power transmission path is respectively connected to the radio terminal stations (2-1 to 2- n) is installed. Each wireless terminal station (2-1 to 2-n) is configured to perform bidirectional wireless data communication using weak radio waves in a frequency band (UHF or SHF) assigned to a specific low-power wireless device or the like. ing. In wireless data communication, packet data of a predetermined format is exchanged.

各鉄塔(1−1〜1−n)にはそれぞれ、上記各無線端局(2−1〜2−n)とともに、自鉄塔の状況を検出する検出手段が設置されている。各検出手段はそれぞれ、たとえば、CT、ロゴスキーコイル、磁気センサ、歪ゲージ、温度センサや湿度センサや風速計などの各種気象センサ、音響センサ(可聴音および超音波)、振動センサ、加速度計、光センサ、電流検出器、人感センサなど、複数種類のセンサを用いて、雷害、獣害、風害、氷雪害、人為的破壊、重機接近などの異常またはその予兆となりそうな現象を検出する。検出結果は2値デジタル情報に変換されて出力される。   Each of the towers (1-1 to 1-n) is provided with detection means for detecting the status of the own tower along with the wireless terminals (2-1 to 2-n). Each detection means includes, for example, CT, Rogowski coil, magnetic sensor, strain gauge, various weather sensors such as temperature sensor, humidity sensor and anemometer, acoustic sensor (audible sound and ultrasonic wave), vibration sensor, accelerometer, Using multiple types of sensors such as light sensors, current detectors, and human sensors, detect abnormalities such as lightning damage, beast damage, wind damage, ice / snow damage, man-made destruction, heavy machinery approach, etc. . The detection result is converted into binary digital information and output.

上記検出段による鉄塔基別の検出情報は、各鉄塔に設置された無線端局(2−1〜2−2)による隣接鉄塔間の無線通信により、鉄塔(1−1〜1−n)の並び方向に順次中継伝送される。各鉄塔の検出情報はデジタル化されたデータであって、それぞれ所定のパケット・フォーマットに乗せられて無線伝送される。   The detection information for each tower based on the detection stage is obtained by wireless communication between adjacent towers by the wireless terminal stations (2-1 to 2-2) installed in each tower. Relay transmission is performed sequentially in the line-up direction. The detection information of each tower is digitized data, which is wirelessly transmitted in a predetermined packet format.

監視対象となる鉄塔列の両端にはそれぞれ情報収集局31,32が設置されている。鉄塔列の先端側に設置された情報収集局31は、鉄塔列先端の鉄塔(1−1)に設置された無線端局(2−1)に対して定期的に無線信号a0を送出する。この無線信号a0は上記中継伝送を開始させるための信号であって、上記パケット・フォーマットのデータを有する。   Information collecting stations 31 and 32 are installed at both ends of the tower row to be monitored. The information collection station 31 installed at the front end side of the tower row periodically transmits a radio signal a0 to the wireless terminal station (2-1) installed at the steel tower (1-1) at the front end of the tower row. The radio signal a0 is a signal for starting the relay transmission, and has data in the packet format.

上記無線信号a0を受信した無線端局(2−1)は、受信により取得した情報を自局の受信バッファにいったん保持した後、この受信情報に自鉄塔(1−1)での検出情報を付加した情報a1を作成して、後側すなわち老側の隣接鉄塔(1−2)に設置されている無線端局(2−2)へ無線送信する。老側隣接鉄塔(1−2)の無線端局(2−2)は、前側すなわち若側の無線端局(2−1)から無線受信した情報に自鉄塔での検出情報を付加した情報a3を作成し、これを次の老側隣接鉄塔(1−3)の無線端局(2−3)へ無線送信する。以下の鉄塔(1−4,1−5,・・・)においても同様に、老側からの受信情報に自鉄塔での検出情報を付加した情報(a4,a5,・・・)を若側隣接鉄塔の無線端局へ無線送信する形式での中継伝送が行われる。   The wireless terminal station (2-1) that has received the wireless signal a0 once holds the information acquired by reception in the reception buffer of the local station, and then detects the detection information in the own tower (1-1) in this received information. The added information a1 is created and wirelessly transmitted to the wireless terminal station (2-2) installed in the rear side, that is, the old side adjacent tower (1-2). The radio terminal station (2-2) of the old side adjacent tower (1-2) is information a3 in which detection information at the own tower is added to the information wirelessly received from the front side, that is, the young station (2-1). Is wirelessly transmitted to the wireless terminal station (2-3) of the next old side adjacent tower (1-3). Similarly, in the following steel towers (1-4, 1-5,...), The information (a4, a5,...) Obtained by adding the detection information in the own steel tower to the reception information from the old side is the younger side. Relay transmission in the form of wireless transmission to the wireless terminal station of the adjacent tower is performed.

このような隣接鉄塔間での無線中継伝送が順次行われることにより、各鉄塔(1−1〜1−n)での検出情報が鉄塔列後端の情報収集局32に伝送される。鉄塔列後端の情報収集局32に伝送される情報anには、各鉄塔(1−1〜1−n)ごとに検出されて付加された情報が含まれている。これにより、各鉄塔(1−1〜1−n)の状況を遠隔監視することができる。   By sequentially performing such wireless relay transmission between adjacent towers, detection information at each tower (1-1 to 1-n) is transmitted to the information collecting station 32 at the rear end of the tower row. The information an transmitted to the information collecting station 32 at the rear end of the tower tower includes information detected and added for each tower (1-1 to 1-n). Thereby, the condition of each steel tower (1-1 to 1-n) can be remotely monitored.

なお、鉄塔列先端側の情報収集局31から定期的に送出される無線信号a0は、各鉄塔にて検出情報を付加しながら中継伝送を行うために、所定のパケット・フォーマットのデータを乗せて送信されるが、そのデータの情報内容はヘッダなどのフォーマットを形成するためのものだけでよい。つまり、実質的に空データ(ヌルデータ)でよい。しかし、要すれば、たとえば各無線端局(2−1〜2−n)の機能更新用プログラムあるいは何かの指令情報などを乗せるようにしてもよい。   The radio signal a0 periodically transmitted from the information collection station 31 at the front end of the tower row carries data of a predetermined packet format for relay transmission while adding detection information at each tower. Although it is transmitted, the information content of the data only needs to form a format such as a header. That is, it may be substantially empty data (null data). However, if necessary, for example, a function updating program of each wireless terminal station (2-1 to 2-n) or some command information may be placed.

図2は、各鉄塔(1−1〜1−n)に設置されている無線端局2−x(2−1〜2−n)の構成を機能別ブロック図で示す。同図に示す無線端局2−xは、小電力無線I/F(インターフェイス)21、センサI/F22、情報蓄積手段23、送信情報生成手段24、定期信号検出手段25、隣接局異常検出手段26、異常制御手段27、伝送方向制御手段28などにより構成される。   FIG. 2 is a functional block diagram illustrating the configuration of the wireless terminal stations 2-x (2-1 to 2-n) installed in the steel towers (1-1 to 1-n). The wireless terminal station 2-x shown in the figure includes a low-power wireless I / F (interface) 21, a sensor I / F 22, an information storage unit 23, a transmission information generation unit 24, a periodic signal detection unit 25, and an adjacent station abnormality detection unit. 26, an abnormality control means 27, a transmission direction control means 28, and the like.

無線I/F21は、特定小電力無線等に割り当てられているUHF帯またはSHF帯の微弱電波を使って無線データ通信を行う。データ通信はパケットデータの送受信により行う。センサI/F22は、自鉄塔の状態を検出するセンサ群40から検出項目ごとに”1”または”0”に2値化された検出情報を取得する。   The wireless I / F 21 performs wireless data communication using weak radio waves in the UHF band or SHF band assigned to a specific low-power radio. Data communication is performed by transmitting and receiving packet data. The sensor I / F 22 acquires detection information binarized to “1” or “0” for each detection item from the sensor group 40 that detects the state of the tower.

情報蓄積手段23は不揮発性半導体メモリを用いた大容量記憶装置などを用いて構成され、無線I/F21が隣接局から無線受信した情報を一時的に記憶保持するとともに、センサI/F22を介して取得した自鉄塔での検出情報を所定検出回数または所定期間以上に遡って蓄積する。送信情報生成手段24は、隣接局から無線受信した情報に自鉄塔での検出情報を付加して新たな送信情報を作成する。   The information storage means 23 is configured using a mass storage device using a non-volatile semiconductor memory, and temporarily stores and holds the information wirelessly received by the wireless I / F 21 from an adjacent station, and via the sensor I / F 22. The detection information in the own tower acquired in this way is accumulated retroactively for a predetermined number of times or a predetermined period. The transmission information generation means 24 adds the detection information at the own tower to the information wirelessly received from the adjacent station and creates new transmission information.

定期信号検出手段25は、自鉄塔よりも鉄塔列の先端側に位置する若側隣接局から所定の無線信号が所定時間内に受信されたか否かを検出する。この検出において、自鉄塔が鉄塔列の先頭に位置する場合は、その鉄塔列先端側に設置された情報収集局31が若側隣接局となるため、その情報収集局31からの無線信号a0が所定時間内に受信されたか否かを検出する。また、自鉄塔が鉄塔列の中間に位置する場合は、若側隣接鉄塔の無線端局が若側隣接局となるため、その若側隣接無線端局からの送信情報が所定時間内に受信されたか否かを検出する。いずれの場合も、所定時間内に受信があったか否かで若側隣接局の異常有無を判定する。すなわち、隣接局からの受信が所定時間以上途絶えた場合に、その隣接局に異常が生じたと判定する。   The periodic signal detection means 25 detects whether or not a predetermined radio signal has been received within a predetermined time from a younger adjacent station located on the front end side of the tower row with respect to the own tower. In this detection, when the own tower is located at the head of the tower row, the information collection station 31 installed at the front end side of the tower row becomes the younger adjacent station, so the radio signal a0 from the information collection station 31 is It is detected whether or not it has been received within a predetermined time. In addition, when the own tower is located in the middle of the tower row, the wireless terminal station of the younger adjacent tower becomes the younger adjacent station, so that transmission information from the younger adjacent wireless terminal station is received within a predetermined time. It is detected whether or not. In either case, the presence / absence of an abnormality in the younger adjacent station is determined based on whether or not there is reception within a predetermined time. That is, when reception from an adjacent station is interrupted for a predetermined time or more, it is determined that an abnormality has occurred in the adjacent station.

隣接局異常検出手段26は、自鉄塔よりも鉄塔列の後端側に位置する老側隣接局の異常を検出する。この検出は、老側隣接局に対する情報送信の成否に基づいて行う。無線端局2−xは、若側隣接局からの受信情報に自鉄塔での検出情報を付加して老側隣接局へ無線送信する。この無線送信は老側隣接局との間で確認信号(ack)などをやりとりして行うが、このやりとりが成立せず、結果的に送信が不成功に終わった場合、つまり老側隣接局に対する無線アクセスが正常完了しなかった場合に、その老側隣接局に異常が生じたと判定する。   The adjacent station abnormality detection means 26 detects an abnormality in the old-side adjacent station located on the rear end side of the tower row with respect to the own tower. This detection is performed based on the success or failure of information transmission to the old side adjacent station. The wireless terminal station 2-x adds the detection information at the own tower to the reception information from the younger adjacent station and wirelessly transmits it to the old adjacent station. This wireless transmission is performed by exchanging a confirmation signal (ack) or the like with the old neighbor station, but this exchange is not established, and as a result, the transmission is unsuccessful, that is, for the old neighbor station. When the wireless access is not normally completed, it is determined that an abnormality has occurred in the old adjacent station.

上記判定において、自鉄塔が鉄塔列の中間に位置する場合は、若側隣接鉄塔の無線端局が老側隣接局となる。また、自鉄塔が鉄塔列の後端に位置する場合は、その鉄塔列の後端側に設置された情報収集局32が老側隣接局となる。いずれの場合も、無線アクセスが正常完了しなかった場合に、その老側隣接局に異常が生じたと判定する。   In the above determination, when the own tower is located in the middle of the tower row, the radio terminal station of the younger adjacent tower becomes the older adjacent station. When the own tower is located at the rear end of the tower row, the information collecting station 32 installed at the rear end side of the tower row becomes the old adjacent station. In any case, when the wireless access is not normally completed, it is determined that an abnormality has occurred in the old adjacent station.

異常制御手段27は、上記定期信号検出手段25または上記隣接局異常検出手段26が隣接局の異常を検出したときに、その検出内容すなわち異常情報を送信情報に付加する。伝送方向制御手段28は、上記隣接局異常検出手段26が老側隣接局の異常を検出したときに、上記異常情報を含む送信情報を若側隣接局へ無線送信させる。   When the regular signal detecting unit 25 or the adjacent station abnormality detecting unit 26 detects an abnormality in the adjacent station, the abnormality control unit 27 adds the detected content, that is, the abnormality information to the transmission information. The transmission direction control means 28 wirelessly transmits transmission information including the abnormality information to the younger adjacent station when the adjacent station abnormality detection means 26 detects an abnormality in the old adjacent station.

図3は、図2に示した無線端局2−xの具体的構成例を示すシステムブロック図である。上述した無線端局2−xの機能は、同図に示すように、制御部200、無線送受信ユニット210、センサI/F220、外部I/F221、メモリ230などの汎用デバイスを用いて小規模かつ簡単に構築することができる。   FIG. 3 is a system block diagram showing a specific configuration example of the wireless terminal station 2-x shown in FIG. As shown in the figure, the functions of the wireless terminal 2-x described above are small-scale using general-purpose devices such as the control unit 200, the wireless transmission / reception unit 210, the sensor I / F 220, the external I / F 221 and the memory 230. Easy to build.

主制御部200、無線送受信ユニット210、センサI/F220、外部I/F221、メモリ230などは、マイクロコンピュータ・システム(ワンチップ・マイコン)あるいはマイクロ・コントローラ(PIC:Peripheral Interface Controller)を用いて構成することができる。具体的には、米国マイクロチップテクノロジ社からPICシリーズの型番(PICxxxx)で市場提供されているワンチップ・マイコンをそのまま使用することができる。   The main control unit 200, the wireless transmission / reception unit 210, the sensor I / F 220, the external I / F 221 and the memory 230 are configured using a microcomputer system (one-chip microcomputer) or a micro controller (PIC: Peripheral Interface Controller). can do. Specifically, a one-chip microcomputer provided on the market with a PIC series model number (PICxxxx) from US Microchip Technology can be used as it is.

無線送受信ユニット210は上記無線I/F21に対応するが、これは、アンテナ、無線送受信部(RFユニット)、モデム、通信制御部などを単一モジュール化した既成品を使用することができる。メモリ230は、ワンチップ・マイコンに内蔵されているものを使用できるが、たとえば画像などの大サイズの情報を記憶・蓄積させる場合には、SRAMやEEP−ROMなどの半導体メモリを記憶媒体とする外部記憶装置(ストレージ)を外付けすればよい。   The wireless transmission / reception unit 210 corresponds to the wireless I / F 21. For this, a ready-made product in which an antenna, a wireless transmission / reception unit (RF unit), a modem, a communication control unit, and the like are formed as a single module can be used. As the memory 230, one built in a one-chip microcomputer can be used. For example, when storing and storing large-size information such as images, a semiconductor memory such as SRAM or EEP-ROM is used as a storage medium. An external storage device (storage) may be externally attached.

センサ群40は複数種類のセンサ41により構成されている。各センサ41の検出出力はそれぞれ判別回路42にて”1”と”0”の2値データに予備処理された後、センサI/F220を介して主制御部200に読み込まれて処理される。センサ群40により検出された自鉄塔の状況はメモリ230に記憶・蓄積される。   The sensor group 40 includes a plurality of types of sensors 41. The detection output of each sensor 41 is preliminarily processed into binary data of “1” and “0” by the discrimination circuit 42 and then read into the main control unit 200 via the sensor I / F 220 and processed. The status of the own tower detected by the sensor group 40 is stored and accumulated in the memory 230.

なお、上記ワンチップ・マイコンには複数のアナログポートを備えるものもあり、これを用いる場合は、センサ41の検出信号をそのアナログポートに直接接続し、マイコン内にて”1”と”0”の2値データに変換させることが可能である。センサ41には最初から2値データを出力するものもあり、この場合はその2値データをそのままマイコンのデジタルポートに入力させることができる。   Some of the above-mentioned one-chip microcomputers are provided with a plurality of analog ports. When this is used, the detection signal of the sensor 41 is directly connected to the analog port, and “1” and “0” in the microcomputer. Can be converted into binary data. Some sensors 41 output binary data from the beginning. In this case, the binary data can be directly input to the digital port of the microcomputer.

上記無線端局(2−x)およびセンサ群40等を動作させるための電源は、リチウムイオン電池などの高容量小形電池、太陽電池、またはこれらを組合せた電源装置45により供給する。このような独立タイプの電源装置45は鉄塔ごとに独立して設置するのに適している。   Power for operating the wireless terminal (2-x), the sensor group 40, and the like is supplied by a high-capacity small battery such as a lithium ion battery, a solar battery, or a power supply device 45 that combines these. Such an independent type power supply device 45 is suitable for being installed independently for each tower.

図4は、上述した無線端局(2−x)の要部における動作をフローチャート化して示す。また、図5は、上述した無線端局(2−x)によって実行される中継伝送モードを示す。   FIG. 4 is a flowchart showing the operation of the main part of the above-described wireless terminal station (2-x). FIG. 5 shows a relay transmission mode executed by the above-described wireless terminal station (2-x).

図4において、無線端局(2−x)は、まず、特定無線端局からの無線による点検アクセスの有無(S01)、若側隣接局からの無線受信の有無(S11)、老側隣接局からの無線受信の有無(S21)をサーチする待機ループ状態にある。これとともに、上記点検アクセスまたは上記無線受信が所定時間以上連続して途絶えたか否か(タイムオーバ)を監視する(S31)。   In FIG. 4, the wireless terminal station (2-x) first has the presence / absence of wireless inspection access from the specific wireless terminal station (S01), the presence / absence of wireless reception from the younger adjacent station (S11), and the old adjacent station. Is in a standby loop state for searching for presence / absence of wireless reception from (S21). At the same time, it is monitored whether or not the inspection access or the wireless reception has been continuously interrupted for a predetermined time (time over) (S31).

点検アクセス(S01)が有った場合には、その点検アクセスに対応する処理(S02)を実行する。この処理(S02)では、無線端局(2−x)内に記憶・蓄積されている自鉄塔の検出情報を特定無線端局に読み取りアクセスさせる。これにより、点検用の特定無線端局を鉄塔の近くに持って行くだけで、その鉄塔の状態を遠隔点検することができる。   If there is an inspection access (S01), a process (S02) corresponding to the inspection access is executed. In this process (S02), the detection information of the own tower stored and stored in the wireless terminal (2-x) is read and accessed by the specific wireless terminal. As a result, the state of the tower can be remotely inspected simply by bringing the specific radio terminal station for inspection close to the tower.

ここで、図5の(a)に示すように、監視対象である鉄塔列内の各鉄塔(1−1〜1−n)にそれぞれ設置された無線端局(2−1〜2−n)がすべて正常に動作する第1モードでは、鉄塔列先端側の情報収集局31から定期的に送信される無線信号a0により、上記所定時間内に若側隣接局からの無線受信がある(S11)。   Here, as shown to (a) of FIG. 5, the radio | wireless terminal station (2-1 to 2-n) each installed in each tower (1-1 to 1-n) in the tower row which is a monitoring object In the first mode in which all normally operate, there is radio reception from the younger adjacent station within the predetermined time by the radio signal a0 periodically transmitted from the information collecting station 31 on the tower row front side (S11). .

この若側隣接局からの無線受信があったならば、その受信情報に自鉄塔での検出情報(自情報)を付加した情報を老側隣接局へ無線送信する(S12)。そして、この老側隣接局への無線送信が正常終了したならば(S13)、最初の待機ループ状態(S01−S11−S21−S31)に戻る。   If there is radio reception from the younger adjacent station, information obtained by adding detection information (own information) at the own tower to the received information is transmitted to the older adjacent station by radio (S12). Then, if the wireless transmission to the old adjacent station is normally completed (S13), the process returns to the initial standby loop state (S01-S11-S21-S31).

上記第1モードでは、図5の(a)に示すように、各無線端局(2−1〜2−n)がいずれも若側から老側へ向けた順方向の無線中継伝送を行う。これにより、鉄塔列先端側の情報収集局31から定期的に発信された無線信号が各鉄塔(1−1〜1−n)の無線端局(2−1〜2−n)を順次経由して後端側の情報収集局32に達する単一方向の無線中継ルートが形成される。   In the first mode, as shown in FIG. 5A, each wireless terminal station (2-1 to 2-n) performs forward wireless relay transmission from the young side to the old side. Thereby, the radio signal periodically transmitted from the information collecting station 31 on the front end side of the tower row sequentially passes through the radio end stations (2-1 to 2-n) of each tower (1-1 to 1-n). Thus, a unidirectional wireless relay route reaching the information collecting station 32 on the rear end side is formed.

各無線端局(2−1〜2−n)はそれぞれ、若側隣接局からの受信情報をいったんメモリに記憶保持した後、これに自鉄塔での検出情報(自情報)を付加した情報を新たに作成して老側隣接局へ無線送信するが、これにより、鉄塔列の後端では全鉄塔の検出情報を1回の通信接続処理でもって無線伝送させることができる。このことは、無線中継ルートの利用効率を高める上で非常に有効である。すなわち、鉄塔の検出情報を鉄塔ごとの個別の通信接続処理で中継伝送させる場合に比べて、通信要求の発生頻度を大幅に低減させることができる。   Each wireless terminal station (2-1 to 2-n) stores the information received from the younger adjacent station once in the memory, and then adds the information obtained by adding the detection information (own information) at the own tower. Although it is newly created and wirelessly transmitted to the old adjacent station, the detection information of all the steel towers can be wirelessly transmitted by one communication connection process at the rear end of the steel tower row. This is very effective in increasing the utilization efficiency of the wireless relay route. That is, the frequency of occurrence of communication requests can be greatly reduced as compared with the case where the detection information of the tower is relayed and transmitted by individual communication connection processing for each tower.

次に、図5の(b)に示すように、鉄塔列内のいずれかの鉄塔(たとえば1−3)に設置されている無線端局(2−3)にて通信不能の障害が発生すると、その障害が発生した無線端局(2−3)の手前に位置する若側隣接局(無線端局2−2)では、その障害が生じた老側隣接局(無線端局2−3)への無線送信を行えない。   Next, as shown in FIG. 5B, when a communication failure occurs in the wireless terminal station (2-3) installed in any tower (for example, 1-3) in the tower row. In the younger side adjacent station (radio terminal station 2-2) located before the radio terminal station (2-3) where the failure occurred, the old side adjacent station (radio terminal station 2-3) where the fault occurred Wireless transmission to cannot be performed.

無線送信の手順は、送信側から受信側に対して接続要求(通信要求)を発信し、これに対する受信側の応答返信を受けてから開始される。受信側が正常動作していれば、仮に受信側がビジー状態で上記接続要求に即時に対応できない場合でも、その旨を示す応答(ビジー)を返信する。送信側からの接続要求は通常、複数回試行(リトライ)されるが、受信側が正常動作可能な状態にあれば、その受信側から通信の状況や段階に応じて何らかの応答が返信される。つまり、無線送信は、情報を一方的に送信する場合でも、送信側と受信側間の双方向通信により進行する。受信側に障害がある場合は、受信側からの送信側への応答に異常を来すため、無線送信を進行させることができず、結果的に、無線送信を正常終了させることができない。   The wireless transmission procedure is started after a connection request (communication request) is transmitted from the transmission side to the reception side and a response is returned from the reception side. If the receiving side is operating normally, even if the receiving side is busy and cannot immediately respond to the connection request, a response (busy) indicating that is returned. Normally, a connection request from the transmission side is tried (retries) a plurality of times. However, if the reception side is in a normal operation state, some response is returned from the reception side according to the communication status and stage. That is, wireless transmission proceeds by bidirectional communication between the transmission side and the reception side even when information is transmitted unilaterally. If there is a failure on the receiving side, the response from the receiving side to the transmitting side becomes abnormal, so that the wireless transmission cannot proceed, and as a result, the wireless transmission cannot be terminated normally.

老側隣隣接局(無線端局2−3)への無線送信を正常終了させることができななかった場合(S13)、送信側である若側隣接局(無線端局2−2)は、老側隣接局(無線端局2−3)に異常が生じた旨の情報(老側異常情報)を付加した情報を若側隣接局(無線端局2−1)へ無線送信する第2モードを実行する(S14)。   When the wireless transmission to the old neighbor station (wireless terminal 2-3) could not be terminated normally (S13), the younger neighbor station (wireless terminal station 2-2) on the transmission side Second mode for wirelessly transmitting to the younger adjacent station (wireless terminal 2-1) information with information indicating that an abnormality has occurred in the older adjacent station (wireless terminal station 2-3) (older side abnormal information) Is executed (S14).

この第2モードを実行した無線端局(2−2)よりも若側にある無線端局(2−1)は、上記待機ループ状態(S01−S11−S21−S31)にて老側隣接局からの伝送情報を無線受信する第3モードを実行する(S21−S22−S23)。この第3モードでは、老側隣接局からの受信情報に自情報を付加して若側隣接局へ無線送信する動作が行われる(S22)。これにより、障害が発生した無線端局(2−3)の前方では、鉄塔列の先端側へ向かう逆方向の無線中継ルートが形成される。   The wireless terminal station (2-1) on the younger side than the wireless terminal station (2-2) that has executed the second mode is in the standby loop state (S01-S11-S21-S31). A third mode for wirelessly receiving transmission information from is executed (S21-S22-S23). In the third mode, an operation is performed in which the own information is added to the reception information from the old neighbor station and wirelessly transmitted to the young neighbor station (S22). As a result, a radio relay route in the reverse direction toward the front end side of the tower row is formed in front of the radio terminal station (2-3) where the failure has occurred.

一方、上記障害が生じた無線端局(2−3)の直後に位置する無線端局(2−4)では、若側隣接局(無線端局2−3)からの無線受信が中断する。この受信中断状態が所定時間以上連続して経過するタイムオーバ(S31)が生じると、そのタイムオーバの発生回数をカウント(S32)するとともに、若側隣接局からの受信を待たずに、老側隣接局(無線端局2−5)へ無線送信を行う第4モードを実行する(S33)。このときの送信内容は、若側からの無線受信がないため、自情報のみとなる。あるいは、自情報に若側からの受信が途絶えたことを示す情報を付加した情報となる。   On the other hand, in the wireless terminal station (2-4) located immediately after the failed wireless terminal station (2-3), wireless reception from the younger adjacent station (wireless terminal station 2-3) is interrupted. When a time-over (S31) in which the reception interruption state continues continuously for a predetermined time or more occurs, the number of occurrences of the time-over is counted (S32) and the old side is not waited for reception from the younger adjacent station. The fourth mode in which radio transmission is performed to the adjacent station (radio terminal station 2-5) is executed (S33). The content transmitted at this time is only self-information because there is no wireless reception from the younger side. Or it becomes the information which added the information which shows that the reception from the younger side ceased to self information.

この第4モードを実行した無線端局(2−4)よりも老側にある各無線端局(2−5〜2−n)はそれぞれ、若側隣接局からの受信情報に自情報を付加した情報を老側隣接局へ無線送信する上記第1モードを実行する。これにより、障害が発生した無線端局(2−3)の後方では、鉄塔列の後端側へ向かう順方向の無線中継ルートが維持される。   Each wireless terminal station (2-5 to 2-n) on the older side than the wireless terminal station (2-4) that executed the fourth mode adds its own information to the received information from the younger adjacent station. The first mode in which the transmitted information is wirelessly transmitted to the old neighbor station is executed. As a result, a forward wireless relay route toward the rear end side of the tower row is maintained behind the wireless terminal station (2-3) where the failure has occurred.

上記第4モードによる老側隣接局の無線送信は、若側隣接局の異常を判定する予備段階であって、上記タイムオーバ発生回数のカウント値が所定回数に達する前に若側隣接局からの無線受信があった場合には(S32)、上記第1モードによる無線中継伝送を実行するとともに、そのカウント値を初期値にリセットする。   The radio transmission of the old side adjacent station in the fourth mode is a preliminary stage for determining the abnormality of the young side adjacent station, and before the count value of the time over occurrence count reaches a predetermined number, When there is wireless reception (S32), the wireless relay transmission in the first mode is executed and the count value is reset to the initial value.

しかし、そのカウント値が所定回数に達した場合には、若側隣接局(無線端局2−3)に異常があったと判定し、その旨を付加した情報を老側隣接局へ無線送信する第5モードを実行する(S34)。この異常情報を含む情報は、第5モードを実行した無線端局(2−4)よりも老側にある各無線端局(2−5〜2−n)により順次中継伝送されて、鉄塔列後端側の情報収集局32へ伝送される。   However, when the count value reaches a predetermined number of times, it is determined that there is an abnormality in the younger adjacent station (wireless terminal station 2-3), and information with the fact is wirelessly transmitted to the older adjacent station. The fifth mode is executed (S34). The information including the abnormality information is sequentially relayed and transmitted by the wireless terminal stations (2-5 to 2-n) on the old side of the wireless terminal station (2-4) that has executed the fifth mode, and the tower train The data is transmitted to the information collecting station 32 on the rear end side.

以上のように、鉄塔列の両端に情報収集局31,32を設置し、各鉄塔(1−1〜1−n)のいずれの無線端局(2−1〜2−n)も隣接局間無線通信による中継伝送が可能な正常状態では、各鉄塔(1−1〜1−n)の基別検出情報を鉄塔列の先端から後端へ向けて伝送する単一方向の無線中継ルートが形成される。これにより、各鉄塔(1−1〜1−n)の状況を集中的に遠隔監視することができる。   As described above, the information collecting stations 31 and 32 are installed at both ends of the tower row, and any of the wireless terminal stations (2-1 to 2-n) of each tower (1-1 to 1-n) is between adjacent stations. In a normal state in which relay transmission by wireless communication is possible, a unidirectional wireless relay route is formed to transmit the group detection information of each tower (1-1 to 1-n) from the front end to the rear end of the tower row. Is done. Thereby, the situation of each steel tower (1-1 to 1-n) can be intensively monitored remotely.

一方、いずれかの鉄塔(1−3)の無線端局(2−3)に上記中継伝送が不能な障害が生じた場合には、その障害を生じた前後の無線端局(2−2,2−4)から鉄塔列の先端および後端へ向かう2方向の無線中継ルートが形成される。この中継ルートは、図5の(c)に示すように、障害を生じた鉄塔(2−3)の前後に位置する無線端局(2−2,2−4)が互いに見通し外となっていても、それにまったく影響されることなく形成される。   On the other hand, when a failure in which the relay transmission is impossible occurs in the wireless terminal station (2-3) of any of the towers (1-3), the wireless terminal stations (2-2, 2) before and after the failure occurs. A two-way wireless relay route from 2-4) to the front and rear ends of the tower row is formed. In this relay route, as shown in FIG. 5C, the wireless terminal stations (2-2, 2-4) located before and after the failed tower (2-3) are out of line of sight. However, it is formed without being affected at all.

これにより、いずれかの無線端局に通信障害が生じても、その障害の有無を含めた各鉄塔の状況を遠隔監視し続けることができる。障害を発生した無線端局の位置も、鉄塔列両端の情報収集局31,32に伝送された情報により直ちに特定することができる。   As a result, even if a communication failure occurs in any of the wireless terminals, it is possible to continue to remotely monitor the status of each tower including the presence or absence of the failure. The position of the wireless terminal station where the failure has occurred can be immediately identified by the information transmitted to the information collecting stations 31 and 32 at both ends of the tower row.

表1は、鉄塔(1−1〜1−n)の状況を基別監視するのに適したセンサの検知項目および検知内容と異常現象の関係を例示する。

Figure 0004217635
Table 1 exemplifies the relationship between the detection items and detection contents of the sensors suitable for monitoring the status of the steel towers (1-1 to 1-n) and abnormal phenomena.
Figure 0004217635

表1に示すように、鉄塔において監視すべき異常現象(予兆も含む)としては、雷害、獣害、風害、氷雪害、塩害、人為的破壊、重機接近、不信人物接近などがあるが、これらの異常または異常予兆は、たとえば、マイクロホン、超音波センサ、振動計、加速度計、ジャイロ、CT、歪ゲージ、赤外線センサ等を用いた人感センサ、温度や風速等を測定する各種気象センサを用いて検出することができる。   As shown in Table 1, abnormal phenomena (including predictive signs) to be monitored in the tower include lightning damage, beast damage, wind damage, ice and snow damage, salt damage, human destruction, heavy machinery approach, untrustworthy person approach, These abnormalities or abnormal signs include, for example, human sensors using microphones, ultrasonic sensors, vibrometers, accelerometers, gyros, CT, strain gauges, infrared sensors, and various weather sensors that measure temperature and wind speed. Can be detected.

複数種類のセンサを用いて異常検出を行う場合は、センサの異常も個別に検出して遠隔監視させるようにする必要がある。図6は、その異常検出処理の一実施形態をフローチャート化して示す。   When abnormality detection is performed using a plurality of types of sensors, it is necessary to detect abnormality of the sensors individually and to perform remote monitoring. FIG. 6 is a flowchart showing an embodiment of the abnormality detection process.

図6において、各センサの検出状態は、無線端局内の制御部により順次読み取られて記憶蓄積されるが、その読み取った検出状態に異常があった場合には(S41)、その異常情報を伝送情報に含ませて無線送信させるとともに(S42)、その異常情報の履歴を記憶保存する(S43)。保存した履歴は点検アクセスなどにて適宜遠隔読み出しされる。   In FIG. 6, the detection state of each sensor is sequentially read and stored and stored by the control unit in the wireless terminal station. If the read detection state is abnormal (S41), the abnormality information is transmitted. The information is included in the information and transmitted wirelessly (S42), and the history of the abnormality information is stored and saved (S43). The stored history is appropriately read out remotely by inspection access or the like.

この後、異常検出状態となったセンサを初期化リセット操作する(S44)。この初期化リセットの結果が良好ならば、センサはそのまま使い続けるが、リセット結果が不良であった場合には(S45)、そのセンサそのものに異常有りと判定し、そのセンサの異常情報を伝送情報に含ませて無線送信させるとともに(S46)、そのセンサの検出情報を無効にする設定を行う(S47)。   Thereafter, an initialization reset operation is performed on the sensor in the abnormality detection state (S44). If the initialization reset result is good, the sensor continues to be used as is, but if the reset result is bad (S45), it is determined that the sensor itself is abnormal, and the abnormality information of the sensor is transmitted as transmission information. And wirelessly transmit (S46), and set to invalidate the detection information of the sensor (S47).

このように、各鉄塔にはそれぞれ、自鉄塔の状況を検出する複数種類のセンサとともに、各センサの異常を個別に検出するセンサ異常検出手段を備えることが望ましい。このセンサ異常検出手段の検出内容を自鉄塔での検出情報に含ませることにより、個々のセンサの状態も的確に遠隔監視することができる。   Thus, it is desirable that each steel tower is provided with sensor abnormality detection means for individually detecting the abnormality of each sensor together with a plurality of types of sensors for detecting the status of the own steel tower. By including the detection content of the sensor abnormality detection means in the detection information in the own tower, the state of each sensor can be accurately remotely monitored.

以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、定常的に形成される単一方向の無線中継ルートは、送電方向とは別に独立して設定してよい。また、本発明の技術は、単一の鉄塔列に限らず、たとえば分岐のある鉄塔列にも適用可能である。   As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above. For example, the unidirectional wireless relay route that is regularly formed may be set independently of the power transmission direction. Moreover, the technique of the present invention is not limited to a single steel tower row, and can be applied to, for example, a branch steel tower row.

監視対象である鉄塔列内のいずれかの鉄塔にて通信不能の障害が生じた場合でも、特定小電力などにおいて定められている微弱電波の範囲よる無線通信だけでもって、上記無線端局の障害も含めた各鉄塔の状況を的確かつ継続的に遠隔監視することができる。   Even if communication failure occurs on any of the towers in the tower row to be monitored, failure of the above wireless terminal station can be achieved only by wireless communication within the range of weak radio waves defined by specific low power. It is possible to remotely and accurately monitor the status of each tower including

本発明の技術が適用された架空送電線鉄塔基別監視システムの概略図である。1 is a schematic view of an overhead power transmission line tower-based monitoring system to which the technology of the present invention is applied. 各鉄塔に設置されている無線端局の構成を示す機能別ブロック図である。It is a block diagram according to function which shows the structure of the radio | wireless terminal station installed in each steel tower. 図2に示した無線端局の具体的構成例を示すシステムブロック図である。FIG. 3 is a system block diagram illustrating a specific configuration example of a wireless terminal station illustrated in FIG. 2. 無線端局の要部における動作を示すフローチャートである。It is a flowchart which shows the operation | movement in the principal part of a radio | wireless terminal station. 本発明のシステムにおいて形成される無線端局の中継伝送モードを示す概略図である。It is the schematic which shows the relay transmission mode of the radio | wireless terminal station formed in the system of this invention. センサに対する異常検出処理の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the abnormality detection process with respect to a sensor. 従来の架空送電線鉄塔基別監視システムの概略図である。It is the schematic of the conventional overhead power transmission line tower base group monitoring system. 従来のシステムにおいて形成される無線端局の中継伝送モードを示す概略図である。It is the schematic which shows the relay transmission mode of the radio | wireless terminal station formed in the conventional system.

符号の説明Explanation of symbols

1−1〜1−n 送電線鉄塔
2−1〜2−n,2−x 無線端局(本発明)
21 小電力無線I/F
22 センサI/F
23 情報蓄積手段
24 送信情報生成手段
25 定期信号検出手段
26 隣接局異常検出手段
27 異常制御手段
28 伝送方向制御手段
31,32 情報収集局
40 センサ群
41 センサ
42 判別回路
45 電源装置
200 制御部
201 無線送受信ユニット
220 センサI/F
221 外部I/F
230 メモリ
7−1〜7−n 無線端局(従来)
82 情報収集局(従来)
1-1 to 1-n Transmission line tower 2-1 to 2-n, 2-x Wireless terminal station (present invention)
21 Low power wireless I / F
22 Sensor I / F
DESCRIPTION OF SYMBOLS 23 Information storage means 24 Transmission information generation means 25 Periodic signal detection means 26 Adjacent station abnormality detection means 27 Abnormality control means 28 Transmission direction control means 31, 32 Information collection stations 40 Sensor group 41 Sensor 42 Discrimination circuit 45 Power supply apparatus 200 Control part 201 Wireless transmission / reception unit 220 Sensor I / F
221 External I / F
230 Memory 7-1 to 7-n Wireless terminal (conventional)
82 Information collection station (conventional)

Claims (6)

架空送電路を構成する送電線鉄塔列の鉄塔基別状況を各鉄塔に設置された検出手段により検出するとともに、その基別の検出情報を各鉄塔に設置された無線端局による隣接鉄塔間の無線通信により鉄塔の並び方向に順次中継して鉄塔列端の情報収集局へ伝送させることにより、各鉄塔の状況を遠隔監視するようにした架空送電線鉄塔基別監視システムにおいて、
上記鉄塔列の両端に情報収集局を設置し、
各鉄塔のいずれの無線端局も隣接局間無線通信による中継伝送が可能な正常状態では、各鉄塔での検出情報を鉄塔列の先端から後端へ向けて伝送する単一方向の無線中継ルートを形成させることにより後端側の前記情報収集局で各鉄塔での検出情報を収集する一方、
いずれかの鉄塔の無線端局に上記中継伝送が不能な障害が生じた場合には、その障害を生じた前後の無線端局から鉄塔列の先端および後端へ向かう2方向の無線中継ルートを形成させ、先端へ向かう無線中継ルートにより、当該無線中継ルート上の各鉄塔での検出情報を先端側の前記情報収集局にて収集し、後端へ向かう無線中継ルートにより、当該無線中継ルート上の各鉄塔での検出情報を後端側の前記情報収集局で収集するようにしたことを特徴とする架空送電線鉄塔基別監視システム。
The detection status of the towers in the transmission line towers that make up the overhead power transmission line is detected by the detection means installed in each tower, and the detection information for each group is detected between adjacent towers by the radio terminal station installed in each tower. In the overhead power transmission line tower-based monitoring system that remotely monitors the status of each tower by relaying to the information collection station at the end of the tower row by relaying sequentially in the direction of the towers by wireless communication,
Information collection stations were installed at both ends of the tower row,
In a normal state where any wireless terminal station of each tower can relay and transmit by wireless communication between adjacent stations, a unidirectional wireless relay route that transmits detection information from each tower toward the rear end of the tower row While collecting the detection information in each steel tower at the information collection station on the rear end side by forming,
When a failure that prevents the relay transmission from occurring at any of the radio terminal stations of any of the towers, a two-way radio relay route from the preceding and succeeding radio terminal stations to the front and rear ends of the tower row is established. The detection information at each tower on the wireless relay route is collected at the information collection station on the front side by the wireless relay route toward the front end, and on the wireless relay route by the wireless relay route toward the rear end. The overhead power transmission line tower-based monitoring system characterized in that detection information on each steel tower is collected by the information collection station on the rear end side .
請求項1において、各鉄塔の無線端局はそれぞれ、隣接局から無線受信した情報に自鉄塔での検出情報を付加し、この付加情報を上記隣接局とは反対側の隣接局へ無線送信する手段を備えたことを特徴とする架空送電線鉄塔基別監視システム。   In Claim 1, each radio terminal station of each tower adds detection information at its own tower to the information wirelessly received from the adjacent station, and wirelessly transmits this additional information to the adjacent station opposite to the adjacent station. An overhead transmission line tower-based monitoring system characterized by comprising means. 請求項1または3において、各鉄塔の無線端局はそれぞれ、自鉄塔よりも前側の隣接局からの無線受信が所定時間を超えて途絶えた場合に、その旨の情報を付加した情報を自鉄塔よりも後側の隣接局へ定期的に無線送信する手段と、自鉄塔の後側隣接局への無線送信が不能になった場合に、その旨を付加した情報を自鉄塔の前側隣接局へ無線送信する手段とを備えていることを特徴とする架空送電線鉄塔基別監視システム。   In Claim 1 or 3, when the radio terminal station of each steel tower respectively stops the radio reception from the adjacent station ahead of the own tower over a predetermined time, the information added to that effect is sent to the own tower. If the wireless transmission to the adjacent station on the rear side of the tower is not possible, information to that effect is sent to the adjacent station on the own tower. An overhead power transmission line tower-based monitoring system, characterized by comprising: means for wireless transmission. 請求項1〜3のいずれかにおいて、各鉄塔の無線端局はそれぞれ、自鉄塔での検出情報を過去に遡って蓄積する記憶手段と、この記憶手段の蓄積情報を自鉄塔の無線端局を介して特定の無線端局にアクセスさせる制御手段を備えていることを特徴とする架空送電線鉄塔基別監視システム。   The wireless terminal station of each tower according to any one of claims 1 to 3, wherein each of the wireless terminal stations of the steel tower stores storage means for retrospectively accumulating detection information in the own steel tower, and stores the stored information of the storage means in the wireless terminal station of the own steel tower. An overhead power transmission line tower-based monitoring system comprising a control means for accessing a specific wireless terminal station via the overhead power transmission line tower. 請求項1〜4のいずれかにおいて、各鉄塔にはそれぞれ、自鉄塔の状況を検出する複数種類のセンサとともに、各センサの異常を個別に検出するセンサ異常検出手段を有し、このセンサ異常検出手段の検出内容を自鉄塔での検出情報に含ませて送信するようにしたことを特徴とする架空送電線鉄塔基別監視システム。   In any one of Claims 1-4, each steel tower has a sensor abnormality detection means which detects the abnormality of each sensor individually with a plurality of types of sensors for detecting the status of the own steel tower, and this sensor abnormality detection An overhead power transmission line tower-based monitoring system characterized in that the detection contents of the means are included in the detection information of the own tower and transmitted. 請求項1〜5のいずれかにおいて、各無線端局はそれぞれパケットデータの無線送受信により情報伝送を行うパケット通信端末を構成していることを特徴とする架空送電線鉄塔基別監視システム。

6. The overhead transmission line tower-based monitoring system according to claim 1, wherein each wireless terminal station constitutes a packet communication terminal that transmits information by wireless transmission and reception of packet data.

JP2004035534A 2004-02-12 2004-02-12 Overhead power transmission line tower base monitoring system Expired - Fee Related JP4217635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035534A JP4217635B2 (en) 2004-02-12 2004-02-12 Overhead power transmission line tower base monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035534A JP4217635B2 (en) 2004-02-12 2004-02-12 Overhead power transmission line tower base monitoring system

Publications (2)

Publication Number Publication Date
JP2005229715A JP2005229715A (en) 2005-08-25
JP4217635B2 true JP4217635B2 (en) 2009-02-04

Family

ID=35004003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035534A Expired - Fee Related JP4217635B2 (en) 2004-02-12 2004-02-12 Overhead power transmission line tower base monitoring system

Country Status (1)

Country Link
JP (1) JP4217635B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249775A (en) * 2006-03-17 2007-09-27 Nec Tokin Corp Cable disconnection detecting system
JP4749312B2 (en) * 2006-11-21 2011-08-17 中国電力株式会社 Wireless transmission equipment, radio-powerless relay equipment
JP5356871B2 (en) * 2009-03-18 2013-12-04 中国電力株式会社 Terminal device and monitoring system
JP5492432B2 (en) * 2009-03-18 2014-05-14 中国電力株式会社 Monitoring device, monitoring system and program
JP5654942B2 (en) * 2011-04-26 2015-01-14 上田日本無線株式会社 Wireless relay transmission system
JP6046480B2 (en) * 2012-12-19 2016-12-14 四国電力株式会社 Transmission tower maintenance information wireless network system
CN107462795A (en) * 2017-08-22 2017-12-12 宁波智电电力科技有限公司 Electric power tower comprehensive on-line monitoring apparatus
JP7215483B2 (en) * 2018-07-25 2023-01-31 住友電気工業株式会社 Communication systems and monitoring equipment
KR102421563B1 (en) * 2021-03-09 2022-07-15 한전케이디엔주식회사 OPGW management system and method
CN116404566B (en) * 2022-12-02 2024-02-06 国网河北省电力有限公司石家庄市栾城区供电分公司 Power distribution line inspection platform and inspection method

Also Published As

Publication number Publication date
JP2005229715A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP4217635B2 (en) Overhead power transmission line tower base monitoring system
CN1977498B (en) Wireless sensor network
JP3785137B2 (en) Measurement information transmitting apparatus and multi-point measurement information collecting system
JP2005278367A (en) Monitor system for every overhead transmission line steel tower
JP5971225B2 (en) Wireless device, wireless module, interface module, and communication method
ES2902588T3 (en) Battery management system and communication method thereof
WO2017199427A1 (en) Equipment monitoring device, wireless sensor, and collecting station
US7782766B2 (en) Data collection system and data collection method
US20170127302A1 (en) Methods and devices for maintaining a device-operated function
JP6472328B2 (en) Disaster monitoring system, monitoring apparatus, sensor device, and disaster monitoring method
JP2008158794A (en) Monitoring system
JP6090597B2 (en) Data collection system
WO2018117164A1 (en) Plant equipment diagnostic system
WO2013128876A1 (en) Data acquisition system
JPH11355867A (en) Communication system and its transmitter
CN107658979A (en) A kind of monitoring device of overhead transmission line
JP5874014B2 (en) Data relay system, relay reader device, relay tag device, relay device, and data relay method
JP2018201276A (en) Power transmission line facility monitoring system
JP2013197626A (en) Node device, communication method, and communication system
CN106060857A (en) Wireless communication system, wireless communication apparatus, and wireless communication method
JP2512208B2 (en) How to collect abnormal information in the steel tower
JP5161142B2 (en) Terminal device and monitoring system
JP2007104191A (en) Power line monitor system using plc coupler
CN216815767U (en) Wireless temperature measurement system and wireless temperature measurement equipment for wind generating set
JP2001004691A (en) Failure zone locating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Ref document number: 4217635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees