JP4217470B2 - Electric control valve - Google Patents

Electric control valve Download PDF

Info

Publication number
JP4217470B2
JP4217470B2 JP2002356868A JP2002356868A JP4217470B2 JP 4217470 B2 JP4217470 B2 JP 4217470B2 JP 2002356868 A JP2002356868 A JP 2002356868A JP 2002356868 A JP2002356868 A JP 2002356868A JP 4217470 B2 JP4217470 B2 JP 4217470B2
Authority
JP
Japan
Prior art keywords
valve
screw member
female screw
spring
valve chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002356868A
Other languages
Japanese (ja)
Other versions
JP2004190724A (en
Inventor
守男 金子
信雄 椿
裕正 高田
充 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2002356868A priority Critical patent/JP4217470B2/en
Publication of JP2004190724A publication Critical patent/JP2004190724A/en
Application granted granted Critical
Publication of JP4217470B2 publication Critical patent/JP4217470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、電動式コントロールバルブに関し、特に、冷凍・冷蔵・空調システムの冷媒流量を制御する電動式コントロールバルブに関するものである。
【0002】
【従来の技術】
冷凍・冷蔵・空調システムの冷媒流量を制御する電動式コントロールバルブとして、弁ハウジングに回り止め状態で軸線方向に移動可能に雌ねじ部材が設けられ、雌ねじ部材にステッピングモータのロータに連結された雄ねじ部材がねじ係合し、ロータの回転によって雌ねじ部材が軸線方向に移動し、雌ねじ部材に所定範囲のみ軸線方向に移動可能に設けられた弁体によって弁ハウジングの弁室底面に形成された弁ポートを開閉するものがある(例えば、特許文献1)。
【0003】
この電動式コントロールバルブでは、雌ねじ部材が弁体ホルダをなし、弁閉状態で、雌ねじ部材が弁室底面に当接してそれ以上の弁閉方向の軸線方向移動を高剛性で確実に拘束され、この拘束状態で、それ以上の弁閉方向のロータ回転が雄ねじ部材の軸線方向移動によって許容されることにより、弁閉点でのステッピングモータの位相合わせ、すなわち基点出しが再現性よく的確に行われる。
【0004】
【特許文献1】
特開2001−343083号公報
【0005】
【発明が解決しようとする課題】
上述した従来の電動式コントロールバルブでは、雌ねじ部材の回り止めが、雌ねじ部材の外周面に形成された凹溝と前記弁ハウジング側の固定部材に設けられた回り止め帯状部との軸線方向滑り係合に行われ。この場合、雌ねじ部材が軸線方向には移動できるよう、凹溝の横幅は回り止め帯状部の横幅より少し大きく、回り止め帯状部と凹溝との間に回転方向の必須の間隙がある。
【0006】
このため、基点出しにおいて、ロータの回転が反転するとき、ロータの反転に伴い雄ねじ部材と共に雌ねじ部材が、回り止め部の回転方向の必須の間隙分(がた分)、回転方向に動き、凹溝の溝側面が回り止め帯状部の一側面に衝突することが生じる。このため、振動、衝突音が生じ、電動式コントロールバルブの耐久性、動作静粛性が阻害される。
【0007】
この発明は、上述の如き問題点を解消するためになされたもので、ロータの回転反転時に生じる雌ねじ部材の回り止め部の衝突に起因する振動、衝突音の発生を回避し、優れた耐久性、動作静粛性を示す電動式コントロールバルブを提供することを目的としている。
【0008】
【課題を解決するための手段】
上述の目的を達成するために、この発明による電動式コントロールバルブは、弁室と弁室底面に開口した弁ポートとを有する弁ハウジングと、前記弁ハウジングに回り止め状態で軸線方向に移動可能に設けられ、軸線方向移動によって一端面にて前記弁室底面に当接する雌ねじ部材と、前記雌ねじ部材に所定範囲のみ軸線方向に移動可能に設けられ、前記弁室底面の側の軸線方向移動によって前記弁ポートを閉じ、前記弁室底面とは反対方向の軸線方向移動によって前記弁ポートを開く弁体と、前記弁体を前記雌ねじ部材に対して前記弁室底面の側に付勢する弁ばねと、前記雌ねじ部材とねじ係合した雄ねじ部材と、多極着磁のロータとステータとを含み、前記ロータのボス部を前記雄ねじ部材に固定連結され、前記雄ねじ部材を回転駆動するステッピングモータとを有し、前記雌ねじ部材の回り止めが、当該雌ねじ部材と前記弁ハウジング側の固定部材とに軸線方向に延在形成された凹溝と回り止め帯状部との軸線方向滑り係合に行われ、前記凹溝と前記回り止め帯状部との間に、前記凹溝の一方の溝側面を前記回り止め帯状部の一側面に押し付けるばね等による押付手段が設けられている。
【0009】
この発明による電動式コントロールバルブによれば、押付手段によって凹溝の一方の溝側面が回り止め帯状部の一側面に予め押し付けられ、ロータの回転反転時に凹溝の溝側面が回り止め帯状部の一側面に衝突することがない。
【0010】
この発明による電動式コントロールバルブは、詳細構造として、前記固定部材が周方向の複数位置に各々前記回り止め帯状部を有する円筒籠状のガイド部材であって内側に前記雌ねじ部材を軸線方向に移動可能に収容し、前記凹溝が雌ねじ部材の外周面に形成され、前記押付手段として前記凹溝と前記回り止め帯状部との間に弾性変形状態で挟まれた板ばねが設けられている。
【0011】
この発明による電動式コントロールバルブによれば、板ばねによって雌ねじ部材外周の凹溝の一方の溝側面がガイド部材の回り止め帯状部の一側面に予め押し付けられ、ロータの回転反転時に凹溝の溝側面が回り止め帯状部の一側面に衝突することがない。
【0012】
また、上述の目的を達成するために、この発明による電動式コントロールバルブは、弁室と弁室底面に開口した弁ポートとを有する弁ハウジングと、前記弁ハウジングに回り止め状態で軸線方向に移動可能に設けられ、軸線方向移動によって一端面にて前記弁室底面に当接する雌ねじ部材と、前記雌ねじ部材に所定範囲のみ軸線方向に移動可能に設けられ、前記弁室底面の側の軸線方向移動によって前記弁ポートを閉じ、前記弁室底面とは反対方向の軸線方向移動によって前記弁ポートを開く弁体と、前記弁体を前記雌ねじ部材に対して前記弁室底面の側に付勢する弁ばねと、前記雌ねじ部材とねじ係合した雄ねじ部材と、多極着磁のロータとステータとを含み、前記ロータのボス部に固定連結されている前記雄ねじ部材を回転駆動するステッピングモータと、前記雄ねじ部材を前記ロータ及び前記ロータのボス部を介して前記弁室底面の側に付勢する第1のばねと、前記雌ねじ部材を前記弁室底面の側とは反対の側に付勢する第2のばねとを有し、前記雌ねじ部材の回り止めが、当該雌ねじ部材と前記弁ハウジング側の固定部材とに軸線方向に延在形成された凹溝と回り止め帯状部との軸線方向滑り係合に行われ、弁閉反転時に前記雌ねじ部材が弁開方向に回転変位することを阻止するねじ面摩擦力が前記雌ねじ部材と前記雄ねじ部材のねじ係合面に作用するよう前記第1のばねのばね荷重と前記第2のばねのばね荷重が設定されている。
【0013】
この発明による電動式コントロールバルブによれば、第1のばねのばね荷重と第2のばねのばね荷重の最適設定により、弁閉反転時に雌ねじ部材が弁開方向に回転変位することを阻止するねじ面摩擦力が雌ねじ部材と雄ねじ部材のねじ係合面に作用し、弁閉反転時に雌ねじ部材が弁開方向に回転変位しないので、ロータの回転反転時に凹溝の溝側面が回り止め帯状部の一側面に衝突することがない
【0014】
このばね荷重の最適設定は、下式を満たすように行われればよい。
Fu>Q・tanβ−Fn(1+μh/(A・cosβ))
A=(μm−μh)cosβ−(μm・μh+1)sinβ
但し、Fu:第1のばねのばね荷重
Fn:第2のばねのばね荷重
Q:反転時の接線方向の力
β:ねじリード角
μm:ねじ面の摩擦係数
μh:弁ハウジング固定側と雌ねじ部材の摩擦係数
【0015】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。
図1〜図4はこの発明による電動式コントロールバルブの実施形態1を示している。
【0016】
図1に示されているように、電動式コントロールバルブは弁ハウジング10を有している。弁ハウジング10には、一次側ポート11、二次側ポート12、弁室13、弁ポート14が形成されている。弁ポート14は、弁室13の平らな弁室底面15の中央部に開口し、一次側ポート11と二次側ポート12とを連通している。一次側ポート11には一次側継手16が、二次側ポート12には二次側継手17が各々接続されている。
【0017】
弁室13は上方開口の円孔形状をなしており、弁室13には中空軸状の雌ねじ部材18の下側部分が軸線方向に移動可能に挿入されている。雌ねじ部材18は、軸線方向移動によって下端面18Aにて弁室底面15に当接し、それ以上の降下(弁閉方向の移動)を拘束される。
【0018】
雌ねじ部材18は、弁体19を軸線方向に移動可能に吊り下げ式に支持し、弁体ホルダをなしている。弁体19は、フランジ部19Aが雌ねじ部材18の中空孔18Bの段差部18Cに当接することによって雌ねじ部材18より軸線方向に移動可能に吊り下げ支持され、後述する弁ばね20によって下方(弁閉方向)に付勢されている。弁体19は、雌ねじ部材18の下部より弁室底面15の側(下方)に突出したニードル部19Bによって弁ポート14を開閉し、軸線方向位置に応じて弁ポート14の開度を定量的に増減する。
【0019】
弁ハウジング10の上面には、一つの固定部材として、円筒籠状のカイド部材21がかしめ結合されている。ガイド部材21は軸線方向に延在する脚状の回り止め帯状部21Aを周方向に隔置した位置に3個有している。
【0020】
雌ねじ部材18の上側部分は上部大径部18Eとして弁室13より弁ハウジング10の上方に突出してガイド部材21の内側に軸線方向に移動可能に収容されている。雌ねじ部材18の上部大径部18Eの外周面には各々軸線方向に延在する3個の回り止め凹溝18Dが形成されており、回り止め凹溝18Dが回り止め帯状部21Aに滑りキー式に軸線方向滑り係合している。この軸線方向滑り係合により、雌ねじ部材18が弁ハウジング10に対して軸線方向には移動可能な状態に状態で、回り止めされる。回り止め凹溝18Dの横幅Waは回り止め帯状部21Aの横幅Wbより充分大きく設定されている(図4参照)
【0021】
雌ねじ部材18の上部大径部18Eには押付手段としての板ばね部材34が取り付けられている。板ばね部材34は、リング状基板部34Aと、リング状基板部34Aより折曲起立した3個のくの字形のばね片部34Bとを有している。図2に示されているように、板ばね部材34は、リング状基板部34Aにて雌ねじ部材18の外周に嵌合し、後述の下ばね35によって上部大径部18Eの段差底面18Fに押し付けられ、ばね片部34Bが各々回り止め凹溝18Dと回り止め帯状部21Aとの間に弾性変形状態で挟み込まれている(図3、4参照)。
【0022】
ばね片部34Bのばね力により、図4に示されているように、雌ねじ部材18の外周に形成されている回り止め凹溝18Dの一方の溝側面18Gがガイド部材21の回り止め帯状部21Aの一側面21Bに予め押し付けられる。
【0023】
図1に示されているように、雌ねじ部材18の中空孔18Bの上側部分は雌ねじ孔22になっている。雌ねじ孔22には雄ねじ部材23の雄ねじ部24がねじ係合している。弁ばね20は、圧縮コイルばねであって、中空孔18B内の雄ねじ部24と弁体19との間に挟み設けられ、弁体19を雌ねじ部材18に対して弁室底面15の側に付勢している。
【0024】
雌ねじ部材18の段差底面18F(図2参照)と弁ハウジング10との間には圧縮コイルばねによる下ばね(第2のばね)35が設けられている。下ばね35は所定のばね荷重を与えられて雌ねじ部材18を弁室底面15とは反対側(上方)に付勢している。
【0025】
雄ねじ部材23は、雄ねじ部24より上側に、フランジ部25と上部軸部23Aとを一体形成されている。上部軸部23Aは、ガイド部材21の上面部がなす固定側ストッパ部26の中心孔26A(図2参照)を貫通し、ステッピングモータ50のロータ51の中心部にインサート成形されたボス部52に固着嵌合している。この固着嵌合により、ロータ51のボス部52に雄ねじ部材23が固定連結されている。弁ハウジング10の上部には下蓋29によってキャン形状のロータケース30が固定されており、ロータ51やガイド部材21がロータケース30内に収納されている。
【0026】
固定側ストッパ部26は、軸線方向に見て雌ねじ部材18とロータ51のボス部52との間にあり、図2に示されているように、上下両面が各々衝突式ストッパのストッパ面26A、26Bになっている。
【0027】
フランジ部25は、固定側ストッパ部26より雌ねじ部材18の側(下側)にあり、高滑性樹脂製の滑りワッシャ27を挟んで固定側ストッパ部材26の下面側のストッパ面26Bに当接することにより、ロータ51と雄ねじ部材23との連結体が弁室底面15とは反対方向の軸線方向(弁開方向)に移動することを禁止する。
【0028】
図1に示されているように、雄ねじ部材23の上部軸部23Aにはスペーサ28が装着されている。スペーサ28は、高滑性樹脂により構成され、固定側ストッパ部26よりボス部52の側(上側)にあり、上端面にてボス部52の下底面に当接し、下端側に形成された円環状突起28A(図1参照)にて滑りワッシャ27の上面に当接し、周面中程に形成されているフランジ部28Bの下面28C(図2参照)が固定側ストッパ部材26の上面側のストッパ面26Aに当接することにより、ロータ51と雄ねじ部材23との連結体が、それ以上、弁室底面15の側に軸線方向(弁閉方向)に移動することを禁止する。
【0029】
滑りワッシャ27の上面とフランジ部28Bの下面28Cとの軸線方向間隔は固定側ストッパ部26の板厚より大きく、その差分だけ、ロータ51と雄ねじ部材23との連結体が弁ハウジング10に対して軸線方向に移動可能になっている。換言すれば、ロータ51と雄ねじ部材23との連結体の弁ハウジング10に対する軸線方向移動が上述の差分により決まる所定範囲に制限されている。
【0030】
ボス部52は上部延長軸部52Aを有し、上部延長軸部52Aは、ロータケース30内の天井部に凹凸係合した軸受部材31に回転可能且つ軸線方向に移動可能に嵌合し、軸受部材31より軸受け支持されている。この軸受け支持により、ロータ51と雄ねじ部材23との連結体の中心位置確保(支持)が行われる。
【0031】
軸受部材31のフランジ部31Aとロータ51との間には圧縮コイルばねによる上ばね(第1のばね)32が設けられている。上ばね32は、所定のばね荷重を与えられてロータ51と雄ねじ部材23との連結体を弁室底面15の側(下方)に付勢し、このことによって、雄ねじ部材23をロータ51及びそのボス部52を介して弁室底面15の側に付勢している。
【0032】
ロータ51は、ロータケース30内に収納されて外周面部を周方向に等間隔に多極着磁されている。ロータケース30の外周部にはステッピングモータ50のステータ組立体53が装着されている。ステータ組立体53は、上下2段のステータコイル54、複数個の磁極歯56、電気コネクタ部57等を有し、位置決め片58が弁ハウジング10に固定された位置決めピン33に係合することにより、周方向の位置決めを行われている。
【0033】
つぎに、上述の構成による電動式コントロールバルブの動作について説明する。
弁閉動作時には、スペーサ28のフランジ部28Bの下面28Cが固定側ストッパ部材26の上面側のストッパ面26Aに当接した状態で、ロータ51と雄ねじ部材23の連結体が弁閉方向に回転し、雄ねじ部24と雌ねじ孔22とのねじ係合により雌ねじ部材18、弁体19が降下(弁室底面15側への軸線方向移動)する。
【0034】
この降下によって弁体19のニードル部19Bが弁ポート14を閉じ、ニードル部19と弁ポート14との係合により弁体19の降下が止まる。これより更にロータ51と雄ねじ部材23の連結体が同方向に回転することにより、雌ねじ部材18が引き続き降下する。
【0035】
この降下によって雌ねじ部材18の下端面18Aが弁室底面15に当接し、それ以上の降下を拘束される。これより更にロータ51と雄ねじ部材23の連結体が同方向に回転することにより、ロータ51と雄ねじ部材23の連結体が上ばね32のばね力に抗して上昇移動し始める。
【0036】
この上昇は、高滑性ワッシャ27の上面が固定側ストッパ部材26の下面側のストッパ面26Bに当接するまで、所定範囲内で行われ、弁閉点での基点出しが行われる。
【0037】
弁閉状態では、スペーサ28のフランジ部28Bの下面28Cが固定側ストッパ部材26の上面側のストッパ面26Aより離れており、この状態で、ロータ51と雄ねじ部材23の連結体が弁開方向に回転すると、雄ねじ部24と雌ねじ孔22とのねじ係合によって、まず、ロータ51と雄ねじ部材23の連結体が降下移動する。
【0038】
この降下に伴いスペーサ28も降下し、スペーサ28のフランジ部28Bの下面28Cが固定側ストッパ部材26の上面側のストッパ面26Aに当接すると、ロータ51と雄ねじ部材23の連結体が降下移動が止まる。
【0039】
これより更に、ロータ51と雄ねじ部材23の連結体が同方向に回転することにより、雌ねじ部材18が上昇し始め、雌ねじ部材18の段差部18Cが弁体19のフランジ部19Aに係合することにより、雌ねじ部材18の上昇移動に伴い弁体19が持ち上げられ、弁開する。
【0040】
上述した弁開閉動作において、下ばね35は、常に雌ねじ部材18を持ち上げる方向に作用し、雄ねじ部24と雌ねじ孔22とのねじ係合面(当接面)を一方の面とし、ねじがた(間隙)による流量制御の影響をなくしている。上ばね32は、ロータ51と雄ねじ部材23の連結体に下向きに作用し、ロータ反転後に、ばね荷重が、即座に雄ねじ部24と雌ねじ孔22とのねじ係合部、および雌ねじ部材18の下端面18Aと弁室底面15との当接部に作用する。
【0041】
基点出しにおけるロータ反転時には、雌ねじ部材18がガイド部材21に対して反転回転しようとするが、ばね片部34Bのばね力により、雌ねじ部材18の回り止め凹溝18Dの一方の溝側面18Gがガイド部材21の回り止め帯状部21Aの一側面21Bに予め押し付けられるから、雌ねじ部材18の回転が抑えられ、このロータ反転時に、回り止め凹溝18Dの他方の溝側面18Hが回り止め帯状部21Aの他側面21Cに勢いよく衝突することや、回り止め凹溝18Dの一方の溝側面18Gが回り止め帯状部21Aの一側面21Bに勢いよく衝突することが未然に回避される。
【0042】
これにより、基点出し時等のロータ反転時に、衝突音や振動が生じることがなくなり、優れた動作静粛性、耐久性が得られるようになる。
【0043】
図5はこの発明による電動式コントロールバルブの実施形態2を示している。なお、図5において、図1に対応する部分は、図1に付した符号と同一の符号を付けて、その説明を省略する。
【0044】
実施形態2の実施形態1との相違は、実施形態2では、板ばね部材34が省略され、弁閉反転時に雌ねじ部材18が弁開方向に回転変位することを阻止するねじ面摩擦力が雄ねじ部24と雌ねじ孔22とのねじ係合面に作用するよう、上ばね32のばね荷重と下ばね35のばね荷重が設定されていることである。
【0045】
この上ばね32のばね荷重と下ばね35のばね荷重の最適設定について、図6に示されているモデル図を参照して説明する。
まず、各記号を下記の通り定義する。
Fu:上ばね32のばね荷重
Fn:下ばね35のばね荷重
P:雄ねじ−雌ねじ間の抗力
Q:反転時の接線方向の力
β:雄ねじ部24と雌ねじ孔22のねじリード角
μm:ねじ面の摩擦係数
fm:ねじ面の摩擦力
μh:本体底部(弁室底面15)と雌ねじ部材18の摩擦係数
fh:本体底部(弁室底面15)と雌ねじ部材18の摩擦力
N:本体底部(弁室底面15)と雌ねじ部材18との間の抗力
Q:雌ねじに作用する水平方向の力
【0046】
まず、雌ねじのねじ面と垂直方向における力の釣合を考える。
P−Fu・cosβ−Fn・cosβ+Q・sinβ=0 …(1)
雌ねじのねじ面に生じる摩擦力fmは、
fm=μm・P …(2)
=μm(Fu・cosβ+Fn・cosβ−Q・sinβ) …(3)
本体底部(弁室底面15)と雌ねじ部材18との摩擦力fhは、

Figure 0004217470
【0047】
ここで、雌ねじに作用する本体底部(弁室底面)との水平方向の力Mについて考える。
M=fm・cosβ−P・sinβ±fh …(6)
この時、雌ねじが図6の右方向に動く条件を求めると、
M>0
∴fm・cosβ−P・sinβ−fh>0 …(7)
(7)式に(5)式を代入する。
fm・cosβ−P・sinβ−{μh(P・cosβ+fm・sinβ−Fn)}>0 …(8)
【0048】
fmについてまとめる。
fm(cosβ−μh・sinβ)−P・sinβ−{μh(P・cosβ−Fn)}>0 …(9)
(9)式に(2)式を代入する。
μm・P(cosβ−μh・sinβ)−P・sinβ−{μh(P・cosβ−Fn)}>0 …(10)
【0049】
Pについてまとめる。
P(μm・cosβ−μm・μh・sinβ)−P・sinβ−P・μh・cosβ+μh・Fn>0 …(11)
P{(μm−μh)cosβ−(μm・μh+1)sinβ}+μh・Fn>0 …(12)
ここで、(12)式の{}のなかを、
(μm−μh)cosβ−(μm・μh+1)sinβ=A…(13)
と置くと、
P・A+μh・Fn>0 …(14)
【0050】
更に、(2)、(3)式より、
P=Fu・cosβ+Fn・cosβ−Q・sinβ …(15)
、であり、これを(14)式に代入すると、
(Fu・cosβ+Fn・cosβ−Q・sinβ)・A+μh・Fn>0 …(16)
となる。
これを展開して整理する。
Fu・A・cosβ+Fn(A・cosβ+μh)−Q・sinβ・A>0 …(17)
【0051】
ここで、Aの正負を求める。
A<0と、仮定すると、(13)式より、
(μm−μh)cosβ−(μm・μh+1)sinβ<0…(18)
μm−μh−(μm・μh+1)tanβ<0…(19)
μm、μhは、ともに樹脂−金属間の摩擦係数であるので、μm=μhとすると、μm−μh=0より、(19)式は、
−(μm・μh+1)tanβ<0…(20)
μm>0、μh>0、ねじリード角β=8.39°で、tanβ=0.147>0であるので、(20)式が成立する。よって、A<0の仮定も成立する。
【0052】
A<0であるから、(17)式は、
Fu・A・cosβ>Q・sinβ・A−Fn(A・cosβ+μh)…(21)
Fu<Q・tanβ−Fn(1+μh/(A・cosβ)) …(22)
となる。
これは、雌ねじが右方向に動く条件であるので、逆に右方向に動かない条件は下式(23)で表される。
Fu>Q・tanβ−Fn(1+μh/(A・cosβ)) …(23)
【0053】
以上により、ロータ反転時に雌ねじが右方向(CCW方向)に動かないためには、上ばね荷重Fuが、Q・tanβ−Fn(1+μh/(A・cosβ))の値以上であればよい。
【0054】
上述した上ばね32のばね荷重と下ばね35のばね荷重の最適設定により、弁閉反転時に雌ねじ部材18が弁開方向に回転変位することを阻止するねじ面摩擦力が雄ねじ部24と雌ねじ孔22とのねじ係合面に作用し、ロータ反転時に雌ねじ部材18が動かなくなる。
【0055】
これにより、基点出し時等のロータ反転時に、衝突音や振動が生じることがなくなり、優れた動作静粛性、耐久性が得られるようになる。
【0056】
【発明の効果】
以上の説明から理解される如く、この発明による電動式コントロールバルブによれば、板ばねによる雌ねじ部材の回転方向の付勢やばね荷重の適正化により、基点出し時等のロータ反転時に、衝突音や振動が生じることがなくなり、優れた動作静粛性、耐久性が得られるようになる。
【図面の簡単な説明】
【図1】 この発明による電動式コントロールバルブの実施形態1を示す縦断面図である。
【図2】 この発明による電動式コントロールバルブの実施形態1の要部の分解斜視図である。
【図3】 この発明による電動式コントロールバルブの実施形態1の要部の拡大正面図である。
【図4】 この発明による電動式コントロールバルブの実施形態1の要部の拡大側面図である。
【図5】 この発明による電動式コントロールバルブの実施形態2を示す縦断面図である。
【図6】 この発明による電動式コントロールバルブの実施形態2におけるばね荷重適正化の計算モデル図である。
【符号の説明】
10 弁ハウジング
11 一次側ポート
12 二次側ポート
13 弁室
14 弁ポート
15 弁室底面
18 雌ねじ部材
18D 回り止め凹溝
19 弁体
20 弁ばね
21 ガイド部材
21A 回り止め帯状部
23 雄ねじ部材
25 フランジ部
26 固定側ストッパ部
28 スペーサ
32 上ばね(第1のばね)
34 板ばね部材
35 下ばね(第2のばね)
50 ステッピングモータ
51 ロータ
52 ボス
53 ステータ組立体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric control valve, and more particularly to an electric control valve that controls a refrigerant flow rate in a refrigeration / refrigeration / air conditioning system.
[0002]
[Prior art]
As an electric control valve that controls the flow rate of refrigerant in a refrigeration / refrigeration / air conditioning system, a male screw member is provided in the valve housing so as to be movable in the axial direction in a non-rotating state, and the female screw member is connected to the rotor of the stepping motor The valve port formed on the bottom surface of the valve chamber of the valve housing by a valve body provided so that the female screw member is moved in the axial direction by rotation of the rotor and the female screw member is movable in the axial direction only within a predetermined range. There is one that opens and closes (for example, Patent Document 1).
[0003]
In this electric control valve, the female screw member forms a valve body holder, and in the valve closed state, the female screw member abuts against the bottom of the valve chamber, and further axial movement in the valve closing direction is reliably restrained with high rigidity. In this constrained state, further rotation of the rotor in the valve closing direction is permitted by the axial movement of the male screw member, so that the phase adjustment of the stepping motor at the valve closing point, that is, the reference point is accurately performed with good reproducibility. .
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-343083
[Problems to be solved by the invention]
In the conventional electric control valve described above, the rotation prevention of the female screw member is an axial sliding engagement between the concave groove formed on the outer peripheral surface of the female screw member and the rotation stopper band portion provided on the fixing member on the valve housing side. Done in case. In this case, the lateral width of the concave groove is slightly larger than the lateral width of the detent band-shaped portion so that the female screw member can move in the axial direction, and there is an essential gap in the rotational direction between the detent band-shaped portion and the concave groove.
[0006]
For this reason, when the rotation of the rotor is reversed in the reference point finding, the female screw member together with the male screw member moves in the rotational direction of the rotation preventing portion in the rotational direction along with the rotation of the rotor. The groove side surface of the groove may collide with one side surface of the detent band-shaped portion. For this reason, vibration and collision noise are generated, and the durability and quiet operation of the electric control valve are hindered.
[0007]
The present invention has been made to solve the above-described problems, and avoids the occurrence of vibration and collision noise caused by the collision of the rotation-preventing portion of the female screw member that occurs when the rotation of the rotor is reversed, and has excellent durability. An object of the present invention is to provide an electric control valve that exhibits quiet operation.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an electric control valve according to the present invention has a valve housing having a valve chamber and a valve port opened at the bottom of the valve chamber, and is movable in the axial direction in a non-rotating state with respect to the valve housing. A female screw member that is in contact with the bottom surface of the valve chamber at one end surface by axial movement, and is provided in the female screw member so as to be movable in the axial direction only within a predetermined range, and by the axial movement on the valve chamber bottom side, A valve body that closes the valve port and opens the valve port by an axial movement opposite to the bottom surface of the valve chamber; and a valve spring that biases the valve body toward the bottom surface of the valve chamber with respect to the female screw member. A male screw member screw-engaged with the female screw member, a multi-pole magnetized rotor and a stator, and a boss portion of the rotor is fixedly connected to the male screw member, and the male screw member is driven to rotate. A stepping motor, and the rotation stop of the female screw member is an axial sliding engagement between a concave groove formed in the axial direction on the female screw member and the fixing member on the valve housing side, and a rotation belt-like portion. And a pressing means using a spring or the like that presses one groove side surface of the concave groove against one side surface of the anti-rotation belt-like portion is provided between the concave groove and the anti-rotation belt-like portion.
[0009]
According to the electric control valve of the present invention, one groove side surface of the groove is pressed against one side surface of the non-rotating belt-like portion in advance by the pressing means, and the groove side surface of the groove is There is no collision with one side.
[0010]
In the electric control valve according to the present invention, as a detailed structure, the fixing member is a cylindrical rod-shaped guide member having the detent belt-like portions at a plurality of positions in the circumferential direction, and the female screw member is moved in the axial direction inside. The concave groove is formed on the outer peripheral surface of the female screw member, and a leaf spring sandwiched in an elastically deformed state between the concave groove and the detent belt-like portion is provided as the pressing means.
[0011]
According to the electric control valve of the present invention, one groove side surface of the concave groove on the outer periphery of the female screw member is pressed against one side surface of the guide member by the leaf spring in advance, and the groove of the concave groove is rotated when the rotor is rotated and reversed. The side surface does not collide with one side surface of the detent belt-shaped portion.
[0012]
In order to achieve the above-described object, an electric control valve according to the present invention includes a valve housing having a valve chamber and a valve port opened on the bottom surface of the valve chamber, and moves in the axial direction in a non-rotating state with respect to the valve housing. An internal thread member that comes into contact with the bottom surface of the valve chamber at one end surface by axial movement, and is movable in the axial direction only within a predetermined range on the internal thread member, and moves axially on the bottom side of the valve chamber A valve body that closes the valve port and opens the valve port by an axial movement opposite to the valve chamber bottom surface, and a valve that biases the valve body toward the valve chamber bottom surface with respect to the female screw member a spring, and the female screw member and the screw engagement with the externally threaded member, and a multi-pole magnetization of the rotor and the stator, to rotate the front Symbol male screw member that is fixedly coupled to the boss portion of the rotor stearate Ping motor and a first spring for urging the side of the valve chamber bottom surface of the male screw member through the boss portion of the rotor and the rotor, the side opposite to the side of the valve chamber bottom surface of the female screw member A female spring member that has a second spring that is urged against the female screw member, and the female screw member and a fixing member on the valve housing side are formed in a groove extending in the axial direction and a detent belt-like portion. The screw surface frictional force is applied to the screw engagement surfaces of the female screw member and the male screw member to prevent the female screw member from being rotationally displaced in the valve opening direction when the valve is closed. A spring load of the first spring and a spring load of the second spring are set.
[0013]
According to the electric control valve of the present invention, the screw that prevents the female screw member from being rotationally displaced in the valve opening direction when the valve is reversed by the optimum setting of the spring load of the first spring and the spring load of the second spring. Since the surface frictional force acts on the screw engaging surfaces of the female screw member and the male screw member, and the female screw member does not rotate and displace in the valve opening direction when the valve is closed , the groove side surface of the concave groove is There is no collision with one side .
[0014]
The optimum setting of the spring load may be performed so as to satisfy the following expression.
Fu> Q · tan β-Fn (1 + μh / (A · cos β))
A = (μm−μh) cosβ− (μm · μh + 1) sinβ
Where Fu: spring load of the first spring Fn: spring load of the second spring Q: force in the tangential direction during reversal β: screw lead angle μm: friction coefficient μh of the screw surface: valve housing fixed side and female screw member Friction coefficient of
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
1 to 4 show Embodiment 1 of an electric control valve according to the present invention.
[0016]
As shown in FIG. 1, the motorized control valve has a valve housing 10. In the valve housing 10, a primary side port 11, a secondary side port 12, a valve chamber 13, and a valve port 14 are formed. The valve port 14 opens at the center of the flat valve chamber bottom surface 15 of the valve chamber 13, and communicates the primary side port 11 and the secondary side port 12. A primary side joint 16 is connected to the primary side port 11, and a secondary side joint 17 is connected to the secondary side port 12.
[0017]
The valve chamber 13 has a circular shape with an upper opening, and a lower portion of the hollow shaft-shaped female screw member 18 is inserted into the valve chamber 13 so as to be movable in the axial direction. The female screw member 18 abuts on the valve chamber bottom surface 15 at the lower end surface 18A by movement in the axial direction, and is further restrained from descending (moving in the valve closing direction).
[0018]
The female screw member 18 supports the valve body 19 in a suspended manner so as to be movable in the axial direction, and forms a valve body holder. The valve body 19 is suspended and supported so as to be movable in the axial direction from the female screw member 18 by the flange portion 19A coming into contact with the stepped portion 18C of the hollow hole 18B of the female screw member 18, and is lowered (valve closed) by a valve spring 20 described later. Direction). The valve body 19 opens and closes the valve port 14 by a needle portion 19B protruding from the lower part of the female screw member 18 toward the valve chamber bottom surface 15 (downward), and the opening degree of the valve port 14 is quantitatively determined according to the axial position. Increase or decrease.
[0019]
A cylindrical rod-shaped guide member 21 is caulked and coupled to the upper surface of the valve housing 10 as one fixing member. The guide member 21 has three leg-shaped detent belt-like portions 21A extending in the axial direction at positions spaced in the circumferential direction.
[0020]
The upper portion of the female screw member 18 projects as an upper large diameter portion 18E from the valve chamber 13 above the valve housing 10, and is accommodated inside the guide member 21 so as to be movable in the axial direction. Three anti-rotation grooves 18D extending in the axial direction are formed on the outer peripheral surface of the upper large-diameter portion 18E of the female screw member 18, and the anti-rotation grooves 18D are slip-key type on the anti-rotation belt portion 21A. Axial sliding engagement. By this axial sliding engagement, the female screw member 18 is prevented from rotating in a state where it can move in the axial direction with respect to the valve housing 10. The lateral width Wa of the non-rotating recess groove 18D is set to be sufficiently larger than the lateral width Wb of the detent band portion 21A (see FIG. 4).
[0021]
A leaf spring member 34 as a pressing means is attached to the upper large-diameter portion 18E of the female screw member 18. The leaf spring member 34 has a ring-shaped substrate portion 34A and three dog-shaped spring piece portions 34B bent up from the ring-shaped substrate portion 34A. As shown in FIG. 2, the leaf spring member 34 is fitted to the outer periphery of the female screw member 18 at the ring-shaped substrate portion 34A and pressed against the step bottom surface 18F of the upper large diameter portion 18E by the lower spring 35 described later. Each of the spring pieces 34B is sandwiched in an elastically deformed state between the anti-rotation concave groove 18D and the anti-rotation belt-like portion 21A (see FIGS. 3 and 4).
[0022]
Due to the spring force of the spring piece portion 34B, as shown in FIG. 4, one groove side surface 18G of the non-rotating concave groove 18D formed on the outer periphery of the female screw member 18 is a non-rotating belt-like portion 21A of the guide member 21. Is pressed against one side surface 21B in advance.
[0023]
As shown in FIG. 1, the upper part of the hollow hole 18 </ b> B of the female screw member 18 is a female screw hole 22. A male screw portion 24 of a male screw member 23 is screwed into the female screw hole 22. The valve spring 20 is a compression coil spring, and is sandwiched between the male threaded portion 24 and the valve body 19 in the hollow hole 18B. The valve body 19 is attached to the female thread member 18 on the valve chamber bottom surface 15 side. It is fast.
[0024]
A lower spring (second spring) 35 formed by a compression coil spring is provided between the step bottom surface 18F (see FIG. 2) of the female screw member 18 and the valve housing 10. The lower spring 35 is given a predetermined spring load and urges the female screw member 18 to the side opposite to the valve chamber bottom surface 15 (upward).
[0025]
The male screw member 23 is integrally formed with a flange portion 25 and an upper shaft portion 23 </ b> A above the male screw portion 24. The upper shaft portion 23 </ b> A passes through a center hole 26 </ b> A (see FIG. 2) of the stationary stopper portion 26 formed by the upper surface portion of the guide member 21, and is a boss portion 52 that is insert-molded at the center portion of the rotor 51 of the stepping motor 50. Is fixedly fitted. The male screw member 23 is fixedly connected to the boss portion 52 of the rotor 51 by this fixed fitting. A can-shaped rotor case 30 is fixed to the upper portion of the valve housing 10 by a lower lid 29, and the rotor 51 and the guide member 21 are accommodated in the rotor case 30.
[0026]
The fixed-side stopper portion 26 is between the female screw member 18 and the boss portion 52 of the rotor 51 as viewed in the axial direction, and as shown in FIG. 26B.
[0027]
The flange portion 25 is closer to the female screw member 18 (lower side) than the fixed-side stopper portion 26, and abuts against a stopper surface 26B on the lower surface side of the fixed-side stopper member 26 with a sliding washer 27 made of high-sliding resin interposed therebetween. Thus, the connecting body of the rotor 51 and the male screw member 23 is prohibited from moving in the axial direction (valve opening direction) opposite to the valve chamber bottom surface 15.
[0028]
As shown in FIG. 1, a spacer 28 is attached to the upper shaft portion 23 </ b> A of the male screw member 23. The spacer 28 is made of a highly slippery resin, is located closer to the boss portion 52 (upper side) than the fixed-side stopper portion 26, contacts the lower bottom surface of the boss portion 52 at the upper end surface, and is formed on the lower end side. The lower surface 28C (see FIG. 2) of the flange portion 28B, which is in contact with the upper surface of the sliding washer 27 at the annular projection 28A (see FIG. 1) and is formed in the middle of the peripheral surface, is the upper surface side of the fixed stopper member 26 By contacting the stopper surface 26A, the connecting body of the rotor 51 and the male screw member 23 is further prevented from moving in the axial direction (valve closing direction) toward the valve chamber bottom surface 15 side.
[0029]
The axial distance between the upper surface of the sliding washer 27 and the lower surface 28C of the flange portion 28B is larger than the plate thickness of the fixed-side stopper portion 26, and the connection between the rotor 51 and the male screw member 23 is relative to the valve housing 10 by the difference. It can move in the axial direction. In other words, the axial movement of the coupling body of the rotor 51 and the male screw member 23 relative to the valve housing 10 is limited to a predetermined range determined by the above-described difference.
[0030]
The boss part 52 has an upper extension shaft part 52A, and the upper extension shaft part 52A is fitted to the bearing member 31 that is engaged with the ceiling in the rotor case 30 so as to be rotatable and movable in the axial direction. A bearing is supported by the bearing member 31. By this bearing support, the center position of the coupling body between the rotor 51 and the male screw member 23 is secured (supported).
[0031]
An upper spring (first spring) 32 formed by a compression coil spring is provided between the flange portion 31 </ b> A of the bearing member 31 and the rotor 51. Upper spring 32 is given a predetermined spring load urges the connected body of the rotor 51 and the male screw member 23 on the side (lower side) of the valve chamber bottom 15, by this, the male screw member 23 rotor 51 and its It is biased toward the valve chamber bottom surface 15 via the boss portion 52 .
[0032]
The rotor 51 is housed in the rotor case 30 and the outer peripheral surface portion is multipolarly magnetized at equal intervals in the circumferential direction. A stator assembly 53 of the stepping motor 50 is mounted on the outer periphery of the rotor case 30. The stator assembly 53 includes an upper and lower two-stage stator coil 54, a plurality of magnetic pole teeth 56, an electrical connector portion 57, and the like, and the positioning piece 58 is engaged with the positioning pin 33 fixed to the valve housing 10. , Circumferential positioning has been performed.
[0033]
Next, the operation of the electric control valve configured as described above will be described.
During the valve closing operation, the coupling body of the rotor 51 and the male screw member 23 rotates in the valve closing direction while the lower surface 28C of the flange portion 28B of the spacer 28 is in contact with the stopper surface 26A on the upper surface side of the stationary stopper member 26. The female screw member 18 and the valve body 19 are lowered (moved in the axial direction toward the valve chamber bottom surface 15 side) by the screw engagement between the male screw portion 24 and the female screw hole 22.
[0034]
Due to this lowering, the needle portion 19B of the valve body 19 closes the valve port 14, and the lowering of the valve body 19 is stopped by the engagement between the needle portion 19 and the valve port 14. Further, when the coupling body of the rotor 51 and the male screw member 23 rotates in the same direction, the female screw member 18 continues to descend.
[0035]
By this lowering, the lower end surface 18A of the female screw member 18 comes into contact with the valve chamber bottom surface 15, and further lowering is restrained. When the connecting body of the rotor 51 and the male screw member 23 further rotates in the same direction, the connecting body of the rotor 51 and the male screw member 23 starts to move upward against the spring force of the upper spring 32.
[0036]
This rise is performed within a predetermined range until the upper surface of the high-sliding washer 27 comes into contact with the stopper surface 26B on the lower surface side of the fixed-side stopper member 26, and the base point is determined at the valve closing point.
[0037]
In the valve closed state, the lower surface 28C of the flange portion 28B of the spacer 28 is separated from the stopper surface 26A on the upper surface side of the fixed stopper member 26. In this state, the coupling body of the rotor 51 and the male screw member 23 is in the valve opening direction. When rotating, first, the coupling body of the rotor 51 and the male screw member 23 moves downward by the screw engagement between the male screw portion 24 and the female screw hole 22.
[0038]
Along with this lowering, the spacer 28 is also lowered, and when the lower surface 28C of the flange portion 28B of the spacer 28 comes into contact with the stopper surface 26A on the upper surface side of the fixed-side stopper member 26, the coupling body of the rotor 51 and the male screw member 23 moves downward. Stop.
[0039]
Furthermore, when the coupling body of the rotor 51 and the male screw member 23 rotates in the same direction, the female screw member 18 starts to rise, and the stepped portion 18C of the female screw member 18 engages with the flange portion 19A of the valve body 19. As a result, the valve element 19 is lifted and opened as the female screw member 18 moves upward.
[0040]
In the valve opening / closing operation described above, the lower spring 35 always acts in the direction of lifting the female screw member 18, and the screw engagement surface (contact surface) between the male screw portion 24 and the female screw hole 22 is one surface, and the screw is twisted. The effect of flow control by (gap) is eliminated. The upper spring 32 acts downward on the coupling body of the rotor 51 and the male screw member 23, and the spring load is immediately applied to the screw engaging portion between the male screw portion 24 and the female screw hole 22 and the female screw member 18 after the rotor is reversed. It acts on the contact portion between the end face 18A and the valve chamber bottom face 15.
[0041]
At the time of reversing the rotor at the base point positioning, the female screw member 18 tries to rotate reversely with respect to the guide member 21. However, due to the spring force of the spring piece portion 34B, one groove side surface 18G of the non-rotating concave groove 18D of the female screw member 18 is guided. Since the inner screw member 18 is pressed against the one side surface 21B of the detent band 21A of the member 21 in advance, the rotation of the female screw member 18 is suppressed, and when the rotor is reversed, the other groove side surface 18H of the detent groove 18D It is avoided in advance that the other side surface 21C collides with force, and that one groove side surface 18G of the rotation-preventing concave groove 18D collides with one side surface 21B of the detent belt-like portion 21A.
[0042]
As a result, no collision noise or vibration is generated when the rotor is reversed such as when the reference point is set, and excellent operational quietness and durability can be obtained.
[0043]
FIG. 5 shows Embodiment 2 of the electric control valve according to the present invention. In FIG. 5, parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG.
[0044]
The difference between the second embodiment and the first embodiment is that, in the second embodiment, the leaf spring member 34 is omitted, and the screw surface frictional force that prevents the female screw member 18 from being rotationally displaced in the valve opening direction when the valve is closed is inverted. That is, the spring load of the upper spring 32 and the spring load of the lower spring 35 are set so as to act on the screw engaging surfaces of the portion 24 and the female screw hole 22.
[0045]
The optimum setting of the spring load of the upper spring 32 and the spring load of the lower spring 35 will be described with reference to the model diagram shown in FIG.
First, each symbol is defined as follows.
Fu: Spring load of upper spring 32 Fn: Spring load of lower spring 35 P: Drag force between male screw and female screw Q: Force in tangential direction during reversal β: Screw lead angle between male screw portion 24 and female screw hole 22 μm: Screw surface Friction coefficient fm: Friction force of screw surface μh: Friction coefficient fh of main body bottom (valve chamber bottom surface 15) and female screw member 18 Fr: Friction force of main body bottom (valve chamber bottom surface 15) and female screw member 18 N: Bottom of main body (valve Drag Q between the chamber bottom surface 15) and the female thread member 18: horizontal force acting on the female thread
First, consider the balance of forces in the direction perpendicular to the thread surface of the female thread.
P-Fu.cos .beta.-Fn.cos .beta. + Q.sin .beta. = 0 (1)
The frictional force fm generated on the thread surface of the female thread is
fm = μm · P (2)
= Μm (Fu · cosβ + Fn · cosβ−Q · sinβ) (3)
The frictional force fh between the bottom of the main body (valve chamber bottom 15) and the female screw member 18 is:
Figure 0004217470
[0047]
Here, the horizontal force M with the bottom of the main body (valve chamber bottom) acting on the female screw will be considered.
M = fm · cos β−P · sin β ± fh (6)
At this time, when the condition for the female screw to move to the right in FIG.
M> 0
∴fm · cos β-P · sin β-fh> 0 (7)
Substitute equation (5) into equation (7).
fm · cos β−P · sin β− {μh (P · cos β + fm · sin β−Fn)}> 0 (8)
[0048]
Summarize fm.
fm (cosβ-μh · sinβ) -P · sinβ- {μh (P · cosβ-Fn)}> 0 (9)
Substitute equation (2) into equation (9).
μm · P (cosβ−μh · sinβ) −P · sinβ− {μh (P · cosβ-Fn)}> 0 (10)
[0049]
Summarize P.
P (μm · cosβ−μm · μh · sinβ) −P · sinβ−P · μh · cosβ + μh · Fn> 0 (11)
P {(μm−μh) cosβ− (μm · μh + 1) sinβ} + μh · Fn> 0 (12)
Here, in {} of the equation (12),
(Μm−μh) cos β− (μm · μh + 1) sin β = A (13)
And put
P · A + μh · Fn> 0 (14)
[0050]
Furthermore, from equations (2) and (3)
P = Fu · cos β + Fn · cos β−Q · sin β (15)
And substituting this into equation (14),
(Fu.cos.beta. + Fn.cos.beta.-Q.sin.beta.). A + .mu.h.Fn> 0 (16)
It becomes.
Expand and organize this.
Fu · A · cosβ + Fn (A · cosβ + μh) −Q · sinβ · A> 0 (17)
[0051]
Here, the sign of A is obtained.
Assuming A <0, from equation (13):
(Μm−μh) cos β− (μm · μh + 1) sin β <0 (18)
μm−μh− (μm · μh + 1) tan β <0 (19)
Since μm and μh are both coefficients of friction between the resin and the metal, when μm = μh, from μm−μh = 0, the equation (19) is
− (Μm · μh + 1) tan β <0 (20)
Since μm> 0, μh> 0, screw lead angle β = 8.39 °, and tanβ = 0.147> 0, equation (20) is established. Therefore, the assumption of A <0 also holds.
[0052]
Since A <0, equation (17) is
Fu · A · cosβ> Q · sinβ · A-Fn (A · cosβ + μh) (21)
Fu <Q · tan β−Fn (1 + μh / (A · cos β)) (22)
It becomes.
Since this is a condition for the female screw to move in the right direction, the condition for not moving in the right direction is expressed by the following equation (23).
Fu> Q · tan β−Fn (1 + μh / (A · cos β)) (23)
[0053]
As described above, in order to prevent the female screw from moving in the right direction (CCW direction) when the rotor is reversed, the upper spring load Fu may be equal to or greater than the value of Q · tan β−Fn (1 + μh / (A · cos β)).
[0054]
Due to the optimal setting of the spring load of the upper spring 32 and the spring load of the lower spring 35 described above, the thread surface frictional force that prevents the female screw member 18 from being rotationally displaced in the valve opening direction at the time of reversing the valve closed is the male screw portion 24 and the female screw hole. It acts on the screw engaging surface with 22 and the female screw member 18 stops moving when the rotor is reversed.
[0055]
As a result, no collision noise or vibration is generated when the rotor is reversed such as when the reference point is set, and excellent operational quietness and durability can be obtained.
[0056]
【The invention's effect】
As can be understood from the above description, according to the electric control valve of the present invention, the impact sound is generated when the rotor is reversed, such as when the rotor is reversed, by biasing the rotational direction of the female screw member by the leaf spring and by optimizing the spring load. And no vibration is generated, and excellent operational quietness and durability can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing Embodiment 1 of an electric control valve according to the present invention.
FIG. 2 is an exploded perspective view of essential parts of Embodiment 1 of the electric control valve according to the present invention.
FIG. 3 is an enlarged front view of an essential part of Embodiment 1 of the electric control valve according to the present invention.
FIG. 4 is an enlarged side view of the main part of Embodiment 1 of the electric control valve according to the present invention.
FIG. 5 is a longitudinal sectional view showing Embodiment 2 of an electric control valve according to the present invention.
FIG. 6 is a calculation model diagram of spring load optimization in Embodiment 2 of the electric control valve according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Valve housing 11 Primary side port 12 Secondary side port 13 Valve chamber 14 Valve port 15 Valve chamber bottom face 18 Female thread member 18D Non-rotating concave groove 19 Valve body 20 Valve spring 21 Guide member 21A Non-rotating belt part 23 Male thread member 25 Flange part 26 Fixed-side stopper 28 Spacer 32 Upper spring (first spring)
34 Leaf spring member 35 Lower spring (second spring)
50 Stepping motor 51 Rotor 52 Boss part 53 Stator assembly

Claims (5)

弁室と弁室底面に開口した弁ポートとを有する弁ハウジングと、
前記弁ハウジングに回り止め状態で軸線方向に移動可能に設けられ、軸線方向移動によって一端面にて前記弁室底面に当接する雌ねじ部材と、
前記雌ねじ部材に所定範囲のみ軸線方向に移動可能に設けられ、前記弁室底面の側の軸線方向移動によって前記弁ポートを閉じ、前記弁室底面とは反対方向の軸線方向移動によって前記弁ポートを開く弁体と、
前記弁体を前記雌ねじ部材に対して前記弁室底面の側に付勢する弁ばねと、
前記雌ねじ部材とねじ係合した雄ねじ部材と、
多極着磁のロータとステータとを含み、前記ロータのボス部を前記雄ねじ部材に固定連結され、前記雄ねじ部材を回転駆動するステッピングモータと、
を有し、
前記雌ねじ部材の回り止めが、当該雌ねじ部材と前記弁ハウジング側の固定部材とに軸線方向に延在形成された凹溝と回り止め帯状部との軸線方向滑り係合に行われ、前記凹溝と前記回り止め帯状部との間に、前記凹溝の一方の溝側面を前記回り止め帯状部の一側面に押し付ける押付手段が設けられている電動式コントロールバルブ。
A valve housing having a valve chamber and a valve port opened in a bottom surface of the valve chamber;
A female screw member that is provided in the valve housing so as to be movable in the axial direction in a non-rotating state, and abuts against the valve chamber bottom surface at one end surface by the axial movement;
The female screw member is provided so as to be movable in the axial direction only within a predetermined range, the valve port is closed by axial movement on the valve chamber bottom surface side, and the valve port is closed by axial movement in a direction opposite to the valve chamber bottom surface. A valve body that opens,
A valve spring that urges the valve body toward the valve chamber bottom surface with respect to the female screw member;
A male screw member screw-engaged with the female screw member;
A stepping motor including a multi-pole magnetized rotor and a stator, wherein the boss portion of the rotor is fixedly connected to the male screw member, and the male screw member is driven to rotate;
Have
The female screw member is prevented from rotating by an axial sliding engagement between a concave groove formed in the axial direction on the female screw member and the fixing member on the valve housing side, and a non-rotating belt-like portion. An electric control valve provided with pressing means for pressing one groove side surface of the concave groove against one side surface of the detent belt-shaped portion between the detent belt-shaped portion and the detent belt-shaped portion.
前記押付手段はばねである請求項1記載の電動式コントロールバルブ。The electric control valve according to claim 1, wherein the pressing means is a spring. 前記固定部材は周方向の複数位置に各々前記回り止め帯状部を有する円筒籠状のガイド部材であって内側に前記雌ねじ部材を軸線方向に移動可能に収容し、前記凹溝が雌ねじ部材の外周面に形成され、前記押付手段として前記凹溝と前記回り止め帯状部との間に弾性変形状態で挟まれた板ばねが設けられている請求項1記載の電動式コントロールバルブ。The fixing member is a cylindrical rod-shaped guide member having the detent belt-like portions at a plurality of positions in the circumferential direction, and accommodates the female screw member in an axially movable manner, and the concave groove is an outer periphery of the female screw member. The electric control valve according to claim 1, wherein a leaf spring formed on a surface and sandwiched in an elastically deformed state is provided as the pressing means between the concave groove and the detent belt-like portion. 弁室と弁室底面に開口した弁ポートとを有する弁ハウジングと、
前記弁ハウジングに回り止め状態で軸線方向に移動可能に設けられ、軸線方向移動によって一端面にて前記弁室底面に当接する雌ねじ部材と、
前記雌ねじ部材に所定範囲のみ軸線方向に移動可能に設けられ、前記弁室底面の側の軸線方向移動によって前記弁ポートを閉じ、前記弁室底面とは反対方向の軸線方向移動によって前記弁ポートを開く弁体と、
前記弁体を前記雌ねじ部材に対して前記弁室底面の側に付勢する弁ばねと、
前記雌ねじ部材とねじ係合した雄ねじ部材と、
多極着磁のロータとステータとを含み、前記ロータのボス部に固定連結されている前記雄ねじ部材を回転駆動するステッピングモータと、
前記雄ねじ部材を前記ロータ及び前記ボス部を介して前記弁室底面の側に付勢する第1のばねと、
前記雌ねじ部材を前記弁室底面の側とは反対の側に付勢する第2のばねと、
を有し、
前記雌ねじ部材の回り止めが、当該雌ねじ部材と前記弁ハウジング側の固定部材とに軸線方向に延在形成された凹溝と回り止め帯状部との軸線方向滑り係合に行われ、弁閉反転時に前記雌ねじ部材が弁開方向に回転変位することを阻止するねじ面摩擦力が前記雌ねじ部材と前記雄ねじ部材のねじ係合面に作用するよう前記第1のばねのばね荷重と前記第2のばねのばね荷重が設定されている電動式コントロールバルブ。
A valve housing having a valve chamber and a valve port opened in a bottom surface of the valve chamber;
A female screw member that is provided in the valve housing so as to be movable in the axial direction in a non-rotating state, and abuts against the valve chamber bottom surface at one end surface by the axial movement;
The female screw member is provided so as to be movable in the axial direction only within a predetermined range, the valve port is closed by axial movement on the valve chamber bottom surface side, and the valve port is closed by axial movement in a direction opposite to the valve chamber bottom surface. A valve body that opens,
A valve spring that urges the valve body toward the valve chamber bottom surface with respect to the female screw member;
A male screw member screw-engaged with the female screw member;
And a multi-pole magnetization of the rotor and the stator, the stepping motor for rotating the pre-Symbol male screw member that is fixedly coupled to the boss portion of the rotor,
A first spring that biases the male screw member toward the valve chamber bottom surface via the rotor and the boss portion ;
A second spring that biases the female screw member to a side opposite to the valve chamber bottom surface;
Have
The rotation prevention of the female screw member is performed by the axial sliding engagement between the concave groove formed in the axial direction on the female screw member and the fixing member on the valve housing side, and the rotation-preventing belt-like portion, and the valve is closed and reversed. The spring load of the first spring and the second spring are such that a thread surface frictional force that sometimes prevents the female screw member from rotationally displacing in the valve opening direction acts on the screw engaging surfaces of the female screw member and the male screw member. Electric control valve with spring load set.
前記第1のばねのばね荷重Fuと前記第2のばねばね荷重Fnが下式を満たすよう設定されている請求項4は記載の電動式コントロールバルブ。
Fu>Q・tanβ−Fn(1+μh/(A・cosβ))
A=(μm−μh)cosβ−(μm・μh+1)sinβ
但し、Fu:第1のばねのばね荷重
Fn:第2のばねのばね荷重
Q:反転時の接線方向の力
β:ねじリード角
μm:ねじ面の摩擦係数
μh:弁ハウジング固定側と雌ねじ部材の摩擦係数
The electric control valve according to claim 4, wherein the spring load Fu of the first spring and the second spring spring load Fn are set so as to satisfy the following formula.
Fu> Q · tan β-Fn (1 + μh / (A · cos β))
A = (μm−μh) cosβ− (μm · μh + 1) sinβ
Where Fu: spring load of the first spring Fn: spring load of the second spring Q: force in the tangential direction during reversal β: screw lead angle μm: friction coefficient μh of the screw surface: valve housing fixed side and female screw member Friction coefficient
JP2002356868A 2002-12-09 2002-12-09 Electric control valve Expired - Fee Related JP4217470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356868A JP4217470B2 (en) 2002-12-09 2002-12-09 Electric control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356868A JP4217470B2 (en) 2002-12-09 2002-12-09 Electric control valve

Publications (2)

Publication Number Publication Date
JP2004190724A JP2004190724A (en) 2004-07-08
JP4217470B2 true JP4217470B2 (en) 2009-02-04

Family

ID=32757081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356868A Expired - Fee Related JP4217470B2 (en) 2002-12-09 2002-12-09 Electric control valve

Country Status (1)

Country Link
JP (1) JP4217470B2 (en)

Also Published As

Publication number Publication date
JP2004190724A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US5811903A (en) Motor
JP4220178B2 (en) Motorized valve
JP5087150B2 (en) Motorized valve
KR101693072B1 (en) Radial damping mechanism and use for belt tensioning
WO2004072523A1 (en) Electric-type control valve
US11248714B2 (en) Throttle valve device
US20110036678A1 (en) Electromagnetic clutch
JP2007010074A (en) Electromotive control valve
EP2325426B1 (en) Driving device
JP4217470B2 (en) Electric control valve
WO2020022207A1 (en) Motor
JP4119733B2 (en) Electric control valve
KR20020002459A (en) Device for controlling pressure
CN113748287A (en) Electronic expansion valve
JP2016044796A (en) Motor device
JP4855861B2 (en) Electric control valve
JP4615693B2 (en) Electric control valve
CN113748286A (en) Electronic expansion valve
JP3825569B2 (en) Control valve
CN219282462U (en) Electric valve
JP2004092801A (en) Motor-operated valve
CN214304422U (en) Diffusion controller and compressor
CN218913905U (en) Stop device and motorised valve
JP2005299810A (en) Auto tensioner and manufacturing method for auto tensioner
JP2008297737A (en) Supporting structure of contact member in door check mechanism for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees