JP4216691B2 - Method for producing terminal hydroxylated olefin polymer - Google Patents

Method for producing terminal hydroxylated olefin polymer Download PDF

Info

Publication number
JP4216691B2
JP4216691B2 JP2003369806A JP2003369806A JP4216691B2 JP 4216691 B2 JP4216691 B2 JP 4216691B2 JP 2003369806 A JP2003369806 A JP 2003369806A JP 2003369806 A JP2003369806 A JP 2003369806A JP 4216691 B2 JP4216691 B2 JP 4216691B2
Authority
JP
Japan
Prior art keywords
olefin polymer
compound
group
terminal
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003369806A
Other languages
Japanese (ja)
Other versions
JP2005132935A (en
Inventor
信夫 川原
古城  真一
真吾 松尾
英之 金子
智昭 松木
典夫 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003369806A priority Critical patent/JP4216691B2/en
Publication of JP2005132935A publication Critical patent/JP2005132935A/en
Application granted granted Critical
Publication of JP4216691B2 publication Critical patent/JP4216691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は末端水酸化オレフィン重合体の製造方法に関し、さらに詳しくは、不飽和結合を有するオレフィン重合体を有機金属化合物で処理した後、ハロゲン化エポキシ化合物と処理して得られる末端水酸化オレフィン重合体の製造方法に関する。   The present invention relates to a method for producing a terminal hydroxylated olefin polymer, and more specifically, a terminal hydroxylated olefin polymer obtained by treating an olefin polymer having an unsaturated bond with an organometallic compound and then treating with a halogenated epoxy compound. The present invention relates to a method for manufacturing coalescence.

ポリオレフィンは、加工性、耐薬品性、電気的性質、機械的性質などに優れているため、押出成形品、射出成形品、中空成形品、フィルム、シートなどに加工され、各種用途に用いられている。しかしながらポリオレフィンは、分子中に極性基を持たない、いわゆる無極性樹脂であるため、金属をはじめ種々の極性物質との親和性に乏しく、極性物質との接着または極性樹脂とのブレンドが困難であった。また、ポリオレフィンからなる成形体の表面は疎水性であり、防曇性、帯電防止性が必要な用途では、低分子量の界面活性剤などを配合する必要があり、界面活性剤のブリードアウトによる表面汚れなどの問題が起こる場合もあった。   Polyolefins are excellent in processability, chemical resistance, electrical properties, mechanical properties, etc., so they are processed into extrusion molded products, injection molded products, hollow molded products, films, sheets, etc., and used in various applications. Yes. However, since polyolefin is a so-called nonpolar resin that does not have a polar group in the molecule, it has poor affinity with various polar substances including metals, and adhesion with polar substances or blending with polar resins is difficult. It was. In addition, the surface of the molded body made of polyolefin is hydrophobic, and in applications that require anti-fogging properties and antistatic properties, it is necessary to add a low molecular weight surfactant, etc. In some cases, problems such as contamination occurred.

こうした問題を解決するため、ポリオレフィンに極性基を導入することが行なわれてきた。極性化合物(極性オレフィン)を導入する場合、ラジカル開始剤の存在下にポリオレフィンと極性オレフィンを反応させる方法が一般的に行われているが、このような方法によって得られた極性基含有オレフィン重合体には、ラジカル重合性極性オレフィンの単独重合体や未反応のポリオレフィンが含まれる場合が多く、導入位置も不均一なものである。さらに、ポリマー鎖の架橋反応や分解反応を伴うため、ポリオレフィンの物性が大きく変化する場合が多かった。上記のような架橋・分解反応を伴わずにポリオレフィンに極性基を導入する方法について、Polymer Journal (第31巻、332頁、1999年)には、末端に不飽和結合を有するポリオレフィンにアルミニウム化合物を付加させた後に酸素で酸化することによりポリオレフィン末端に水酸基を導入する方法が記載されている。特開2002−155109号公報、特開2002−145944号公報等には、水酸基含有オレフィン化合物を有機アルミニウム化合物で処理したアルミ変性モノマーをオレフィン重合体の製造に用いて、水酸基含有オレフィン重合体を得る方法が開示されている。しかしこれらの方法では、ポリオレフィン末端の水酸基への変換効率が悪く、また単位触媒あたりの生産性が低いなどの問題があり、末端水酸化オレフィン重合体を効率良く製造できる方法の開発が望まれている。
特開2002-155109号公報 特開2002-145944号公報 Polymer Journal,第31巻, 332頁, 1999年)
In order to solve these problems, introduction of polar groups into polyolefin has been performed. When a polar compound (polar olefin) is introduced, a method of reacting a polyolefin and a polar olefin in the presence of a radical initiator is generally performed. A polar group-containing olefin polymer obtained by such a method is used. In many cases, a radically polymerizable polar olefin homopolymer or unreacted polyolefin is contained, and the introduction position is also non-uniform. Furthermore, since the polymer chain is accompanied by a crosslinking reaction or a decomposition reaction, the physical properties of the polyolefin often change greatly. Regarding the method for introducing a polar group into a polyolefin without crosslinking and decomposing reaction as described above, Polymer Journal (Vol. 31, 332, 1999) describes an aluminum compound in a polyolefin having an unsaturated bond at the terminal. A method is described in which a hydroxyl group is introduced to the end of a polyolefin by oxidation with oxygen after addition. In JP 2002-155109 A, JP 2002-145944 A, etc., a hydroxyl group-containing olefin polymer is obtained by using an aluminum-modified monomer obtained by treating a hydroxyl group-containing olefin compound with an organoaluminum compound for the production of an olefin polymer. A method is disclosed. However, these methods have problems such as poor conversion efficiency to the hydroxyl group at the end of the polyolefin and low productivity per unit catalyst, and development of a method capable of efficiently producing a terminal hydroxylated olefin polymer is desired. Yes.
JP 2002-155109 A Japanese Patent Laid-Open No. 2002-145944 Polymer Journal, Vol. 31, 332, 1999)

本発明者らはこのような従来技術のもと検討した結果、不飽和結合を有するオレフィン重合体を有機金属化合物で処理した後、ハロゲン化エポキシ化合物と処理すれば末端水酸化オレフィン重合体を効率良く製造できる方法を見出した。   As a result of investigations based on such conventional techniques, the present inventors have processed an unsaturated olefin polymer with an organometallic compound and then treated with a halogenated epoxy compound to make the terminal hydroxylated olefin polymer efficient. We found a method that can be manufactured well.

本発明は、不飽和結合を有するオレフィン重合体を有機金属化合物で処理した後、ハロゲン化エポキシ化合物と処理して末端水酸化オレフィン重合体を製造する方法を提供する。 The present invention provides a method for producing a terminal hydroxylated olefin polymer by treating an olefin polymer having an unsaturated bond with an organometallic compound and then treating with an halogenated epoxy compound.

末端水酸化オレフィン重合体を効率良く製造できる。 A terminal hydroxylated olefin polymer can be produced efficiently.

以下、本発明に係るに末端水酸化オレフィン重合体の製造方法ついて具体的に説明する。本発明に係る末端水酸化オレフィン重合体の製造方法は、炭素原子数2〜20のオレフィンから選ばれる少なくとも1種以上のオレフィンを重合して得られた、末端位に不飽和結合を有するオレフィン重合体を、有機金属化合物と処理した後、次いでハロゲン化エポキシ化合物と処理することを特徴とする。   Hereinafter, the method for producing a terminal hydroxylated olefin polymer according to the present invention will be described in detail. The method for producing a terminal hydroxylated olefin polymer according to the present invention comprises an olefin weight having an unsaturated bond at the terminal position, obtained by polymerizing at least one olefin selected from olefins having 2 to 20 carbon atoms. The coalescence is treated with an organometallic compound and then treated with a halogenated epoxy compound.

以下、本発明の末端水酸化オレフィン重合体の製造方法について詳説する。   Hereinafter, the manufacturing method of the terminal hydroxylated olefin polymer of this invention is explained in full detail.

本発明に用いられる末端に不飽和結合を有するオレフィン重合体は、炭素原子数2〜20のオレフィンから選ばれる少なくとも1種以上のオレフィンに由来する繰り返し単位を主たる構成単位とする、末端に不飽和基を有するオレフィン重合体である。   The olefin polymer having an unsaturated bond at the terminal used in the present invention is unsaturated at the terminal having a repeating unit derived from at least one olefin selected from olefins having 2 to 20 carbon atoms as a main constituent unit. It is an olefin polymer having a group.

炭素原子数2〜20のオレフィンとしては、例えば直鎖状または分岐状のα-オレフィン、環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエンなどが挙げられる。   Examples of the olefin having 2 to 20 carbon atoms include linear or branched α-olefins, cyclic olefins, aromatic vinyl compounds, conjugated dienes, and nonconjugated polyenes.

直鎖状または分岐状のα-オレフィンとして具体的には、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素原子数2〜20、好ましくは2〜10の直鎖状のα-オレフィン;例えば3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセンなどの好ましくは5〜20、より好ましくは5〜10の分岐状のα-オレフィンが挙げられる。   Specific examples of the linear or branched α-olefin include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 A linear α-olefin having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, such as hexadecene, 1-octadecene, 1-eicosene, etc .; for example, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1- Preferably branched α-olefins such as hexene and 3-ethyl-1-hexene are preferably 5 to 20, more preferably 5 to 10.

環状オレフィンとしては、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、ビニルシクロヘキサンなどの炭素原子数3〜20、好ましくは5〜15のものが挙げられる。   Examples of the cyclic olefin include those having 3 to 20, preferably 5 to 15 carbon atoms such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, vinylcyclohexane and the like.

芳香族ビニル化合物としては、例えばスチレン、およびα-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレンなどのモノまたはポリアルキルスチレンが挙げられる。   Examples of the aromatic vinyl compound include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p- Mono or polyalkyl styrenes such as ethyl styrene are mentioned.

共役ジエンとしては、例えば1,3-ブタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、4-メチル-1,3-ペンタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエンなどの炭素原子数4〜20、好ましくは4〜10のものが挙げられる。   Examples of conjugated dienes include 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 4-methyl-1,3-pentadiene, 1,3-pentadiene, 1,3-hexadiene. , 1,3-octadiene and the like having 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms.

非共役ポリエンとしては、例えば1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエンなどの炭素原子数5〜20、好ましくは5〜10のものが挙げられる。   Non-conjugated polyenes include, for example, 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, 2 -Methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 4,8-dimethyl-1 , 4,8-decatriene (DMDT), dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene -2-norbornene, 6-chloromethyl-5-isopropylene-2-norbornene, 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,2 -5 carbon atoms such as norbornadiene 20, preferably include the 5 to 10.

本発明に用いられるオレフィン重合体は、これらのオレフィンからなる重合体であるが、好ましくはエチレン、またはプロピレンの単独重合体、エチレンと炭素原子数3〜20のオレフィンから選ばれる少なくとも1種のオレフィンから得られる共重合体、プロピレンとエチレンおよび/または炭素原子数4〜20のオレフィンから選ばれる少なくとも1種のオレフィンから得られる共重合体である。   The olefin polymer used in the present invention is a polymer comprising these olefins, but preferably at least one olefin selected from ethylene or a homopolymer of propylene, ethylene and an olefin having 3 to 20 carbon atoms. A copolymer obtained from at least one olefin selected from propylene and ethylene and / or an olefin having 4 to 20 carbon atoms.

次に、本発明に用いる末端不飽和結合を有するオレフィン重合体の製造方法について説明する。まず、オレフィン重合体の製造に用いられるオレフィン重合触媒について説明する。オレフィン重合体の製造に用いられるオレフィン重合触媒は、従来公知のいずれの触媒であってもよい。従来公知の触媒としては、例えばマグネシウム担持型チタン触媒、メタロセン触媒などが挙げられ、例えば国際公開特許WO01/53369あるいはWO01/27124中に記載の触媒等を用いることができる。。   Next, the manufacturing method of the olefin polymer which has a terminal unsaturated bond used for this invention is demonstrated. First, an olefin polymerization catalyst used for production of an olefin polymer will be described. The olefin polymerization catalyst used for the production of the olefin polymer may be any conventionally known catalyst. Conventionally known catalysts include, for example, magnesium-supported titanium catalysts and metallocene catalysts. For example, the catalysts described in International Patent Publications WO01 / 53369 or WO01 / 27124 can be used. .

オレフィン重合体の製造は、溶液重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施することができる。重合形態としては、懸濁重合の反応形態を採ることが好ましく、この時の反応溶媒としては、不活性炭化水素溶媒を用いることもできるし、反応温度において液状のオレフィンを用いることもできる。   The production of the olefin polymer can be carried out by either a liquid phase polymerization method such as solution polymerization or suspension polymerization or a gas phase polymerization method. As the polymerization form, it is preferable to adopt a suspension polymerization reaction form. As the reaction solvent at this time, an inert hydrocarbon solvent can be used, or a liquid olefin can be used at the reaction temperature.

この際用いられる不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、またはこれらの組み合わせが挙げられる。これらのうち、特に脂肪族炭化水素を用いることが好ましい。   Specific examples of the inert hydrocarbon medium used here include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, methylcyclopentane, and the like. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride and chlorobenzene, or combinations thereof. Of these, it is particularly preferable to use an aliphatic hydrocarbon.

マグネシウム担持型チタン触媒系を用いる場合、重合系内においては、固体状チタン触媒成分(a)またはその予備重合触媒は、重合容積1リットル当りチタン原子に換算して、通常は約0.0001〜50ミリモル、好ましくは約0.001〜10ミリモルの量で用いられる。有機金属化合物触媒成分(b)は、該触媒成分(b)中の金属原子が、重合系中の固体状チタン触媒成分(a)中のチタン原子1モルに対し、通常1〜2000モル、好ましくは2〜1000モルの量で用いられる。電子供与体(ED)は、有機金属化合物触媒成分(b)の金属原子1モルに対し、通常0.001モル〜10モル、好ましくは0.01モル〜5モルの量で用いられる。   When a magnesium-supported titanium catalyst system is used, in the polymerization system, the solid titanium catalyst component (a) or its prepolymerized catalyst is usually about 0.0001 to about 0.0001 to 1 in terms of titanium atoms per liter of polymerization volume. It is used in an amount of 50 mmol, preferably about 0.001 to 10 mmol. In the organometallic compound catalyst component (b), the metal atom in the catalyst component (b) is usually 1 to 2000 mol, preferably 1 mol to 1 mol of titanium atom in the solid titanium catalyst component (a) in the polymerization system. Is used in an amount of 2 to 1000 mol. The electron donor (ED) is generally used in an amount of 0.001 mol to 10 mol, preferably 0.01 mol to 5 mol, relative to 1 mol of the metal atom of the organometallic compound catalyst component (b).

重合工程における、水素濃度はモノマー1モルに対して0〜0.01モル、好ましくは0〜0.005モル、より好ましくは0〜0.001モルの量であることが好ましい。   In the polymerization step, the hydrogen concentration is preferably 0 to 0.01 mol, preferably 0 to 0.005 mol, more preferably 0 to 0.001 mol with respect to 1 mol of the monomer.

重合温度は、通常、70℃以上、好ましくは80〜150℃、より好ましくは85〜140℃、特に好ましくは90〜130℃の範囲であり、圧力は、通常、常圧〜10MPa、好ましくは常圧〜5MPaに設定される。重合は回分式、半連続式、連続式のいずれの方法においても行うことができ、2段以上に分けて行う場合は、反応条件は同じであっても異なっていてもよい。   The polymerization temperature is usually in the range of 70 ° C. or higher, preferably 80 to 150 ° C., more preferably 85 to 140 ° C., particularly preferably 90 to 130 ° C., and the pressure is usually normal pressure to 10 MPa, preferably normal. The pressure is set to 5 MPa. The polymerization can be carried out by any of batch, semi-continuous and continuous methods. When the polymerization is carried out in two or more stages, the reaction conditions may be the same or different.

触媒としてメタロセン系触媒を用いてオレフィン重合体を製造する場合には、重合系内のメタロセン化合物(c)の濃度は、重合容積1リットル当り、通常0.00005〜0.1ミリモル、好ましくは0.0001〜0.05ミリモルの量で用いられる。有機アルミニウムオキシ化合物(d)は、メタロセン化合物(c)中の遷移金属原子(M)に対するアルミニウム原子(Al)のモル比(Al/M)で、5〜1000、好ましくは10〜400となるような量で用いられる。また有機アルミニウム化合物(e)が用いられる場合には、メタロセン化合物(c)中の遷移金属原子1モルに対して、通常約1〜300モル、好ましくは約2〜200モルとなるような量で用いられる。   When an olefin polymer is produced using a metallocene catalyst as a catalyst, the concentration of the metallocene compound (c) in the polymerization system is usually from 0.000005 to 0.1 mmol, preferably 0, per liter of polymerization volume. Used in an amount of .0001 to 0.05 mmol. The organoaluminum oxy compound (d) has a molar ratio (Al / M) of the aluminum atom (Al) to the transition metal atom (M) in the metallocene compound (c) and is 5-1000, preferably 10-400. Used in various amounts. When the organoaluminum compound (e) is used, the amount is usually about 1 to 300 mol, preferably about 2 to 200 mol, per 1 mol of the transition metal atom in the metallocene compound (c). Used.

メタロセン系触媒は、メタロセンが可溶な溶媒中で溶液状態として用いてもよく、無機化合物あるいは樹脂組成物を単体として用いた、担持触媒として用いてもよい。   The metallocene catalyst may be used as a solution in a solvent in which the metallocene is soluble, or may be used as a supported catalyst using an inorganic compound or a resin composition as a simple substance.

メタロセン系触媒を用いた場合の重合温度は、通常温度が−20〜150℃、好ましくは0〜120℃、さらに好ましくは0〜100℃の範囲であり、重合圧力は0を超えて8MPa、好ましくは0を超えて5MPaの範囲である。   When the metallocene catalyst is used, the polymerization temperature is usually in the range of −20 to 150 ° C., preferably 0 to 120 ° C., more preferably 0 to 100 ° C., and the polymerization pressure exceeds 0 to 8 MPa, preferably Is in the range of more than 0 and 5 MPa.

オレフィン重合体の製造は、バッチ式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を、反応条件を変えて2段以上に分けて行うこともできる。オレフィン重合では、オレフィンの単独重合体を製造してもよく、また2種以上のオレフィンからランダム共重合体を製造してもよい。   The production of the olefin polymer can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be carried out in two or more stages by changing the reaction conditions. In olefin polymerization, an olefin homopolymer may be produced, or a random copolymer may be produced from two or more olefins.

末端位に不飽和結合を有するオレフィン重合体は、オレフィン重合時に生じる重合体の連鎖移動によって製造される。また、オレフィン重合体の分解によっても製造される。   An olefin polymer having an unsaturated bond at the terminal position is produced by chain transfer of the polymer generated during olefin polymerization. It is also produced by decomposition of an olefin polymer.

オレフィン重合体の分解は、熱分解によって行なわれるのが好適であり、オレフィン重合体の分解温度は150〜600℃、好ましくは250〜500℃、反応時間は0.1分〜10時間に設定するのが望ましい。反応系の雰囲気は本反応を妨害しない雰囲気であれば何れでも良く、例えば窒素雰囲気下で分解を行うことができる。また、熱分解時に必要に応じて固体酸触媒を用いてもよく、固体酸触媒として、結晶性シリカ・アルミナ、無定形シリカ・アルミナ、酸化アルミニウム(アルミナ)、酸化珪素(シリカ)、シリカ・マグネシア、酸化亜鉛、ボーキサイト、天然土(酸性白土、活性白土、鹿沼土軽石、今市軽石、七本桜軽石、赤玉土、火山灰、真岡軽石、楡木軽石)、酸化鉄、酸化銅、酸化ニッケル、酸化モリブデン等の重金属酸化物を挙げることができる。固体酸触媒を使用する場合その使用量は、オレフィン重合体に対して0.01〜20重量%、好ましくは0.1〜10重量%とするのが望ましい。また反応系に水を供給しながらオレフィン重合体を熱分解 しても良い。   The decomposition of the olefin polymer is preferably carried out by thermal decomposition. The decomposition temperature of the olefin polymer is 150 to 600 ° C., preferably 250 to 500 ° C., and the reaction time is set to 0.1 minutes to 10 hours. Is desirable. The atmosphere in the reaction system may be any atmosphere as long as it does not interfere with this reaction. For example, the decomposition can be performed in a nitrogen atmosphere. In addition, a solid acid catalyst may be used as necessary at the time of thermal decomposition. As the solid acid catalyst, crystalline silica / alumina, amorphous silica / alumina, aluminum oxide (alumina), silicon oxide (silica), silica magnesia , Zinc oxide, bauxite, natural soil (acid clay, activated clay, Kanuma pumice, Imaichi pumice, seven cherry blossoms, Akadama, volcanic ash, Moka pumice, Kashiwagi pumice), iron oxide, copper oxide, nickel oxide, oxidation A heavy metal oxide such as molybdenum can be given. When a solid acid catalyst is used, the amount used is 0.01 to 20% by weight, preferably 0.1 to 10% by weight, based on the olefin polymer. The olefin polymer may be thermally decomposed while supplying water to the reaction system.

オレフィン重合体の熱分解 に用いる反応装置はバッチ式、連続式、半連続式のいずれであってもよく、槽式、スクリュー式、パイプ式等の何れの形式でもよい。分解反応装置の具体例としては、プラストミルや、管内に搬送用スクリューおよび水蒸気供給手段を備えた管型分解炉内であって、オレフィン重合体を150〜600℃、好ましくは250〜500℃に加熱する機構を備えた装置があげられる。この型の分解反応装置は連続的分解能力を備えていることから、多量のプラスチックが定常的(継続的)に集積される処理施設に好適である。   The reaction apparatus used for the thermal decomposition of the olefin polymer may be any of a batch type, a continuous type and a semi-continuous type, and may be any type such as a tank type, a screw type and a pipe type. Specific examples of the cracking reaction apparatus include a plastmill, a tube-type cracking furnace equipped with a conveying screw and a steam supply means in a tube, and the olefin polymer is heated to 150 to 600 ° C, preferably 250 to 500 ° C. And a device having a mechanism for performing the above-described operation. Since this type of decomposition reaction apparatus has a continuous decomposition capability, it is suitable for a processing facility in which a large amount of plastic is constantly (continuously) accumulated.

末端位に不飽和結合を有するオレフィン重合体との処理に用いる有機金属化合物は、不飽和結合部位と反応する有機金属化合物であれば、例外なくこれを用いることができる。具体的には、有機リチウム化合物、有機ナトリウム化合物等の周期表第1族から選ばれる金属を含む化合物、有機マグネシウム化合物等の周期表第2族から選ばれる金属を含む化合物、有機亜鉛化合物、有機銅化合物、有機鉄化合物等の遷移金族を含む化合物、有機ホウ素化合物、有機アルミニウム化合物等の周期表第13族から選ばれる金属を含む化合物、有機ケイ素化合物等の周期表第14族から選ばれる金属を含む化合物、有機リン化合物等の周期表第15族から選ばれる金属を含む化合物を用いることができる。   The organometallic compound used for the treatment with the olefin polymer having an unsaturated bond at the terminal position can be used without exception as long as it is an organometallic compound that reacts with the unsaturated bond site. Specifically, a compound containing a metal selected from Group 1 of the periodic table such as an organic lithium compound or an organic sodium compound, a compound containing a metal selected from Group 2 of the periodic table such as an organic magnesium compound, an organic zinc compound, an organic Compounds containing transition metals such as copper compounds and organic iron compounds, compounds containing metals selected from Group 13 of the periodic table such as organoboron compounds and organoaluminum compounds, selected from Group 14 of the periodic table such as organosilicon compounds A compound containing a metal selected from Group 15 of the periodic table, such as a compound containing a metal and an organic phosphorus compound, can be used.

有機金属化合物は、特に周期表第13族から選ばれる金属を含むものが好ましく、中でも、有機アルミニウム化合物、有機ホウ素化合物、1族元素とアルミニウムまたはホウ素との錯アルキル化合物などを好ましく挙げることができる。有機アルミニウム化合物としては、例えば下記式で示される有機アルミニウム化合物を例示することができる。   As the organometallic compound, those containing a metal selected from Group 13 of the periodic table are particularly preferable. Among them, an organoaluminum compound, an organoboron compound, a complex alkyl compound of a group 1 element and aluminum or boron can be preferably exemplified. . As an organoaluminum compound, the organoaluminum compound shown by a following formula can be illustrated, for example.

a nAlX3-n
(式中、Raは炭素原子数1〜12の炭化水素基であり、Xはハロゲンまたは水素であり、nは1〜3である。)
aは、炭素原子数1〜12の炭化水素基、例えばアルキル基、シクロアルキル基またはアリール基であるが、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、フェニル基、トリル基などである。
R a n AlX 3-n
(In the formula, Ra is a hydrocarbon group having 1 to 12 carbon atoms, X is halogen or hydrogen, and n is 1 to 3).
R a is a hydrocarbon group having 1 to 12 carbon atoms, such as an alkyl group, a cycloalkyl group, or an aryl group, and specifically includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an isobutyl group. Pentyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, phenyl group, tolyl group and the like.

このような有機アルミニウム化合物として具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリアルキルアルミニウム;トリイソプレニルアルミニウムなどのトリアルケニルアルミニウム;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジイソプロピルアルミニウムクロリド、ジイソブチルアルミニウムクロリド、ジメチルアルミニウムブロミドなどのジアルキルアルミニウムハライド;メチルアルミニウムセスキクロリド、エチルアルミニウムセスキクロリド、イソプロピルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、イソプロピルアルミニウムジクロリド、エチルアルミニウムジブロミドなどのアルキルアルミニウムジハライド;ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、エチルアルミニウムジハイドライドなどのアルキルアルミニウムハイドライドなどが挙げられる。   Specific examples of such organoaluminum compounds include trialkylaluminums such as trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trioctylaluminum, and tri-2-ethylhexylaluminum; trialkenylaluminums such as triisoprenylaluminum. Dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, diisopropylaluminum chloride, diisobutylaluminum chloride, dimethylaluminum bromide; methylaluminum sesquichloride, ethylaluminum sesquichloride, isopropylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum Alkylaluminum sesquihalides such as kibromide; alkylaluminum dihalides such as methylaluminum dichloride, ethylaluminum dichloride, isopropylaluminum dichloride, ethylaluminum dibromide; alkylaluminum hydrides such as diethylaluminum hydride, diisobutylaluminum hydride, ethylaluminum dihydride Can be mentioned.

また有機アルミニウム化合物として、下記式で示される化合物を用いることもできる。   Moreover, the compound shown by a following formula can also be used as an organoaluminum compound.

a nAlY3-n
上記式において、Raは上記と同様であり、Yは−ORb基、−OSiRc 3基、−OAlRd 2基、−NRe 2基、−SiRf 3基または−N(Rg)AlRh 2基であり、nは1〜2である。
R a n AlY 3-n
In the above formula, R a is the same as above, and Y is —OR b group, —OSiR c 3 group, —OA1R d 2 group, —NR e 2 group, —SiR f 3 group or —N (R g ). AlR h 2 group, n is 1-2.

なお、Rb、Rc、RdおよびRhはメチル基、エチル基、イソプロピル基、イソブチル基、シクロヘキシル基、フェニル基などであり、Reは水素、メチル基、エチル基、イソプロピル基、フェニル基、トリメチルシリル基などであり、RfおよびRgはメチル基、エチル基などである。 R b , R c , R d and R h are methyl group, ethyl group, isopropyl group, isobutyl group, cyclohexyl group, phenyl group, etc., and R e is hydrogen, methyl group, ethyl group, isopropyl group, phenyl group, etc. A group, a trimethylsilyl group, and the like, and R f and R g are a methyl group, an ethyl group, and the like.

このような有機アルミニウム化合物としては、具体的には、以下のような化合物を例示できる。
(i)Ra nAl(ORb)3-nで表される化合物、例えば ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムメトキシドなど、
(ii)Ra nAl(OSiRc)3-nで表される化合物、例えば Et2Al(OSiMe3)、(iso-Bu)2Al(OSiMe3)、(iso-Bu)2Al(OSiEt3)など、
(iii)Ra nAl(OAlRd 2)3-nで表される化合物、例えば Et2AlOAlEt2、(iso-Bu)2AlOAl(iso-Bu)2など、
(iv)Ra nAl(NRe 2)3-nで表される化合物、例えば Me2AlNEt2、Et2AlNHMe、Me2AlNHEt、Et2AlN(Me3Si)2、(iso-Bu)2AlN(Me3Si)2など、
(v)Ra nAl(SiRf 3)3-nで表される化合物、例えば、(iso-Bu)2AlSiMe3など、
(vi)Ra nAl〔N(Rg)-AlRh 23-nで表される化合物、例えば、Et2AlN(Me)-AlEt2
(iso-Bu)2AlN(Et)Al(iso-Bu)2など。
Specific examples of such an organoaluminum compound include the following compounds.
(I) R a n Al ( OR b) a compound represented by 3-n, e.g., dimethylaluminum methoxide, diethylaluminum ethoxide and diisobutylaluminum methoxide,
(Ii) R a n Al ( OSiR c) a compound represented by 3-n, e.g., Et 2 Al (OSiMe 3), (iso-Bu) 2 Al (OSiMe 3), (iso-Bu) 2 Al (OSiEt 3 ) etc.
(Iii) R a n Al ( OAlR d 2) a compound represented by 3-n, e.g., Et 2 AlOAlEt 2, such as (iso-Bu) 2 AlOAl ( iso-Bu) 2,
(Iv) R a n Al ( NR e 2) a compound represented by 3-n, e.g., Me 2 AlNEt 2, Et 2 AlNHMe , Me 2 AlNHEt, Et 2 AlN (Me 3 Si) 2, (iso-Bu) 2 AlN (Me 3 Si) 2 etc.
(V) R a n Al ( SiR f 3) a compound represented by 3-n, such as (iso-Bu) 2 AlSiMe 3 ,
(Vi) R a n Al [N (R g) -AlR h 2] A compound represented by 3-n, e.g., Et 2 AlN (Me) -AlEt 2,
(iso-Bu) 2 AlN (Et) Al (iso-Bu) 2 etc.

またこれに類似した化合物、例えば酸素原子、窒素原子を介して2以上のアルミニウムが結合した有機アルミニウム化合物を挙げることができる。より具体的には、(C25)2AlOAl(C25)2、(C49)2AlOAl(C49)2、(C25)2AlN(C25)Al(C25)2など、さらにメチルアルミノキサンなどのアルミノキサン類(有機アルミニウムオキシ化合物)を挙げることができる。 In addition, similar compounds, for example, an organoaluminum compound in which two or more aluminums are bonded via an oxygen atom or a nitrogen atom can be given. More specifically, (C 2 H 5) 2 AlOAl (C 2 H 5) 2, (C 4 H 9) 2 AlOAl (C 4 H 9) 2, (C 2 H 5) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 and aluminoxanes (organoaluminum oxy compounds) such as methylaluminoxane.

また、下記式の有機アルミニウム化合物を用いることもできる。   Moreover, the organoaluminum compound of a following formula can also be used.

aAlXY(Ra、X、Yは上記と同様である)
有機ホウ素化合物としては、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロン、テキシルボラン、ジシクロヘキシルボラン、ジシアミルボラン、ジイソピノカンフェニルボラン、9-ボラビシクロ[3.3.1]ノナン、カテコールボラン、B-ブロモ-9-ボラビシクロ[3.3.1]ノナン、ボラン-トリエチルアミン錯体、ボラン-メチルスルフィド錯体などが挙げられる。
R a AlXY (R a , X and Y are the same as above)
Organic boron compounds include triphenylboron, tris (4-fluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (4-fluoromethylphenyl) boron, tris (pentafluorophenyl) boron, tris ( p-tolyl) boron, tris (o-tolyl) boron, tris (3,5-dimethylphenyl) boron, texylborane, dicyclohexylborane, dicyamilborane, diisopinocanphenylborane, 9-borabicyclo [3.3.1] nonane, catechol Examples thereof include borane, B-bromo-9-borabicyclo [3.3.1] nonane, borane-triethylamine complex, and borane-methyl sulfide complex.

また、有機ホウ素化合物としてイオン性化合物を使用してもよい。このような化合物としては、トリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、N,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス[トリ(n-ブチル)アンモンニウム]ノナボレート、ビス[トリ(n-ブチル)アンモンニウム]デカボレートなどを挙げることができる。   Moreover, you may use an ionic compound as an organoboron compound. Such compounds include triethylammonium tetra (phenyl) boron, tripropylammonium tetra (phenyl) boron, trimethylammonium tetra (p-tolyl) boron, trimethylammonium tetra (o-tolyl) boron, tri (n-butyl) Ammonium tetra (pentafluorophenyl) boron, tripropylammonium tetra (o, p-dimethylphenyl) boron, tri (n-butyl) ammonium tetra (p-trifluoromethylphenyl) boron, N, N-dimethylanilinium tetra ( Phenyl) boron, dicyclohexylammonium tetra (phenyl) boron, triphenylcarbenium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, bis [ And tri (n-butyl) ammonium] nonaborate, bis [tri (n-butyl) ammonium] decaborate, and the like.

1族元素とアルミニウムとの錯アルキル化物としては、下記一般式で表される化合物を例示できる。   Examples of complex alkylated products of Group 1 elements and aluminum include compounds represented by the following general formula.

1AlRj 4
(M1はLi、Na、Kであり、Rjは炭素原子数1〜15の炭化水素基である。)
このような化合物として具体的には、LiAl(C25)4、LiAl(C715)4などが挙げられる。
M 1 AlR j 4
(M 1 is Li, Na, K, and R j is a hydrocarbon group having 1 to 15 carbon atoms.)
Specific examples of such a compound include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .

有機ホウ素化合物および1族元素とホウ素との錯アルキル化物としては、前述の有機アルミニウム化合物および1族元素とアルミニウムとの錯アルキル化物のアルミニウムをホウ素で置換した構造の化合物を挙げることができる。   Examples of the organoboron compound and the complex alkylated product of group 1 element and boron include the above-described organoaluminum compound and a compound having a structure in which aluminum in the complex alkylated product of group 1 element and aluminum is substituted with boron.

末端に不飽和結合を有するオレフィン重合体と有機金属化合物との処理は、溶液中、懸濁液中または気相中のいずれにおいても実施することができる。処理形態としては、溶液中または懸濁液中であることが好ましく、この時の溶媒としては、不活性炭化水素溶媒を用いることができる。処理温度においては溶媒を使用せず液状のオレフィン重合体中で行うこともできる。   The treatment of the olefin polymer having an unsaturated bond at the terminal and the organometallic compound can be carried out either in solution, in suspension or in the gas phase. The treatment form is preferably in solution or suspension, and an inert hydrocarbon solvent can be used as the solvent at this time. The treatment temperature may be carried out in a liquid olefin polymer without using a solvent.

この際用いられる不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、またはこれらの組み合わせが挙げられる。これらのうち、特に脂肪族炭化水素を用いることが好ましい。   Specific examples of the inert hydrocarbon medium used here include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, methylcyclopentane, and the like. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride and chlorobenzene, or combinations thereof. Of these, it is particularly preferable to use an aliphatic hydrocarbon.

末端に不飽和結合を有するオレフィン重合体との処理に用いる有機金属化合物の使用量は、有機金属化合物のモル量[M]の不飽和基モル量[U]に対する割合[M]/[U]が、0.1〜100の範囲にあるのが好ましく、より好ましくは1〜50の範囲である。   The amount of the organometallic compound used for the treatment with the olefin polymer having an unsaturated bond at the terminal is the ratio [M] / [U] of the molar amount [M] of the organometallic compound to the unsaturated group molar amount [U]. However, it is preferable that it exists in the range of 0.1-100, More preferably, it is the range of 1-50.

処理温度は、通常、0℃以上、好ましくは10〜200℃、より好ましくは20〜100℃の範囲であり、処理時間は、通常1分〜24時間、好ましくは、10分〜10時間、より好ましくは15分〜8時間、処理圧力は、通常、常圧〜3MPa、好ましくは常圧〜1MPaに設定される。反応は回分式、半連続式、連続式のいずれの方法においても行うことができる。   The treatment temperature is usually 0 ° C. or higher, preferably 10 to 200 ° C., more preferably 20 to 100 ° C., and the treatment time is usually 1 minute to 24 hours, preferably 10 minutes to 10 hours, and more. Preferably, the processing pressure is usually set to normal pressure to 3 MPa, preferably normal pressure to 1 MPa for 15 minutes to 8 hours. The reaction can be carried out by any of batch, semi-continuous and continuous methods.

次に、本発明の末端水酸化オレフィン重合体の製造方法について詳説する。   Next, the manufacturing method of the terminal hydroxylated olefin polymer of this invention is explained in full detail.

本発明において末端水酸化オレフィン重合体の製造方法は、末端に不飽和結合を有するオレフィン重合体を有機金属化合物と処理することで得られる、末端に金属原子を有するオレフィン重合体を利用することが重要であって、得られた末端に金属原子を有するオレフィン重合体とハロゲン化エポキシ化合物との処理によって末端水酸化オレフィン重合体が製造される。   In the present invention, the method for producing a terminal hydroxylated olefin polymer may utilize an olefin polymer having a metal atom at a terminal, obtained by treating an olefin polymer having an unsaturated bond at a terminal with an organometallic compound. Importantly, a terminal hydroxylated olefin polymer is produced by treating the resulting olefin polymer having a metal atom at the terminal with a halogenated epoxy compound.

本発明に用いるハロゲン化エポキシ化合物としては、1化合物中に一つの反応性ハロゲン原子を有するエポキシ化合物であれば特に制限無く用いることができるが、具体的には、エピクロルヒドリン、2−クロロメチル−2−メチルオキシラン、2−クロロメチル−2−エチルオキシラン、1−クロロ−2,3−エポキシブタン、2−クロロエチルオキシラン、2−クロロエチル−2−メチルオキシラン、2−クロロエチル−2−エチルオキシラン、1−クロロ−2,3−エポキシペンタン、1−クロロ−3,4−エポキシペンタン、2−クロロプロピルオキシラン、2−クロロプロピル−2−メチルオキシラン、2−クロロプロピル−2−エチルオキシラン、1−クロロ−2,3−エポキシヘキサン、1−クロロ−4,5−エポキシヘキサン、2−クロロブチルオキシラン、2−クロロブチル−2−メチルオキシラン、2−クロロブチル−2−エチルオキシラン、1−クロロ−2,3−エポキシヘプタン、1−クロロ−5,6−エポキシヘプタン、2−フルオロメチルオキシラン、2−フルオロメチル−2−メチルオキシラン、2−フルオロメチル−2−エチルオキシラン、1−フルオロ−2,3−エポキシブタン、2−フルオロエチルオキシラン、2−フルオロエチル−2−メチルオキシラン、2−フルオロエチル−2−エチルオキシラン、1−フルオロ−2,3−エポキシペンタン、1−フルオロ−3,4−エポキシペンタン、2−フルオロプロピルオキシラン、2−フルオロプロピル−2−メチルオキシラン、2−フルオロプロピル−2−エチルオキシラン、1−フルオロ−2,3−エポキシヘキサン、1−フルオロ−4,5−エポキシヘキサン、2−フルオロブチルオキシラン、2−フルオロブチル−2−メチルオキシラン、2−フルオロブチル−2−エチルオキシラン、1−フルオロ−2,3−エポキシヘプタン、1−フルオロ−5,6−エポキシヘプタン、2−ブロモメチルオキシラン、2−ブロモメチル−2−メチルオキシラン、2−ブロモメチル−2−エチルオキシラン、1−ブロモ−2,3−エポキシブタン、2−ブロモエチルオキシラン、2−ブロモエチル−2−メチルオキシラン、2−ブロモエチル−2−エチルオキシラン、1−ブロモ−2,3−エポキシペンタン、1−ブロモ−3,4−エポキシペンタン、2−ブロモプロピルオキシラン、2−ブロモプロピル−2−メチルオキシラン、2−ブロモプロピル−2−エチルオキシラン、1−ブロモ−2,3−エポキシヘキサン、1−ブロモ−4,5−エポキシヘキサン、2−ブロモブチルオキシラン、2−ブロモブチル−2−メチルオキシラン、2−ブロモブチル−2−エチルオキシラン、1−ブロモ−2,3−エポキシヘプタン、1−ブロモ−5,6−エポキシヘプタン等の2−ハロゲン化アルキルエポキシ化合物が挙げられ、これらの中でもエピクロルヒドリンが好適に用いられる。   As the halogenated epoxy compound used in the present invention, any epoxy compound having one reactive halogen atom in one compound can be used without any particular limitation. Specifically, epichlorohydrin, 2-chloromethyl-2 -Methyloxirane, 2-chloromethyl-2-ethyloxirane, 1-chloro-2,3-epoxybutane, 2-chloroethyloxirane, 2-chloroethyl-2-methyloxirane, 2-chloroethyl-2-ethyloxirane, 1 -Chloro-2,3-epoxypentane, 1-chloro-3,4-epoxypentane, 2-chloropropyloxirane, 2-chloropropyl-2-methyloxirane, 2-chloropropyl-2-ethyloxirane, 1-chloro -2,3-epoxyhexane, 1-chloro-4,5-epoxyhexa 2-chlorobutyloxirane, 2-chlorobutyl-2-methyloxirane, 2-chlorobutyl-2-ethyloxirane, 1-chloro-2,3-epoxyheptane, 1-chloro-5,6-epoxyheptane, 2-fluoro Methyloxirane, 2-fluoromethyl-2-methyloxirane, 2-fluoromethyl-2-ethyloxirane, 1-fluoro-2,3-epoxybutane, 2-fluoroethyloxirane, 2-fluoroethyl-2-methyloxirane, 2-fluoroethyl-2-ethyloxirane, 1-fluoro-2,3-epoxypentane, 1-fluoro-3,4-epoxypentane, 2-fluoropropyloxirane, 2-fluoropropyl-2-methyloxirane, 2- Fluoropropyl-2-ethyloxirane, 1-fluoro 2,3-epoxyhexane, 1-fluoro-4,5-epoxyhexane, 2-fluorobutyloxirane, 2-fluorobutyl-2-methyloxirane, 2-fluorobutyl-2-ethyloxirane, 1-fluoro-2, 3-epoxyheptane, 1-fluoro-5,6-epoxyheptane, 2-bromomethyloxirane, 2-bromomethyl-2-methyloxirane, 2-bromomethyl-2-ethyloxirane, 1-bromo-2,3-epoxybutane 2-bromoethyloxirane, 2-bromoethyl-2-methyloxirane, 2-bromoethyl-2-ethyloxirane, 1-bromo-2,3-epoxypentane, 1-bromo-3,4-epoxypentane, 2-bromo Propyloxirane, 2-bromopropyl-2-methyloxirane, 2-butyl Lomopropyl-2-ethyloxirane, 1-bromo-2,3-epoxyhexane, 1-bromo-4,5-epoxyhexane, 2-bromobutyloxirane, 2-bromobutyl-2-methyloxirane, 2-bromobutyl-2- Examples thereof include 2-halogenated alkyl epoxy compounds such as ethyl oxirane, 1-bromo-2,3-epoxyheptane, 1-bromo-5,6-epoxyheptane, among which epichlorohydrin is preferably used.

末端に金属原子を有するオレフィン重合体とハロゲン化エポキシ化合物との処理は、溶液中、懸濁液中または気相中のいずれにおいても実施することができる。処理形態としては、溶液中または懸濁液中であることが好ましく、この時の溶媒としては、不活性炭化水素溶媒を用いることができる。処理温度においては溶媒を使用せず液状のオレフィン重合体中で行うこともできる。   The treatment of the olefin polymer having a metal atom at the terminal and the halogenated epoxy compound can be carried out either in solution, in suspension or in the gas phase. The treatment form is preferably in solution or suspension, and an inert hydrocarbon solvent can be used as the solvent at this time. The treatment temperature may be carried out in a liquid olefin polymer without using a solvent.

この際用いられる不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、またはこれらの組み合わせが挙げられる。これらのうち、特に脂肪族炭化水素を用いることが好ましい。   Specific examples of the inert hydrocarbon medium used here include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, methylcyclopentane, and the like. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride and chlorobenzene, or combinations thereof. Of these, it is particularly preferable to use an aliphatic hydrocarbon.

処理に用いるハロゲン化エポキシ化合物の使用量は、末端に不飽和結合を有するオレフィン重合体との処理に用いる有機金属化合物のモル量[M]に対するハロゲン化エポキシ化合物のモル量[E]の割合[E]/[M]が0.01〜200の範囲にあるのが好ましく、より好ましくは0.1〜100の範囲である。   The amount of the halogenated epoxy compound used in the treatment is the ratio of the molar amount [E] of the halogenated epoxy compound to the molar amount [M] of the organometallic compound used in the treatment with the olefin polymer having an unsaturated bond at the terminal [ E] / [M] is preferably in the range of 0.01 to 200, more preferably in the range of 0.1 to 100.

処理温度は、通常、0℃以上、好ましくは10〜200℃、より好ましくは20〜100℃の範囲であり、処理時間は、通常1分〜24時間、好ましくは、10分〜10時間、より好ましくは15分〜8時間、処理圧力は、通常、常圧〜3MPa、好ましくは常圧〜1MPaに設定される。反応は回分式、半連続式、連続式のいずれの方法においても行うことができる。   The treatment temperature is usually 0 ° C. or higher, preferably 10 to 200 ° C., more preferably 20 to 100 ° C., and the treatment time is usually 1 minute to 24 hours, preferably 10 minutes to 10 hours, and more. Preferably, the processing pressure is usually set to normal pressure to 3 MPa, preferably normal pressure to 1 MPa for 15 minutes to 8 hours. The reaction can be carried out by any of batch, semi-continuous and continuous methods.

末端水酸化オレフィン重合体中に導入される水酸基の量は、使用する有機金属化合物および/またはハロゲン化エポキシ化合物の使用量、処理条件により制御することが可能であり、末端に不飽和結合を有するオレフィン重合体中の不飽和基に対して0.01モル%〜100%の水酸基をオレフィン重合体中に導入することができる。   The amount of hydroxyl group introduced into the terminal hydroxylated olefin polymer can be controlled by the amount of the organometallic compound and / or halogenated epoxy compound used and the processing conditions, and has an unsaturated bond at the terminal. 0.01 mol% to 100% of hydroxyl groups can be introduced into the olefin polymer with respect to the unsaturated groups in the olefin polymer.

末端水酸化オレフィン重合体は、公知の方法によって回収することができ、デカンテーション処理、フラッシュ処理、脱ガス処理等、いずれの方法を用いて回収しても良い。得られた末端水酸化オレフィン重合体は、通常得られるオレフィン重合体と同様の外見性状である。   The terminal hydroxylated olefin polymer can be recovered by a known method, and may be recovered by any method such as decantation treatment, flash treatment, and degassing treatment. The obtained terminal hydroxylated olefin polymer has the same appearance as that of the usually obtained olefin polymer.

(用途)
得られた末端水素化オレフィン重合体は、塗装性、接着性、印刷性等に優れ、自動車外装材、樹脂フィルムとの張り合わせ、表面印刷用樹脂等に用いられる。またアルミニウム等の金属蒸着用フィルム樹脂として、高バリア性を付与した樹脂としても用いられる。さらに、他樹脂とのポリマーアロイ用相溶化剤としても好適に用いられる。
(Use)
The obtained terminal hydrogenated olefin polymer is excellent in paintability, adhesiveness, printability and the like, and is used for automobile exterior materials, bonding with resin films, surface printing resins, and the like. Moreover, it is used also as resin which provided high barrier property as film resin for metal vapor deposition, such as aluminum. Further, it is also suitably used as a compatibilizer for polymer alloys with other resins.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

〔参考例1〕
(末端位に不飽和結合を有するオレフィン重合体の製造1)
三井化学社製ポリプロピレン([η]=7.6)を、プラストミルを用いて窒素雰囲気下、360℃で2時間処理した。処理して得られた重合体の数平均分子量(Mn)は、ゲル・パーミエイション・クロマトグラフィー(GPC)による分子量測定から、26500g/molであった。IR分析の結果から、1重合体鎖当たり0.74個のビニリデン基が存在することが確認された。
[Reference Example 1]
(Production of olefin polymer having an unsaturated bond at the terminal position 1)
Polypropylene ([η] = 7.6) manufactured by Mitsui Chemicals was treated at 360 ° C. for 2 hours under a nitrogen atmosphere using a plastomill. The number average molecular weight (Mn) of the polymer obtained by the treatment was 26500 g / mol based on the molecular weight measurement by gel permeation chromatography (GPC). From the results of IR analysis, it was confirmed that 0.74 vinylidene groups were present per polymer chain.

〔参考例2〕
(末端位に不飽和結合を有するオレフィン重合体の製造2)
充分に窒素置換した攪拌機付の内容積500mlのガラス製反応器内に、トルエン400mlを加え50℃に昇温した後、プロピレンガスをデカン中に100NL/時の割合で吹き込み、器内のデカンをプロピレン飽和状態にした。次に、エチレンブスインデニルジルコニウム(0.005mmol)とメチルアルモキサンのトルエン溶液(5mmol[Al])を反応器内に加え、プロピレン供給下、50℃で15分間重合を行なった。反応液を、1N塩酸30mlを含んだメタノール(1.5L)/アセトン(1.5L)混合液中に注ぎ込んだ。室温で30分攪拌した後、濾過により固体状成分を回収した。減圧下、80℃にて10時間乾燥し、11.5gの白色ポリマーを得た。
[Reference Example 2]
(Production of olefin polymer having an unsaturated bond at the terminal position 2)
In a glass reactor with an internal volume of 500 ml equipped with a stirrer sufficiently purged with nitrogen, 400 ml of toluene was added and the temperature was raised to 50 ° C., and then propylene gas was blown into the decane at a rate of 100 NL / hr. Propylene saturated. Next, ethylene bus indenyl zirconium (0.005 mmol) and a toluene solution of methylalumoxane (5 mmol [Al]) were added to the reactor, and polymerization was carried out at 50 ° C. for 15 minutes while supplying propylene. The reaction solution was poured into a methanol (1.5 L) / acetone (1.5 L) mixed solution containing 30 ml of 1N hydrochloric acid. After stirring at room temperature for 30 minutes, the solid component was recovered by filtration. It was dried at 80 ° C. for 10 hours under reduced pressure to obtain 11.5 g of a white polymer.

ゲル・パーミエイション・クロマトグラフィー(GPC)による分子量測定から、得られたポリマーの数平均分子量(Mn)は9900g/molであった。NMR分析の結果から、ポリマー末端に不飽和結合が存在しており、ポリマー片末端の94%がビニリデン基であった。   From the molecular weight measurement by gel permeation chromatography (GPC), the number average molecular weight (Mn) of the obtained polymer was 9900 g / mol. As a result of NMR analysis, an unsaturated bond was present at the polymer terminal, and 94% of the polymer one terminal was a vinylidene group.

(末端水酸化オレフィン重合体の製造1)
充分に窒素置換した攪拌機付の内容積1000mlのガラス製反応器内に、デカン800mlと、参考例1で得られた末端位に不飽和結合を有するオレフィン重合体(25.0g)を加え140℃に昇温してオレフィン重合体を溶解した後、ジイソブチル水素化アルミニウム(9mmol)を加えて、窒素雰囲気下140℃で6時間処理を行なった。溶液温度を100℃まで冷却し、エピクロロヒドリン(4.5ml)を器内に加え、100℃で1時間接触させた。反応液を、1N塩酸30mlを含んだメタノール(1.5L)/アセトン(1.5L)混合液中に注ぎ込んだ。室温で30分攪拌した後、濾過により固体状成分を回収した。減圧下、80℃にて10時間乾燥し、24.8gの白色ポリマーを得た。
(Production of terminal hydroxylated olefin polymer 1)
Into a glass reactor having an internal volume of 1000 ml with a stirrer sufficiently purged with nitrogen, 800 ml of decane and an olefin polymer having an unsaturated bond at the terminal position obtained in Reference Example 1 (25.0 g) were added at 140 ° C. Then, the olefin polymer was dissolved, and diisobutylaluminum hydride (9 mmol) was added, followed by treatment at 140 ° C. for 6 hours in a nitrogen atmosphere. The solution temperature was cooled to 100 ° C. and epichlorohydrin (4.5 ml) was added into the vessel and contacted at 100 ° C. for 1 hour. The reaction solution was poured into a methanol (1.5 L) / acetone (1.5 L) mixed solution containing 30 ml of 1N hydrochloric acid. After stirring at room temperature for 30 minutes, the solid component was recovered by filtration. It was dried at 80 ° C. for 10 hours under reduced pressure to obtain 24.8 g of a white polymer.

核磁気共鳴(NMR)分析の結果から、不飽和結合に由来するシグナルは検出されず、またポリマー末端に水酸基が存在していることが確認された。ポリマー片末端の67%が水酸基であった。   From the results of nuclear magnetic resonance (NMR) analysis, signals derived from unsaturated bonds were not detected, and it was confirmed that a hydroxyl group was present at the polymer terminal. 67% of the polymer one end was a hydroxyl group.

(末端水酸化プロピレンの製造2)
充分に窒素置換した攪拌機付の内容積500mlのガラス製反応器内に、デカン400mlと、参考例2で得られた末端位に不飽和結合を有するオレフィン重合体(10.0g)を加え140℃に昇温してオレフィン重合体を溶解した後、ジイソブチル水素化アルミニウム(9mmol)を加えて、窒素雰囲気下140℃で6時間処理を行なった。溶液温度を100℃まで冷却し、エピクロロヒドリン(4.5ml)を器内に加え、100℃で1時間接触させた。反応液を、1N塩酸30mlを含んだメタノール(1.5L)/アセトン(1.5L)混合液中に注ぎ込んだ。室温で30分攪拌した後、濾過により固体状成分を回収した。減圧下、80℃にて10時間乾燥し、9.9gの白色ポリマーを得た。
(Production of terminal propylene hydroxide 2)
Into a glass reactor having an internal volume of 500 ml with a stirrer sufficiently purged with nitrogen, 400 ml of decane and an olefin polymer having an unsaturated bond at the terminal position obtained in Reference Example 2 (10.0 g) were added at 140 ° C. Then, the olefin polymer was dissolved, and diisobutylaluminum hydride (9 mmol) was added, followed by treatment at 140 ° C. for 6 hours in a nitrogen atmosphere. The solution temperature was cooled to 100 ° C. and epichlorohydrin (4.5 ml) was added into the vessel and contacted at 100 ° C. for 1 hour. The reaction solution was poured into a methanol (1.5 L) / acetone (1.5 L) mixed solution containing 30 ml of 1N hydrochloric acid. After stirring at room temperature for 30 minutes, the solid component was recovered by filtration. It was dried at 80 ° C. under reduced pressure for 10 hours to obtain 9.9 g of a white polymer.

核磁気共鳴(NMR)分析の結果から、不飽和結合に由来するシグナルは検出されず、またポリマー末端に水酸基が存在していることが確認された。ポリマー末端の66%が水酸基であった。   From the results of nuclear magnetic resonance (NMR) analysis, signals derived from unsaturated bonds were not detected, and it was confirmed that a hydroxyl group was present at the polymer terminal. 66% of the polymer terminals were hydroxyl groups.

〔比較例1〕
参考例1によって得られた末端ビニリデン基含有ポリプロピレン25.0gを充分窒素置換した1000mlのガラス製反応器に入れ、デカン800mlおよびジイソブチルアルミニウムヒドリド6mmolを加えて140℃で6時間加熱攪拌を行った。デカン溶液を140℃に保ちながら、乾燥空気を200リットル/hの流量で6時間供給しつづけた後、100℃の溶液温度で10mlのイソブチルアルコールを加えた。反応溶液を、1N塩酸水50mlを含んだメタノール(1.5L)/アセトン(1.5L)混合溶液中に加えてポリマーを析出させ、濾過により回収したポリマーを80℃、減圧下、10時間乾燥して24.8gのポリマーを得た。NMR分析の結果、ポリマー末端に水酸基が存在しており、ポリマー片末端の40%が水酸基であった。
[Comparative Example 1]
25.0 g of the terminal vinylidene group-containing polypropylene obtained in Reference Example 1 was placed in a 1000 ml glass reactor sufficiently purged with nitrogen, 800 ml of decane and 6 mmol of diisobutylaluminum hydride were added, and the mixture was heated and stirred at 140 ° C. for 6 hours. While keeping the decane solution at 140 ° C. and continuously supplying dry air at a flow rate of 200 liters / h for 6 hours, 10 ml of isobutyl alcohol was added at a solution temperature of 100 ° C. The reaction solution was added to a methanol (1.5 L) / acetone (1.5 L) mixed solution containing 50 ml of 1N hydrochloric acid to precipitate a polymer, and the polymer recovered by filtration was dried at 80 ° C. under reduced pressure for 10 hours. As a result, 24.8 g of a polymer was obtained. As a result of NMR analysis, a hydroxyl group was present at the polymer end, and 40% of the polymer one end was a hydroxyl group.

Claims (3)

炭素原子数2〜20のオレフィンから選ばれる少なくとも1種以上のオレフィンを重合して得られた、末端位に不飽和結合を有するオレフィン重合体を、有機金属化合物と処理した後、次いでハロゲン化エポキシ化合物と処理することを特徴とする末端水酸化オレフィン重合体の製造方法。 An olefin polymer having an unsaturated bond at the terminal position obtained by polymerizing at least one olefin selected from olefins having 2 to 20 carbon atoms is treated with an organometallic compound, and then a halogenated epoxy. A method for producing a terminal hydroxylated olefin polymer, characterized by treating with a compound. 有機金属化合物が、有機アルミニウム化合物および/または有機ボロン化合物であることを特徴とする請求項1記載の末端水酸化オレフィン重合体の製造方法。 The method for producing a terminal hydroxylated olefin polymer according to claim 1, wherein the organometallic compound is an organoaluminum compound and / or an organoboron compound. ハロゲン化エポキシ化合物がエピクロルヒドリンであることを特徴とする請求項1乃至2記載の末端水酸化オレフィン重合体の製造方法。 3. The method for producing a terminal hydroxylated olefin polymer according to claim 1, wherein the halogenated epoxy compound is epichlorohydrin.
JP2003369806A 2003-10-30 2003-10-30 Method for producing terminal hydroxylated olefin polymer Expired - Lifetime JP4216691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369806A JP4216691B2 (en) 2003-10-30 2003-10-30 Method for producing terminal hydroxylated olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369806A JP4216691B2 (en) 2003-10-30 2003-10-30 Method for producing terminal hydroxylated olefin polymer

Publications (2)

Publication Number Publication Date
JP2005132935A JP2005132935A (en) 2005-05-26
JP4216691B2 true JP4216691B2 (en) 2009-01-28

Family

ID=34647010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369806A Expired - Lifetime JP4216691B2 (en) 2003-10-30 2003-10-30 Method for producing terminal hydroxylated olefin polymer

Country Status (1)

Country Link
JP (1) JP4216691B2 (en)

Also Published As

Publication number Publication date
JP2005132935A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP5276757B2 (en) Shear thinning ethylene / α-olefin interpolymers and methods for their production
JP5079333B2 (en) Polyethylene for water supply pipes with excellent processability and pressure resistance characteristics using a hybrid supported metallocene catalyst and method for producing the same
JP5166678B2 (en) Process for producing olefin polymer
EP1844082B1 (en) Method of preparing a mixed supported metallocene catalyst
RU2092501C1 (en) Polymer composition
EP0685496A1 (en) Olefin copolymers and processes for preparing same
JP2002053615A (en) Ethylene (co)polymer and its use
JPS62230802A (en) Polymerization of alpha-olefin
JP2008530298A (en) Hybrid supported metallocene catalyst and method for producing polyethylene copolymer using the same
JPWO2007034920A1 (en) ETHYLENE POLYMER, THERMOPLASTIC RESIN COMPOSITION CONTAINING THE POLYMER, AND MOLDED BODY
JP2007197724A (en) Polyolefin-based composition
KR100376397B1 (en) Polyethylene pipes
WO2017213216A1 (en) Thermoplastic elastomer composition, method for producing same and molded body
WO2017048448A1 (en) Process for making branched epdm and epdm therefrom
JP4381898B2 (en) Propylene polymer, method for producing propylene polymer, and paintable material
JP2006124723A (en) Olefinic block copolymer and application thereof
JP4216691B2 (en) Method for producing terminal hydroxylated olefin polymer
JP2005504853A (en) Branched polymers based on alpha-olefins
JP4610784B2 (en) Olefin block copolymer
CN116601188A (en) Olefin polymer and process for producing the same
CN116134090A (en) Thermoplastic resin composition
JP4684453B2 (en) Olefin block copolymer
JP2009227899A (en) Manufacturing method of terminal-functionalized olefin base polymer
CN106699949B (en) Ethylene-alpha olefin-non-conjugated diene polymer and preparation method thereof
JP3969919B2 (en) Polyethylene having a polar functional group only at the end of the main chain and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Ref document number: 4216691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term