JP4216681B2 - Organic EL device - Google Patents

Organic EL device Download PDF

Info

Publication number
JP4216681B2
JP4216681B2 JP2003344398A JP2003344398A JP4216681B2 JP 4216681 B2 JP4216681 B2 JP 4216681B2 JP 2003344398 A JP2003344398 A JP 2003344398A JP 2003344398 A JP2003344398 A JP 2003344398A JP 4216681 B2 JP4216681 B2 JP 4216681B2
Authority
JP
Japan
Prior art keywords
layer
organic
refractive index
high refractive
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003344398A
Other languages
Japanese (ja)
Other versions
JP2004014530A (en
Inventor
宏 多田
敦 小田
仁志 石川
達 東口
由紀子 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003344398A priority Critical patent/JP4216681B2/en
Publication of JP2004014530A publication Critical patent/JP2004014530A/en
Application granted granted Critical
Publication of JP4216681B2 publication Critical patent/JP4216681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機EL素子に関する。   The present invention relates to an organic EL element.

有機エレクトロルミネッセンス(EL)素子は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子との再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。C.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W.Tang、S.A.VanSlyke、アプライドフィジックスレターズ(Applied Physics Letters)、51巻、913頁、1987年など)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tangらは、トリス(8−キノリノール)アルミニウムを発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じこめることなどが挙げられる。この例のように有機EL素子の素子構造としては、正孔輸送(注入)層、電子輸送性発光層の2層型、又は正孔輸送(注入)層、発光層、電子輸送(注入)層の3層型等がよく知られている。こうした積層型構造素子では、注入された正孔と電子の再結合効率を高めるため、素子構造や形成方法の工夫がなされている。   An organic electroluminescence (EL) element is a self-luminous element utilizing the principle that a fluorescent substance emits light by recombination energy between holes injected from an anode and electrons injected from a cathode by applying an electric field. is there. C. W. Tang et al. Reported a low-voltage driven organic EL element using a stacked element (CW Tang, SA VanSlyke, Applied Physics Letters, 51, 913, 1987, etc.). Since then, researches on organic EL elements using organic materials as constituent materials have been actively conducted. Tang et al. Use tris (8-quinolinol) aluminum for the light emitting layer and a triphenyldiamine derivative for the hole transporting layer. The advantages of the stacked structure are that it increases the efficiency of hole injection into the light-emitting layer, blocks the electrons injected from the cathode, increases the generation efficiency of excitons generated by recombination, and generates in the light-emitting layer For example, confining excitons. As in this example, the element structure of the organic EL element includes a hole transport (injection) layer, a two-layer type of an electron transporting light emitting layer, or a hole transport (injection) layer, a light emitting layer, an electron transport (injection) layer. The three-layer type is well known. In such a stacked structure element, the element structure and the formation method are devised in order to increase the recombination efficiency of injected holes and electrons.

しかしながら、有機EL素子においてはキャリア再結合の際にスピン統計の依存性より一重項生成の確率に制限があり、したがって発光確率に上限が生じる。この上限の値はおよそ25%と知られている。さらに、有機EL素子においてはその発光体の屈折率の影響のため、臨界角以上の出射角の光は全反射を起こし外部に取り出すことができない。このため発光体の屈折率が1.6とすると、発光量全体の20%程度しか有効に利用できず、エネルギーの変換効率の限界としては一重項生成確率を併せ全体で5%程度と低効率とならざるをえない(筒井哲夫「有機エレクトロルミネッセンスの現状と動向」、月刊ディスプレイ、vol.1、No.3、p11、1995年9月)。発光確率に強い制限の生じる有機EL素子においては、光の取り出し効率は致命的ともいえる効率の低下を招くことになる。   However, in the organic EL element, the probability of singlet generation is limited due to the dependence of spin statistics upon carrier recombination, and thus the light emission probability has an upper limit. This upper limit is known to be approximately 25%. Furthermore, in an organic EL element, light having an emission angle greater than the critical angle is totally reflected and cannot be extracted outside due to the influence of the refractive index of the light emitter. For this reason, when the refractive index of the light emitter is 1.6, only about 20% of the total light emission can be effectively used, and as a limit of energy conversion efficiency, the combined efficiency of singlet generation is about 5% as a whole. (Tetsuo Tsutsui “Current Status and Trends of Organic Electroluminescence”, Monthly Display, vol. 1, No. 3, p11, September 1995). In an organic EL element in which the light emission probability is severely limited, the light extraction efficiency causes a decrease in efficiency which can be regarded as fatal.

この光の取り出し効率を向上させる手法としては、従来無機エレクトロルミネッセンス素子などの、同等な構造を持つ発光素子において検討されてきた。例えば、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795)や、素子の側面等に反射面を形成する方法(特開平1−220394)が提案されている。しかしながら、これらの方法は、発光面積の大きな素子に対しては有効であるが、ドットマトリクスディスプレイ等の画素面積の微小な素子においては、集光性を持たせるレンズや側面の反射面等の形成加工が困難である。さらに、有機EL素子においては発光層の膜厚が数μm以下となるため、テーパー状の加工を施し素子側面に反射鏡を形成することは現在の微細加工の技術では困難であり、大幅なコストアップをもたらす。また、基板ガラスと発光体との間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691)もあるが、この方法は前方への光の取り出し効率の改善の効果はあるが、全反射を防ぐことはできない。したがって、屈折率の大きな無機エレクトロルミネッセンスに対しては有効であっても、比較的低屈折率の発光体である有機EL素子に対しては大きな改善効果を上げることはできない。   As a method for improving the light extraction efficiency, a light emitting device having an equivalent structure such as an inorganic electroluminescence device has been conventionally studied. For example, a method for improving the efficiency by giving the substrate a light condensing property (Japanese Patent Laid-Open No. Sho 63-314795) and a method for forming a reflective surface on the side surface of the element (Japanese Patent Laid-Open No. 1-220394) have been proposed. . However, these methods are effective for an element with a large light emitting area, but in a minute element with a small pixel area such as a dot matrix display, a lens for condensing light, a reflective surface on a side surface, or the like is formed. Processing is difficult. Furthermore, in the organic EL element, since the film thickness of the light emitting layer is several μm or less, it is difficult to form a reflecting mirror on the side surface of the element by applying a taper process, which requires a significant cost. Bring up. Also, there is a method (Japanese Patent Laid-Open No. 62-172691) in which a flat layer having an intermediate refractive index is introduced between the substrate glass and the light emitter to form an antireflection film. Although there is an effect of improving the extraction efficiency, total reflection cannot be prevented. Therefore, even if it is effective for inorganic electroluminescence having a large refractive index, a large improvement effect cannot be achieved for an organic EL element that is a light emitter having a relatively low refractive index.

したがって、有機EL素子に有用な光の取り出し方法は未だ不十分であり、この光の取り出し方法の開拓が有機EL素子の高効率化に不可欠である。そこで、光の取り出し効率を向上させるために回折格子を構成要素とした有機EL素子が特開平11−283751号公報に開示されている。この手法により有機EL素子の光の取り出し効率が向上し、素子の発光効率が向上している。しかし、この場合にも光の取り出し効率は十分に高くなってはいない。   Therefore, the light extraction method useful for the organic EL element is still insufficient, and the development of this light extraction method is indispensable for improving the efficiency of the organic EL element. Thus, an organic EL element having a diffraction grating as a constituent element in order to improve the light extraction efficiency is disclosed in Japanese Patent Application Laid-Open No. 11-283951. By this method, the light extraction efficiency of the organic EL element is improved, and the light emission efficiency of the element is improved. However, even in this case, the light extraction efficiency is not sufficiently high.

本発明は、上述した事情に鑑みてなされたもので、その目的は、高効率の有機EL素子を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a highly efficient organic EL element.

本発明者は鋭意検討を行った結果、本発明を得るに至った。すなわち、本発明は、次に示される(1)〜(7)の有機EL素子である。   As a result of intensive studies, the present inventor has obtained the present invention. That is, this invention is the organic EL element of (1)-(7) shown next.

(1)1層又は複数層の有機薄膜層が少なくとも一方が透明電極である一対の電極で挟持されてなる有機EL素子において、
前記有機薄膜層よりも屈折率の高い高屈折率層と、
前記高屈折率層に接して、媒質中に屈折率の異なる材料よりなる微小球を分散させた層が更に設けられていることを特徴とする有機EL素子。
(1) In an organic EL element in which one or more organic thin film layers are sandwiched between a pair of electrodes, at least one of which is a transparent electrode,
A high refractive index layer having a higher refractive index than the organic thin film layer;
An organic EL element, further comprising a layer in which microspheres made of materials having different refractive indexes are dispersed in a medium in contact with the high refractive index layer.

(2)前記高屈折率層は前記透明電極と基板との間に設けられていることを特徴とする(1)の有機EL素子。 (2) The organic EL element according to (1), wherein the high refractive index layer is provided between the transparent electrode and the substrate.

(3)前記高屈折率層が、金属化合物を含む前駆体を分散させた塗液を塗布した後に固化することによって形成されたものであることを特徴とする(1)又は(2)の有機EL素子。 (3) The organic material according to (1) or (2), wherein the high refractive index layer is formed by solidifying after applying a coating liquid in which a precursor containing a metal compound is dispersed. EL element.

(4)1層又は複数層の有機薄膜層が少なくとも一方が透明電極である一対の電極で挟持されてなる有機EL素子において、
前記透明電極が有機薄膜層よりも屈折率の高い高屈折率層であり、前記高屈折率層に接して、媒質中に屈折率の異なる材料よりなる微小球を分散させた層が更に設けられていることを特徴とする有機EL素子。
(4) In an organic EL element in which one or more organic thin film layers are sandwiched between a pair of electrodes, at least one of which is a transparent electrode,
The transparent electrode is a high refractive index layer having a higher refractive index than the organic thin film layer, and a layer in which microspheres made of materials having different refractive indexes are dispersed in a medium is further provided in contact with the high refractive index layer. An organic EL element characterized by comprising:

(5)前記微小球の径が50nm〜5μmである事を特徴とする(1)〜(4)の有機EL素子。 (5) The organic EL element of (1) to (4), wherein the diameter of the microsphere is 50 nm to 5 μm.

(6)前記一対の電極が透明電極と金属電極とからなり、前記有機薄膜層中の正孔と電子の再結合発光領域が前記金属電極から100nm以上離れていることを特徴とする(1)〜(5)の有機EL素子。 (6) The pair of electrodes includes a transparent electrode and a metal electrode, and a recombination light-emitting region of holes and electrons in the organic thin film layer is separated from the metal electrode by 100 nm or more (1) Organic EL element of (5).

(7)前記有機薄膜層中の発光層が前記金属電極から100nm以上離れていることを特徴とする(1)〜(5)の有機EL素子。 (7) The organic EL device according to any one of (1) to (5), wherein a light emitting layer in the organic thin film layer is separated from the metal electrode by 100 nm or more.

つまり、有機層よりも屈折率の高い高屈折率層を設けると、横方向に伝播するEL発光が高屈折率層に集中するために電極からの伝搬損失の影響が小さくなる。
さらに基板面に平行な方向の周期構造を設けると、光取り出し効率が向上する。この周期構造として、前記高屈折率層に接して、微小球を分散させて周期構造をなしている層を挿入する。媒質と微小球の屈折率に差ができるように材料系を適宜選択することにより、屈折率差の周期構造を形成することができる。この場合、媒質と微小球のどちらの方が屈折率が大きくても構わない。微小球の径は、EL発光を効率良く取り出すために50nm〜5μmが好ましい。
That is, when a high refractive index layer having a higher refractive index than that of the organic layer is provided, the EL emission propagating in the lateral direction is concentrated on the high refractive index layer, so that the influence of propagation loss from the electrode is reduced.
Furthermore, when a periodic structure in a direction parallel to the substrate surface is provided, the light extraction efficiency is improved. As this periodic structure, a layer having a periodic structure in which microspheres are dispersed is inserted in contact with the high refractive index layer. A periodic structure with a difference in refractive index can be formed by appropriately selecting a material system so that the refractive index of the medium and the microsphere can be different. In this case, either the medium or the microsphere may have a higher refractive index. The diameter of the microsphere is preferably 50 nm to 5 μm in order to efficiently extract EL light emission.

高屈折率層は以下のような条件が求められる。高屈折率層の厚さは、薄すぎるとEL発光を有効に閉じ込められないため50nm以上が好ましく、200nm以上であればより好ましい。また、高屈折率層の屈折率は有機層よりも高い必要があるが、具体的には1.7以上が好ましい。また、吸収によるロスを少なくするために透明である必要がある。このような条件の膜の形成をスパッタ法等の通常の蒸着法で行うと、膜厚と透明性との両立が困難であった。つまり、蒸着法では膜厚を厚くするほど膜の均一性が低下して透明性が低下するという問題があった。また、蒸着法では設備が大掛かりになり製造コストが非常に高くなってしまうという問題があった。   The following conditions are required for the high refractive index layer. The thickness of the high refractive index layer is preferably 50 nm or more, and more preferably 200 nm or more because EL emission cannot be effectively confined if it is too thin. Moreover, although the refractive index of a high refractive index layer needs to be higher than an organic layer, specifically, 1.7 or more are preferable. Moreover, in order to reduce the loss by absorption, it needs to be transparent. When film formation under such conditions is performed by a normal vapor deposition method such as sputtering, it is difficult to achieve both film thickness and transparency. That is, in the vapor deposition method, there is a problem that as the film thickness is increased, the uniformity of the film is lowered and the transparency is lowered. Further, the vapor deposition method has a problem that the equipment becomes large and the manufacturing cost becomes very high.

そこで高屈折率層を、前記透明電極と基板との間に設ける際、金属化合物を含む前駆体を分散させた塗液を塗布した後に固化することによって設けるか、もしくは透明電極自身が高屈折率層となるよう、有機薄膜層よりも屈折率の大きなものを選択することで前述の問題を解決することができる。   Therefore, when the high refractive index layer is provided between the transparent electrode and the substrate, it is provided by solidifying after applying a coating liquid in which a precursor containing a metal compound is dispersed, or the transparent electrode itself has a high refractive index. The aforementioned problem can be solved by selecting a layer having a refractive index larger than that of the organic thin film layer so as to form a layer.

前者の場合、金属化合物を含む前駆体を分散させた塗液を塗布した後に固化して高屈折率層を形成することによって、従来困難であった膜厚と透明性との両立が可能となり、かつ製造コストを低減させることができる。具体的には、ゾル−ゲル法、塗布熱分解法、有機酸塩法等が挙げられるが、これらに限定されるものではない。このような方法により、厚膜を均一に形成でき、かつ製造コストが安いというメリットが得られる。   In the former case, by applying a coating liquid in which a precursor containing a metal compound is dispersed and then solidifying to form a high refractive index layer, it becomes possible to achieve both a film thickness and transparency that have been difficult in the past, In addition, the manufacturing cost can be reduced. Specific examples include, but are not limited to, a sol-gel method, a coating pyrolysis method, and an organic acid salt method. By such a method, the merit that a thick film can be formed uniformly and the manufacturing cost is low is obtained.

金属化合物を含む前駆体としては、公知のものが適用可能であるが、例えば金属アルコキシド、有機酸塩、金属錯塩、酸化物等が挙げられる。   Known precursors can be used as the precursor containing the metal compound, and examples thereof include metal alkoxides, organic acid salts, metal complex salts, and oxides.

また、透明電極の対向電極が金属電極の場合、EL発光領域と金属電極との距離を離す構成とすることによって発光場所を金属電極から離すことによって、効率よく外部に取り出すことが有効である。このため、特に出射角の大きい発光成分が効率よく外部に取り出されることによって発光効率が向上する。   Further, when the counter electrode of the transparent electrode is a metal electrode, it is effective to take out the light emitting place from the metal electrode efficiently by separating the EL light emitting region from the metal electrode. For this reason, the light emission efficiency is improved by efficiently extracting the light emission component having a particularly large emission angle to the outside.

つまり、有機EL素子は、有機層を一対の対向電極で挟んだ構成をしている。通常、発光の取り出しのために片側の電極にはITO等の透明電極を用いており、もう一方の電極は金属電極となっているのが一般的である。この構成において、EL発光した光が有機層中を導波するときに、金属電極からの伝搬損失を受ける(「光集積回路」,西原浩等著,オーム社)。これは、一般に光波長の領域では、金属中における電荷の慣性効果によって金属は誘電率が負でかつ損失の大きい誘電体としてふるまうからである。出射角が0°に近い発光成分は、金属電極の近傍を通る距離が短いため伝搬損失の影響は小さいが、出射角が大きい成分は金属電極の近傍を通る距離が長いために伝搬損失の影響が大きい(図1)。図1において、100はITO基板、101は有機膜、102は陰極を示している。出射角がある程度以上大きくなると、空気との境界面で全反射してしまうために閉じ込められてしまい、さらに金属電極の伝搬損失の影響は大きくなる。   That is, the organic EL element has a configuration in which an organic layer is sandwiched between a pair of counter electrodes. Usually, a transparent electrode such as ITO is used as one electrode for extracting light, and the other electrode is generally a metal electrode. In this configuration, when EL emitted light is guided through the organic layer, it receives a propagation loss from the metal electrode (“Optical Integrated Circuit”, written by Hiroshi Nishihara, Ohm). This is because the metal generally behaves as a dielectric having a negative dielectric constant and a large loss due to the inertial effect of electric charge in the metal in the region of the optical wavelength. The light emission component with an emission angle close to 0 ° is less affected by propagation loss because the distance passing through the vicinity of the metal electrode is short. However, the component with a larger emission angle is affected by propagation loss because the distance through the vicinity of the metal electrode is long. Is large (FIG. 1). In FIG. 1, 100 indicates an ITO substrate, 101 indicates an organic film, and 102 indicates a cathode. When the emission angle becomes larger than a certain level, the light is totally reflected at the interface with the air, so that it is confined, and the influence of the propagation loss of the metal electrode becomes larger.

このように、有機EL素子においては出射角の大きい発光成分を効率よく外部に取り出すことが光取り出し効率の向上につながる。本発明者は、鋭意検討を行った結果、発光領域と金属電極とを100nm以上離すことによって発光効率が向上することを見出した。
この構成を高屈折率層、微小球を分散させた層を有する有機EL素子に用いることによって、発光効率が向上した有機EL素子を得ることが可能となった。
As described above, in the organic EL element, efficiently extracting a light emitting component having a large emission angle to the outside leads to an improvement in light extraction efficiency. As a result of intensive studies, the present inventors have found that the luminous efficiency is improved by separating the light emitting region and the metal electrode by 100 nm or more.
By using this configuration for an organic EL element having a high refractive index layer and a layer in which microspheres are dispersed, an organic EL element with improved luminous efficiency can be obtained.

本発明の有機EL素子においては、出射角の大きい発光成分を効率よく外部に取り出すことが可能となったため、光り取り出し効率が向上した有機EL素子が得られた。   In the organic EL device of the present invention, a light emitting component having a large emission angle can be efficiently extracted to the outside, and thus an organic EL device with improved light extraction efficiency is obtained.

本発明に係る有機EL素子の素子構造は、電極間に有機層を1層あるいは2層以上積層した構造であり、その例として、陽極/発光層/陰極からなる構造、陽極/正孔輸送層/発光層/電子輸送層/陰極からなる構造、陽極/正孔輸送層/発光層/陰極からなる構造、陽極/発光層/電子輸送層/陰極からなる構造等の構造が挙げられる。   The element structure of the organic EL element according to the present invention is a structure in which one or two or more organic layers are laminated between electrodes. Examples of the structure include an anode / light emitting layer / cathode structure, and an anode / hole transport layer. Examples of the structure include: / light emitting layer / electron transport layer / cathode structure, anode / hole transport layer / light emitting layer / cathode structure, and anode / light emitting layer / electron transport layer / cathode structure.

通常、陽極を透明電極とし、陰極を金属電極として陽極側からEL発光を取り出すのが一般的であるが、この場合、発光領域と陰極との距離を離すことになる。発光層と陰極との間に電子輸送層を挿入している場合、電子輸送層の厚さを100nm以上にすることによって発光領域と陰極との距離を離すことができる。また、電子輸送層を、正孔や励起子のブロッキングをする層と電子輸送性のスペーサー層の2層又はそれ以上から構成することもできる。スペーサー層として導電性の高い材料を用いることによって、素子の駆動電圧をあまり高くすることなく発光領域と陰極との距離を離すことができる。陽極/正孔輸送層/発光層/陰極の素子構成の場合、発光層には発光性とともに電子輸送性を有する材料が一般に用いられるが、この場合、発光層中の正孔輸送層近傍が正孔と電子の再結合発光領域となるため、発光層の膜厚を厚くすることによって発光領域は陰極から離れることになる。   In general, EL emission is taken out from the anode side using the anode as a transparent electrode and the cathode as a metal electrode. In this case, the distance between the light emitting region and the cathode is increased. In the case where an electron transport layer is inserted between the light emitting layer and the cathode, the distance between the light emitting region and the cathode can be increased by setting the thickness of the electron transport layer to 100 nm or more. Further, the electron transporting layer can be composed of two or more layers of a hole and exciton blocking layer and an electron transporting spacer layer. By using a highly conductive material for the spacer layer, the distance between the light emitting region and the cathode can be increased without increasing the driving voltage of the element. In the case of an anode / hole transport layer / light-emitting layer / cathode device structure, a material having a light-emitting property and an electron transport property is generally used for the light-emitting layer. In this case, the vicinity of the hole transport layer in the light-emitting layer is positive. Since the hole-electron recombination light-emitting region is formed, the light-emitting region is separated from the cathode by increasing the thickness of the light-emitting layer.

陽極が金属電極である場合、発光領域と陽極とを離すことになる。発光層と陽極との間に正孔輸送層を挿入している場合、正孔輸送層の厚さを100nm以上にすることによって発光領域と陽極との距離を離すことができる。また、正孔輸送層を、電子や励起子のブロッキングをする層と正孔輸送性のスペーサー層の2層又はそれ以上から構成することもできる。スペーサー層として導電性の高い材料を用いることによって、素子の駆動電圧をあまり高くすることなく発光領域と陽極との距離を離すことができる。陽極/発光層/電子輸送層/陰極の素子構成の場合、発光層には発光性とともに正孔輸送性を有する材料が一般に用いられるが、この場合、発光層中の電子輸送層近傍が正孔と電子の再結合発光領域となるため、発光層の膜厚を厚くすることによって発光領域は陽極から離れることになる。   When the anode is a metal electrode, the light emitting region and the anode are separated. In the case where a hole transport layer is inserted between the light emitting layer and the anode, the distance between the light emitting region and the anode can be increased by setting the thickness of the hole transport layer to 100 nm or more. Further, the hole transport layer may be composed of two layers or more of a layer for blocking electrons and excitons and a hole transportable spacer layer. By using a highly conductive material for the spacer layer, the distance between the light emitting region and the anode can be increased without increasing the driving voltage of the element. In the case of an anode / light-emitting layer / electron transport layer / cathode device structure, a material having a light-emitting property and a hole-transporting property is generally used for the light-emitting layer. In this case, the vicinity of the electron transport layer in the light-emitting layer is a hole. Therefore, by increasing the thickness of the light emitting layer, the light emitting region is separated from the anode.

本発明に用いられる正孔輸送材料は特に限定されず、正孔輸送材料として通常使用されている化合物であれば何を使用してもよい。正孔輸送材料の具体例としては、例えば、下記のビス(ジ(p−トリル)アミノフェニル)−1,1−シクロヘキサン[01]、N,N’―ジフェニルーN,N’―ビス(3−メチルフェニル)−1,1’―ビフェニル−4,4’―ジアミン[02]、N,N’−ジフェニル−N−N−ビス(1−ナフチル)−1,1’−ビフェニル)−4,4’−ジアミン[03]等のトリフェニルジアミン類や、スターバースト型分子([04]〜[06]等)、ポリパラフェニレンビニレン誘導体やポリアニリン誘導体やポリチオフェン誘導体等の導電性高分子、等が挙げられる。   The hole transport material used in the present invention is not particularly limited, and any compound that is usually used as a hole transport material may be used. Specific examples of the hole transport material include, for example, the following bis (di (p-tolyl) aminophenyl) -1,1-cyclohexane [01], N, N′-diphenyl-N, N′-bis (3- Methylphenyl) -1,1'-biphenyl-4,4'-diamine [02], N, N'-diphenyl-NN-bis (1-naphthyl) -1,1'-biphenyl) -4,4 Examples include triphenyldiamines such as' -diamine [03], starburst type molecules ([04] to [06], etc.), conductive polymers such as polyparaphenylene vinylene derivatives, polyaniline derivatives, and polythiophene derivatives. It is done.

Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681

導電性高分子は一般に導電性が高いため、正孔輸送性のスペーサー層として有効である。また、FeCl3等のルイス酸と正孔輸送材料との混合膜も適用可能である。 Since a conductive polymer generally has high conductivity, it is effective as a hole transporting spacer layer. A mixed film of a Lewis acid such as FeCl 3 and a hole transport material is also applicable.

本発明に用いられる電子輸送材料は特に限定されず、電子輸送材料として通常使用されている化合物であれば何を使用してもよい。電子輸送材料の具体例としては、例えば、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール[07]、ビス{2−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール}−m−フェニレン[08]等のオキサジアゾール誘導体、トリアゾール誘導体([09]、[10]等)、キノリノール系の金属錯体([11]〜[14]等)、バソフェナントロリン[15]、バソクプロイン[16]、等が挙げられる。   The electron transport material used in the present invention is not particularly limited, and any compound that is usually used as an electron transport material may be used. Specific examples of the electron transport material include, for example, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole [07], bis {2- (4- oxadiazole derivatives such as t-butylphenyl) -1,3,4-oxadiazole} -m-phenylene [08], triazole derivatives ([09], [10], etc.), quinolinol-based metal complexes ([[ 11] to [14]), bathophenanthroline [15], bathocuproine [16], and the like.

Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681
Figure 0004216681

電子輸送材料と金属との混合膜は、膜厚を厚くしても駆動電圧が低く抑えられるため電子輸送性のスペーサー層として有効である。この場合、電子輸送材料としては、公知の電子輸送材料から適宜選択することができる。また金属としては、公知の金属から適宜選択することができるが、電子輸送性を持たせるためにイオン化ポテンシャルの小さい金属を用いることが好ましい。例えば、Mg、Ca、Li、Cs、Al、等が挙げられる。   A mixed film of an electron transporting material and a metal is effective as an electron transporting spacer layer because the driving voltage can be kept low even when the film thickness is increased. In this case, the electron transport material can be appropriately selected from known electron transport materials. The metal can be appropriately selected from known metals, but it is preferable to use a metal having a low ionization potential in order to provide electron transport properties. For example, Mg, Ca, Li, Cs, Al, etc. are mentioned.

本発明に用いられる発光材料は特に限定されず、発光材料として通常使用されている化合物であれば何を使用してもよい。例えば、ジスチリルアリーレン誘導体(特開平2−247278号公報、特開平5−17765号公報)、クマリン誘導体、ジシアノメチレンピラン誘導体、ペリレン誘導体(特開昭63−264692号公報)、また、芳香環系材料(特開平8−298186、特開平9−268284号公報)やアントラセン系化合物(特開平9−157643号公報、特開平9−268283号公報、特開平10−72581号公報)、キナクリドン誘導体(特開平5−70773号公報)、等が挙げられる。   The light emitting material used in the present invention is not particularly limited, and any compound that is usually used as a light emitting material may be used. For example, distyrylarylene derivatives (JP-A-2-247278, JP-A-5-17765), coumarin derivatives, dicyanomethylenepyran derivatives, perylene derivatives (JP-A 63-264692), and aromatic ring systems Materials (JP-A-8-298186, JP-A-9-268284) and anthracene compounds (JP-A-9-157743, JP-A-9-268283, JP-A-10-72581), quinacridone derivatives (special Kaihei 5-70773) and the like.

有機EL素子の陽極は、正孔を正孔輸送層に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、金等が挙げられる。また、陰極としては、電子輸送帯又は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、アルミニウム−リチウム合金、アルミニウム−スカンジウム−リチウム合金、マグネシウム−銀合金等を使用できる。   The anode of the organic EL element plays a role of injecting holes into the hole transport layer, and it is effective to have a work function of 4.5 eV or more. Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NESA), gold and the like. The cathode is preferably a material having a small work function for the purpose of injecting electrons into the electron transport zone or the light emitting layer. The cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.

本発明の有機EL素子の各層の形成方法は特に限定されず、公知の方法を適宜選択できる。例えば、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に溶かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法、等が挙げられる。   The formation method of each layer of the organic EL element of the present invention is not particularly limited, and a known method can be appropriately selected. For example, a vacuum deposition method, a molecular beam deposition method (MBE method), a dipping method of a solution dissolved in a solvent, a spin coating method, a casting method, a bar coating method, a coating method such as a roll coating method, or the like can be given.

以下、本発明の実施例について詳細に説明する。   Examples of the present invention will be described in detail below.

本実施例に係わる有機EL素子の断面図を図2に示した。Ti(i−OC374を無水エタノールで希釈し、攪拌しながら塩酸を無水エタノールで希釈した溶液を滴下して透明なゾル(塗布液)を調製し、さらにSiO2の微小球(平均粒径280nm)を分散させて、これをガラス基板900上にディップコートによって成膜した後、高温処理することによって、SiO2の微小球を分散した酸化チタン層901を形成した。その上にさらに、Ti(i−OC374を無水エタノールで希釈し、攪拌しながら塩酸を無水エタノールで希釈した溶液を滴下して透明なゾル(塗布液)を調製し、これをガラス基板900上にディップコートによって成膜した後、高温処理することによって、酸化チタン膜を形成した。このコーティング工程を10回程度繰り返すことにより、高屈折率層となる膜厚0.9μmの酸化チタン層よりなる高屈折率層902を形成した。 A sectional view of the organic EL device according to this example is shown in FIG. Ti (i-OC 3 H 7 ) 4 was diluted with absolute ethanol, a solution obtained by diluting hydrochloric acid with absolute ethanol was added dropwise with stirring to prepare a transparent sol (coating solution), and SiO 2 microspheres ( An average particle size of 280 nm was dispersed and formed on the glass substrate 900 by dip coating, followed by high temperature treatment to form a titanium oxide layer 901 in which SiO 2 microspheres were dispersed. Furthermore, Ti (i-OC 3 H 7 ) 4 is diluted with absolute ethanol, and a solution obtained by diluting hydrochloric acid with absolute ethanol is added dropwise with stirring to prepare a transparent sol (coating solution). After forming a film on the glass substrate 900 by dip coating, a titanium oxide film was formed by high-temperature treatment. By repeating this coating process about 10 times, a high refractive index layer 902 made of a titanium oxide layer having a thickness of 0.9 μm and serving as a high refractive index layer was formed.

次に、ITOをスパッタリングによってシート抵抗が20Ω/□になるように成膜し、陽極903とした。その上に有機層904として以下の2層を形成した。まず正孔輸送層として、化合物[03]を真空蒸着法にて50nm形成した。次に、発光層として化合物[11]を真空蒸着法にて60nm形成した。次に、電子輸送層として化合物[16]とマグネシウムを蒸着速度比2:1で真空蒸着法にて共蒸着した膜を400nm形成した。   Next, ITO was formed into a film by sputtering so that the sheet resistance was 20 Ω / □, and an anode 903 was obtained. The following two layers were formed thereon as the organic layer 904. First, as a hole transport layer, Compound [03] was formed to 50 nm by vacuum deposition. Next, the compound [11] was formed to 60 nm as a light emitting layer by vacuum deposition. Next, a film in which compound [16] and magnesium were co-deposited by a vacuum deposition method at a deposition rate ratio of 2: 1 was formed to 400 nm as an electron transport layer.

次に、陰極905としてマグネシウム−銀合金を蒸着速度比10:1で真空蒸着法にて共蒸着した膜を150nm形成して有機EL素子を作成した。この素子に5mA/cm2の直流電圧を印加したところ、391cd/m2の発光が得られた。 Next, a magnesium-silver alloy film co-deposited by a vacuum deposition method at a deposition rate ratio of 10: 1 was formed to 150 nm as the cathode 905 to produce an organic EL element. When a direct current voltage of 5 mA / cm 2 was applied to the device, light emission of 391 cd / m 2 was obtained.

(比較例)
本比較例に係わる有機EL素子の断面図を図3に示した。ガラス基板300上にITOをスパッタリングによってシート抵抗が20Ω/□になるように成膜し、陽極301とした。
(Comparative example)
A cross-sectional view of an organic EL device according to this comparative example is shown in FIG. An ITO film was formed on the glass substrate 300 by sputtering so that the sheet resistance was 20Ω / □, and the anode 301 was obtained.

その上に有機層302として以下の3層を形成した。まず正孔輸送層として、化合物[03]を真空蒸着法にて50nm形成した。次に、発光層として化合物[11]を真空蒸着法にて60nm形成した。次に、電子輸送層として化合物[16]とマグネシウムを蒸着速度比2:1で真空蒸着法にて共蒸着した膜を400nm形成した。   The following three layers were formed as the organic layer 302 thereon. First, as a hole transport layer, Compound [03] was formed to 50 nm by vacuum deposition. Next, the compound [11] was formed to 60 nm as a light emitting layer by vacuum deposition. Next, a film in which compound [16] and magnesium were co-deposited by a vacuum deposition method at a deposition rate ratio of 2: 1 was formed to 400 nm as an electron transport layer.

その後、陰極303としてマグネシウム−銀合金を蒸着速度比10:1で真空蒸着法にて共蒸着した膜を150nm形成して有機EL素子を作製した。この素子に5mA/cm2の直流電圧を印加したところ、143cd/m2の発光が得られた。 Thereafter, a film in which magnesium-silver alloy was co-deposited by a vacuum deposition method at a deposition rate ratio of 10: 1 was formed to 150 nm as the cathode 303 to produce an organic EL element. When a direct current voltage of 5 mA / cm 2 was applied to the device, light emission of 143 cd / m 2 was obtained.

(参考例1)
本参考例に係わる有機EL素子の断面図を図4に示した。水酸化インジウムと無水塩化第二スズからなるコロイド粒子を塩化インジウム水溶液に超音波分散し、酢酸、ポリビニルアルコールを添加して調製した塗布液を作成し、これをガラス基板500上にディップコートによって成膜した後、高温処理することによって、高屈折率層となる膜厚1.3μmのITO膜501を形成した。その上にSiOを真空蒸着法にて50nm形成した後、反応性ガスエッチングを行い、SiOからなる回折格子502を形成した。回折格子は、ピッチ700nm、ライン/スペース=1:1とした。
(Reference Example 1)
A cross-sectional view of the organic EL element according to this reference example is shown in FIG. A colloidal particle composed of indium hydroxide and anhydrous stannic chloride is ultrasonically dispersed in an indium chloride aqueous solution to prepare a coating solution prepared by adding acetic acid and polyvinyl alcohol, and this is formed on the glass substrate 500 by dip coating. After the film formation, an ITO film 501 having a film thickness of 1.3 μm to be a high refractive index layer was formed by high temperature treatment. Then, SiO was formed in a thickness of 50 nm by vacuum deposition, and then reactive gas etching was performed to form a diffraction grating 502 made of SiO. The diffraction grating had a pitch of 700 nm and a line / space = 1: 1.

その上に有機層503として以下の2層を形成した。まず正孔輸送層として、化合物[03]を真空蒸着法にて60nm形成した。次に、発光層として化合物[11]を真空蒸着法にて80nm形成した。   The following two layers were formed thereon as the organic layer 503. First, as a hole transport layer, compound [03] was formed to 60 nm by vacuum deposition. Next, Compound [11] was formed to 80 nm as a light emitting layer by a vacuum deposition method.

次に、陰極504としてマグネシウム−銀合金を蒸着速度比10:1で真空蒸着法にて共蒸着した膜を150nm形成して有機EL素子を作成した。この素子に5mA/cm2の直流電圧を印加したところ、287cd/m2の発光が得られた。 Next, a magnesium-silver alloy film co-deposited by a vacuum deposition method at a deposition rate ratio of 10: 1 was formed to 150 nm as the cathode 504 to produce an organic EL element. When a direct current voltage of 5 mA / cm 2 was applied to the device, light emission of 287 cd / m 2 was obtained.

(参考例2)
本参考例に係わる有機EL素子の断面図を図4に示した。参考例1と同様にしてITO、SiOを形成した。その上に有機層503として以下の3層を形成した。まず正孔輸送層として、化合物[03]を真空蒸着法にて50nm形成した。次に、発光層として化合物[11]を真空蒸着法にて60nm形成した。次に、電子輸送層として化合物[16]とマグネシウムを蒸着速度比2:1で真空蒸着法にて共蒸着した膜を400nm形成した。
(Reference Example 2)
A cross-sectional view of the organic EL element according to this reference example is shown in FIG. ITO and SiO were formed in the same manner as in Reference Example 1. The following three layers were formed thereon as the organic layer 503. First, as a hole transport layer, Compound [03] was formed to 50 nm by vacuum deposition. Next, the compound [11] was formed to 60 nm as a light emitting layer by vacuum deposition. Next, a film in which compound [16] and magnesium were co-deposited by a vacuum deposition method at a deposition rate ratio of 2: 1 was formed to 400 nm as an electron transport layer.

次に、陰極504としてマグネシウム−銀合金を蒸着速度比10:1で真空蒸着法にて共蒸着した膜を150nm形成して有機EL素子を作成した。この素子に5mA/cm2の直流電圧を印加したところ、368cd/m2の発光が得られた。 Next, a magnesium-silver alloy film co-deposited by a vacuum deposition method at a deposition rate ratio of 10: 1 was formed to 150 nm as the cathode 504 to produce an organic EL element. When a direct current voltage of 5 mA / cm 2 was applied to the device, light emission of 368 cd / m 2 was obtained.

(参考例3)
本参考例に係わる有機EL素子の断面図を図4に示した。参考例1と同様にしてガラス基板500上に高屈折率層となる膜厚1.3μmのITO膜を形成した。その上に、ITOをスパッタリングによって80nm成膜し、ITO膜501とした。
(Reference Example 3)
A cross-sectional view of the organic EL element according to this reference example is shown in FIG. In the same manner as in Reference Example 1, an ITO film having a film thickness of 1.3 μm serving as a high refractive index layer was formed on the glass substrate 500. An ITO film having a thickness of 80 nm was formed thereon by sputtering to form an ITO film 501.

その上にSiOを真空蒸着法にて50nm形成した後、反応性ガスエッチングを行い、SiOからなる回折格子502を形成した。回折格子は、ピッチ700nm、ライン/スペース=1:1とした。   Then, SiO was formed in a thickness of 50 nm by vacuum deposition, and then reactive gas etching was performed to form a diffraction grating 502 made of SiO. The diffraction grating had a pitch of 700 nm and a line / space = 1: 1.

その上に有機層503として以下の2層を形成した。まず正孔輸送層として、化合物[03]を真空蒸着法にて50nm形成した。次に、発光層として化合物[11]を真空蒸着法にて60nm形成した。次に、電子輸送層として化合物[16]とマグネシウムを蒸着速度比2:1で真空蒸着法にて共蒸着した膜を400nm形成した。   The following two layers were formed thereon as the organic layer 503. First, as a hole transport layer, Compound [03] was formed to 50 nm by vacuum deposition. Next, the compound [11] was formed to 60 nm as a light emitting layer by vacuum deposition. Next, a film in which compound [16] and magnesium were co-deposited by a vacuum deposition method at a deposition rate ratio of 2: 1 was formed to 400 nm as an electron transport layer.

次に、陰極504としてマグネシウム−銀合金を蒸着速度比10:1で真空蒸着法にて共蒸着した膜を150nm形成して有機EL素子を作成した。この素子に5mA/cm2の直流電圧を印加したところ、418cd/m2の発光が得られた。 Next, a magnesium-silver alloy film co-deposited by a vacuum deposition method at a deposition rate ratio of 10: 1 was formed to 150 nm as the cathode 504 to produce an organic EL element. When a direct current voltage of 5 mA / cm 2 was applied to the device, light emission of 418 cd / m 2 was obtained.

(参考例4)
本参考例に係わる有機EL素子の断面図を図5に示した。Ti(i−OC374を無水エタノールで希釈し、攪拌しながら塩酸を無水エタノールで希釈した溶液を滴下して透明なゾル(塗布液)を調製し、これをガラス基板600上にディップコートによって成膜した後、高温処理することによって、酸化チタン膜を形成した。このコーティング工程を10回程度繰り返すことにより、高屈折率層となる膜厚0.9μmの酸化チタン層601を形成した。
(Reference Example 4)
A cross-sectional view of the organic EL device according to this reference example is shown in FIG. Ti (i-OC 3 H 7 ) 4 is diluted with absolute ethanol, and a solution obtained by diluting hydrochloric acid with absolute ethanol is added dropwise with stirring to prepare a transparent sol (coating solution). After film formation by dip coating, a titanium oxide film was formed by high-temperature treatment. By repeating this coating process about 10 times, a titanium oxide layer 601 having a film thickness of 0.9 μm to be a high refractive index layer was formed.

次に、ITOをスパッタリングによってシート抵抗が20Ω/□になるように成膜し、陽極602とした。その上にSiOを真空蒸着法にて50nm形成した後、反応性ガスエッチングを行い、SiOからなる回折格子603を形成した。回折格子は、ピッチ700nm、ライン/スペース=1:1とした。   Next, ITO was formed into a film by sputtering so that the sheet resistance was 20 Ω / □, and an anode 602 was obtained. Then, SiO was formed with a thickness of 50 nm by vacuum deposition, and then reactive gas etching was performed to form a diffraction grating 603 made of SiO. The diffraction grating had a pitch of 700 nm and a line / space = 1: 1.

その上に有機層604として以下の2層を形成した。まず正孔輸送層として、化合物[03]を真空蒸着法にて50nm形成した。次に、発光層として化合物[11]を真空蒸着法にて60nm形成した。次に、電子輸送層として化合物[16]とマグネシウムを蒸着速度比2:1で真空蒸着法にて共蒸着した膜を400nm形成した。   The following two layers were formed as the organic layer 604 thereon. First, as a hole transport layer, Compound [03] was formed to 50 nm by vacuum deposition. Next, the compound [11] was formed to 60 nm as a light emitting layer by vacuum deposition. Next, a film in which compound [16] and magnesium were co-deposited by a vacuum deposition method at a deposition rate ratio of 2: 1 was formed to 400 nm as an electron transport layer.

次に、陰極605としてマグネシウム−銀合金を蒸着速度比10:1で真空蒸着法にて共蒸着した膜を150nm形成して有機EL素子を作成した。この素子に5mA/cm2の直流電圧を印加したところ、431cd/m2の発光が得られた。 Next, a magnesium-silver alloy film co-deposited by a vacuum deposition method at a deposition rate ratio of 10: 1 was formed to 150 nm as the cathode 605 to produce an organic EL element. When a direct current voltage of 5 mA / cm 2 was applied to the device, light emission of 431 cd / m 2 was obtained.

有機EL素子の断面図である。It is sectional drawing of an organic EL element. 本発明に係わる有機EL素子の一例の断面図である。It is sectional drawing of an example of the organic EL element concerning this invention. 比較例の有機EL素子の断面図である。It is sectional drawing of the organic EL element of a comparative example. 参考例1〜3の有機EL素子の一例の断面図である。It is sectional drawing of an example of the organic EL element of the reference examples 1-3. 参考例4の有機EL素子の一例の断面図である。It is sectional drawing of an example of the organic EL element of the reference example 4.

符号の説明Explanation of symbols

100 ITO基板
101 有機膜
102 陰極
300 ガラス基板
301 陽極
302 有機層
303 陰極
500 ガラス基板
501 ITO膜
502 SiO
503 有機層
504 陰極
600 ガラス基板
601 酸化チタン層
602 ITO膜
603 SiO
604 有機層
605 陰極
900 ガラス基板
901 SiO2の微小球を分散した酸化チタン層
902 高屈折率層
903 ITO膜
904 有機層
905 陰極
100 ITO substrate 101 Organic film 102 Cathode 300 Glass substrate 301 Anode 302 Organic layer 303 Cathode 500 Glass substrate 501 ITO film 502 SiO
503 Organic layer 504 Cathode 600 Glass substrate 601 Titanium oxide layer 602 ITO film 603 SiO
604 Organic layer 605 Cathode 900 Glass substrate 901 Titanium oxide layer 902 in which SiO 2 microspheres are dispersed High refractive index layer 903 ITO film 904 Organic layer 905 Cathode

Claims (4)

1層又は複数層の有機薄膜層が少なくとも一方が透明電極である一対の電極で挟持されてなる有機EL素子において、
前記透明電極に対して前記有機薄膜層の反対側に配置し、前記有機薄膜層よりも屈折率の高い高屈折率層と、前記高屈折率層に接して、媒質中に屈折率の異なる材料よりなる微小球を分散させた周期構造をなしている層が更に設けられており、
前記微小球の径が50nm〜5μmであり、
前記一対の電極が透明電極と金属電極とからなり、前記有機薄膜層中の発光層が前記金属電極から100nm以上離れていることを特徴とする有機EL素子。
In an organic EL element in which one or more organic thin film layers are sandwiched between a pair of electrodes, at least one of which is a transparent electrode,
Disposed on the opposite side of the organic thin film layer with respect to the transparent electrode, a high refractive index layer having a higher refractive index than the organic thin film layer, and a material having a different refractive index in the medium in contact with the high refractive index layer a layer forms a periodic structure are dispersed more consists microspheres and is further provided,
The diameter of the microsphere is 50 nm to 5 μm,
The organic EL element, wherein the pair of electrodes includes a transparent electrode and a metal electrode, and a light emitting layer in the organic thin film layer is separated from the metal electrode by 100 nm or more.
前記高屈折率層は前記透明電極と基板との間に設けられていることを特徴とする請求項に記載の有機EL素子。 The organic EL element according to claim 1 , wherein the high refractive index layer is provided between the transparent electrode and the substrate. 前記高屈折率層が、金属化合物を含む前駆体を分散させた塗液を塗布した後に固化することによって形成されたものであることを特徴とする請求項1又は2のいずれか記載の有機EL素子。 Organic according to the high refractive index layer, any one of claims 1 or 2, characterized in that formed by solidifying after applying the coating solution prepared by dispersing a precursor comprising a metal compound EL element. 1層又は複数層の有機薄膜層が少なくとも一方が透明電極である一対の電極で挟持されてなる有機EL素子において、
前記透明電極有機薄膜層よりも屈折率の高い高屈折率層であり、前記高屈折率層にはこれに接して、媒質中に屈折率の異なる材料よりなる微小球を分散させた周期構造をなしている層が更に設けられており、
前記微小球の径が50nm〜5μmであり、
前記一対の電極が透明電極と金属電極とからなり、前記有機薄膜層中の発光層が前記金属電極から100nm以上離れていることを特徴とする有機EL素子。
In an organic EL element in which one or more organic thin film layers are sandwiched between a pair of electrodes, at least one of which is a transparent electrode,
The transparent electrode is a high refractive index layer having a higher refractive index than the organic thin film layer, and the high refractive index layer is in contact with the periodic structure in which microspheres made of materials having different refractive indexes are dispersed in the medium. Is further provided with a layer,
The diameter of the microsphere is 50 nm to 5 μm,
The organic EL element, wherein the pair of electrodes includes a transparent electrode and a metal electrode, and a light emitting layer in the organic thin film layer is separated from the metal electrode by 100 nm or more.
JP2003344398A 1999-12-08 2003-10-02 Organic EL device Expired - Fee Related JP4216681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344398A JP4216681B2 (en) 1999-12-08 2003-10-02 Organic EL device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34861699 1999-12-08
JP2003344398A JP4216681B2 (en) 1999-12-08 2003-10-02 Organic EL device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000187947A Division JP3503579B2 (en) 1999-12-08 2000-06-22 Organic EL device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004014530A JP2004014530A (en) 2004-01-15
JP4216681B2 true JP4216681B2 (en) 2009-01-28

Family

ID=30445579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344398A Expired - Fee Related JP4216681B2 (en) 1999-12-08 2003-10-02 Organic EL device

Country Status (1)

Country Link
JP (1) JP4216681B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540868B2 (en) * 2010-04-26 2014-07-02 コニカミノルタ株式会社 Organic light emitting device
WO2014156714A1 (en) 2013-03-28 2014-10-02 コニカミノルタ株式会社 Surface light emitting element

Also Published As

Publication number Publication date
JP2004014530A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3503579B2 (en) Organic EL device and manufacturing method thereof
KR100685805B1 (en) Light-emitting diode, its manufacturing method, and display device using the same
JP2991183B2 (en) Organic electroluminescence device
US6486601B1 (en) Organic luminescence device with reduced leakage current
JP4440267B2 (en) High-efficiency organic light-emitting device using a substrate having nano-sized hemispherical recesses and a method for manufacturing the same
US6469437B1 (en) Highly transparent organic light emitting device employing a non-metallic cathode
TWI389596B (en) Organic electroluminescent device and method for preparing the same
JP4470627B2 (en) Optical substrate, light emitting element, and display device
JP2005510034A (en) LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE
KR101201962B1 (en) Compound electrodes for electronic devices
JP2003526188A (en) High efficiency transparent organic light emitting device
JP2003257671A (en) Light emitting element and its manufacturing method
JP2003045643A (en) Luminescent element and display device
KR100781620B1 (en) Electrode structure for electronic and opto-electronic devices
JP2947250B2 (en) Organic electroluminescence device and method of manufacturing the same
JP2004095549A (en) Organic electroluminescent element
JP2848386B1 (en) Organic electroluminescence device and method of manufacturing the same
JPH09129375A (en) Organic electroluminescent element
JP4216681B2 (en) Organic EL device
JP2001291594A (en) Electro-conductive liquid crystal element
JP2004014529A (en) Organic el element
JP2006128717A (en) Light emitting device, manufacturing method thereof, and light emitting apparatus
JP4382388B2 (en) SUBSTRATE FOR ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP2010103120A (en) Optical substrate, light-emitting element, display device, and method of manufacturing those
JP2008085142A (en) Organic el element, and optical wiring module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Ref document number: 4216681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees