JP2006128717A - Light emitting device, manufacturing method thereof, and light emitting apparatus - Google Patents

Light emitting device, manufacturing method thereof, and light emitting apparatus Download PDF

Info

Publication number
JP2006128717A
JP2006128717A JP2006013288A JP2006013288A JP2006128717A JP 2006128717 A JP2006128717 A JP 2006128717A JP 2006013288 A JP2006013288 A JP 2006013288A JP 2006013288 A JP2006013288 A JP 2006013288A JP 2006128717 A JP2006128717 A JP 2006128717A
Authority
JP
Japan
Prior art keywords
organic compound
light emitting
layer
cathode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006013288A
Other languages
Japanese (ja)
Other versions
JP3815690B2 (en
Inventor
Toshinori Hasegawa
利則 長谷川
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006013288A priority Critical patent/JP3815690B2/en
Publication of JP2006128717A publication Critical patent/JP2006128717A/en
Application granted granted Critical
Publication of JP3815690B2 publication Critical patent/JP3815690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device having a dopant which is easy to handle, and a manufacturing method thereof. <P>SOLUTION: The light emitting device has at least a pair of electrodes comprising a positive electrode and a negative electrode, and an organic compound layer prepared between the pair of electrodes. The organic compound layer, which is in substantially electrical contact with the negative electrode, is constituted of at least an organic compound and a carbonate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、陽極と陰極間に少なくとも一層の有機化合物層を備える発光素子、およびその製造方法、およびその発光素子を有する発光装置に関する。   The present invention relates to a light-emitting element having at least one organic compound layer between an anode and a cathode, a method for manufacturing the same, and a light-emitting device having the light-emitting element.

発光素子とは、陰極と陽極との間に流れる電流によって、両電極間に在る有機化合物が発光する、いわゆる有機エレクトロルミネッセンス素子のことである。   The light emitting element is a so-called organic electroluminescence element in which an organic compound existing between both electrodes emits light by a current flowing between a cathode and an anode.

発光素子の一般的な断面構造を、図1に示す。図中、1は透明基板、2は透明電極(陽極)、3は正孔輸送層、4は発光層、5は電子輸送層、6は電子注入層、7は陰極をそれぞれ表している。   A general cross-sectional structure of the light-emitting element is shown in FIG. In the figure, 1 is a transparent substrate, 2 is a transparent electrode (anode), 3 is a hole transport layer, 4 is a light emitting layer, 5 is an electron transport layer, 6 is an electron injection layer, and 7 is a cathode.

この発光素子においては、陰極7から、電子注入・輸送層5、6、を通して、発光層4に注入された電子と、透明電極2から正孔輸送層3を通して発光層4へ注入された正孔との再結合によって励起子が生成される。この励起子が基底状態にもどる際に放射される光を利用する素子である。   In this light emitting device, electrons injected from the cathode 7 into the light emitting layer 4 through the electron injection / transport layers 5 and 6 and holes injected from the transparent electrode 2 into the light emitting layer 4 through the hole transport layer 3. Exciton is generated by recombination with. It is an element that utilizes light emitted when the exciton returns to the ground state.

このような発光素子の陰極7には、比較的仕事関数が小さく、電子注入特性が良好な材料、例えば、マグネシウム(Mg)のような単体金属や、Ag−Mg、Al−Li等の金属合金が用いられる。   For the cathode 7 of such a light emitting element, a material having a relatively small work function and good electron injection characteristics, for example, a single metal such as magnesium (Mg), or a metal alloy such as Ag—Mg, Al—Li, etc. Is used.

また、特許文献1では、ドナー(電子供与性)ドーパントとして機能する金属を有する有機層が、陰極に接して設けられている構成が開示されている。そしてこのドナー(電子供与性)ドーパントとして用いられる金属としては、アルカリ金属、アルカリ土類金属、希土類を含む遷移金属等が該特許文献1に開示されている。   Patent Document 1 discloses a configuration in which an organic layer having a metal functioning as a donor (electron donating) dopant is provided in contact with a cathode. As the metal used as the donor (electron donating) dopant, an alkali metal, an alkaline earth metal, a transition metal containing a rare earth, and the like are disclosed in Patent Document 1.

また、特許文献2では、金属酸化物あるいは金属塩をドーパントとして有する有機層が、陰極に接して設けられている構成が開示されている。
特開平10−270171号公報(2頁、9−13行、第1図) 特開平10−270172号公報(2頁、2−7行、第1図)
Patent Document 2 discloses a configuration in which an organic layer having a metal oxide or a metal salt as a dopant is provided in contact with a cathode.
Japanese Patent Laid-Open No. 10-270171 (page 2, lines 9-13, FIG. 1) Japanese Patent Laid-Open No. 10-270172 (2 pages, lines 2-7, FIG. 1)

これらドーパントとしては、出来る限り仕事関数が小さい金属や、それら金属を含む、酸化物、金属塩が望ましい。そのような金属は、一般に反応性が高く、その取り扱いが大変困難である。また、そのような金属を含む金属酸化物や、金属塩をドーパントとして用いる場合では、金属単体を取り扱う場合に比較して、その安定性は高まるが、それでも尚一部の金属酸化物、金属塩では不安定であり、通常の大気環境下で取り扱うことが難しい物がある。また、一部に大気中で取り扱うことが可能な金属酸化物や、金属塩もあるが、それでもまだ不安定な為、陰極に接して設けられる有機層中へドーパントとして導入することが難しい場合がある。そのためこれらドーパントとしての取り扱いの難しさが、発光素子の製造にあたり、歩留まりが低く製造コストを上げる原因になりうる。   As these dopants, metals having a work function as small as possible, and oxides and metal salts containing these metals are desirable. Such metals are generally highly reactive and are very difficult to handle. In addition, when a metal oxide containing such a metal or a metal salt is used as a dopant, the stability is improved as compared with the case of handling a single metal, but still some metal oxides and metal salts are used. Are unstable and difficult to handle under normal atmospheric conditions. There are some metal oxides and metal salts that can be handled in the atmosphere, but they are still unstable, so it may be difficult to introduce them as dopants into the organic layer in contact with the cathode. is there. For this reason, the difficulty in handling these dopants can cause a low yield and a high manufacturing cost in the manufacture of light-emitting elements.

本発明は、取り扱いが容易なドーパントを有する発光素子およびその製造方法を提供する。   The present invention provides a light emitting device having a dopant that is easy to handle and a method for manufacturing the same.

具体的に本発明は、陽極及び陰極からなる一対の電極と、前記一対の電極間に備えられている有機化合物層とから少なくとも構成されている発光素子であって、上記陰極電極と電気的に実質接している前記有機化合物層が少なくとも有機化合物と炭酸塩とから構成されており、前記有機化合物層における前記有機化合物と前記炭酸塩とのモル比が1:0.01〜1:100の範囲であることを特徴とする発光素子を提供する。   Specifically, the present invention is a light-emitting element comprising at least a pair of electrodes composed of an anode and a cathode, and an organic compound layer provided between the pair of electrodes, and is electrically connected to the cathode electrode. The organic compound layer in substantial contact is composed of at least an organic compound and a carbonate, and the molar ratio of the organic compound to the carbonate in the organic compound layer is in the range of 1: 0.01 to 1: 100. Provided is a light-emitting element.

また、本発明は、陽極と陰極とからなる一対の電極と、前記一対の電極間に備えられる有機化合物層とを有する発光素子の製造方法であって、陰極側に、前記有機化合物層を構成する少なくとも有機化合物と炭酸塩とを設ける有機化合物層形成工程と、前記有機化合物層と電気的に実質接して陰極を設ける工程とを少なくとも有し、前記有機化合物層形成工程は、前記有機化合物と前記炭酸塩とのモル比が1:0.01〜1:100の範囲である前記有機化合物層を形成する工程であることを特徴とする発光素子の製造方法を提供する。   The present invention also relates to a method for manufacturing a light emitting device having a pair of electrodes composed of an anode and a cathode, and an organic compound layer provided between the pair of electrodes, wherein the organic compound layer is formed on the cathode side. An organic compound layer forming step of providing at least an organic compound and a carbonate, and a step of providing a cathode in electrical contact with the organic compound layer, the organic compound layer forming step comprising: Provided is a method for manufacturing a light-emitting element, which is a step of forming the organic compound layer having a molar ratio with the carbonate of 1: 0.01 to 1: 100.

(第一の実施の形態)
本発明の第1の実施の形態に係る発光素子は、一対の電極(陽極、陰極)と一対の電極の間に配置された発光層とを少なくとも有する発光素子において、陰極に接する有機化合物層中のドーパントが炭酸塩である。つまり、塩のアニオンに注目した訳である。炭酸塩は取り扱いが容易である。中でもアルカリ金属、あるいはアルカリ土類金属の炭酸塩であることが、その取り扱いの容易さから好ましい。もちろんこの有機化合物層中には、それぞれの炭酸塩(アルカリ金属、アルカリ土類金属)を共に存在させてもよく、あるいは電子注入あるいは輸送を容易とするこの有機化合物と上記炭酸塩の他に別の添加物が混在されていてもよい。
また炭酸塩が好ましい理由として、得られる素子の耐久性が向上するということを挙げてもよい。耐久性とは素子寿命のことである。炭酸塩は、分子量が比較的大きいため、素子駆動時に有機化合物層中を移動し難いと考えられるからである。更に、有機化合物層を構成する有機化合物との親和性がよいことも炭酸塩を好ましく用いる理由としてよいかもしれない。
(First embodiment)
The light emitting device according to the first embodiment of the present invention is a light emitting device having at least a pair of electrodes (anode, cathode) and a light emitting layer disposed between the pair of electrodes, in an organic compound layer in contact with the cathode. The dopant is carbonate. In other words, it paid attention to the anion of the salt. Carbonate is easy to handle. Of these, alkali metal or alkaline earth metal carbonates are preferred because of their ease of handling. Of course, each organic carbonate (alkaline metal, alkaline earth metal) may be present in the organic compound layer, or the organic compound and the above carbonate for facilitating electron injection or transportation are separated. The additive may be mixed.
The reason why carbonate is preferable may be that the durability of the resulting element is improved. Durability is the lifetime of the element. This is because carbonate has a relatively large molecular weight, and thus it is considered difficult to move in the organic compound layer when the element is driven. Furthermore, the good affinity with the organic compound constituting the organic compound layer may be a reason why the carbonate is preferably used.

この有機化合物層により、陰極から発光層へ電子が効率よく供給される。その結果、本実施形態では、陰極に用いる金属材料を選択する場合、材料の仕事関数を考慮して制限されることなく、すなわち比較的仕事関数が高い電極材料である、ITO、金、銀や、それら合金を選択した場合でも、発光層への良好な電子注入が可能となる。   The organic compound layer efficiently supplies electrons from the cathode to the light emitting layer. As a result, in this embodiment, when selecting a metal material to be used for the cathode, it is not limited in consideration of the work function of the material, that is, an electrode material having a relatively high work function, such as ITO, gold, silver, Even when these alloys are selected, good electron injection into the light emitting layer is possible.

本実施形態において、特に好ましく用いることが出来る炭酸塩としては、炭酸セシウム(CsCO)あるいは、炭酸リチウム(LiCO)の少なくともいずれか一方である。中でも、陰極としてITOを、そしてドーパントとして炭酸セシウムあるいは、炭酸リチウムを用いた発光素子は、良好な光学透過率を備え、陰極から光を取り出すことが出来、いわゆるトップエミッション型発光素子に好適である。もちろん本発明の発光素子は、陽極から光を取り出す形態の発光素子であってもよい。
なお、有機化合物は公知のものでもよく、例えばアルミキレート(Alq3)等を挙げることができる。また陰極に接する有機化合物層の光学透過率は450nm〜700nm(450nm以上700nm以下という意味、以下同様)の波長領域において80%以上で更には95%以上である。
In the present embodiment, the carbonate that can be particularly preferably used is at least one of cesium carbonate (Cs 2 CO 3 ) and lithium carbonate (Li 2 CO 3 ). Among them, a light-emitting element using ITO as a cathode and cesium carbonate or lithium carbonate as a dopant has good optical transmittance and can extract light from the cathode, which is suitable for a so-called top emission light-emitting element. . Of course, the light-emitting element of the present invention may be a light-emitting element in which light is extracted from the anode.
In addition, a well-known thing may be sufficient as an organic compound, for example, an aluminum chelate (Alq3) etc. can be mentioned. The optical transmittance of the organic compound layer in contact with the cathode is 80% or more and further 95% or more in the wavelength region of 450 nm to 700 nm (meaning 450 nm to 700 nm, the same applies hereinafter).

また炭酸塩を含む有機化合物層の膜厚は、0.1〜10000nmの範囲、好ましくは1〜500nmの範囲である。なお発光層の膜厚はいくらでも良い。高い発光効率を得るためには、発光層に膜厚方向に十分な再結合領域があることが望ましく、発光層の膜厚は一般には15〜20nm程度である。本実施形態に係る発光素子もおよそその程度の発光層を有していて良い。   The film thickness of the organic compound layer containing carbonate is in the range of 0.1 to 10,000 nm, preferably in the range of 1 to 500 nm. The light emitting layer may have any thickness. In order to obtain high luminous efficiency, it is desirable that the light emitting layer has a sufficient recombination region in the film thickness direction, and the thickness of the light emitting layer is generally about 15 to 20 nm. The light emitting element according to this embodiment may also have a light emitting layer of approximately that degree.

本実施の形態の発光素子において、有機化合物層を構成する主たる有機化合物は、低分子化合物である。
低分子化合物とは、分子量が2000以下、好ましくは1000以下の有機化合物であると本発明では定義する。
有機化合物の具体的な種類については後述する。
この有機化合物はもちろん非絶縁体である。
In the light-emitting element of this embodiment mode, the main organic compound constituting the organic compound layer is a low molecular compound.
The low molecular compound is defined in the present invention as an organic compound having a molecular weight of 2000 or less, preferably 1000 or less.
Specific types of organic compounds will be described later.
This organic compound is of course a non-insulator.

有機化合物と炭酸塩との量比に関して述べる。
有機化合物と炭酸塩との量比は、モル比で1:0.01〜1:100の範囲である。より好ましくは1:0.1〜1:10の範囲である。ここでいうモル比とは、有機化合物層として導入される有機化合物と炭酸塩とのモル数の比のことで、特に陽イオンをアルカリ金属とした炭酸塩を用いた場合、モル比1:0.5で、電子が効率よく陰極から発光層へ供給できる。
なお、上記1:0.5とは前後20%程度の差があってもよい、つまり特に好ましいモル比とは1:0.4〜1:0.6の範囲である。1:0.5であることにより効果が最良となる理由は現状はっきりしたことはいえないが、有機化合物と炭酸塩とが相互作用するのに好適な量比関係であると考える。
有機化合物層に炭酸セシウムのような炭酸塩を用いた場合、陰極がアルミニウムや、例えばITO等の透明導電性酸化物でも、陰極から前記有機化合物層へ良好な電子注入が実現し、その素子の発光効率は極めて良好な結果となる。中でも、ITOの場合、一対の対向電極のうち基板側ではない電極の方から光を素子外へ取り出すトップエミッション型の発光素子に好適に用いることができる。
つまり本発明は陰極としてITOやIZOのような透明導電性酸化物を用い、有機化合物層中に炭酸塩を含ませたことを特徴とする発光素子を提供することが出来る。そしてそのような特徴を有するトップエミッション型の発光素子を提供出来る。
他方、有機化合物層の代わりに、従来から広く一般に用いられているフッ化リチウム等材料を単層で備えた素子や有機化合物層中にフッ化リチウム等材料を含めた素子では、陰極がアルミニウム、透明導電性酸化物いずれの場合も、その電子注入が劣る。中でも、透明導電性酸化物を陰極とした場合は、電子注入がほとんどされず、そのような素子の電子注入は、極めて悪かった。
The amount ratio between the organic compound and the carbonate will be described.
The amount ratio between the organic compound and the carbonate is in the range of 1: 0.01 to 1: 100 in molar ratio. More preferably, it is in the range of 1: 0.1 to 1:10. The molar ratio here refers to the ratio of the number of moles of the organic compound and carbonate introduced as the organic compound layer. In particular, when a carbonate having a cation as an alkali metal is used, the molar ratio is 1: 0. 0.5, electrons can be efficiently supplied from the cathode to the light emitting layer.
Note that there may be a difference of about 20% before and after 1: 0.5, that is, a particularly preferred molar ratio is in the range of 1: 0.4 to 1: 0.6. The reason why the effect is best when the ratio is 1: 0.5 is not clear at present, but is considered to be a suitable quantitative ratio relationship for the interaction between the organic compound and the carbonate.
When a carbonate such as cesium carbonate is used for the organic compound layer, even if the cathode is aluminum or a transparent conductive oxide such as ITO, good electron injection from the cathode to the organic compound layer is realized. The luminous efficiency is very good. In particular, in the case of ITO, it can be suitably used for a top emission type light-emitting element that extracts light from the electrode that is not on the substrate side out of the pair of counter electrodes.
That is, the present invention can provide a light-emitting element characterized in that a transparent conductive oxide such as ITO or IZO is used as a cathode and a carbonate is contained in an organic compound layer. A top emission type light emitting element having such characteristics can be provided.
On the other hand, instead of the organic compound layer, in an element provided with a single layer of a material such as lithium fluoride that has been widely used in the past or an element including a material such as lithium fluoride in the organic compound layer, the cathode is aluminum, In any transparent conductive oxide, the electron injection is inferior. In particular, when a transparent conductive oxide was used as a cathode, electron injection was hardly performed, and electron injection of such a device was extremely bad.

また、陰極とこの有機化合物層との間に別な層を設けてもよい。この別な層とは有機層あるいは無機層あるいは有機・無機の混合層でもよい。更に具体的には、LiF層であってもよい。なお、そのような別の層を設けることで、電子注入が更に改善される。そしてこの別な層が設けられていても陰極とこの有機化合物層は、実質電気的に接していると言える。   Further, another layer may be provided between the cathode and the organic compound layer. The other layer may be an organic layer, an inorganic layer, or a mixed organic / inorganic layer. More specifically, a LiF layer may be used. In addition, electron injection is further improved by providing such another layer. And even if this other layer is provided, it can be said that the cathode and the organic compound layer are in substantial electrical contact.

ところで、有機化合物と炭酸塩とからなる有機化合物層を形成する場合、両者を共蒸着することが好ましい。特に炭酸塩を加熱した状態で、有機化合物層が形成されることが好ましい。炭酸塩が加熱された状態で有機化合物層が形成されることで、発光素子の電流密度が実用に好ましいレベルに至る。加熱して用いる場合もやはり、炭酸セシウム、炭酸リチウムのような炭酸塩がおよそ150℃以上700℃以下で加熱できる。この温度範囲は比較的低温の温度範囲である。さらにこのような温度範囲なら有機化合物と共に加温下で取り扱うことができる。この温度領域(範囲)は、炭酸塩の融点、分解点、分解開始点のいずれかの温度領域であってもよい。例えば炭酸セシウムの分解開始点は610℃程度であるため好ましい。また炭酸リチウムの融点は615℃であるため好ましい。
炭酸塩を加熱することが好ましい理由は、今のところ断言できないが、上述の相互作用を得る上で好ましいと考える。
By the way, when forming the organic compound layer which consists of an organic compound and carbonate, it is preferable to co-evaporate both. In particular, the organic compound layer is preferably formed in a state where the carbonate is heated. By forming the organic compound layer while the carbonate is heated, the current density of the light emitting element reaches a practically preferable level. Also in the case of heating and using, carbonates such as cesium carbonate and lithium carbonate can be heated at about 150 ° C. or more and 700 ° C. or less. This temperature range is a relatively low temperature range. Furthermore, in such a temperature range, it can be handled with heating together with the organic compound. This temperature region (range) may be any of the melting point, decomposition point, and decomposition start point of carbonate. For example, the decomposition start point of cesium carbonate is preferably about 610 ° C. Moreover, since melting | fusing point of lithium carbonate is 615 degreeC, it is preferable.
The reason why it is preferable to heat the carbonate cannot be stated at present, but it is preferable to obtain the above-mentioned interaction.

あるいは炭酸塩は、加熱されると共に有機化合物を還元するのもよいかもしれない。そして、安定な金属である金(Au)、銀(Ag)や、透明電極ITOを用いても、陰極からの電子注入障壁を小さくさせることができ、素子の駆動電圧を下げることができるのかもしれない。   Alternatively, the carbonate may be heated and reduce the organic compound. And even if gold (Au), silver (Ag), which are stable metals, or transparent electrode ITO is used, the electron injection barrier from the cathode can be reduced, and the drive voltage of the element can be lowered. unknown.

また金属単体(例えばセシウム金属単体)に比べても炭酸塩(例えばCsCO)は好ましい。これは炭酸塩のほうが金属単体に比べ分子量が大きく(即ち重たく)、セシウム元素が移動しにくいからではないかと考える。 In addition, carbonate (eg, Cs 2 CO 3 ) is preferable compared to simple metal (eg, cesium metal). This is probably because carbonate has a higher molecular weight (ie, is heavier) than a single metal, and cesium elements are less likely to move.

有機化合物層の成膜は、いかなる薄膜形成方法で行ってよい。例えば蒸着法やスパッタ法が使用できる。これらの方法は炭酸塩を加熱できるので好ましい方法である。   The organic compound layer may be formed by any thin film forming method. For example, a vapor deposition method or a sputtering method can be used. These methods are preferable because the carbonate can be heated.

更に詳しく、より具体的に本実施形態を以下に説明する。   This embodiment will be described in more detail and more specifically below.

本発明者らは、陰極に接する有機層中にドーピングする材料として、容易に入手可能で、また、取り扱いに大気や水分との接触を排除した特殊な作業環境を必要せず、さらに、抵抗加熱等の一般的な手法により成膜が可能な特定の材料を見出した。それが炭酸塩である。   The inventors of the present invention can easily obtain a material for doping in the organic layer in contact with the cathode, and do not require a special working environment that excludes contact with the atmosphere or moisture for handling. The specific material which can be formed into a film by general methods, such as these, was discovered. That is carbonate.

また、本実施形態の発光素子は、複数の発光素子を有する発光素子アレイ、ディスプレイ(モノカラーフルカラー問わず)等の表示素子、および電子写真方式(例えばレーザービームプリンタや複写機)の感光体への露光光源として適用できる。   In addition, the light-emitting element of the present embodiment is used as a light-emitting element array having a plurality of light-emitting elements, a display element such as a display (regardless of monochromatic full color), and a photoconductor of an electrophotographic system (for example, a laser beam printer or a copier). It can be applied as an exposure light source.

又、本発明の実施形態の発光素子において、陰極電極に用いる材料として、アルミニウム(Al)、銀(Ag)、金(Au)、インジウム錫酸化物(ITO)、あるいはそれら1種を少なくとも含む合金等を挙げることが出来る。他にもマグネシウム(Mg)、白金(Pt)、パラジウム(Pd)、セレン(Se)、イリジウム(Ir)、酸化錫、そしてヨウ化銅あるいはそれらを少なくとも1つ含む混合金属(例えば合金)を用いることが出来る。   In the light emitting device of the embodiment of the present invention, as a material used for the cathode electrode, aluminum (Al), silver (Ag), gold (Au), indium tin oxide (ITO), or an alloy containing at least one of them is used. Etc. can be mentioned. In addition, magnesium (Mg), platinum (Pt), palladium (Pd), selenium (Se), iridium (Ir), tin oxide, and copper iodide or a mixed metal containing at least one of them (for example, an alloy) is used. I can do it.

本発明の実施形態の発光素子は、陰極電極と、それに接する有機化合物層を成膜する順序に限定を受けず、該成膜順序を自在に選択できる。   The light emitting element of the embodiment of the present invention is not limited to the order in which the cathode electrode and the organic compound layer in contact therewith are formed, and the film forming order can be freely selected.

(第2の実施形態)
図2は、本発明の第2の実施形態を示す模式図である。本実施形態は第1の実施形態である発光素子の一部を陽極まで含めた層構成にまで説明を広げたものである。同図において、本発明の発光素子は、基板10上に、陽極となる電極11、正孔輸送性を有する正孔輸送層12、発光層13、有機化合物と炭酸塩から構成される有機化合物層14、陰極となる電極15を積層して構成されている。
(Second Embodiment)
FIG. 2 is a schematic diagram showing a second embodiment of the present invention. In the present embodiment, the description is extended to a layer structure including a part of the light emitting element according to the first embodiment including the anode. In the figure, a light emitting device of the present invention comprises an electrode 11 serving as an anode, a hole transporting layer 12 having a hole transporting property, a light emitting layer 13 and an organic compound layer composed of an organic compound and a carbonate on a substrate 10. 14 is configured by laminating an electrode 15 serving as a cathode.

この他、上記有機化合物層の構成としては、電極(陽極)/発光層/有機化合物層/電極(陰極)、電極(陽極)/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/発光層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/正孔輸送層/発光層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)等が挙げられるが、本発明による発光素子は、有機化合物層14を陰極15との界面に備える構成であれば、いかなる素子構成であっても良い。更に、具体的には層の構成が、陰極、有機化合物層、電子輸送層の順であることがよい(もちろん製造の順番から言えば電子輸送層の次に有機化合物層そしてそのあとに陰極といった順に各層を製造することもある)。特にこの層構成の場合、Alq3及びPBO等の金属錯体化合物、オキサゾール、キノキサリン、トリアジン、トリアゾール、シロール等のヘテロ環化合物、ヘテロ縮合環化合物の少なくともいずれか一つを電子輸送層として好ましく用いることが出来る。このような電子輸送層を更に設けることで、陰極から発光層へ電子を供給する効率が更に改善される。その場合電子輸送層の材料と有機化合物層を構成する主たる有機化合物は別々の化合物であってもよいが、同じ化合物であることが好ましい。   In addition, the organic compound layer is composed of an electrode (anode) / light-emitting layer / organic compound layer / electrode (cathode), electrode (anode) / hole transport layer / light-emitting layer / electron transport layer / organic compound layer / Electrode (cathode), electrode (anode) / hole injection layer / light emitting layer / organic compound layer / electrode (cathode), electrode (anode) / hole injection layer / hole transport layer / light emitting layer / organic compound layer / electrode (Cathode), electrode (anode) / hole injection layer / hole transport layer / light emitting layer / electron transport layer / organic compound layer / electrode (cathode), and the like. The light emitting device according to the present invention is an organic compound layer. Any device configuration may be used as long as 14 is provided at the interface with the cathode 15. More specifically, the layer structure should preferably be in the order of the cathode, the organic compound layer, and the electron transport layer (of course, from the order of production, the organic compound layer and then the cathode after the electron transport layer) Each layer may be manufactured in order). In particular, in the case of this layer structure, it is preferable to use at least one of metal complex compounds such as Alq3 and PBO, heterocyclic compounds such as oxazole, quinoxaline, triazine, triazole and silole, and heterocyclic condensed ring compounds as the electron transport layer. I can do it. By further providing such an electron transport layer, the efficiency of supplying electrons from the cathode to the light emitting layer is further improved. In this case, the material for the electron transport layer and the main organic compound constituting the organic compound layer may be separate compounds, but are preferably the same compound.

正孔輸送層12及び正孔注入層として使用できる有機化合物としては、特に限定はないが、例えばトリフェニルジアミン誘導体、オキサジアゾール誘導体、ポリフィリル誘導体、スチルベン誘導体等を用いることができるが、これに限られるものではない。   The organic compound that can be used as the hole transport layer 12 and the hole injection layer is not particularly limited, and for example, a triphenyldiamine derivative, an oxadiazole derivative, a polyphylyl derivative, a stilbene derivative, and the like can be used. It is not limited.

発光層13の材料として使用できる有機化合物としては、トリアリールアミン誘導体、スチルベン誘導体、ポリアリーレン、芳香族縮合多環化合物、芳香族複素環化合物、芳香族複素縮合環化合物、金属錯体化合物等及びこれらの単独オリゴ体あるいは複合オリゴ体等から採用できる。またこれらの発光材料の一種以上を正孔注入層や、正孔輸送層又は、電子電子輸送層にドーピングして用いることもできる。これら材料、構成は、いずれもこれに限定されない。   Examples of organic compounds that can be used as the material of the light emitting layer 13 include triarylamine derivatives, stilbene derivatives, polyarylenes, aromatic condensed polycyclic compounds, aromatic heterocyclic compounds, aromatic heterocyclic condensed ring compounds, metal complex compounds, and the like. These can be employed from single oligo compounds or composite oligo compounds. One or more of these light emitting materials can be doped into the hole injection layer, the hole transport layer, or the electron electron transport layer. These materials and configurations are not limited to these.

陽極となる電極11としては、仕事関数の大きなものが望ましく、例えばインジウム錫酸化物(ITO)、酸化錫、金(Au)、白金(Pt)クロム(Cr)、パラジウム(Pd)、セレン(Se)、イリジウム(Ir)、ヨウ化銅等や、合金等を用いることができる。   As the electrode 11 serving as the anode, one having a large work function is desirable. For example, indium tin oxide (ITO), tin oxide, gold (Au), platinum (Pt) chromium (Cr), palladium (Pd), selenium (Se) ), Iridium (Ir), copper iodide, or an alloy thereof.

上記、正孔輸送層12、正孔注入層、発光層13、および電子輸送層は、いかなる薄膜形成方法であってもよく、例えば蒸着法やスパッタ法、CVD法、分子線蒸着法(MBE法)、ディッピング法、スピン塗布法、キャスティング法、バーコート法、ロールコート法、インクジェット法等が使用できる。   The hole transport layer 12, the hole injection layer, the light emitting layer 13, and the electron transport layer may be any thin film forming method. For example, a vapor deposition method, a sputtering method, a CVD method, a molecular beam vapor deposition method (MBE method). ), Dipping method, spin coating method, casting method, bar coating method, roll coating method, ink jet method and the like can be used.

また、本発明の本実施形態で述べた発光素子において、有機材料や無機材料からなる保護層を設け、素子を酸素や湿気から守る構成を取ることも可能であり、何ら本発明の特徴を阻害するものとはならない。また、不活性ガスで素子を封入する等により、素子の耐環境性の向上を図ることも可能である。   In addition, in the light-emitting element described in this embodiment of the present invention, a protective layer made of an organic material or an inorganic material can be provided to protect the element from oxygen or moisture, which obstructs the characteristics of the present invention. It is not something to do. It is also possible to improve the environmental resistance of the element by sealing the element with an inert gas.

(第3の実施の形態)
本発明の第3の実施の形態に係る発光素子は、有機化合物層と発光層との間に別の層を設ける形態である。それ以外は第2の実施の形態と同じである。本実施形態は、第2の実施の形態において説明した層構成のうち電極(陽極)/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)等の層構成が本実施の形態にの範疇に含まれるが、その他に発光層と有機化合物層との間にブロック層、より具体的にはホールブロッキング層としての機能を有する層を設けても良い。なおこのホールブロッキング層は先の電子輸送能力あるいは電子注入能力を有していても良い。
このブロック層について箇条書きに説明すると、次のA〜Fの何れかであってよい。
A. ブロック層を構成する材料として、金属錯体化合物を挙げることが出来る。
B. ブロック層を構成する材料として、ヘテロ環化合物を挙げることが出来る。
C. ブロック層を構成する材料として、ヘテロ縮合環化合物を挙げることが出来る。
D. ブロック層を構成する材料として、アルミキレート錯体(Alq3)を挙げることが出来る。
E. ブロック層を構成する材料として、バソフェナントロリンを挙げることが出来る。
F. ブロック層を構成する材料として、バソクプロインを挙げることが出来る。
(Third embodiment)
The light emitting element according to the third embodiment of the present invention is a form in which another layer is provided between the organic compound layer and the light emitting layer. The rest is the same as the second embodiment. This embodiment is an electrode (anode) / hole transport layer / light-emitting layer / electron transport layer / organic compound layer / electrode (cathode), electrode (anode) / positive electrode in the layer configuration described in the second embodiment. Layer configurations such as a hole injection layer / hole transport layer / light emitting layer / electron transport layer / organic compound layer / electrode (cathode) are included in the category of the present embodiment, but in addition, a light emitting layer, an organic compound layer, A layer having a function as a block layer, more specifically as a hole blocking layer, may be provided between them. The hole blocking layer may have the above-described electron transport ability or electron injection ability.
When this block layer is described in the itemized list, it may be any of the following A to F.
A. As a material constituting the block layer, a metal complex compound can be mentioned.
B. Examples of the material constituting the block layer include heterocyclic compounds.
C. Examples of the material constituting the block layer include hetero-fused ring compounds.
D. As a material constituting the block layer, an aluminum chelate complex (Alq3) can be mentioned.
E. An example of a material constituting the block layer is bathophenanthroline.
F. As a material constituting the block layer, bathocuproine can be mentioned.

以下に、本発明の好適な実施例を図面に基づいて、炭酸塩として炭酸セシウムを例示して説明するが、炭酸リチウムも適用可能であり即ち本発明は本実施形態に限られない。   In the following, a preferred embodiment of the present invention will be described by exemplifying cesium carbonate as a carbonate based on the drawings. However, lithium carbonate is also applicable, that is, the present invention is not limited to this embodiment.

(実施例1)
図2、第一の実施例を示す。図中、10は陽極側の透明基板であり、11は正孔注入用の陽極電極としてのITO層を示し、12は正孔輸送層、13は発光層、14は有機化合物層、15は陰極電極である。
Example 1
FIG. 2 shows a first embodiment. In the figure, 10 is a transparent substrate on the anode side, 11 is an ITO layer as an anode electrode for hole injection, 12 is a hole transport layer, 13 is a light emitting layer, 14 is an organic compound layer, and 15 is a cathode. Electrode.

透明基板10に酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜し、透明な陽極電極12を得た。その後、該基板をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。   A transparent anode 10 was obtained by depositing indium tin oxide (ITO) with a thickness of 120 nm on the transparent substrate 10 by sputtering. Thereafter, the substrate was successively subjected to ultrasonic cleaning with acetone and isopropyl alcohol (IPA), then boiled with IPA and dried. Further, UV / ozone cleaning was performed.

次いで、真空蒸着装置[真空機工社製]を用いて、洗浄後の該基板を上に正孔輸送性を有する下記化学式1:

Figure 2006128717
で表されるαNPDを真空蒸着法により35nmの膜厚で成膜し正孔輸送層13を形成した。蒸着時の真空度は、1.0×10−6Torr、成膜速度は、成膜速度は0.2〜0.3nm/secの条件で成膜した。次に、前記正孔輸送層13の上に、下記化学式2:
Figure 2006128717
で表される、アルミキレート錯体(以下Alq3という)を真空着法により15nmの膜厚で成膜し発光層14を、正孔輸送層13を成膜するときと同じ条件で形成した。次に、前記発光層14の上に、有機化合物層15として、Alq3と炭酸セシウム(CsCO)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。この有機化合物層におけるAlq3とCsCOとのモル比は1:0.57である。モル比はとは、有機化合物層を構成する材料の分子量と比重及び、膜厚重量比とから算出される比である。 Then, using a vacuum deposition apparatus [manufactured by Vacuum Kiko Co., Ltd.], the following chemical formula 1 having hole transportability on the cleaned substrate is provided:
Figure 2006128717
The hole transport layer 13 was formed by forming αNPD represented by the following formula with a film thickness of 35 nm by a vacuum deposition method. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −6 Torr, and the film formation rate was 0.2 to 0.3 nm / sec. Next, on the hole transport layer 13, the following chemical formula 2:
Figure 2006128717
An aluminum chelate complex (hereinafter referred to as Alq3) represented by the following formula was formed with a film thickness of 15 nm by a vacuum deposition method, and the light emitting layer 14 was formed under the same conditions as when the hole transport layer 13 was formed. Next, each vapor deposition rate is adjusted so that Alq3 and cesium carbonate (Cs 2 CO 3 ) are mixed on the light emitting layer 14 as the organic compound layer 15 at a film thickness ratio of 9: 1. A film was formed to a thickness of 35 nm. Finally, aluminum (Al) was deposited as a cathode electrode 16 on the organic compound layer 15 at a deposition rate of 1 nm / sec. The molar ratio of Alq3 to Cs 2 CO 3 in this organic compound layer is 1: 0.57. The molar ratio is a ratio calculated from the molecular weight and specific gravity of the material constituting the organic compound layer and the film thickness / weight ratio.

このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧15Vにて最高輝度41200cd/m、電流密度3200mA/cmを示した。また、印加電圧5Vにて最高効率0.91lm/Wを示した。この発光素子の、電圧−輝度特性を図3及び図4に示す。 Thus, the anode electrode 11, the hole transport layer 12, the light emitting layer 13, the organic compound layer 14, and the cathode electrode 15 were provided on the transparent substrate 10, and the light emitting element was obtained. Subsequently, in this light emitting device, ITO was used as the anode electrode 11 and aluminum was used as the cathode electrode 15, and a direct current voltage was applied to examine the light emitting characteristics of the device. As a result, this device showed a maximum luminance of 41200 cd / m 2 and a current density of 3200 mA / cm 2 at an applied voltage of 15V. The maximum efficiency of 0.91 lm / W was exhibited at an applied voltage of 5V. The voltage-luminance characteristics of this light emitting element are shown in FIGS.

(比較例1)
本比較例は、実施例1に比べて炭酸塩を用いていない実施例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を50nmの膜厚で成膜した。最後に、陰極電極16として、アルミニウム(Al)を150nm蒸着した。
(Comparative Example 1)
This comparative example is an example using no carbonate as compared with Example 1.
Under the same conditions as in Example 1, first, α-NPD having a thickness of 35 nm was formed as a hole transport layer 13 on ITO serving as the anode electrode 12, and then Alq3 was formed as a light emitting layer 14 with a thickness of 50 nm. The film was formed with a film thickness. Finally, 150 nm of aluminum (Al) was deposited as the cathode electrode 16.

このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧20Vにて最高輝度1926cd/mと電流密度350mA/cmを示した。また、印加電圧12Vにて、最高効率0.17lm/Wを示した。この発光素子の電圧−輝度特性を図3及び図4に示す。 Thus, the anode electrode 11, the hole transport layer 12, the light emitting layer 13, the organic compound layer 14, and the cathode electrode 15 were provided on the transparent substrate 10, and the light emitting element was obtained. Subsequently, in this light emitting device, ITO was used as the anode electrode 11 and aluminum was used as the cathode electrode 15, and a direct current voltage was applied to examine the light emitting characteristics of the device. As a result, this device showed a maximum luminance of 1926 cd / m 2 and a current density of 350 mA / cm 2 at an applied voltage of 20V. The maximum efficiency of 0.17 lm / W was exhibited at an applied voltage of 12V. The voltage-luminance characteristics of this light emitting element are shown in FIGS.

図1に示した実施例1および比較例1の電圧−輝度特性の比較より、実施例1で示した有機化合物層に炭酸セシウムを用いた発光素子は、比較例1の素子に比して、その駆動電圧が大きく低下していることがわかる。したがって、有機化合物層が、素子の駆動電圧の引き下げに有効であることがわかる。   From the comparison of the voltage-luminance characteristics of Example 1 and Comparative Example 1 shown in FIG. 1, the light-emitting element using cesium carbonate in the organic compound layer shown in Example 1 is compared with the element of Comparative Example 1, It can be seen that the drive voltage is greatly reduced. Therefore, it can be seen that the organic compound layer is effective in reducing the driving voltage of the element.

(比較例2)
本比較例は、取り扱い困難なセシウム金属を実施例1と同様の工程で成膜する試みをしたが成膜できなかったことを示す例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とセシウム(Cs)を膜厚比9:1の割合で混合されるように試みたが、反応性の高い金属セシウムを大気環境下で成膜装置へ投入することができず、成膜が行えなかった。そのため、有機化合物層15にセシウム(Cs)等のアルカリ金属を導入した素子を製作するためには、大気や水分と接触しない条件下でアルカリ金属を取り扱い、成膜するような特殊な作業環境が必要となる。そのような作業環境の構築には、コストがかかるとともに、素子作製にかかる時間は、通常環境下に比べ長く、素子作製のスループットは低くなる。
(Comparative Example 2)
In this comparative example, an attempt was made to form a cesium metal, which is difficult to handle, in the same process as in Example 1, but the film could not be formed.
Under the same conditions as in Example 1, first, α-NPD having a film thickness of 35 nm was formed as a hole transport layer 13 on ITO serving as the anode electrode 12, and then Alq3 was formed as a light emitting layer 14 with a thickness of 15 nm. The film was formed with a film thickness. Next, Alq3 and cesium (Cs) were tried to be mixed at a film thickness ratio of 9: 1 as the organic compound layer 15, but highly reactive metal cesium was introduced into the film forming apparatus in an atmospheric environment. The film could not be formed. Therefore, in order to manufacture an element in which an alkali metal such as cesium (Cs) is introduced into the organic compound layer 15, a special working environment in which an alkali metal is handled and deposited under conditions that do not come into contact with air or moisture is required. Necessary. The construction of such a working environment is costly and the time required for device fabrication is longer than in a normal environment, and the device fabrication throughput is low.

(比較例3)
本比較例は、取り扱い困難なセシウム金属を用いるために特別な装置を用いた例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とセシウム(Cs)を35nm混合成膜されるように試みた。本比較例3では、有機化合物層15にセシウムを導入することを、真空下にて高純度のアルカリ金属蒸気を生成させることが可能なアルカリ金属ディスペンサ(SAES Getters社製)を利用して行った。有機化合物層15として、Alq3とセシウム(Cs)を膜厚比9:1の割合で混合されるように、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
(Comparative Example 3)
This comparative example is an example using a special apparatus for using cesium metal which is difficult to handle.
Under the same conditions as in Example 1, first, α-NPD having a film thickness of 35 nm was formed as a hole transport layer 13 on ITO serving as the anode electrode 12, and then Alq3 was formed as a light emitting layer 14 with a thickness of 15 nm. The film was formed with a film thickness. Next, an attempt was made to form a 35 nm mixed film of Alq3 and cesium (Cs) as the organic compound layer 15. In this comparative example 3, the introduction of cesium into the organic compound layer 15 was performed using an alkali metal dispenser (SAES Getters) capable of generating high-purity alkali metal vapor under vacuum. . The organic compound layer 15 was formed to a thickness of 35 nm by adjusting the deposition rate so that Alq3 and cesium (Cs) were mixed at a film thickness ratio of 9: 1. Finally, aluminum (Al) was deposited as a cathode electrode 16 on the organic compound layer 15 at a deposition rate of 1 nm / sec.

このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧12Vにて最高輝度11000cd/mと電流密度3085mA/cmを示した。また、印加電圧5Vにて、最高効率0.47lm/Wを示した。この発光素子の電圧−輝度特性を図3に示す。 Thus, the anode electrode 11, the hole transport layer 12, the light emitting layer 13, the organic compound layer 14, and the cathode electrode 15 were provided on the transparent substrate 10, and the light emitting element was obtained. Subsequently, in this light emitting device, ITO was used as the anode electrode 11 and aluminum was used as the cathode electrode 15, and a direct current voltage was applied to examine the light emitting characteristics of the device. As a result, this device showed a maximum luminance of 11000 cd / m 2 and a current density of 3085 mA / cm 2 at an applied voltage of 12V. The maximum efficiency of 0.47 lm / W was exhibited at an applied voltage of 5V. FIG. 3 shows voltage-luminance characteristics of this light emitting element.

(比較例4)
本比較例は、炭酸塩以外の塩を用いた例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とフッ化リチウム(LiF)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。 最後に、前記有機化合物層15の上に陰極電極16として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
(Comparative Example 4)
This comparative example is an example using a salt other than carbonate.
Under the same conditions as in Example 1, first, α-NPD having a film thickness of 35 nm was formed as a hole transport layer 13 on ITO serving as the anode electrode 12, and then Alq3 was formed as a light emitting layer 14 with a thickness of 15 nm. The film was formed with a film thickness. Next, the organic compound layer 15 was formed to a thickness of 35 nm by adjusting the deposition rate so that Alq3 and lithium fluoride (LiF) were mixed at a film thickness ratio of 9: 1. Finally, aluminum (Al) was deposited as a cathode electrode 16 on the organic compound layer 15 at a deposition rate of 1 nm / sec.

このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧18Vにて最高輝度23900cd/mと電流密度2450mA/cmを示した。また、印加電圧5Vにて、最高効率0.78lm/Wを示した。この発光素子の電圧−輝度特性を図3及び図4に示す。 Thus, the anode electrode 11, the hole transport layer 12, the light emitting layer 13, the organic compound layer 14, and the cathode electrode 15 were provided on the transparent substrate 10, and the light emitting element was obtained. Subsequently, in this light emitting device, ITO was used as the anode electrode 11 and aluminum was used as the cathode electrode 15, and a direct current voltage was applied to examine the light emitting characteristics of the device. As a result, this device showed a maximum luminance of 23900 cd / m 2 and a current density of 2450 mA / cm 2 at an applied voltage of 18V. The maximum efficiency of 0.78 lm / W was exhibited at an applied voltage of 5V. The voltage-luminance characteristics of this light emitting element are shown in FIGS.

(比較例5)
本比較例は、実施例1の炭酸塩と有機化合物からなる有機化合物層の代わりにフッ化リチウム(LiF)を用いた例である。
実施例1と同様な条件にて、陽極電極であるITO上にまず正孔輸送層としてα−NPDを35nmの膜厚で構成し、その上に、発光層としてAlq3を50nm連続して成膜した。次にフッ化リチウム(LiF)を1nmの厚さに成膜した。最後に、陰極電極として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
このようにして、透明基板上に、陽極電極、正孔輸送層、発光層、フッ化リチウム(LiF)、および陰極電極を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極、アルミニウムを陰極電極として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧18Vにて最高輝度26790cd/m2、電流密度2188mA/cm2を示した。また、印加電圧5Vにて最高効率0.861lm/Wを示した。この発光素子の電圧−輝度特性を図3及び図4に示す。
(Comparative Example 5)
This comparative example is an example in which lithium fluoride (LiF) is used in place of the organic compound layer made of the carbonate and organic compound of Example 1.
Under the same conditions as in Example 1, first, α-NPD having a film thickness of 35 nm is formed as a hole transport layer on ITO which is an anode electrode, and Alq3 is continuously formed as a light emitting layer by 50 nm thereon. did. Next, lithium fluoride (LiF) was deposited to a thickness of 1 nm. Finally, aluminum (Al) was deposited as a cathode electrode at a thickness of 150 nm at a deposition rate of 1 nm / sec.
In this manner, an anode electrode, a hole transport layer, a light emitting layer, lithium fluoride (LiF), and a cathode electrode were provided on the transparent substrate to obtain a light emitting element. Subsequently, a direct current voltage was applied to the light emitting device using ITO as an anode electrode and aluminum as a cathode electrode, and the light emission characteristics of the device were examined. As a result, this device showed a maximum luminance of 26790 cd / m 2 and a current density of 2188 mA / cm 2 at an applied voltage of 18V. The maximum efficiency was 0.861lm / W at an applied voltage of 5V. The voltage-luminance characteristics of this light emitting element are shown in FIGS.

(実施例2)
本実施例は、実施例1に比べて陰極として金を用いた例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3と炭酸セシウム(CsCO)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、金(Au)を蒸着速度1nm/secの条件で150nm蒸着した。
(Example 2)
In this embodiment, gold is used as the cathode as compared with the first embodiment.
Under the same conditions as in Example 1, first, α-NPD having a film thickness of 35 nm was formed as a hole transport layer 13 on ITO serving as the anode electrode 12, and then Alq3 was formed as a light emitting layer 14 with a thickness of 15 nm. The film was formed with a film thickness. Next, the organic compound layer 15 was formed to a thickness of 35 nm by adjusting the deposition rate so that Alq3 and cesium carbonate (Cs 2 CO 3 ) were mixed at a film thickness ratio of 9: 1. Finally, gold (Au) was deposited as a cathode electrode 16 on the organic compound layer 15 at a deposition rate of 1 nm / sec.

このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、金(Au)を陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧15Vにて最高輝度29700cd/mと電流密度3000mA/cmを示した。また、印加電圧6Vにて、最高効率0.79lm/Wを示した。この発光素子の電圧−輝度特性を図4に示す。 Thus, the anode electrode 11, the hole transport layer 12, the light emitting layer 13, the organic compound layer 14, and the cathode electrode 15 were provided on the transparent substrate 10, and the light emitting element was obtained. Subsequently, in this light emitting device, ITO was used as the anode electrode 11 and gold (Au) was used as the cathode electrode 15, and a direct current voltage was applied to examine the light emission characteristics of the device. As a result, this device showed a maximum luminance of 29700 cd / m 2 and a current density of 3000 mA / cm 2 at an applied voltage of 15V. The maximum efficiency was 0.79 lm / W at an applied voltage of 6V. FIG. 4 shows voltage-luminance characteristics of the light emitting element.

(比較例6)
本比較例は、実施例2に比べて炭酸塩ではなくフッ化リチウム(LiF)をもちいた例である。
実施例2と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とフッ化リチウム(LiF)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、金(Au)を蒸着速度1nm/secの条件で150nm蒸着した。
(Comparative Example 6)
This comparative example is an example using lithium fluoride (LiF) instead of carbonate as compared with Example 2.
Under the same conditions as in Example 2, first, α-NPD having a thickness of 35 nm was formed as a hole transport layer 13 on ITO serving as the anode electrode 12, and then Alq3 was formed as a light emitting layer 14 with a thickness of 15 nm. The film was formed with a film thickness. Next, the organic compound layer 15 was formed to a thickness of 35 nm by adjusting the deposition rate so that Alq3 and lithium fluoride (LiF) were mixed at a film thickness ratio of 9: 1. Finally, gold (Au) was deposited as a cathode electrode 16 on the organic compound layer 15 at a deposition rate of 1 nm / sec.

このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、金(Au)を陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧25Vにて最高輝度93cd/mと電流密度26mA/cmを示した。
また、印加電圧24Vにて、最高効率0.047lm/Wを示した。この発光素子の電圧−輝度特性を図4に示す。
有機化合物層中にフッ化リチウムを用いる場合、陰極がアルミニウムであれば電子注入特性は良好であるが陰極を金にしてしまうと電子注入特性が悪くなる。これに対して炭酸塩を用いた場合、陰極としてアルミニウムでも金でも用いても良好な電子注入特性が得られる。即ち陰極材料の選択の自由度が増す。
Thus, the anode electrode 11, the hole transport layer 12, the light emitting layer 13, the organic compound layer 14, and the cathode electrode 15 were provided on the transparent substrate 10, and the light emitting element was obtained. Subsequently, in this light emitting device, ITO was used as the anode electrode 11 and gold (Au) was used as the cathode electrode 15, and a direct current voltage was applied to examine the light emission characteristics of the device. As a result, this device showed a maximum luminance of 93 cd / m 2 and a current density of 26 mA / cm 2 at an applied voltage of 25V.
The maximum efficiency of 0.047 lm / W was exhibited at an applied voltage of 24V. FIG. 4 shows voltage-luminance characteristics of the light emitting element.
When lithium fluoride is used in the organic compound layer, if the cathode is aluminum, the electron injection characteristics are good, but if the cathode is gold, the electron injection characteristics deteriorate. On the other hand, when carbonate is used, good electron injection characteristics can be obtained regardless of whether the cathode is aluminum or gold. That is, the degree of freedom in selecting the cathode material is increased.

(実施例3)
図5は、本発明の第三の実施例を示す。図5において、20は、基板であり、21は、下面電極、22は、有機化合物層、23は、上面電極をそれぞれ示している。
(Example 3)
FIG. 5 shows a third embodiment of the present invention. In FIG. 5, 20 is a substrate, 21 is a bottom electrode, 22 is an organic compound layer, and 23 is a top electrode.

基板20をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。次に、真空蒸着装置[真空機工社製]を用いて、洗浄後の該基板を上にアルミニウム(Al)を真空蒸着法により50nmの膜厚で成膜し下面電極21を形成した。蒸着時の真空度は、1.0×10−6Torr、蒸着速度1nm/secの条件で行った。次に有機化合物層22として、Alq3と炭酸セシウム(CsCO)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して50nmの厚さに成膜した。最後に、前記有機化合物層22の上に上面電極23として、下面電極と同一材料であるアルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。この有機化合物層におけるAlq3とCsCOとのモル比は1:0.57である。 The substrate 20 was ultrasonically washed successively with acetone and isopropyl alcohol (IPA), then boiled and washed with IPA, and then dried. Next, using a vacuum vapor deposition apparatus [manufactured by Vacuum Kiko Co., Ltd.], the bottom electrode 21 was formed by depositing aluminum (Al) with a film thickness of 50 nm on the cleaned substrate by a vacuum vapor deposition method. The degree of vacuum during the deposition was 1.0 × 10 −6 Torr and a deposition rate of 1 nm / sec. Next, as the organic compound layer 22, each of the deposition rates was adjusted so that Alq3 and cesium carbonate (Cs 2 CO 3 ) were mixed at a film thickness ratio of 9: 1 to form a film having a thickness of 50 nm. Finally, aluminum (Al), which is the same material as the lower electrode, was deposited on the organic compound layer 22 as the upper electrode 23 at a deposition rate of 1 nm / sec. The molar ratio of Alq3 to Cs 2 CO 3 in this organic compound layer is 1: 0.57.

このようにして、基板20上に、下面電極21、有機化合物層22、および上面電極23を設けた、素子を得た。この素子の下面電極21を陽極に、上面電極23を陰極としてまた、下面電極21を陰極に、上面電極23を陽極として、素子に直流電圧を印加し、その時の電圧−電流特性を調べた。その結果、印加電圧を10Vにて、その時の電流密度は、上面電極23を陰極とした場合、2250mA/cm、下面電極21を陰極とした場合、1960mA/cmをそれぞれ示した。 Thus, the element which provided the lower surface electrode 21, the organic compound layer 22, and the upper surface electrode 23 on the board | substrate 20 was obtained. A DC voltage was applied to the device using the lower electrode 21 of the device as the anode, the upper electrode 23 as the cathode, the lower electrode 21 as the cathode, and the upper electrode 23 as the anode, and the voltage-current characteristics at that time were examined. As a result, at the applied voltage 10V, current density at that time, when the upper electrode 23 and the cathode, 2250mA / cm 2, when the lower electrode 21 as a cathode, shown 1960mA / cm 2, respectively.

(比較例7)
本比較例は、実施例3と比べて炭酸塩の代わりにフッ化リチウムを用いた例である。
実施例3と同様な条件にて、下面電極21としてアルミニウム(Al)を50nmの膜厚で成膜し、その上に、有機化合物層22としてAlq3とフッ化リチウム(LiF)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して50nmの厚さに成膜した。最後に、前記有機化合物層22の上に上面電極23として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
(Comparative Example 7)
This comparative example is an example using lithium fluoride instead of carbonate as compared with Example 3.
Under the same conditions as in Example 3, aluminum (Al) was formed as the lower electrode 21 with a film thickness of 50 nm, and Alq3 and lithium fluoride (LiF) as the organic compound layer 22 were formed thereon with a film thickness ratio of 9 Each film was formed to a thickness of 50 nm by adjusting the deposition rate so that the mixture was mixed at a ratio of 1: 2. Finally, 150 nm of aluminum (Al) was deposited on the organic compound layer 22 as the upper electrode 23 under the condition of a deposition rate of 1 nm / sec.

このようにして、透明基板20上に、下面電極21、有機化合物層22、および上面電極23を設けた、素子を得た。この素子の下面電極21を陽極に、上面電極23を陰極としてまた、下面電極21を陰極に、上面電極23を陽極として、素子に直流電圧を印加し、その時の電圧−電流特性を調べた。その結果、印加電圧を10Vにて、その時の電流密度は、上面電極23を陰極とした場合、935mA/cm、下面電極21を陰極とした場合、11mA/cmをそれぞれ示した。 Thus, the element which provided the lower surface electrode 21, the organic compound layer 22, and the upper surface electrode 23 on the transparent substrate 20 was obtained. A DC voltage was applied to the device using the lower electrode 21 of the device as the anode, the upper electrode 23 as the cathode, the lower electrode 21 as the cathode, and the upper electrode 23 as the anode, and the voltage-current characteristics at that time were examined. As a result, at the applied voltage 10V, current density at that time, when the upper electrode 23 and the cathode, 935mA / cm 2, when the lower electrode 21 as a cathode, indicated 11 mA / cm 2, respectively.

比較例7の結果より、有機化合物層にフッ化リチウム(LiF)を用いた素子では、有機化合物層を形成後成膜した上面電極23側から電子を注入する場合電流が流れるが、あらかじめ形成しておいた下面電極21側からは、電子がほとんど注入されないことがわかる。塩を有する有機化合物層の上に電極が加熱された状態で形成された方が電流を良く流す。   From the result of Comparative Example 7, in the element using lithium fluoride (LiF) for the organic compound layer, an electric current flows when electrons are injected from the side of the top electrode 23 formed after the organic compound layer is formed. It can be seen that almost no electrons are injected from the lower electrode 21 side. When the electrode is formed in a heated state on the organic compound layer having a salt, a current flows better.

一方、本発明による有機化合物層22に炭酸セシウム(CsCO)を用いた素子では、有機化合物層22とそれに接する電極との成膜順序に特別な制限を受けることなく、陰極からの電子注入障壁を小さくし、素子の駆動電圧を低くすることが可能となる。 On the other hand, in the element using cesium carbonate (Cs 2 CO 3 ) for the organic compound layer 22 according to the present invention, the electrons from the cathode are not subject to any particular restrictions on the film formation order of the organic compound layer 22 and the electrodes in contact therewith. It is possible to reduce the injection barrier and lower the drive voltage of the element.

(実施例4)
本実施例は有機化合物層と発光層との間に別の層(ブロック層)を設けた発光素子の例である。
図6に第4の実施例を示す。図中30は陽極側の透明基板であり、31は正孔注入用の陽極電極としてのITO層を示し、32は正孔輸送層、33は発光層、34はブロック層、35は有機化合物層、36は陰極電極である。
実施例1と同様な条件にて、陽極電極31であるITOの上にまず正孔輸送層32としてα−NPDを35nmの膜厚で成膜し、その上に、発光層33としてAlq3を15nmの膜厚で成膜した。次にブロック層34として下記化学式3:

Figure 2006128717
で表される、バソフェナントロリン(以下B-phenという)を10nmの膜厚で成膜した。続いて、前記ブロック層34の上に、有機化合物層35として、B-phenと炭酸セシウム(Cs2CO3)を膜厚比8.8:1.2の割合で混合されるよう、各々の蒸着速度を調整して25nmの厚さに成膜した。最後に前記有機化合物層35の上に陰極電極36として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。この有機化合物層35におけるB-phenとCs2CO3のモル比は、1:0.5である。
このようにして、透明基板30上に、陽極電極31、正孔輸送層32、発光層33、ブロック層34、有機化合物層35、および陰極電極36を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極31、アルミニウムを陰極電極36として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧9Vにて最高輝度44105cd/m2、電流密度1760mA/cm2を示した。また、印加電圧5Vにて最高効率2.3lm/Wを示した。この発光素子の電圧−輝度特性を図7に示す。 Example 4
This example is an example of a light-emitting element in which another layer (block layer) is provided between an organic compound layer and a light-emitting layer.
FIG. 6 shows a fourth embodiment. In the figure, 30 is a transparent substrate on the anode side, 31 is an ITO layer as an anode electrode for hole injection, 32 is a hole transport layer, 33 is a light emitting layer, 34 is a block layer, 35 is an organic compound layer , 36 are cathode electrodes.
Under the same conditions as in Example 1, first, an α-NPD film having a thickness of 35 nm was formed as a hole transport layer 32 on ITO serving as an anode electrode 31, and then Alq3 was formed as a light emitting layer 33 with a thickness of 15 nm. The film was formed with a film thickness of. Next, the block layer 34 has the following chemical formula 3:
Figure 2006128717
As shown, a bathophenanthroline (hereinafter referred to as B-phen) film having a thickness of 10 nm was formed. Subsequently, each vapor deposition rate is adjusted so that B-phen and cesium carbonate (Cs 2 CO 3 ) are mixed at a ratio of 8.8: 1.2 as an organic compound layer 35 on the block layer 34. The film was formed to a thickness of 25 nm. Finally, 150 nm of aluminum (Al) was deposited on the organic compound layer 35 as a cathode electrode 36 at a deposition rate of 1 nm / sec. The molar ratio of B-phen and Cs 2 CO 3 in the organic compound layer 35 is 1: 0.5.
Thus, the anode electrode 31, the hole transport layer 32, the light emitting layer 33, the block layer 34, the organic compound layer 35, and the cathode electrode 36 were provided on the transparent substrate 30 to obtain a light emitting element. Subsequently, in this light emitting device, ITO was used as the anode electrode 31 and aluminum was used as the cathode electrode 36, and a direct current voltage was applied to examine the light emission characteristics of the device. As a result, this device showed a maximum luminance of 44105 cd / m 2 and a current density of 1760 mA / cm 2 at an applied voltage of 9 V. The maximum efficiency was 2.3 lm / W at an applied voltage of 5V. FIG. 7 shows voltage-luminance characteristics of this light-emitting element.

(比較例8)
本比較例は、実施例4に比べてブロック層34を用いていない。
実施例4と同様な条件にて、陽極電極31であるITOの上にまず正孔輸送層32としてα−NPDを35nmの膜厚で成膜し、その上に、発光層33としてAlq3を15nmの膜厚で成膜した。続いて前記発光層33の上に、有機化合物層35としてB-phenと炭酸セシウム(Cs2CO3)を膜厚比8.8:1.2の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層35の上に陰極電極36として、アルミニウム(Al)を150nm蒸着した。
このようにして、透明基板30上に、陽極電極31、正孔輸送層32、発光層33、有機化合物層35、および陰極電極36を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極31、アルミニウムを陰極電極36として、直流電圧を印加し、素子の発光特性を調べた。その結果、この素子は、印加電圧11Vにて輝度33751cd/m2、電流密度3223mA/cm2を示した。また、印加電圧5Vにて効率1.01lm/Wを示した。この発光素子の電圧−輝度特性を図7に示す。
(Comparative Example 8)
This comparative example does not use the block layer 34 as compared with the fourth embodiment.
Under the same conditions as in Example 4, first, α-NPD having a film thickness of 35 nm was formed as the hole transport layer 32 on the ITO serving as the anode electrode 31, and then Alq3 was formed as the light emitting layer 33 with a thickness of 15 nm. The film was formed with a film thickness of. Subsequently, the deposition rate was adjusted so that B-phen and cesium carbonate (Cs 2 CO 3 ) were mixed as the organic compound layer 35 on the light emitting layer 33 at a film thickness ratio of 8.8: 1.2. A film was formed to a thickness of 35 nm. Finally, 150 nm of aluminum (Al) was deposited on the organic compound layer 35 as the cathode electrode 36.
Thus, the anode electrode 31, the hole transport layer 32, the light emitting layer 33, the organic compound layer 35, and the cathode electrode 36 were provided on the transparent substrate 30 to obtain a light emitting element. Subsequently, in this light emitting device, ITO was used as the anode electrode 31 and aluminum was used as the cathode electrode 36, and a direct current voltage was applied to examine the light emission characteristics of the device. As a result, this device showed a luminance of 33651 cd / m 2 and a current density of 3223 mA / cm 2 at an applied voltage of 11 V. The efficiency was 1.01 lm / W at an applied voltage of 5V. FIG. 7 shows voltage-luminance characteristics of this light-emitting element.

実施例4で示したブロック層及び有機化合物層に炭酸セシウムを用いた発光素子は、ブロック層を備えない比較例8に比して、発光効率が大幅に向上している。このブロック層は、陽極電極から注入された正孔が発光層を通過することを妨げる機能を有するとともに、ブロック層上の有機化合物層に含まれる炭酸塩が発光層へ入ることを防止するための層である。発光層に炭酸塩が入ると、その領域は発光しないため、発光効率が低下する。なお、有機化合物層に含まれる炭酸塩が、発光層に入る理由は定かではないが、本発明者らは、成膜時のエネルギーにより炭酸塩が発光層にもぐり込むためと推定している。
このような発光層と有機化合物層の間に設け、正孔の発光層からの通過を妨げるとともに、有機化合物層に用いられる炭酸塩が発光層に入り込むことを防止するブロック層は、発光効率の向上に有効であることがわかる。
The light emitting element using cesium carbonate for the block layer and the organic compound layer shown in Example 4 has significantly improved luminous efficiency as compared with Comparative Example 8 that does not include the block layer. The block layer has a function of preventing holes injected from the anode electrode from passing through the light emitting layer, and prevents the carbonate contained in the organic compound layer on the block layer from entering the light emitting layer. Is a layer. When carbonate enters the light emitting layer, the region does not emit light, and the light emission efficiency decreases. Although the reason why the carbonate contained in the organic compound layer enters the light emitting layer is not clear, the present inventors presume that the carbonate penetrates into the light emitting layer by the energy during film formation.
A block layer that is provided between the light emitting layer and the organic compound layer to prevent the passage of holes from the light emitting layer and prevent the carbonate used in the organic compound layer from entering the light emitting layer has a luminous efficiency. It turns out that it is effective for improvement.

以上各実施形態および実施例を挙げて説明したように、本発明により、取り扱い容易な炭酸塩と有機化合物とからなる有機化合物層を、陰極に接した発光素子を提供できる。   As described above with reference to the respective embodiments and examples, the present invention can provide a light-emitting element in which an organic compound layer composed of a carbonate and an organic compound that are easy to handle is in contact with the cathode.

一般の発光素子の積層構造例を示す模式図である。It is a schematic diagram which shows the example of laminated structure of a general light emitting element. 本実施形態の発光素子の積層構造例を示す模式図である。It is a schematic diagram which shows the laminated structure example of the light emitting element of this embodiment. 本実施例の発光素子と比較例の発光素子との電圧−輝度特性を示す図である。It is a figure which shows the voltage-luminance characteristic of the light emitting element of a present Example, and the light emitting element of a comparative example. 本実施例の発光素子と比較例の発光素子との電圧−輝度特性を示す図である。It is a figure which shows the voltage-luminance characteristic of the light emitting element of a present Example, and the light emitting element of a comparative example. 第3の実施例を示す模式図である。It is a schematic diagram which shows a 3rd Example. 第4の実施例に係る発光素子の層構成を示す模式図である。It is a schematic diagram which shows the layer structure of the light emitting element which concerns on a 4th Example. 第4の実施例と第8の比較例の電圧−輝度特性を示す図である。It is a figure which shows the voltage-luminance characteristic of a 4th Example and an 8th comparative example.

Claims (16)

陽極及び陰極からなる一対の電極と、前記一対の電極間に備えられている有機化合物層とから少なくとも構成されている発光素子であって、上記陰極電極と電気的に実質接している前記有機化合物層が少なくとも有機化合物と炭酸塩とから構成されていることを特徴とする発光素子。   A light-emitting element comprising at least a pair of electrodes comprising an anode and a cathode and an organic compound layer provided between the pair of electrodes, wherein the organic compound is in electrical contact with the cathode electrode. A light-emitting element, wherein the layer is composed of at least an organic compound and a carbonate. 前記炭酸塩は、陽イオンがアルカリ金属イオンあるいはアルカリ土類金属イオンであることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the carbonate has a cation of an alkali metal ion or an alkaline earth metal ion. 前記炭酸塩は、炭酸セシウムであることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the carbonate is cesium carbonate. 前記炭酸塩は、炭酸リチウムであることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the carbonate is lithium carbonate. 前記陰極は、可視光に透明であることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the cathode is transparent to visible light. 前記陰極は、ITO電極であることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the cathode is an ITO electrode. 前記陰極は、金あるいは銀あるいはアルミニウムの少なくともいずれかの電極であることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the cathode is an electrode of at least one of gold, silver, and aluminum. 前記有機化合物層と前記陽極との間に、前記有機化合物層とは別の発光層を有することを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, further comprising a light emitting layer different from the organic compound layer between the organic compound layer and the anode. 前記有機化合物層と前記発光層の間に電子輸送層を有することを特徴とする請求項8に記載の発光素子。   The light-emitting element according to claim 8, further comprising an electron transport layer between the organic compound layer and the light-emitting layer. 前記陰極から光を取り出すことを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein light is extracted from the cathode. 請求項1に記載の前記発光素子を面内に複数有することを特徴とする発光装置。   A light-emitting device comprising a plurality of the light-emitting elements according to claim 1 in a plane. 前記発光装置は、ディスプレイの情報表示部に用いられることを特徴とする請求項11に記載の発光装置。   The light emitting device according to claim 11, wherein the light emitting device is used in an information display unit of a display. 前記発光装置は、電子写真方式の画像形成装置における感光体を露光する露光装置として用いられることを特徴とする請求項11に記載の発光装置。   The light emitting device according to claim 11, wherein the light emitting device is used as an exposure device that exposes a photosensitive member in an electrophotographic image forming apparatus. 陽極と陰極とからなる一対の電極と、前記一対の電極間に備えられる有機化合物層とを有する発光素子の製造方法であって、陰極側に、前記有機化合物層を構成する少なくとも有機化合物と炭酸塩とを設ける有機化合物層形成工程と、前記有機化合物層に電気的に実質接して陰極を設ける工程とを少なくとも有することを特徴とする発光素子の製造方法。   A method of manufacturing a light-emitting device having a pair of electrodes composed of an anode and a cathode and an organic compound layer provided between the pair of electrodes, wherein at least the organic compound and carbonic acid constituting the organic compound layer are formed on the cathode side. A method for producing a light-emitting element, comprising: an organic compound layer forming step of providing a salt; and a step of providing a cathode in electrical contact with the organic compound layer. 前記有機化合物層形成工程は、前記有機化合物層と炭酸塩とを共蒸着により形成する工程であることを特徴とする請求項14に記載の発光素子の製造方法。   The method of manufacturing a light emitting device according to claim 14, wherein the organic compound layer forming step is a step of forming the organic compound layer and carbonate by co-evaporation. 前記有機化合物層形成工程は、700℃以下の温度領域において前記炭酸塩を、前記有機化合物と共蒸着することを特徴とする請求項15に記載の発光素子の製造方法。   The method according to claim 15, wherein the organic compound layer forming step co-deposits the carbonate with the organic compound in a temperature range of 700 ° C. or less.
JP2006013288A 2001-11-22 2006-01-23 LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE Expired - Fee Related JP3815690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006013288A JP3815690B2 (en) 2001-11-22 2006-01-23 LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001357713 2001-11-22
JP2006013288A JP3815690B2 (en) 2001-11-22 2006-01-23 LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003546376A Division JP3815685B2 (en) 2001-11-22 2002-11-19 LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE

Publications (2)

Publication Number Publication Date
JP2006128717A true JP2006128717A (en) 2006-05-18
JP3815690B2 JP3815690B2 (en) 2006-08-30

Family

ID=36722977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013288A Expired - Fee Related JP3815690B2 (en) 2001-11-22 2006-01-23 LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE

Country Status (1)

Country Link
JP (1) JP3815690B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141174A (en) * 2006-11-10 2008-06-19 Canon Inc Organic light emitting device
JP2008243958A (en) * 2007-03-26 2008-10-09 Matsushita Electric Works Ltd Organic electroluminescent device
KR101430060B1 (en) * 2007-02-16 2014-08-13 사에스 게터스 에스.페.아. Air-stable alkali or alkaline-earth metal dispensers
JP2018181658A (en) * 2017-04-17 2018-11-15 独立行政法人国立高等専門学校機構 Manufacturing method of organic light-emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141174A (en) * 2006-11-10 2008-06-19 Canon Inc Organic light emitting device
KR101430060B1 (en) * 2007-02-16 2014-08-13 사에스 게터스 에스.페.아. Air-stable alkali or alkaline-earth metal dispensers
US10109446B2 (en) 2007-02-16 2018-10-23 Saes Getters S.P.A. Air-stable alkali or alkaline-earth metal dispensers
JP2008243958A (en) * 2007-03-26 2008-10-09 Matsushita Electric Works Ltd Organic electroluminescent device
JP2018181658A (en) * 2017-04-17 2018-11-15 独立行政法人国立高等専門学校機構 Manufacturing method of organic light-emitting element

Also Published As

Publication number Publication date
JP3815690B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP3815685B2 (en) LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE
JP4864476B2 (en) Organic electroluminescence device
US7820478B2 (en) Light-emitting device
EP1923929B1 (en) Organic electroluminescence device
TW552627B (en) Display devices with organic-metal mixed layer
JP5180369B2 (en) Organic electroluminescent device
KR100752383B1 (en) Organic light emitting display and fabricating method of the same
JP2002260862A (en) Organic light-emitting diode device
JP2001085165A (en) Organic electroluminescent device
US20090153032A1 (en) Conductive composition film, electron injection electrode, and organic electroluminescence element
JPWO2007029402A1 (en) Organic electroluminescence device
JP2003109770A (en) Organic light-emitting diode device and its manufacturing method
WO2004091262A1 (en) Organic electroluminescence element and organic electroluminescence display
US20070103055A1 (en) Organic electroluminescence device, conductive laminate and display
JP3815690B2 (en) LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE
JP2005228737A (en) Organic electroluminescent element
JP2001291594A (en) Electro-conductive liquid crystal element
KR100790672B1 (en) Organic electroluminescence element and organic electroluminescence display
JP2006013103A (en) Organic electroluminescent element
JP2005183265A (en) Light emitting element, light emitting array using same, display device, projector, optical writing device, and printer
JP4216681B2 (en) Organic EL device
JPH08306487A (en) Organic thin film el element
JP2005142109A (en) Manufacturing method of organic electroluminescent element
JP2001338769A (en) Conductive liquid crystal element

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees