JP4216400B2 - Method for producing desulfurized gas oil - Google Patents

Method for producing desulfurized gas oil Download PDF

Info

Publication number
JP4216400B2
JP4216400B2 JP08965599A JP8965599A JP4216400B2 JP 4216400 B2 JP4216400 B2 JP 4216400B2 JP 08965599 A JP08965599 A JP 08965599A JP 8965599 A JP8965599 A JP 8965599A JP 4216400 B2 JP4216400 B2 JP 4216400B2
Authority
JP
Japan
Prior art keywords
catalyst bed
catalyst
hydrogen
oil
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08965599A
Other languages
Japanese (ja)
Other versions
JP2000230179A (en
Inventor
一夫 出井
勝美 大木
博史 水口
貴志 藤川
Original Assignee
コスモ石油株式会社
株式会社コスモ総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10-352483 priority Critical
Priority to JP35248398 priority
Application filed by コスモ石油株式会社, 株式会社コスモ総合研究所 filed Critical コスモ石油株式会社
Priority to JP08965599A priority patent/JP4216400B2/en
Publication of JP2000230179A publication Critical patent/JP2000230179A/en
Application granted granted Critical
Publication of JP4216400B2 publication Critical patent/JP4216400B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、水素化処理により脱硫軽油を製造する方法に関し、詳しくは、硫黄分を従来よりも大幅に低減し、かつ色相も良好な脱硫軽油を製造する方法に関する。 The present invention relates to a method for producing a desulfurized gas oil by hydrotreatment, particularly, sulfur greatly reduced than conventionally, and hue relates to a method for producing a good desulfurized gas oil.
【0002】 [0002]
【技術背景】 BACKGROUND OF THE INVENTION
原油の蒸留や分解によって得られる各油留分は、一般に、硫黄化合物を含み、これらの油を燃料として使用する場合には、この硫黄化合物に起因する硫黄酸化物等の大気汚染物質が大気中に放出される。 Each oil fractions obtained by distillation or decomposition of crude oil, generally contains sulfur compounds, in the case of using these oils as fuel, air pollutants sulfur oxides resulting from the sulfur compounds in the atmosphere It is released to.
特に、ディーゼル機関からの排ガスによる大気汚染が深刻化しており、その燃料面からの対策として、軽油中の硫黄分の低減が強く要望されている。 In particular, has been becoming increasingly serious air pollution caused by exhaust gas from a diesel engine, as a countermeasure from the fuel surface, sulfur reduction of gas oil has been strongly demanded.
実際に、ディーゼル車排ガス中のNOxと粒子状物質の排出規制に対応して、日本では、1997年10月から軽油中の硫黄分の規制値が0.05%に改正され、ヨーロッパでは、軽油中の硫黄分を2000年までに350ppm、2005年までに50ppmとする案が提示されており、近い将来、日本でも、規制値の引き下げが予想される。 In fact, in response to the emission regulations of NOx and particulate matter in diesel car exhaust gas, in Japan, the regulation value of the sulfur content in diesel fuel from October 1997 was revised to 0.05%, in Europe, light oil has been presented the proposal to the 50ppm up to 350ppm, 2005 years the sulfur content by the year 2000 in the near future, also in Japan, it is expected to cut the regulatory value.
このような状況下、軽油中の硫黄分を大幅に除去する超深度脱硫技術の開発が重要視されている。 Under such circumstances, the development of ultra-deep desulfurization technology to significantly remove the sulfur content in gas oil is regarded as important.
【0003】 [0003]
超深度脱硫領域では、4−メチルジベンゾチオフェンや4,6−ジメチルジベンゾチオフェンのような脱硫活性点への立体障害を有する硫黄化合物が、脱硫を極めて困難にしている。 The ultra-deep desulfurization region, sulfur compounds having a steric hindrance to the desulfurization active sites, such as 4-methyl dibenzothiophene and 4,6-dimethyl dibenzothiophene, make it extremely difficult to desulfurization.
これらの難脱硫性化合物は、含有量が少ないため、通常の脱硫領域では、比較的脱硫が容易な化合物の脱硫反応のみを促進すれば十分であったが、生成油の硫黄分を0.04質量%以下とするような超深度脱硫領域では、これらの難脱硫性化合物をも除去しない限り達成できない。 These flame desulfurization compounds, because a small amount, in normal desulfurization region, was sufficient if relatively desulfurization promote only desulfurization easy compound, the sulfur content of the product oil 0.04 the ultra-deep desulfurization region as or less by mass% can not be achieved unless the even remove these flame desulfurization compounds.
【0004】 [0004]
軽油中の硫黄分の低減化技術として、通常、水素化脱硫の運転条件を過酷にすること、例えば、反応温度を上昇させることや、液空間速度(LHSV)を大幅に低下させること等が行われている。 As sulfur reduction technology of gas oil, usually to the harsh operating conditions of hydrodesulfurization, for example, raising the reaction temperature, it like to lower the liquid hourly space velocity (LHSV) of greatly row are we.
しかし、LHSVを下げると、精製処理能力が低下するため、商業的に好ましくない。 However, lowering the LHSV, for refining capacity is lowered, commercially undesirable. また、反応温度を上げると、生成油中に極微量含まれる多環芳香族化合物が増加することにより、生成油が着色し、色相が悪化する問題がある。 Also, increasing the reaction temperature, by polycyclic aromatic compounds contained trace amount is increased in the product oil, produced oil is colored, a problem that hue is deteriorated.
我が国の市場においては、製品軽油の色相に対し、厳しい要求があるため、色相悪化の問題を解決することが必須である。 In the Japanese market, with respect to the hue of the product light oil, because there are stringent requirements, it is essential to solve the problem of color deterioration.
【0005】 [0005]
色相の良好な低硫黄軽油を製造する技術として、従来、特開平6−25678号公報に記載のような、2段処理方法が提案されている。 As a technique for producing a good low sulfur diesel hue, conventionally, as described in JP-A-6-25678, 2-stage treatment methods have been proposed.
この方法は、第一工程で脱硫を行い、第二工程で色相改善を行う方法であり、第二工程では脱硫反応はほとんど進行しないため、生成油硫黄分0.04質量%以下の超深度脱硫を行うためには、処理能力(LHSV)を低下させなければならない。 This method performs a desulfurization in the first step is a method of performing color improvement in the second step, since the second step hardly proceeds desulfurization reaction, the product oil sulfur content 0.04% by mass or less ultradeep desulfurization to do must reduce the throughput (LHSV).
さらに、反応器が複数必要なことから、設備投資や運転管理等に莫大なコストがかかるばかりでなく、熱効率等も悪い等の欠点を有している。 Further, since the reactor is more necessary, not only takes enormous cost capital investment and operation management, etc., thermal efficiency, etc. it is also a drawback of poor like.
【0006】 [0006]
従って、一工程で、処理能力を低下することなく、色相等の性状が良好な超深度脱硫軽油を製造することは極めて困難であり、そのような方法は、これまで、ほとんど見あたらない。 Thus, in one step, without reducing the processing capacity, it is very difficult to properties such as hue to produce a good ultra-deep desulfurization light oil, such methods, heretofore, almost no missing.
【0007】 [0007]
【発明の目的】 SUMMARY OF THE INVENTION
本発明は、軽油の水素化処理において、精製処理能力を大幅に低下することなく、色相等の性状が良好な、いわゆる超深度脱硫軽油を、1つの反応塔(反応器)のみを用いて言わば一工程で製造する方法を提供することを目的とする。 The present invention, in the hydrogenation process of the gas oil, without greatly reducing the purification capacity, the properties such as hue is good, so-called ultra-deep desulfurization light oil, as it were using only one reactor (reactor) and to provide a method for producing in a single step.
【0008】 [0008]
【発明の概要】 SUMMARY OF THE INVENTION
本発明者らは、前記の問題を解決するため鋭意研究した結果、超深度脱硫領域では、難脱硫性化合物の脱硫反応を効率的に進行させるために芳香環を水素化し立体障害を低減させることが有効であること、及び、軽油の色相を悪化させる原因となる極微量な多環の芳香族化合物を特定の条件下で水素化して除去すれば、色相等の性状を改善できることを見い出し本発明を完成するに至った。 The present inventors have made intensive studies for solving the above problems, in the ultra-deep desulfurization region, reducing the hydrogenated sterically hindered aromatic ring in order to advance the desulfurization reaction hardly desulfurized compound efficiently it is effective, and, by removing aromatics traces of polycyclic which causes deteriorating the hue of gas oil was hydrogenated under certain conditions, the present invention found that can improve the properties such as hue the has been completed.
【0009】 [0009]
即ち、本発明は、1つの反応塔内に前段触媒床及び後段触媒床を有し、かつ前段触媒床及び後段触媒床のそれぞれに原料油と並流となるような水素導入手段を備えた該反応塔に、全触媒床の平均温度300〜390℃、圧力2〜8MPaの条件下で、硫黄分0.1〜3質量%、沸点150〜400℃の範囲にある石油蒸留物からなる原料油と水素を導入し、前段触媒床へ導入する水素量aと後段触媒床へ導入する水素量bの比b/a が0.5 〜5 であり、後段触媒床に導入する水素の量が、標準状態、0℃、1気圧で、原料油1リットル当たり50〜500リットルであり、後段触媒床の温度が250〜350℃であることを特徴とする超深度脱硫軽油の製造方法を要旨とする。 That is, the present invention is one having the reaction column a pre-catalyst bed and subsequent catalyst beds, and with a hydrogen feed means such that feed oil and the co-current to each of the front catalyst bed and post-catalyst bed the the reaction column, the total catalyst average temperature 300-390 ° C. bed, under a pressure 2 to 8 MPa, sulfur 0.1 to 3 wt%, feedstock consisting of petroleum distillates in the range of boiling point 150 to 400 ° C. and hydrogen was introduced, the ratio b / a of the hydrogen amount b for introducing to the hydrogen amount a and the rear stage catalyst bed is introduced into the pre-stage catalyst bed is is 0.5 to 5, the amount of hydrogen introduced into the subsequent catalyst bed, standard conditions, 0 ° C., at 1 atm, and 50 to 500 per liter feedstock 1 liter temperature of the subsequent catalyst bed is summarized as a manufacturing method of a ultra-deep desulfurization gas oil, which is a 250 to 350 ° C. . このとき、この水素量の比b/aを0.1〜2とし、かつ後段触媒床に生成油の10〜60%を循環して導入することもできる。 At this time, it is also possible to the ratio b / a of the hydrogen amount is 0.1 to 2, and introduced by circulating the 10% to 60% of the oil produced in a subsequent stage catalyst bed. また、この生成油の循環に加えて、あるいはこの生成油の循環とは別に、原料油1リットル当たり0.01〜0.2kgの水を導入することもできる。 In addition to the circulation of the product oil, or separately from the circulation of the product oil may be introduced water feedstock per liter 0.01~0.2Kg.
【0010】 [0010]
上記の平均温度は、下記式で算出される。 The average temperature described above is calculated by the following equation.
触媒床平均温度=〔(T1×X1)+(T2×X2)〕/(X1+X2) Catalyst bed average temperature = [(T1 × X1) + (T2 × X2)] / (X1 + X2)
T1:前段触媒床の温度T2:後段触媒床の温度X1:前段触媒床の体積X2:後段触媒床の体積なお、T1及びT2は、各触媒床の入口温度と出口温度の平均値である。 T1: pre-catalyst bed temperature T2: subsequent catalyst bed temperature X1: the volume of the front catalyst bed X2: the volume of the subsequent catalyst bed Note that T1 and T2, the average value of the inlet and outlet temperatures of each catalyst bed.
【0011】 [0011]
本発明において、原料油は、硫黄分が0.1〜3質量%程度の、例えば、原油の常圧あるいは減圧蒸留により得られる直留軽油の他、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の軽油留分、あるいはこれらを混合したものが挙げられる。 In the present invention, feedstock, the sulfur content of about 0.1 to 3 wt%, for example, other straight run gas oil obtained by atmospheric or vacuum distillation of crude oil, catalytic cracking gas oil, pyrolysis gas oil, hydrotreated gas oil, desulfurized gas oil, gas oil fraction such as vacuum distillation gas oil (VGO), or is a mixture of thereof.
【0012】 [0012]
また、本発明で使用する反応塔(反応器)は、1つのみであり、この1つの反応塔内に前段触媒床及び後段触媒床の2つの触媒床を有し、基本的には、前段触媒床には、原料油と水素の導入が可能であり、後段触媒床には、前段触媒床で水素化処理が終了した後の原料油(前段触媒床で余剰となった水素を伴うこともある)の導入が可能な構造であり、これに加えて、後段触媒床には、外部からの水素の導入が可能であるとともに、循環生成油又は水あるいはこれら両者の導入が可能な構造のものである。 Further, the reaction tower used in the present invention (reactor) is only one, has two catalyst beds of the front catalyst bed and subsequent catalyst beds to this single reaction column, basically, the preceding stage the catalyst bed is possible to introduce the feedstock and hydrogen, the subsequent catalyst bed, also involve feedstock (hydrogen becomes excessive in stage catalyst bed after hydrotreating in stage catalyst bed is completed a structure capable introduction of a), in addition to this, the rear catalyst bed, as well as a possible introduction of hydrogen from the outside, a structure capable of introducing the circulating product oil or water or both of them it is.
上記の前段触媒床及び後段触媒床はそれぞれ、1つ以上の触媒層で構成し、前段触媒床には、入口部のみならず、各触媒層間に、外部からの水素導入手段を設けることができ、後段触媒床には、入口部のみならず、各触媒層間に、外部からの水素導入手段の他に、循環生成油導入手段又は水導入手段あるいはこれら両導入手段を設けることができる。 Each above the front catalyst bed and subsequent catalyst beds, constituted by one or more catalytic layers, the pre-catalyst bed, not inlet only, each catalyst layers, can be provided with hydrogen introducing means from outside , the rear catalyst bed, not inlet only, in each catalyst layers, can be in addition to the hydrogen feed unit from the outside, providing the circulating product oil introduction means or water introduction means or both of these introduction means.
後段触媒床における外部からの水素、循環生成油、水の導入は、後段触媒床の温度を考慮して、水素の導入のみとしてもよいし、水素の導入に、循環生成油の導入、水の導入のいずれか一方または双方を加えてもよい。 Hydrogen from an external in a subsequent stage catalyst bed, the circulating product oil, the introduction of water, taking into account the temperature of the subsequent catalyst bed, may be only the introduction of hydrogen, the introduction of hydrogen, the introduction of the circulating product oil, water either it may be added to one or both of the introduction.
【0013】 [0013]
前段触媒床と後段触媒床の体積比は、1:1〜5:1、好ましくは1:1〜4:1、より好ましくは1.2:1〜3:1、特に好ましくは1.5:1〜2.5:1である。 The volume ratio of the pre-stage catalyst bed and subsequent catalyst bed, 1: 1 to 5: 1, preferably 1: 1 to 4: 1, more preferably from 1.2: 1 to 3: 1, particularly preferably from 1.5: 1 to 2.5: 1.
前段触媒床では、高濃度硫黄化合物を大幅に低減するため、後段触媒床と比較して液空間速度(LHSV)は低い方が好ましく、後段触媒床では、微量の難脱硫性化合物や多環芳香族を除去するため、前段触媒床と比較してLHSVを高くすることができるためである。 The front catalyst bed, high concentration in order to significantly reduce the sulfur compounds, is preferably low liquid hourly space velocity (LHSV) as compared to the post-stage catalyst bed, the rear catalyst bed, hardly desulfurized compounds of trace or polyaromatic to remove the group, it is because it is possible to increase the LHSV compared to pre-catalyst bed.
触媒床全体では、LHSVは、0.5〜2.5h −1の範囲が好ましい。 The entire catalyst bed, LHSV in the range of 0.5~2.5H -1 are preferred.
【0014】 [0014]
反応の圧力は、高いほど脱硫及び水素化反応に有利であるが、高すぎると、装置の建設費や運転費などのコストが増大するため、2〜8MPa程度が好ましい。 The pressure of the reaction is advantageous in higher desulfurization and hydrogenation reactions, too high, because the cost of such construction cost and operating cost of the device increases, the order 2~8MPa are preferred.
【0015】 [0015]
前段触媒床では、比較的脱硫が容易な化合物を効率良く除去することが重要であるので、触媒床温度を350〜400℃程度(入口温度約340〜390℃、出口温度約350〜410℃)とすることが好ましい。 The precatalyst bed, since it is important that relatively desulfurization is efficiently removed easily compound, a catalyst bed temperature of about 350 to 400 ° C. (inlet temperature about 340-390 ° C., an outlet temperature of about three hundred and fifty to four hundred ten ° C.) it is preferable that the. これより低温であると脱硫反応が十分進行せず、高温であると分解のような望ましくない反応が起こる。 Above which is a low temperature desulfurization reaction does not sufficiently proceed, occur undesirable reactions such as decomposition and a high temperature.
前段触媒床の温度は、導入する原料油及び水素の温度等により、この温度範囲内で適宜制御することができる。 The temperature of pre-stage catalyst bed, the feedstock and the temperature of the hydrogen introduced can be controlled as appropriate within this temperature range.
【0016】 [0016]
後段触媒床では、難脱硫性の硫黄化合物及び微量の多環芳香族を水素化するのに適した反応条件にすることが重要である。 In stage catalyst bed, it is important to the reaction conditions suitable for hydrogenating polycyclic aromatic flame desulfurization of sulfur compounds and trace.
芳香族化合物の水素化反応は、高温では平衡的に不利となるため、後段触媒床は、前段触媒床よりも低温とすることが好ましく、250〜350℃程度(入口温度約240〜350℃、出口温度約250〜360℃)とすることが適している。 Hydrogenation of aromatic compounds, since the equilibrium disadvantage at high temperatures, a subsequent stage catalyst bed is preferably in the lower temperature than the previous stage catalyst bed, about 250 to 350 ° C. (inlet temperature about 240-350 ° C., it is suitable that the outlet temperature of about two hundred and fifty to three hundred sixty ° C.).
後段触媒床の温度は、導入する水素の温度や量、生成油の循環量や温度、あるいは水の導入量や温度等により、この温度範囲内で適宜制御することができる。 The temperature of the rear stage catalyst bed can be temperature and amount of hydrogen to be introduced, the circulation amount and temperature of the product oil, or the introduction amount and temperature of the water is controlled as appropriate within this temperature range.
【0017】 [0017]
また、脱硫及び水素化反応は大きな発熱を伴うので、反応熱による触媒床の温度上昇を抑えるために、前段、後段触媒床ともに、導入する水素の一部を触媒床の途中より導入することもできる。 Further, since the desulfurization and hydrogenation reactions involving large heat generation in order to suppress the temperature rise in the catalyst bed due to the reaction heat, the previous stage, in both stage catalyst bed, also a part of the hydrogen to be introduced is introduced from the middle of the catalyst bed it can.
この各触媒床の途中から導入する水素の量は、各触媒床の温度変化(循環させる生成油の温度や量、導入する原料油や水の温度や量等により変化する)に応じて適宜制御すればよい。 The amount of hydrogen to be introduced from the middle this of each catalyst bed, the temperature change (temperature and amount of product oil circulating, varies depending feedstock, temperature and amount of water or the like to be introduced) controlled appropriately according to each catalyst bed do it.
このようにして、前述の式で算出される全触媒床の平均温度を300〜390℃程度に制御することが好ましい。 In this manner, it is preferable to control the average temperature of the whole catalyst bed is calculated by the above equations to about 300-390 ° C..
【0018】 [0018]
原料油は水素とともに、まず、前段触媒床に導入し、脱硫反応によって硫黄分を大幅に低減させる。 Feedstock with hydrogen, initially introduced into the pre-catalyst bed greatly reduces the sulfur content by desulfurization reaction. 脱硫された原料油は、続く後段触媒床に導入する。 Desulfurized feedstock is introduced into the subsequent stage catalyst bed. このとき、前段触媒床に導入する水素量aと後段触媒床に導入(外部から導入)する水素量bの比b/aが0.1 〜5となるようにする。 In this case, the ratio b / a of the hydrogen amount b for introducing the hydrogen amount a and the rear stage catalyst bed is introduced into the pre-stage catalyst bed (introduced from the outside) is made to be 0.1 to 5. 後段触媒床で、水素化反応を促進することにより、難脱硫性化合物の脱硫を容易にすると同時に、色相をも改善することができる。 In stage catalyst bed, by promoting the hydrogenation reaction, it is possible and at the same time facilitate the desulfurization of sparingly desulfurization compounds, also improve the hue. 水素化反応は、水素濃度が高いほど平衡的に有利であるため、水素の導入量が少ないと、水素化反応を効率良く進行させることができない。 Hydrogenation reaction, since the hydrogen concentration is higher equilibrium advantageous, when the introduction amount of hydrogen is small, it is impossible to proceed efficiently hydrogenation reaction. 水素量が多すぎると、水素が無駄になるばかりでなく、コンプレッサ等の設備コストが増大する。 When the hydrogen content is too high, hydrogen is not only wasted, equipment costs such as the compressor is increased. 反応器に導入する全水素量(前段及び後段触媒床に上記比で導入する水素の合計量)は、水素/油比(原料油1リットル当たりの水素の供給量リットル《標準状態、0℃、1気圧》)で、250〜800、好ましくは300〜600程度にするのがよい。 Total amount of hydrogen introduced into the reactor (the total amount of hydrogen to be introduced in the above ratios in upstream and downstream catalyst beds) is hydrogen / oil ratio (feed amount L "standard conditions of hydrogen per feedstock Oil 1 liter, 0 ° C., at 1 atm "), 250 to 800, and it is preferably set to about 300 to 600.
【0019】 [0019]
また、本発明では、後段触媒床での水素化反応をより促進するために、後段触媒床へ、生成油を循環して導入したり、この循環導入に加えて、あるいはこの循環導入に代えて、水を導入することが好ましい。 In the present invention, in order to further promote the hydrogenation reaction in the subsequent catalyst bed, to a subsequent catalyst bed, or introduce circulates produced oil, in addition to the circulation introduced, or in place of the circulation introduction it is preferable to introduce water.
この水は、工業用水、純水、その他種々の水でよいが、触媒への影響を少なくするためには、不純物の少ない水が好ましく、蒸留水やイオン交換水等の純水が適している。 This water, industrial water, pure water, etc. may be various water, but in order to reduce the influence of the catalyst, less water is preferred impurity, pure water such as distilled water or ion exchange water is suitable .
生成油や水の温度、循環量、導入量は、後段触媒床の温度が前述の温度範囲内になるように適宜調整すればよい。 Produced oil and water temperature, circulation rate, introduction amount, the temperature of the subsequent catalyst bed may be appropriately adjusted within the aforementioned temperature ranges.
生成油の循環量は10〜60%程度が適しており、水の導入量は原料油1リットル当たり0.01〜0.2kg程度、好ましくは0.02〜0.15kg程度が適している。 Circulation amount of the product oil is suitable about 10% to 60%, the amount of introduced water feedstock per liter 0.01~0.2kg about, preferably about 0.02~0.15kg is suitable. なお、水の量が多すぎると、触媒床の温度が低下しすぎるばかりでなく、生成油と水の分離が困難になる。 Incidentally, if the amount of water is too large, not only the temperature of the catalyst bed is too low, it becomes difficult to separate the product oil and water.
【0020】 [0020]
生成油を循環する場合は、触媒床の温度が低下しないよう、導入する水素は、生成油を循環しない場合より少なくすることが好ましく、水素量の比b/aは、 0.1 〜2程度、好ましくは0.1 〜1.0程度が適しており、後段に導入する水素の量は、水素/油比で、10〜300程度、好ましくは25〜300程度、特に好ましくは25〜200程度がよい。 When circulating the product oil is such that the temperature of the catalyst bed does not decrease, hydrogen to be introduced is preferably be less than if the product oil does not circulate, the amount of hydrogen ratio b / a is about 0.1-2 preferably is suitably about 0.1-1.0, the amount of hydrogen introduced into the subsequent stage, a hydrogen / oil ratio, about 10 to 300, preferably about 25 to 300, particularly preferably about 25 to 200 good. 水を導入する場合は、触媒床の温度を低下させる効果が生成油を循環させる場合に比べて大きいので、さらに水素量を少なくすることが好ましく、水素量の比b/aは、 0.1 〜2程度、好ましくは0.1 〜1.0程度、より好ましくは0.1〜0.5程度が適しており、後段に導入する水素の量は、水素/油比で、10〜200程度、好ましくは10〜150程度、特に好ましくは10〜100程度がよい。 When introducing water, the effect of lowering the temperature of the catalyst bed is larger than that in the case where the circulating product oil, it is preferable to further reduce the hydrogen content, the amount of hydrogen ratio b / a is 0.1 about to 2, preferably about 0.1-1.0, more preferably is suitably about 0.1 to 0.5, the amount of hydrogen introduced into the subsequent stage, a hydrogen / oil ratio, about 10 to 200 , preferably about 10 to 150, particularly preferably it is about 10 to 100. 反応器に導入する全水素量、後段に導入する水素の量、水素量の比は、生成油の循環量や水の導入量を考慮し、上記範囲内で適宜制御すればよい。 Total amount of hydrogen introduced into the reactor, the amount of hydrogen introduced into the subsequent stage, the ratio of the amount of hydrogen, taking into account the introduction amount of the circulating amount or water produced oil, may be appropriately controlled within the above range. なお、生成油の循環や水の導入を行わない場合は、触媒床の温度が低下しすぎることが少ないため、水素量の比b/aは、前述のように0.1 〜5程度、好ましくは0.5〜5程度、特に好ましくは1.0〜2.5程度が適しており、後段に導入する水素の量は、水素/油比で、50〜500程度、好ましくは50〜400程度がよい。 When you do not introduce circulation and water produced oil, because it is less the temperature of the catalyst bed is too lowered, the ratio b / a of the amount of hydrogen, 0.1 to 5 about as described above, preferably about 0.5 to 5, particularly preferably is suitably about 1.0 to 2.5, the amount of hydrogen introduced into the subsequent stage, a hydrogen / oil ratio, about 50 to 500, preferably about 50 to 400 good.
【0021】 [0021]
本発明で使用することができる水素化脱硫触媒は、その担体として、種々のものが使用できる。 Hydrodesulfurization catalysts which may be used in the present invention, as a carrier, various ones may be used. 例えば、シリカ、アルミナ、ボリア、マグネシア、チタニア、シリカ−アルミナ、シリカ−マグネシア、シリカ−ジルコニア、シリカ−トリア、シリカ−ベリリア、シリカ−チタニア、シリカ−ボリア、ジルコニア−アルミナ、チタニア−アルミナ、ボリア−アルミナ、アルミナ−クロミア、チタニア−ジルコニア、シリカ−アルミナ−トリア、シリカ−アルミナ−ジルコニア、シリカ−アルミナ−マグネシア、シリカ−マグネシア−ジルコニア、ゼオライト、ゼオライト−アルミナ、モレキュラーシーブ、モンモリロナイト、カオリン、ベントナイト、サポナイトなどの無機酸化物、又はこれらの2種以上の混合物が挙げられる。 For example, silica, alumina, boria, magnesia, titania, silica - alumina, silica - magnesia, silica - zirconia, silica - thoria, silica - beryllia, silica - titania, silica - boria, zirconia - alumina, titania - alumina, boria - alumina, alumina - chromia, titania - zirconia, silica - alumina - thoria, silica - alumina - zirconia, silica - alumina - magnesia, silica - magnesia - zirconia, zeolite, zeolite - alumina, molecular sieves, montmorillonite, kaolin, bentonite, saponite inorganic oxides such as, or mixture of two or more thereof.
これらの無機酸化物のうち、好ましくは、アルミナ、ゼオライト−アルミナ、シリカ−アルミナ、チタニア−アルミナ、ボリア−アルミナ、ジルコニア−アルミナが挙げられ、特に好ましくは、アルミナ、ゼオライト−アルミナ、チタニア−アルミナが挙げられ、これらは、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Among these inorganic oxides, preferably, alumina, zeolite - alumina, silica - alumina, titania - alumina, boria - alumina, zirconia - alumina and the like, particularly preferably, alumina, zeolite - alumina, titania - alumina , and these may be used one kind alone or may be used in combination of two or more.
【0022】 [0022]
本発明の前段触媒床の水素化脱硫触媒は、上記担体に、モリブデン、タングステンの少なくとも一方を含む周期律表第6族金属(以下、6族金属と記す)を担持し、かつ、コバルト、ニッケルの少なくとも一方を含む周期律表第8族金属(以下、8族金属と記す)を担持した触媒を用いることができる。 Stage catalyst bed of hydrodesulfurization catalyst of the present invention, in the carrier, molybdenum, periodic table Group 6 metals including at least one of tungsten (hereinafter referred to as Group 6 metal) carrying, and cobalt, nickel periodic table group 8 metal containing at least one of (hereinafter referred to as group 8 metal) can be used supported in the catalyst.
これらの触媒は、必要に応じて、リン、ホウ素、亜鉛、ジルコニア等を含有するものであってもよい。 These catalysts, if necessary, phosphorus, boron, zinc, or may be one containing zirconia.
【0023】 [0023]
6族金属の担持量は、触媒基準かつ酸化物換算で10〜40質量%の範囲が好ましい。 Loading amount of Group 6 metal is in the range of 10 to 40 mass% in the catalyst based and oxide basis are preferred. 6族金属が10質量%より少ないと、活性点として働く6族金属の絶対量が少ないために、脱硫活性が発現せず、逆に40質量%より多過ぎると、金属の凝集が起こり活性点の数が減少し、その結果、脱硫活性が却って低下する。 When the Group 6 metal is less than 10 wt%, for the absolute amount of Group 6 metal acting as active sites is small, not desulfurization activity expression, if too large than 40 wt% conversely, active sites occur agglomeration of the metal and the number of decreases, as a result, the desulfurization activity rather decreases.
また、8族金属の担持量は、触媒基準かつ酸化物換算で1〜10質量%の範囲が好ましい。 Further, the amount of supported Group 8 metal in the range of 1 to 10 mass% in the catalyst based and oxide basis are preferred. 8族金属が1質量%より少ないと充分な脱硫活性が得られず、10質量%を超えても、脱硫活性が飽和する。 Group 8 metal is not obtained sufficient desulfurization activity and less than 1 wt%, even more than 10 wt%, desulfurization activity is saturated.
必要に応じて含有させるリン、ホウ素、亜鉛、ジルコニア等の量は、触媒基準かつ酸化物換算で0.1〜10質量%の範囲が好ましい。 Phosphorus be contained if necessary, boron, zinc, the amount of zirconia in the range of 0.1 to 10 mass% in the catalyst based and oxide basis are preferred.
【0024】 [0024]
本発明の後段触媒床の水素化脱硫触媒は、前段触媒床の触媒と同じか、あるいは、上記担体に、ルテニウム、パラジウム、ロジウム、白金のうち少なくとも1種を含む8族金属を担持した触媒を用いることができる。 Stage catalyst bed of hydrodesulfurization catalyst of the present invention is either the same as stage catalyst bed of the catalyst, or, in the carrier, ruthenium, palladium, rhodium, a catalyst carrying a Group 8 metal containing at least one of platinum it can be used.
これらの触媒も、必要に応じて、リン、ホウ素、亜鉛、ジルコニア等を含有するものであってもよい。 These catalysts may, optionally, phosphorus, boron, zinc, or may be one containing zirconia.
【0025】 [0025]
ルテニウム、パラジウム、ロジウム、白金のうちの少なくとも1種の金属の担持量は、触媒基準かつ金属換算で0.1〜20質量%の範囲が好ましい。 Ruthenium, palladium, rhodium, at least one supported amount of metal of the platinum is in the range of 0.1 to 20 mass% in the catalyst based and metal conversion is preferred. この範囲より少ないと充分な脱硫活性が得られず、多くても、脱硫活性が飽和する。 Small and can not be obtained sufficient desulfurization activity than this range, at most, desulfurization activity is saturated.
必要に応じて含有させるリン、ホウ素、亜鉛、ジルコニア等の量は、触媒基準かつ酸化物換算で0.1〜10質量%の範囲が好ましい。 Phosphorus be contained if necessary, boron, zinc, the amount of zirconia in the range of 0.1 to 10 mass% in the catalyst based and oxide basis are preferred.
【0026】 [0026]
以上の前段及び後段触媒は、軽油留分に対する脱硫活性を高めるために、その比表面積、細孔容積及び平均細孔径が、以下の値を有するものであることが望ましい。 More upstream and downstream catalysts, in order to enhance the desulfurization activity for gas oil fraction, a specific surface area, pore volume and average pore diameter, it is desirable that those having the following values.
比表面積(BET法)は、100〜400m /g程度、好ましくは150〜400m /g程度である。 The specific surface area (BET method), 100 to 400 m 2 / g approximately, and preferably from 150 to 400 m 2 / g approximately. 比表面積が小さいと、活性金属の分散性が悪くなって、脱硫活性が低下し、大きいと、細孔直径が極端に小さくなるため、触媒の細孔直径も小さくなって、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。 When the specific surface area is small, worsened dispersibility of the active metal, the desulfurization activity decreases, the large, the pore diameter is extremely small, the pore diameter of the catalyst be reduced, the sulfur compound catalyst fine diffusion into the pores is insufficient, desulfurization activity decreases.
【0027】 [0027]
細孔容積(水銀圧入法)は、0.25〜0.80ml/g程度、好ましくは0.35〜0.70ml/g程度である。 Pore ​​volume (mercury porosimetry method), 0.25~0.80ml / g, and preferably about 0.35~0.70ml / g. 0.25ml/g程度未満では、硫黄化合物の触媒細孔内での拡散が不十分となって、脱硫活性が不十分となり、0.80ml/g程度より大きいと、触媒の比表面積が極端に小さくなって、活性金属の分散性が低下し、脱硫活性が低下する。 Is less than about 0.25 ml / g, diffusion in the catalyst pores of the sulfur compounds is insufficient, desulfurization activity is insufficient, and the greater degree 0.80 ml / g, specific surface area of ​​the catalyst is extremely It is smaller, and decreases the dispersibility of the active metal, desulfurization activity decreases.
【0028】 [0028]
平均細孔直径は、60〜200Å程度、好ましくは65〜180Å程度の範囲である。 The average pore diameter is about 60~200A, preferably in the range of about 65~180A. 60Å程度未満では、反応物質が細孔内に拡散し難くなるため、脱硫反応が効率的に進行せず、200Å程度より大きいと、細孔内の拡散性は良いものの、細孔内表面積が減少するため、触媒の有効比表面積が減少し、活性が低くなる。 Is less than about 60 Å, because the reactant becomes difficult to diffuse into the pores, it does not proceed desulfurization reaction efficiently, a greater degree 200 Å, although the diffusivity within the pores is good, pores surface area decreases to the effective specific surface area of ​​the catalyst is decreased, the activity is lowered.
【0029】 [0029]
また、上記の細孔条件を満たす細孔の有効数を多くするために、触媒の細孔径分布、即ち平均細孔径±15Åの細孔径を有する細孔の割合は、50%以上、好ましくは70%以上である。 Further, in order to increase the effective speed of the pore satisfy the pore, the pore diameter distribution of the catalyst, i.e., the percentage of pores having a pore size of mean pore diameter ± 15 Å is at least 50%, preferably 70 or more percent.
しかも、細孔分布は、モノモーダルであることが好ましい。 Moreover, the pore distribution is preferably monomodal. 触媒の細孔径分布がシャープなものでないと、活性に関与しない細孔が増大し、脱硫活性が減少する。 When the pore size distribution of the catalyst is not the one sharp, increased pore that is not involved in the activity, desulfurization activity is reduced.
【0030】 [0030]
触媒形状は、特に限定されず、通常、この種の触媒に用いられる種々の形状、例えば、円柱状、四葉型等を採用することができ、好ましくは拡散の観点から四つ葉型である。 Catalyst shape is not particularly limited, various shapes used for this type of catalyst, for example, can be employed cylindrical, four leaves type or the like, and preferably four-leaf type in terms of diffusion.
触媒の大きさは、通常、直径が1〜2mm程度、長さ2〜5mm程度が好ましい。 The size of the catalyst is generally in diameter of about 1 to 2 mm, a length of about 2~5mm is preferred.
触媒の機械的強度は、側面破壊強度(SCS《Side crush strength》)で約2lbs/mm以上が好ましい。 The mechanical strength of the catalyst is from about 2 lbs / mm or higher at the side fracture strength (SCS "Side crush strength") is preferable. SCSが、これより小さいと、反応装置に充填した触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となる。 SCS is the smaller than this, the catalyst was charged to the reactor is broken, the differential pressure in the reactor occurs, making it impossible to continue the hydrotreating operation.
触媒の最密充填かさ密度(CBD:Compacted Bulk Density)は、0.60〜1.0程度が好ましい。 Close-packed bulk density of the catalyst (CBD: Compacted Bulk Density) is preferably about 0.60 to 1.0.
【0031】 [0031]
触媒中の活性金属の分布状態は、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。 Active metal distribution in the catalyst is uniform type of active metal in the catalyst are uniformly distributed are preferred.
【0032】 [0032]
【実施例】 【Example】
図1は、本発明の方法を実施する装置の一例を模式的に示した図であり、1は既存の反応塔であって、頂部から原料油を投入し、底部から生成油を取り出す方式のものである。 Figure 1 is a diagram schematically showing an example of an apparatus for implementing the method of the present invention, 1 is an existing reactor, the feedstock was introduced from the top, of the type which emit produced oil from the bottom it is intended.
従って、反応塔1の上方部に前段触媒床(ここでは2つの触媒層から構成されるものを示している)2を、その下方部に後段触媒床(ここでは1つの触媒層から構成されるものを示している)3を形成し、各触媒床2,3の入口部にそれぞれ水素導入手段21,31を設けたものである。 Therefore, constituted a reaction column pre-catalyst bed the upper part of the 1 (depicts what may be composed of two catalyst layers in this case) 2, from the rear catalyst bed (one catalyst layer in this case in its lower part to form a are) 3 shows an object, in which each provided with a hydrogen feed means 21 and 31 to the inlet of each catalyst bed 2.
また、必要に応じて、各触媒床2,3のそれぞれの途中(図1では、前段触媒床2のみの途中)に温度制御(クエンチ)用の水素導入手段22を(図1では、水素導入手段21の途中から分岐させて)設け、後段触媒床3に生成油の循環手段32及び水の導入手段33を設ける。 If necessary, (in FIG. 1, the front catalyst bed 2 only the middle), respectively the middle of the catalyst bed 2 in the hydrogen feed unit 22 (FIG. 1 for the temperature control (quenching), introducing hydrogen is branched from the middle of means 21) is provided, providing the circulating means 32 and the introducing means 33 of the water produced oil downstream catalyst bed 3.
なお、図1の例では、前段触媒床2と後段触媒床3との間4、言い換えれば後段触媒床3の入口部4は、前段触媒床2からの油や余剰水素と、導入手段31からの水素と、場合によっては導入手段32からのリサイクル生成油や導入手段33からの水との混合が充分行われるような構造とする。 In the example of FIG. 1, between the front catalyst bed 2 and the rear stage catalyst bed 3 4, the inlet portion 4 of the subsequent catalyst bed 3 in other words, an oil and the excess hydrogen from the preceding catalyst bed 2, the introduction means 31 and hydrogen, in some cases a structure as mixing is sufficiently performed with water from recycle product oil and introduction means 33 from the introduction means 32. この部分4の構造は、導入手段31からの水素の導入圧力、あるいは導入手段32からのリサイクル生成油や導入手段33からの水の導入圧力等を加味して、この混合状態を考慮し、適宜設計すればよい。 The structure of this part 4, in consideration of the introduction pressure, etc. of the water from the recycling product oil and introduction means 33 from the introduction pressure of the hydrogen from the introduction means 31 or introducing means 32, taking into account the mixed state, as appropriate it may be designed.
【0033】 [0033]
実施例1 、参考例1 Example 1, Reference Example 1
図1に示す反応塔1内に、体積(X1)100mlの前段触媒床2と、体積(X2)50mlの後段触媒床3を形成し、前段触媒、後段触媒ともに、アルミナ担体に、コバルト5質量%及びモリブデン21質量%を担持した触媒(触媒A)を用い、表1に示す性状の原料油を、表2示す反応条件にて、生成油の循環又は非循環の下で脱硫処理した。 The reaction tower 1 shown in FIG. 1, a front catalyst bed 2 volumes (X1) 100 ml, to form a subsequent catalyst bed 3 volume (X2) 50 ml, stage catalyst, in both stage catalyst, the alumina support, cobalt 5 mass % and using a catalyst supporting molybdenum 21 wt% (catalyst a), the feedstock having the properties shown in Table 1, in Table 2 shows the reaction conditions, it was desulfurized under circulation or acyclic the product oil. 結果を表2に示す。 The results are shown in Table 2.
【0034】 [0034]
実施例2、参考例2 Example 2, Reference Example 2
前段触媒に実施例1の触媒Aを用い、後段触媒として、アルミナ担体に、コバルト3質量%、ニッケル2質量%及びモリブデン21質量%を担持した触媒(触媒B)を用いる以外は、実施例1と同様にして脱硫処理を行った。 Using the catalyst A of Example 1 in the front stage catalyst, as the rear catalyst, the alumina carrier, except using cobalt 3 wt%, catalyst carrying 2 mass% of nickel and molybdenum 21 wt% (Catalyst B) is Example 1 It was carried out desulfurization treatment in the same manner as. 結果を表2に示す。 The results are shown in Table 2.
【0035】 [0035]
参考例3 Reference Example 3
後段触媒床に、原料油1リットル当たり0.07kgの水(蒸留水)を導入しながら、表2に示す条件とする以外は、実施例1と同様にして脱硫処理を行った。 The stage catalyst bed, while introducing feedstock per liter 0.07kg of water (distilled water), except that the conditions shown in Table 2, were subjected to desulfurization treatment in the same manner as in Example 1. 結果を表2に示す。 The results are shown in Table 2.
【0036】 [0036]
参考例4 Reference Example 4
後段触媒床に、原料油1リットル当たり0.09kgの水(蒸留水)を導入しながら、表2に示す条件とする以外は、実施例と同様にして脱硫処理を行った。 The stage catalyst bed, while introducing feedstock per liter 0.09kg of water (distilled water), except that the conditions shown in Table 2, were subjected to desulfurization treatment in the same manner as in Example 2. 結果を表2に示す。 The results are shown in Table 2.
【0037】 [0037]
参考例5 Reference Example 5
後段触媒床に、生成油の10%を循環しつつ、同時に原料油1リットル当たり0.05kgの水(水道水)を導入しながら、表3に示す条件とする以外は、実施例1と同様にして脱硫処理を行った。 The stage catalyst bed, while the circulation of 10% of the product oil, while introducing feedstock per liter 0.05kg of water (tap water) at the same time, except that the conditions shown in Table 3, similarly to Example 1 to to was carried out desulfurization process. 結果を表3に示す。 The results are shown in Table 3.
【0038】 [0038]
参考例6 Reference Example 6
後段触媒床に、生成油の10%を循環しつつ、同時に原料油1リットル当たり0.07kgの水(蒸留水)を導入しながら、表3に示す条件とする以外は、 参考例1と同様にして脱硫処理を行った。 The stage catalyst bed, while the circulation of 10% of the product oil, while introducing feedstock per liter 0.07kg of water (distilled water) at the same time, except that the conditions shown in Table 3, the same manner as in Reference Example 1 to to was carried out desulfurization process. 結果を表3に示す。 The results are shown in Table 3.
【0039】 [0039]
比較例1〜2 Comparative Examples 1 and 2
前段触媒、後段触媒ともに、触媒Aを用い、生成油を循環させず、また後段触媒床へ水素も水も導入しない以外は、実施例1と同様にし脱硫処理を行った。 Stage catalyst, both rear catalyst, with catalyst A, without circulating product oil, except that does not introduce hydrogen also water to a subsequent catalyst bed was also subjected to desulfurization treatment in the same manner as in Example 1. 結果を表3に示す。 The results are shown in Table 3.
【0040】 [0040]
【表1】 [Table 1]
【0041】 [0041]
【表2】 [Table 2]
【0042】 [0042]
【表3】 [Table 3]
【0043】 [0043]
表2〜3から分かるように、比較例1,2のように、水素量の比b/a、生成油循環比、水の導入量をともに0とした場合、反応温度を低くすると、硫黄分が高くなり、反応温度を高くすると、硫黄分は低下できるが、色相の改善効果は余り好ましくないのに対し、実施例1, のように水素量の比b/aを2.0とした場合、 参考例1,2のように生成油循環比を30%とした場合、 参考例3,4のように水を導入した場合、 参考例5,6のように生成油の循環と水の導入とを行った場合は、生成油の硫黄分、色相ともに良好であり、本発明が色相の良好な超深度脱硫軽油の製造に効果があることが分かる。 As can be seen from Table 2-3, as in Comparative Examples 1 and 2, the amount of hydrogen ratio b / a, product oil circulation ratio, if the introduced amount of water were both 0, lowering the reaction temperature, the sulfur content increases, the higher the reaction temperature, but the sulfur content may be lowered, whereas the effect of improving hue is not so preferable, and 2.0 the ratio b / a of the amount of hydrogen as in example 1, 2 If, when the product oil circulation ratio as in reference example 1 was 30% in the case of introducing water as the reference example 3 and 4, product oil circulation and the water as in reference examples 5 and 6 If you make the introduction, the sulfur content of product oil, is good in hue both, it can be seen that the present invention is effective in producing a good ultra-deep desulfurization diesel hue.
【0044】 [0044]
【発明の効果】 【Effect of the invention】
以上のように、本発明の方法によれば、既存の1つの反応塔に軽微な改良を加えるだけで、従来の脱硫技術による場合に比して、軽油を超深度脱硫することができるとともに、この超深度脱硫軽油の色相をも大幅に改善することができ、設備コストを低く抑えて、高品質の軽油を製造することができる。 As described above, according to the method of the present invention, simply by adding a minor improvement to the existing one reactor, as compared with the case of conventional desulfurization technique, with a light oil can be ultra-deep desulfurization, the hue ultradeep desulfurized gas oil can also be significantly improved, by suppressing the facility cost, it is possible to manufacture a high-quality gas oil.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の方法を実施する装置の一例を模式的に示す図である。 1 is a diagram schematically showing an example of a method implementing the device of the present invention.
【符号の説明】 DESCRIPTION OF SYMBOLS
1 反応塔2 前段触媒床3 後段触媒床21,22,31 水素導入手段32 生成油循環手段33 水導入手段 1 reactor 2 front catalyst bed 3 subsequent catalyst beds 21, 22, and 31 hydrogen introducing unit 32 generating oil circulation means 33 water introduction means

Claims (2)

  1. 1つの反応塔内に前段触媒床及び後段触媒床を有し、かつ前段触媒床及び後段触媒床のそれぞれに原料油と並流となるような水素導入手段を備えた該反応塔に、全触媒床の平均温度300〜390℃、圧力2〜8MPaの条件下で、硫黄分0.1〜3質量%、沸点150〜400℃の範囲にある石油蒸留物からなる原料油と水素を導入し、前段触媒床へ導入する水素量aと後段触媒床へ導入する水素量bの比b/a が0.5 〜5 であり、後段触媒床に導入する水素の量が、標準状態、0℃、1気圧で、原料油1リットル当たり50〜500リットルであり、後段触媒床の温度が250〜350℃であることを特徴とする超深度脱硫軽油の製造方法。 One has to reaction column pre-stage catalyst bed and subsequent catalyst beds, and the hydrogen feed unit such that feed oil and the co-current to the reaction column equipped in each of the front catalyst bed and subsequent catalyst beds, the total catalyst average temperature 300-390 ° C. bed, under a pressure 2 to 8 MPa, and introduced sulfur 0.1-3 wt%, the feed oil and hydrogen comprising a petroleum distillate in the boiling range of 150 to 400 ° C., the ratio b / a of the hydrogen amount b for introducing to the hydrogen amount a and the rear stage catalyst bed is introduced into the pre-stage catalyst bed is 0.5 to 5, the amount of hydrogen introduced into the subsequent catalyst bed, standard conditions, 0 ° C., at 1 atm, and 50 to 500 per liter feedstock 1 liter production method of ultra-deep desulfurization gas oil, wherein the temperature of the rear stage catalyst bed is 250 to 350 ° C..
  2. 前段触媒床と後段触媒床の体積比が1:1〜5:1であることを特徴とする請求項に記載の方法。 The volume ratio of the pre-stage catalyst bed and post-catalyst bed 1: 1 to 5: The method according to claim 1, characterized in that the 1.
JP08965599A 1998-12-11 1999-03-30 Method for producing desulfurized gas oil Expired - Lifetime JP4216400B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10-352483 1998-12-11
JP35248398 1998-12-11
JP08965599A JP4216400B2 (en) 1998-12-11 1999-03-30 Method for producing desulfurized gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08965599A JP4216400B2 (en) 1998-12-11 1999-03-30 Method for producing desulfurized gas oil

Publications (2)

Publication Number Publication Date
JP2000230179A JP2000230179A (en) 2000-08-22
JP4216400B2 true JP4216400B2 (en) 2009-01-28

Family

ID=26431075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08965599A Expired - Lifetime JP4216400B2 (en) 1998-12-11 1999-03-30 Method for producing desulfurized gas oil

Country Status (1)

Country Link
JP (1) JP4216400B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955990B2 (en) * 2000-07-28 2007-08-08 株式会社ジャパンエナジー Ultra-deep desulfurization method of gas oil fraction
GB0420016D0 (en) * 2004-09-09 2004-10-13 Leuven K U Res & Dev Controlled release oral delivery system
JP5439245B2 (en) * 2010-03-23 2014-03-12 Jx日鉱日石エネルギー株式会社 Hydrorefining process of gas oil fraction

Also Published As

Publication number Publication date
JP2000230179A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
US5403469A (en) Process for producing FCC feed and middle distillate
JP4878824B2 (en) Preparation and environment friendly fuel environmental low-load-type fuel
US8795392B2 (en) Catalytic hydrodeoxygenation of an oxygenate feedstock
JP3387700B2 (en) Desulfurization method of catalytic cracking gasoline
EP0537500B1 (en) A method of treatment of heavy hydrocarbon oil
JP4786102B2 (en) Two-stage high naphtha desulfurization formation of mercaptans is reduced
US7704377B2 (en) Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content
CN101356252B (en) Integrated heavy oil upgrading process and in-line hydrofinishing process
US4149965A (en) Method for starting-up a naphtha hydrorefining process
CN101321847B (en) Hydrorefining process and hydrorefined oil
RU2495082C2 (en) Hydrotreatment method and catalyst
JP3187104B2 (en) Method for producing low-sulfur diesel fuel oil
US6217748B1 (en) Process for hydrodesulfurization of diesel gas oil
JP2001507738A (en) Multistage hydrotreating process in a single reaction vessel
JP3868128B2 (en) Hydrodesulfurization apparatus and method of the gas oil
GB1602639A (en) Process for hydrodesulphurization of heavy hydrocarbon oils
CN100590182C (en) Method for producing cleaning oil from coal-tar oil
JPH0633362B2 (en) One-step hydrotreating
RU2178450C2 (en) Method of reducing summary acid number of crude oil
US7507325B2 (en) Process for converting heavy petroleum fractions for producing a catalytic cracking feedstock and middle distillates with a low sulfur content
JP2003516465A (en) Method of removing sulfur from a hydrocarbon feedstock
US20020005373A1 (en) Staged hydrotreating method for naphtha desulfurization
CN1552812A (en) Deep desulphurizing and dearomating process for diesel oil
JP3110525B2 (en) The method of reproducing a hydrocarbon oil hydroprocessing catalyst
EP1506270B1 (en) Multi-stage hydrodesulfurization of cracked naphtha streams with a stacked bed reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term