JP4214690B2 - Corrosion resistant resist adhesion evaluation method on metal - Google Patents

Corrosion resistant resist adhesion evaluation method on metal Download PDF

Info

Publication number
JP4214690B2
JP4214690B2 JP2001299033A JP2001299033A JP4214690B2 JP 4214690 B2 JP4214690 B2 JP 4214690B2 JP 2001299033 A JP2001299033 A JP 2001299033A JP 2001299033 A JP2001299033 A JP 2001299033A JP 4214690 B2 JP4214690 B2 JP 4214690B2
Authority
JP
Japan
Prior art keywords
metal
corrosion
resist
resistant resist
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001299033A
Other languages
Japanese (ja)
Other versions
JP2003105567A (en
Inventor
聡 田中
勇人 井田
龍二 上田
克久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2001299033A priority Critical patent/JP4214690B2/en
Publication of JP2003105567A publication Critical patent/JP2003105567A/en
Application granted granted Critical
Publication of JP4214690B2 publication Critical patent/JP4214690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は金属上に耐食性レジストを形成しエッチング加工により製品を製造する、例えばリードフレームやブラウン管のシャドウマスク、プリント配線基板等の金属と耐食性レジストの密着性評価方法に関する。
【0002】
【従来の技術】
例えばリードフレームやブラウン管のシャドウマスク、プリント配線基板等の金属上に耐食性レジストを形成しエッチング加工により製品を製造する方法において金属1と耐食性レジスト2の密着性は製品の形状や規格寸法などの品質を確保するために重要な要因である。
【0003】
レジスト密着性の低下した状態では、耐食性レジスト2と金属1の界面4へエッチング液5が浸透し、金属1表面が腐蝕され、所望の外形寸法やエッチング形状を得られないばかりか、耐食性レジスト2の剥離を招く場合もある。
【0004】
一般的には、この耐食性レジスト密着性の評価方法として、ピール試験や引っ張り試験等の金属1と耐食性レジスト2の物理的密着性を評価する方法が用いられるが、エッチング液5の金属1と耐食性レジスト2界面4への浸透が問題になる耐食性レジスト密着性の評価方法としては適切なものとは言い難い。また、一般的に耐食性レジスト2と金属1の密着力は大きいため、引っ張り試験等の物理的密着力評価を行った場合、金属1や耐食性レジスト2と測定機器の接点(主に接着剤を使用する)や耐食性レジスト2自体が破断する可能性が高く、耐食性レジスト2の金属1との密着性を純粋に計測することは困難である。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、耐食性レジスト2と金属1の密着性の適切な評価方法を提供すること目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に係る発明は、表面に耐食性レジストが形成された金属を電解質中で定電位分極をおこない、その電流値の経時変化を観察することにより、耐食性レジストと金属界面へのエッチング液の浸透を評価することを特徴とする金属上の耐食性レジスト密着性評価方法である。
【0007】
本発明の請求項2に係る発明は、金属上に耐食性レジストを形成し、不純物除去のための表面処理を金属におこない、電解質中で定電位分極をおこなって耐食性レジストと金属界面以外の金属露出部分に不働体皮膜を形成し、定電位分極を続けながら電流密度変化を観察し、耐食性レジストと金属界面へのエッチング液の浸透を評価することを特徴とする金属上の耐食レジスト密着性評価方法である。
【0008】
本発明の請求項3に係る発明は、前記金属がNi30〜50重量%、残部Feを主体とするFe−Ni系合金であり、前記不純物除去のための表面処理が硫酸溶液中でのカソードおよびアノード処理であり、前記電解質が硫酸ナトリウムと塩化ナトリウムの混合水溶液であることを特徴とする請求項2記載の金属上の耐食性レジスト密着性評価方法である。
【0010】
【発明の実施の形態】
本課題を解決するために、耐食性レジスト密着性について、そのメカニズムからの考察を行った。エッチング加工時の耐食性レジスト2と金属1界面のモデルを図1に示す。耐食性レジスト2と金属1界面でのエッチングの進行は耐食性レジスト2と金属1界面へのエッチャント5の浸透により促進され、耐食性レジスト2と金属1界面4との密着性が低い状態には耐食性レジスト2と金属1界面4へのエッチャント5の浸透が進行しやすい状態であるといえる。
【0011】
そこで、この現象に着眼し、耐食性レジスト2と金属1界面4へのエッチング液5の浸透をモニタリングできる方法を模索した。本発明では、「隙間腐食」の原理を応用し、耐食性レジスト2と金属1界面4へのエッチング液5の浸透を数値化することを見いだした。ここで、隙間腐食の原理について説明する。隙間腐食は隙間部分7と、正常部分付近8での腐食反応種の経時的変化により生じる濃度差により発生する。隙間部分7では反応種と反応生成物の交換速度が遅いため反応種濃度が薄くなるが、比較して、正常部分8は十分反応種と反応生成物の交換が行われる。その為に、隙間部分7と正常部分8には電位差が生じ、隙間部分7が局部アノードとなるため、隙間部分7の腐食が正常部8と比較して進行する。
【0012】
一般的に鉄、銅、などの金属1は電解溶液3中でアノード分極すると、ある電位領域で表面に金属塩、水酸化物あるいは酸化物の皮膜を形成(これを不働態化15という)し、正常部分付近8の金属1表面の溶解速度が著しく低下する。今回対象とするような金属1上に耐食性レジスト2が形成されている状態の金属9を不働態15領域でアノード分極すると、正常部分8付近の金属1露出部分が不働態化15しエッチングはゆっくりと進行し、腐食電流はあまり流れない。しかし、仮に隙間腐食の示すように、耐食性レジスト2と金属1界面4密着性が低く場合に、耐食性レジスト2と金属1界面に電解質3の浸透が起こる(隙間が発生する)と仮定すると、該界面4の隙間に浸透した電解質3中の酸素、水酸化物イオンあるいはその他のイオン濃度は隙間でのバルク溶液との液交換が困難なため、短い時間で不働態皮15膜生成に必要な酸素等の量が減少し、結果隙間部分7では不働態皮膜15が形成されずに、エッチングが進行し、比較的大きな腐食電流を生じる。よって、アノード分極時の電流値の時間変化を観察することにより、耐食性レジスト2密着性を評価する方法が見いだされた。
【0013】
前述の内容からもわかるように、本発明すなわち電解液3中での定電位分極により耐食性レジスト密着性を評価する方法において、耐食性レジスト2と金属1界面4以外の部分である正常部分付近8の金属露出部分に不働態皮膜15を如何に安定的に形成するかが測定値の安定性、信頼性を左右する。そこで、本発明においては対象となる金属材料を大型、高精細シャドウマスクや半導体装置のリードフレーム材料として用いられるNi30〜50重量%、残部Feを主体とする鉄―ニッケル合金について、安定な不働態皮膜15を形成することが可能な分極条件および電解質3の選定を行った。
【0014】
分極条件としては定電位分極時の電圧として100mV〜500mV程度が不働態15形成域であることを確認した。処理時間は30分から60分程度が望ましい。また、定電位分極に先駆け金属1表面の付着物や自然酸化皮膜の除去を目的に表面処理(前処理)が安定な不働態皮膜15を形成するためには重要である。前処理条件としては硫酸溶液中でのカソード処理およびそれに引き続くアノード処理を行うと効果的である。処理条件としては硫酸溶液濃度が1kmol/m3程度、カソード処理は電流密度は−10A/m2程度で60秒程度、アノード処理は電流密度+1kA/m2程度で60秒程度が望ましい。
【0015】
定電位分極時の電解液3は安定な不働態皮膜15の形成にとって最も重要な要因であり、種々の電解液3について試験を行った結果、金属1として鉄―ニッケル合金を使用した場合、硫酸ナトリウムと塩化ナトリウムの混液において安定した測定結果を得ることができた。その濃度は硫酸ナトリウムが0.1kmol/m3程度、塩化ナトリウムが0.05〜0.001kmol/m3程度が好ましい。
【0016】
図2に示す、レジスト密着性の評価は定電位分極時の電流密度の時間変化を観察することにより可能となる。耐食性レジスト密着性が良好な場合、定電位分極直後に電流密度が急激に降下して一定時間(約20分)後に安定するのに対し、密着性の悪い場合定電位分極直後の急激な電流密度低下がみられず電流密度が高い状態である。これは耐食性レジスト密着性が悪い状態では耐食性レジスト2と金属1界面での不働態化15が促進されないため耐食性レジスト2と金属1界面部のエッチングが進行し続けるためである。
【0017】
本発明における耐食性レジスト密着評価方法である定電位分極の実施例を図3に示す。
【0018】
具体的には耐食性レジスト2として重クロム酸アンモニウムを1重量%添加した水溶性レジスト(FR-17:富士薬品工業(株))を、板厚130μmのインバー合金基板(YET36:日立金属(株)製)上に、スピンコーティングにより塗布し、60℃・30分の乾燥を行い、金属1上の片面に耐食性レジスト2層を形成した。
【0019】
次に、図3に示す、金属1上の耐食性レジスト2層に、所望のパターンを描いたネガ型のフォトマスクを通して、3kWの超高圧水銀灯で、積算光量で1500mJ/cm2だけ露光した。露光後、一般の上水を現像液として90秒間スプレー圧0.1MPaで噴霧し、フォトレジスト層の未露光部分を除去(現像)し、所望の耐食性レジストパターン6層を形成した。又図4は図3の部分拡大した耐食性レジストパターン6である。
【0020】
次に図5に示す側断面図は電気化学セル装置である。前記耐食性レジストパターン6層を形成の金属9を電気化学セル装置を用いて測定を行った。まず、計測用試料14の耐食性レジストのパターン形成面9を電気化学セルの電解質溶液3の内側に向くように電気化学セルの試料固定冶具16位置に設置し、1kmol/m3硫酸溶液にて電流密度−10A/m3で60秒のカソード処理を行い連続して電流密度+1kA/m2で60秒のアノード処理を行った。
【0021】
電気化学セル槽10内を純水にて洗浄後、溶存酸素除去処理をおこなった硫酸ナトリウム0.1kmol/m3塩化ナトリウム0.003kmol/m3混合溶液3を電気化学セル槽10内に充填し、標準電極に銀―塩化銀電極を用い電圧+300mVで定電位を行った。
【0022】
図2に示す、耐食性レジスト密着性が良好なサンプルAの場合、定電位分極直後に低下し、分極後15から20分程度で電流密度が−3A/m2オーダーまで降下状態で安定する。これは、耐食性レジスト2と金属1界面は隙間が発生せずに、金属露出部分が一様に不働態化したことを示す。
【0023】
これに対して耐食性レジスト密着性が低いサンプルBでは定電位分極後の電流密度の降下がみられない。これは、耐食性レジスト2と金属1界面での隙間の発生による腐蝕進行によるものである。
【0024】
また、サンプルCは耐食性レジスト2と金属1密着性が不安定な酸化皮膜を形成したもので、定電位分極直後の電流密度低下はみられるが突発的に電流密度の上昇が起こり電流密度の時間変化が不安定である。この突発的な電流密度変化を生じる不安定な電流密度変化は不安定な酸化被膜が破れ、その部分から急激に電流が流れた後、安定な不働態被膜15を形成する過程を繰り返しているものである。これらの結果からも、本発明における耐食性レジスト密着性評価方法である定電位分極の時間が30〜60分程度必要であることが分かる。
【0025】
【発明の効果】
本発明によれば、耐食性レジストと金属の密着性を正当に評価することが可能となり、レジスト密着性の評価方法が確立した結果、製造工程での管理や工程条件の最適化、金属に対する適正な耐食性レジストの選択などが容易に可能となった。
【図面の簡単な説明】
【図1】本発明における、定電位分極時の電流密度の時間変化と耐食性レジスト密着性の関係に関する模式図である。
【図2】本発明における、定電位分極の電流密度の時間変化の実測の一実施例である。
【図3】本発明の実施例で用いた耐食性レジストパターンの平面図である。
【図4】本発明の実施例で用いた耐食性レジストパターンの拡大平面図である。
【図5】本発明の実施例で用いた電気化学セルの模式図である。
【符号の説明】
1…金属
2…耐食性レジスト
3…電解質(の溶液)
4…界面
5…エッチング液(エッチヤント)
6…耐食性レジストパターン
7…隙間部分
8…正常部分付近
9…耐食性レジストパターンを形成の金属
10…電気化学セル装置の槽
11…電気化学セル装置のカバー
12…Ptの電極
13…細い管
14…資料
15…不働態皮膜
16…資料固定冶具
17…金属と耐食レジストの密着不良時の電流変化のグラフ
18…金属と耐食レジストの密着良好時の電流変化のグラフ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the adhesion between a metal such as a lead frame, a cathode ray tube shadow mask, a printed wiring board, and the like and a corrosion resistant resist, by forming a corrosion resistant resist on the metal and manufacturing the product by etching.
[0002]
[Prior art]
For example, in a method in which a corrosion-resistant resist is formed on a metal such as a lead frame, a shadow mask of a cathode ray tube, or a printed circuit board and a product is manufactured by etching, the adhesion between the metal 1 and the corrosion-resistant resist 2 is the quality of the product, such as the standard size Is an important factor to ensure.
[0003]
In a state in which the resist adhesion is lowered, the etching solution 5 penetrates into the interface 4 between the corrosion resistant resist 2 and the metal 1 and the surface of the metal 1 is corroded, and a desired external dimension and etching shape cannot be obtained. In some cases, it may cause peeling.
[0004]
In general, as a method for evaluating the corrosion resistance resist adhesion, a method for evaluating physical adhesion between the metal 1 and the corrosion resistance resist 2 such as a peel test and a tensile test is used, but the metal 1 and the corrosion resistance of the etching solution 5 are used. It is difficult to say that this is an appropriate method for evaluating the adhesion of the corrosion resistant resist where penetration into the resist 2 interface 4 becomes a problem. In general, since the adhesion between the corrosion resistant resist 2 and the metal 1 is large, when physical adhesion evaluation such as a tensile test is performed, the contact between the metal 1 or the corrosion resistant resist 2 and the measuring device (mainly using an adhesive). The corrosion resistant resist 2 itself is likely to break, and it is difficult to purely measure the adhesion of the corrosion resistant resist 2 to the metal 1.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and an object thereof is to provide an appropriate evaluation method for the adhesion between the corrosion-resistant resist 2 and the metal 1.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, a metal having a corrosion-resistant resist formed on the surface is subjected to constant potential polarization in an electrolyte, and the change in the current value with time is observed to etch the corrosion-resistant resist and the metal interface. It is a corrosion resistance resist adhesion evaluation method on metal characterized by evaluating liquid penetration .
[0007]
According to the second aspect of the present invention , a corrosion resistant resist is formed on a metal, surface treatment for removing impurities is performed on the metal, and constant potential polarization is performed in the electrolyte to expose the metal other than the corrosion resistant resist and the metal interface. Corrosion-resistant resist adhesion evaluation method on metal characterized by forming a passive film on the part, observing changes in current density while continuing constant potential polarization, and evaluating the penetration of the etchant into the corrosion-resistant resist and metal interface It is.
[0008]
The invention according to claim 3 of the present invention is an Fe-Ni alloy mainly composed of Ni of 30 to 50% by weight of Ni and the balance of Fe, and the surface treatment for removing the impurities is a cathode in a sulfuric acid solution and The corrosion resistance resist adhesion evaluation method on metal according to claim 2, wherein the method is anodizing, and the electrolyte is a mixed aqueous solution of sodium sulfate and sodium chloride .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve this problem, the mechanism of the corrosion resistance resist adhesion was examined. A model of the interface between the corrosion-resistant resist 2 and the metal 1 at the time of etching is shown in FIG. The progress of etching at the interface between the corrosion resistant resist 2 and the metal 1 is promoted by the penetration of the etchant 5 into the interface between the corrosion resistant resist 2 and the metal 1, and the corrosion resistant resist 2 is in a state where the adhesion between the corrosion resistant resist 2 and the metal 1 interface 4 is low. It can be said that the penetration of the etchant 5 into the metal 1 interface 4 is likely to proceed.
[0011]
Therefore, focusing on this phenomenon, a method for monitoring the penetration of the etching solution 5 into the corrosion resistant resist 2 and the metal 1 interface 4 was sought. In the present invention, the principle of “crevice corrosion” is applied to find out that the penetration of the etching solution 5 into the interface 4 between the corrosion resistant resist 2 and the metal 1 is quantified. Here, the principle of crevice corrosion will be described. The crevice corrosion occurs due to a concentration difference caused by a change with time of the corrosion reaction species between the gap portion 7 and the vicinity 8 of the normal portion. In the gap portion 7, the reaction species concentration is reduced because the exchange rate of the reaction species and the reaction product is slow. However, in the normal portion 8, the reaction species and the reaction product are sufficiently exchanged. Therefore, a potential difference is generated between the gap portion 7 and the normal portion 8, and the gap portion 7 becomes a local anode, so that the corrosion of the gap portion 7 proceeds as compared with the normal portion 8.
[0012]
In general, when the metal 1 such as iron or copper is anodically polarized in the electrolytic solution 3, a film of metal salt, hydroxide or oxide is formed on the surface in a certain potential region (this is referred to as passivated 15). The dissolution rate of the surface of the metal 1 in the vicinity of the normal part 8 is remarkably reduced. When the metal 9 in the state where the corrosion resistant resist 2 is formed on the metal 1 as the object this time is anodic polarized in the passive state 15 region, the exposed part of the metal 1 in the vicinity of the normal part 8 is passivated 15 and etching is slowly performed. The corrosion current does not flow so much. However, if the corrosion resistance resist 2 and the metal 1 interface 4 have low adhesion as shown by crevice corrosion, it is assumed that the electrolyte 3 permeates at the interface between the corrosion resistance resist 2 and the metal 1 (gap occurs). Oxygen, hydroxide ions, or other ion concentrations in the electrolyte 3 that have penetrated into the gaps at the interface 4 are difficult to exchange with the bulk solution in the gaps. As a result, the passive film 15 is not formed in the gap portion 7, and the etching proceeds and a relatively large corrosion current is generated. Therefore, a method for evaluating the adhesion of the corrosion-resistant resist 2 by observing the time change of the current value during anodic polarization has been found.
[0013]
As can be seen from the above-described contents, in the present invention, that is, the method for evaluating the adhesion of the corrosion-resistant resist by the constant potential polarization in the electrolytic solution 3, the vicinity of the normal portion 8 which is a portion other than the corrosion-resistant resist 2 and the metal 1 interface 4 is used. How stably the passive film 15 is formed on the exposed metal portion affects the stability and reliability of the measured value. Therefore, in the present invention, the target metal material is a large, high-definition shadow mask or an iron-nickel alloy mainly composed of 30 to 50% by weight of Ni used as a lead frame material of a semiconductor device, and a stable passive state. The polarization conditions capable of forming the film 15 and the electrolyte 3 were selected.
[0014]
As a polarization condition, it was confirmed that about 100 mV to 500 mV was a passive state 15 formation region as a voltage during constant potential polarization. The processing time is preferably about 30 to 60 minutes. Further, prior to constant potential polarization, surface treatment (pretreatment) is important for forming a passive film 15 that is stable for the purpose of removing deposits and natural oxide film on the surface of the metal 1. As pretreatment conditions, it is effective to carry out cathodic treatment in a sulfuric acid solution and subsequent anodic treatment. The treatment conditions are preferably a sulfuric acid solution concentration of about 1 kmol / m 3, a cathode treatment with a current density of about −10 A / m 2 for about 60 seconds, and an anode treatment with a current density of about +1 kA / m 2 for about 60 seconds.
[0015]
Electrolytic solution 3 at the time of constant potential polarization is the most important factor for the formation of stable passive film 15. As a result of testing various electrolytic solutions 3, when iron-nickel alloy is used as metal 1, sulfuric acid Stable measurement results could be obtained in a mixed solution of sodium and sodium chloride. The concentration is preferably about 0.1 kmol / m3 for sodium sulfate and about 0.05 to 0.001 kmol / m3 for sodium chloride.
[0016]
The evaluation of resist adhesion shown in FIG. 2 can be performed by observing the change in current density with time during constant potential polarization. When the corrosion resistance resist adhesiveness is good, the current density drops rapidly immediately after the constant potential polarization and stabilizes after a certain time (about 20 minutes), whereas when the adhesion is poor, the rapid current density immediately after the constant potential polarization. It is in a state where the current density is high without any decrease. This is because the etching at the interface between the corrosion-resistant resist 2 and the metal 1 continues to proceed because the passivation 15 at the interface between the corrosion-resistant resist 2 and the metal 1 is not promoted in a state where the adhesion of the corrosion-resistant resist is poor.
[0017]
FIG. 3 shows an example of constant potential polarization, which is a corrosion resistance resist adhesion evaluation method in the present invention.
[0018]
Specifically, a water-soluble resist (FR-17: Fuji Yakuhin Kogyo Co., Ltd.) added with 1% by weight of ammonium dichromate as the corrosion resistant resist 2 is used as an invar alloy substrate (YET36: Hitachi Metals, Ltd.) with a plate thickness of 130 μm. The product was applied by spin coating and dried at 60 ° C. for 30 minutes to form two corrosion-resistant resist layers on one side of the metal 1.
[0019]
Next, the two layers of the corrosion-resistant resist on the metal 1 shown in FIG. 3 were exposed through a negative photomask on which a desired pattern was drawn with a super-high pressure mercury lamp of 3 kW by an integrated light amount of 1500 mJ / cm 2 . After the exposure, general clean water was used as a developer for 90 seconds and sprayed at a spray pressure of 0.1 MPa to remove (develop) the unexposed portion of the photoresist layer, thereby forming a desired 6-layer resist pattern. FIG. 4 shows the corrosion resistant resist pattern 6 partially enlarged from FIG.
[0020]
Next, the side sectional view shown in FIG. 5 is an electrochemical cell device. The metal 9 forming the six layers of the corrosion-resistant resist pattern was measured using an electrochemical cell device. First, the pattern formation surface 9 of the corrosion resistant resist of the measurement sample 14 is placed at the position of the sample fixing jig 16 of the electrochemical cell so as to face the inside of the electrolyte solution 3 of the electrochemical cell, and the current density is 1 kmol / m3 sulfuric acid solution. Cathodic treatment at −10 A / m 3 for 60 seconds was carried out, and anode treatment was continuously carried out at a current density of +1 kA / m 2 for 60 seconds.
[0021]
After the electrochemical cell tank 10 is washed with pure water, the dissolved oxygen removal treatment sodium sulfate 0.1 kmol / m3 sodium chloride 0.003 kmol / m3 mixed solution 3 is filled into the electrochemical cell tank 10 and the standard A constant potential was applied at a voltage of +300 mV using a silver-silver chloride electrode as an electrode.
[0022]
In the case of the sample A having good corrosion resistance resist adhesion shown in FIG. 2, it decreases immediately after the constant potential polarization, and the current density is stabilized to the order of −3 A / m 2 in about 15 to 20 minutes after the polarization. This indicates that no gap is generated between the corrosion-resistant resist 2 and the metal 1 interface, and the exposed metal portion is uniformly passivated.
[0023]
On the other hand, in Sample B with low corrosion resistance resist adhesion, no decrease in current density after constant potential polarization is observed. This is due to the progress of corrosion due to the generation of a gap between the corrosion resistant resist 2 and the metal 1 interface.
[0024]
Sample C is an oxide film in which the corrosion resistance resist 2 and metal 1 adhesion are unstable. The current density decreases suddenly immediately after constant potential polarization, but the current density suddenly increases and the current density time Change is unstable. The unstable current density change that causes this sudden current density change is a process in which the unstable oxide film is broken and the process of forming the stable passive film 15 after the current suddenly flows from that portion. It is. Also from these results, it can be seen that the time of constant potential polarization, which is the corrosion resistance resist adhesion evaluation method in the present invention, requires about 30 to 60 minutes.
[0025]
【The invention's effect】
According to the present invention, it becomes possible to legitimately evaluate the adhesion between the corrosion-resistant resist and the metal, and as a result of establishing the resist adhesion evaluation method, the management in the manufacturing process and the optimization of the process conditions, the appropriateness to the metal Corrosion resistant resists can be easily selected.
[Brief description of the drawings]
FIG. 1 is a schematic diagram relating to the relationship between temporal change in current density during constant potential polarization and adhesion to a corrosion-resistant resist in the present invention.
FIG. 2 is an example of actual measurement of the change over time of the current density of constant potential polarization in the present invention.
FIG. 3 is a plan view of a corrosion-resistant resist pattern used in an example of the present invention.
FIG. 4 is an enlarged plan view of a corrosion-resistant resist pattern used in an example of the present invention.
FIG. 5 is a schematic view of an electrochemical cell used in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal 2 ... Corrosion-resistant resist 3 ... Electrolyte (solution)
4 ... Interface 5 ... Etchant (etchant)
6 ... Corrosion-resistant resist pattern 7 ... Gap portion 8 ... Near normal portion 9 ... Metal 10 for forming corrosion-resistant resist pattern ... Electrochemical cell device tank 11 ... Electrochemical cell device cover 12 ... Pt electrode 13 ... Thin tube 14 ... Document 15 ... Passive film 16 ... Data fixing jig 17 ... Current change graph 18 when metal and corrosion resist are in poor contact 18 ... Current change graph when metal and corrosion resist are in good contact

Claims (3)

表面に耐食性レジストが形成された金属を電解質中で定電位分極をおこない、耐食性レジストと金属界面以外の金属露出部分に不働体皮膜を形成し、前記定電位分極の電流値の経時変化を観察することにより、耐食性レジストと金属界面へのエッチング液の浸透を評価することを特徴とする金属上の耐食性レジスト密着性評価方法。A metal with a corrosion-resistant resist formed on the surface is subjected to constant-potential polarization in the electrolyte , a passive film is formed on the exposed portion of the metal other than the interface between the corrosion-resistant resist and the metal, and the change over time in the current value of the constant-potential polarization is observed. By this, the corrosion resistance resist adhesion evaluation method on the metal characterized by evaluating the penetration of the etching solution into the corrosion resistance resist and the metal interface. 金属上に耐食性レジストを形成し、Forming a corrosion resistant resist on the metal,
不純物除去のための表面処理を金属におこない、Metal surface treatment for removing impurities,
電解質中で定電位分極をおこなって耐食性レジストと金属界面以外の金属露出部分に不働体皮膜を形成し、Conducting constant-potential polarization in the electrolyte to form a passive film on exposed parts of the metal other than the corrosion-resistant resist and metal interface,
定電位分極を続けながら電流密度変化を観察し、Observe current density change while continuing constant potential polarization,
耐食性レジストと金属界面へのエッチング液の浸透を評価することを特徴とする金属上の耐食レジスト密着性評価方法。A method for evaluating adhesion of a corrosion-resistant resist on a metal, characterized by evaluating the penetration of an etching solution into the corrosion-resistant resist and the metal interface.
前記金属がNi30〜50重量%、残部Feを主体とするFe−Ni系合金であり、The metal is an Fe-Ni alloy mainly composed of Ni 30 to 50% by weight and the balance Fe,
前記不純物除去のための表面処理が硫酸溶液中でのカソードおよびアノード処理であり、The surface treatment for removing the impurities is a cathode and anode treatment in a sulfuric acid solution,
前記電解質が硫酸ナトリウムと塩化ナトリウムの混合水溶液であることを特徴とする請求項2記載の金属上の耐食性レジスト密着性評価方法。3. The method of evaluating corrosion resistance resist adhesion on metal according to claim 2, wherein the electrolyte is a mixed aqueous solution of sodium sulfate and sodium chloride.
JP2001299033A 2001-09-28 2001-09-28 Corrosion resistant resist adhesion evaluation method on metal Expired - Fee Related JP4214690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001299033A JP4214690B2 (en) 2001-09-28 2001-09-28 Corrosion resistant resist adhesion evaluation method on metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001299033A JP4214690B2 (en) 2001-09-28 2001-09-28 Corrosion resistant resist adhesion evaluation method on metal

Publications (2)

Publication Number Publication Date
JP2003105567A JP2003105567A (en) 2003-04-09
JP4214690B2 true JP4214690B2 (en) 2009-01-28

Family

ID=19119844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001299033A Expired - Fee Related JP4214690B2 (en) 2001-09-28 2001-09-28 Corrosion resistant resist adhesion evaluation method on metal

Country Status (1)

Country Link
JP (1) JP4214690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680494B (en) * 2018-06-28 2024-03-26 天津市澳玛科技开发有限公司 Method and device for detecting corrosion resistance of food-grade tinplate inner coating

Also Published As

Publication number Publication date
JP2003105567A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
KR20110007191A (en) A method of manufacturing a gas electron multiplier
JPS59137853A (en) Method for determining concentration of organic additive in copper electroplating bath
US4966664A (en) Method for removing photoresist
Datta et al. Anodic film studies on nickel under high rate transpassive dissolution conditions
JP4214690B2 (en) Corrosion resistant resist adhesion evaluation method on metal
JP3988391B2 (en) Etching part manufacturing method
Lambert et al. Analysis of films on Copper by Coulometric reduction
US5076906A (en) Method for testing encapsulation integrity
JP2699028B2 (en) Surface finishing method and apparatus
JP2009026786A (en) Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring
JP2019184364A (en) Device for determining corrosion of water and method for determining corrosion of water
Oh et al. Galvanic corrosion behaviors of Cu connected to Au on a printed circuit board in ammonia solution
CN112129825A (en) Oxide film detection method and oxide film detection device
JPH06240474A (en) Method and device for etching copper or copper alloy
JP6028446B2 (en) Method of forming gold plating pattern on stainless steel substrate and stainless steel substrate having gold plating pattern
WO2016194880A1 (en) Method for measuring surface area of roughened copper surface
JPH0798296A (en) Measuring method for concentration of additive in electroless copper plating liquid
KR100199462B1 (en) A method for pre-etching and an apparatus therefor
JP5333149B2 (en) Method for forming gold plating layer on stainless steel substrate and plating apparatus used therefor
JP5065963B2 (en) Resist pattern forming method
JPH03223719A (en) Formation of electrode
Freitag A Rapid Anodic Porosity Test for Ni‐Fe Electrodeposits on Copper Wire
JPH0779060A (en) Wiring pattern forming method and resist removing method
Murray et al. The use of test structures to perform chip level characterization studies of Ni and NiFe electrochemical deposition
JP2976748B2 (en) Evaluation method of etching reaction rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees