JP4214330B2 - Steel sheet excellent in formability and hardenability and manufacturing method thereof - Google Patents

Steel sheet excellent in formability and hardenability and manufacturing method thereof Download PDF

Info

Publication number
JP4214330B2
JP4214330B2 JP32718198A JP32718198A JP4214330B2 JP 4214330 B2 JP4214330 B2 JP 4214330B2 JP 32718198 A JP32718198 A JP 32718198A JP 32718198 A JP32718198 A JP 32718198A JP 4214330 B2 JP4214330 B2 JP 4214330B2
Authority
JP
Japan
Prior art keywords
steel
less
hardenability
sol
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32718198A
Other languages
Japanese (ja)
Other versions
JP2000144319A (en
Inventor
純 芳賀
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32718198A priority Critical patent/JP4214330B2/en
Publication of JP2000144319A publication Critical patent/JP2000144319A/en
Application granted granted Critical
Publication of JP4214330B2 publication Critical patent/JP4214330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の車体構造部材等の素材に用いられる成形性および焼入れ性を有する鋼板およびその製造方法に関する。
【0002】
【従来の技術】
自動車の衝突事故の際の、車体破壊のデータが公開され、それが車の売れ行きを支配するなど、搭乗者の安全性確保に対するニーズは年々高まってきており、法的規制も厳しくなる傾向にある。自動車の車体は、いわゆるクラッシャブルボディー構造が採用され、衝突に際し一部が適度に変形してして衝撃を吸収する一方、車室は高強度の構造とし室内の搭乗者を護るように設計される。すなわち、車体の部位により高強度が要求される。このため必要部分に、板厚の厚い成形品を用いたり、補強材を取り付けたり、あるいは高強度鋼板を用いて成形したりしている。
【0003】
しかし、板厚を厚くすることは重量増加につながり、燃費改善ないしは省エネルギーの要求とは相反する。補強にはリブ材のスポット溶接や衝撃吸収用の部品を組み込むが、これも車体重量を増すことになる。現実には車両のドア内部に、鋼管で作って焼入れ強化した補強材などを組み込むことが広く採用されている。また、高強度鋼板は、プレス成形性が劣るため複雑なプレス加工が困難であり、その上、加工による残留応力は強度が高くなるほど増加し、遅れ破壊の危険が増してくるので、その適用ないしは鋼板強度増大には限界がある。
【0004】
この車体構造の補強に対し、強度が必要な車体の特定部所に適用する鋼板成形部品の板厚を増したり、高強度鋼板を使用したりせず、その所望部分を局所的に高周波加熱して焼入れ処理し、強度を向上させる方法の発明が特開平6-116630号公報に開示されている。プレス成形後、焼入れし強化するのであれば、高強度鋼板を成形する場合のような、複雑な形状の成形困難とか成形後の大きな残留応力の問題は排除できる。しかしながら、上記公報には高周波焼入れの方法は示されているが、適用する鋼板の種類については全く記載がない。鋼板によっては焼入れによる強度向上を示さないものもあり、ことにプレス成形性の良好な鋼板ほど焼入れ強化は期待できない。
【0005】
また、特開平10-17933号公報には、車体のプレス成形部品に要請される強度分布に対し、それに対応した硬度分布を局所的高周波焼入れによって実現する方法の発明が開示されている。その適用例として、車体側面の前席と後席との間に配置される、センターピラーとも呼ばれる支柱を取り上げている。支柱の衝突時に予想される荷重分布は長さ中央部にあり、衝突荷重に対応するため、従来の方法では支柱全体の板厚を増すか、中央部に補強材を重ねて溶接する必要があった。これに対し長さ中央部を高周波焼入れして強化することによって、不必要な部分まで板厚を増すことがなくなり、補強材も不要となって軽量化がはかれるというものである。この場合、支柱成形用の素材鋼板は、C含有量が0.05〜0.25%のものが適用できるとし、JIS規格のSAPH370〜SAPH440、あるいはSPFC370〜SPFC440などの鋼板がよいとしている。しかし、これらの規格による鋼板は、強度や伸びなど素材としての鋼板の機械的性質は保証されているが、焼入れ性や焼入れ後の強度などは通常は全く不明である。
【0006】
車体構造部材ではないが、側面衝突に対する車室内部保護用にドア内部に組み込まれる補強材として、焼入れして所要強度とした鋼管を加工した部品が広く採用されている。これは多くは鋼板から作られた電縫鋼管の管端をドア内部への取り付けに適した状態に加工し、高周波焼入れして製造される。例えば特開平4-52249号公報に、C:0.10〜0.20、Mn:0.2〜1.50%、Si:0.05〜0.50、Al:0.01〜0.10%、Ti:0.01〜0.10%およびB:0.0005〜0.010%を含有する鋼板による電縫鋼管を高周波焼入れした引張強さが130kgf/mm2以上の自動車ドア補強材の発明が提示されている。このような鋼による鋼板を車体構造部材に用いれば、上記のような高周波加熱焼入れによる局部的な強度向上が可能と思われるが、電縫鋼管のような単純な曲げ加工は可能であっても、車体構造のように複雑なプレス成形には適用が困難であると考えられる。
【0007】
本発明の目的は、車体構造用部品などに適用できる十分な成形性を有し、かつ成形後の焼入れによって容易に高強度化できるおよびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、成形加工後、焼入れ処理をおこなうことにより、部材の形状や適用素材の強度を大幅に変更することなく、自動車車体の構造を強化することのできる板の調査検討をおこなった。焼入れ焼戻しして使用する板としては、JIS−G3311の磨き帯鋼がある。この場合、合金鋼を除く最も炭素量の低い鋼でもC:0.27〜0.33%、Si:0.15〜0.35%、Mn:0.60〜0.90%であり、C、Si、Mnのいずれの含有量も高く、これでは焼入れにより十分な強度は得られても、焼鈍された素材鋼板としての加工性はわるく、到底必要とするプレス加工性は得られない。
【0009】
ここで、車体構造強化に必要とする強度は、鋼としての性能や経済性を配慮すれば80〜180kgf/mm2程度であり、十分な焼入れをおこなえば、炭素含有量は0.05〜0.20%で実現できる。このような炭素含有量の低減により、鋼板の加工性確保が容易になり、さらに、この程度まで炭素含有量が低下すると、自己焼戻し効果があって、焼入れままでも十分な靱性を有することが期待できる。そこでこの炭素含有量に対し、十分な焼入れを実現するための合金成分の検討をおこなった。
【0010】
一般に焼き入れ性を向上させる合金元素は、添加量を増すと鋼を硬くし、加工性を低下させる。ただし、自動車の車体構造部材等の素材に用いられる鋼板が対象なので、鋼の中心部までも冷却速度を速くすることができ、その分、焼入れ性向上元素の含有量を低くすることが可能である。一方、自動車用の板としては、防食のため、めっき性や塗装下地の化成処理性が良好でなければならず、これらを阻害する例えばCrやSiのような焼入れ性向上元素の使用は好ましくない。また、コストを厳しく要求されるので、高価な添加元素も避けるべきである。
【0011】
このような観点から種々検討の結果、MnとBを有効活用するのが最良であると判断された。Mnは鋼の熱間脆性を抑止するために必然的に添加されるが、焼入れ性を大きく向上させる効果があり、しかも低コストで、めっき性や化成処理性におよぼす影響が小さい。しかし多く添加すると加工性を悪くし、鋼としての耐食性を劣化させる傾向があるので、添加量には限界がある。これを補うため、B添加を併用することとした。Bの効果は微量の添加で発揮されるので、鋼の他の一般的な性質にほとんど影響をおよぼすことなく、鋼の焼入れ性を大幅に向上させることができる。ただし、B添加により焼入れ性を向上させるには、微量に添加したBを固溶状態にしておく必要があり、酸化されやすいことから鋼は十分な脱酸をおこない、Bと結合しやすいNは固定しておかなければならない。このため、酸可溶Al(sol.Al)が鋼に検出されるまで脱酸し、Tiを添加して固溶NをTi窒化物として固定することが一般におこなわれる。
【0012】
このMnとBとを添加した鋼にて、板を作製し実部品への適用検討を進めたところ、素材として加工性に不足のあることが問題になった。この加工性を改善すべくさらに検討を進めた結果、窒素固定のために添加したTiが悪影響をおよぼしていることが明らかになった。すなわち、十分にNを固定するため、鋼中のNがすべてTiNとなる以上のTiを含有させていたが、この過剰のTiがTiCとなって鋼中に析出し、これが伸びを著しく劣化させていたのである。そこでN固定のためのTi添加は必要最小限とし、Tiにて固定できなかったNは、Alを十分含有させることによりAlNとして固定すれば、加工性が向上しかつ焼入れ性も十分確保できることが明らかになった。
【0013】
さらに調査を進める過程で、このようにTi含有量を限定した場合、板製造工程の熱間圧延の巻取り温度が、焼入れ性に大きく影響していることも明らかになった。焼入れの際、しばしば十分な焼入れ硬さが得られないことがあり、その原因を調べた結果、この現象が熱間圧延の巻取り温度が低いときに現れたのである。したがって、焼入れ性向上のためには巻取り温度を十分高くすればよい。ただし、その下限温度は、熱延板として用いる場合と、冷延鋼板として用いる場合とで異なり、冷延鋼板の方が低くてよい。
【0014】
この理由は、焼入れ性向上に有効な固溶Bの量が、巻取り温度により異なるためと考えられた。鋼中のNは温度が低下してくると、AlやBが存在すればAlNやBNなどの安定な析出物を形成してくる。ただし、この二つの元素が共存する場合、Bは鋼中での拡散速度がAlよりもはるかに大きいので、圧延後の冷却過程でまずBNが形成される。ところがAlNの方がより安定なので、十分にAlが存在する場合には、巻き取り温度が高くゆっくり冷却されると、このBNは分解してNはすべてAlNとなって析出し、固溶Bが残る。したがって巻取り温度が高ければ、冷却が遅いので鋼中のNはAlNとして固定される。巻取り温度が低くなると、冷却が速くなってAlNが十分形成される前にNがBNのままの状態で冷却され、その結果として固溶Bが減少する。
【0015】
熱延鋼板では、このように巻取り温度が低くなると焼入れ性が低下する傾向がある。冷延鋼板では、熱延時に巻取り温度が低く、NがBNとなっていたとしても、冷間圧延後の焼鈍の過程で再加熱されるので、Alが十分含有されておればAlNの形成が進行し、Bが固溶状態になる。このため、巻取り温度はより低くても十分な焼入れ性が確保できる。
【0016】
以上のような検討結果に基づき、さらに各条件の限界を明確にし、本発明を完成させた。本発明の要旨は次のとおりである。
【0017】
(1)鋼の組成が質量%にて、C:0.10〜0.20%、Si:0.1%以下、Mn:0.8〜2.0%、P:0.02%以下、S:0.02%以下、N:0.005%以下、B:0.0003〜0.004%、sol.Al:0.01〜0.10%で、かつ
sol.Al(%)≧9.6×N(%) ・・・・・・・・(1)
であって、
Tiを
Ti(%)≦3.4×N(%) ・・・・・・・・(2)
の範囲で含有し、残部はFeおよび不可避的不純物からなることを特徴とする成形性および焼入れ性にすぐれた板。
【0018】
(2)質量%にて、C: 0.05 0.20 %、Si: 0.1 %以下、Mn: 0.8 2.0 %、P: 0.02 %以下、S: 0.02 %以下、N: 0.005 %以下、B: 0.0003 0.004 %、 sol. Al: 0.01 0.10 %で、かつ
sol. Al ( ) 9.6 ×N ( ) ・・・・・・・・(1)
であって、
Tiを
Ti ( ) 3.4 ×N ( ) ・・・・・・・・(2)
の範囲で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、巻取り温度600℃以上で熱延コイルとすることを特徴とする成形性および焼入れ性にすぐれた鋼板の製造方法。
【0019】
(3)質量%にて、C: 0.10 0.20 %、Si: 0.1 %以下、Mn: 0.8 2.0 %、P: 0.02 %以下、S: 0.02 %以下、N: 0.005 %以下、B: 0.0003 0.004 %、 sol. Al: 0.01 0.10 %で、かつ
sol. Al ( ) 9.6 ×N ( ) ・・・・・・・・(1)
であって、
Tiを
Ti ( ) 3.4 ×N ( ) ・・・・・・・・(2)
の範囲で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、巻取り温度480℃以上として熱延コイルとした後、冷間圧延し、焼鈍することを特徴とする成形性および焼入れ性にすぐれた鋼板の製造方法。
【0020】
【発明の実施の形態】
本発明において、鋼組成または製造条件を限定した理由を説明する。
【0021】
Cの含有量を0.05〜0.20%とする。Cは焼入れ後の鋼の強度を決定するために重要な元素である。C含有量が0.05%未満では、十分な焼入れをおこなっても車体強度強化に必要な強度が得られない。また、含有量が0.20%を超えるとプレス成形性が不十分となる。したがって、Cの含有量は、0.05〜0.20%とするが、良好な加工性と焼入れ後の十分な強度を、より容易に両立させるために好ましいのは、0.10〜0.15%とすることである。
【0022】
Siは0.1%以下とする。Siは、一般的には鋼の脱酸に用いられ、強度の上昇、焼入れ性向上の効果がある。しかし、Bを添加する場合はSiによる脱酸では不十分で、より強力な脱酸作用のあるAlを用いるため、とくには必要としない。それよりも自動車車体に用いる板の場合、めっきや塗装がおこなわれるが、Siの存在は鋼表面のめっき性や塗装下地の化成処理性を悪くするので、その含有はできるだけ少ない方が好ましい。そこで、ほとんど影響をおよぼさない範囲として、0.1%以下とするが、望ましいのは0.04%以下、さらに望ましいのは0.01%以下である。
【0023】
Mnの含有量は、0.8〜2.0%とする。鋼の焼入れ性を確保するために重要な元素である。0.8%未満では焼入れ性が不足し、十分な強度が得られなくなるおそれがある。一方、2.0%を超えて含有させると、伸びの低下など鋼の加工性を悪くし、その上、鋼自体発錆しやすくなり、耐食性が悪くなる。好ましいのは0.8〜1.5%である。
【0024】
Pは鋼の不可避的不純物の一つであり、焼入れ後の鋼の靱性を悪くするので、その含有量は少なければ少ないほどよい。顕著な悪影響をおよぼさない範囲として、0.02%以下に限定するが、好ましいのは0.005%以下である。
【0025】
Sも不可避的不純物の一つであり、鋼の加工性および靱性を劣化させるので、その含有量は少なければ少ないほどよい。Pと同様、顕著な悪影響をおよぼさない範囲として、0.02%以下に限定するが、好ましいのは0.005%以下である。
【0026】
Nは0.005%以下とする。NはBと結合して、Bの焼入れ性向上効果を阻害する。このNの悪影響を抑止するため、TiやAlと結合させ無害化するが、結果としてできたTiNやAlNなどの微細析出物は、鋼の加工性を悪くするのでNの含有量は少なければ少ないほど好ましい。目立った影響を示さない範囲としてNの含有量は0.005%以下に限定する。
【0027】
Bの含有量は、0.0003〜0.004%とする。Bは焼入れ性を著しく向上させ、ことに本発明のようにCの含有量の低い場合ほどその効果が大きい。その焼入れ性向上効果は、含有量に依存せずほぼ一定であるが、0.0003%を下回る場合はその効果は十分現出されない。また、含有量が多くなると鋼を脆化させるので、多くても0.004%までとする。
【0028】
sol.Al(酸可溶Al)の含有量は0.01〜0.10%とする。Alは製鋼時に溶鋼の脱酸を主目的に添加される。脱酸処理により鋼中に残存するsol.Alは、0.01%を下回る場合には脱酸不十分で、酸化により固溶Bが残らないおそれがある。本発明の場合は、さらにNの十分な固定のためにも少なくとも0.01%以上のsol.Alの含有が必要である。しかし、多く含有させてもその効果が飽和し、無意味な添加によりコストを増すだけなので、上限を0.10%とする。
【0029】
Bを添加する効果のNによる阻害を抑止するため、Alは十分に含有させる。このため、
sol.Al(%)≧9.6×N(%)・・・・・・・・(1)
を満足するsol.Alを含有させる必要がある。これは、鋼中のNをすべてAlNとするのに必要なAlの化学当量に対し、5倍以上の量のsol.Alを含有させることを意味する。このようにNに対し十分な量のAlを含有させることにより、Nを完全に無害化させることができる。
【0030】
Tiは添加しなくてもよいが、含有させる場合、
Ti(%) ≦ 3.4×N(%) ・・・・・・・・(2)
を満足する範囲であることとする。TiはNの固定に極めて効果的であり、一般にBを添加する場合、Nの固定を目的に添加される。本発明の場合、Tiを添加しなくても、Alの含有量が上記(1)式を満足する範囲であればNは固定される。しかしながら、熱間圧延などの製造条件の影響を軽減してNを確実に固定し、B添加の効果を十分に発揮させるには、少量のTiの添加が好ましい。ただし、少し多く添加すると加工性が劣化し、この加工性の劣化はTiCの形成によると考えられるので、Tiの添加はTiCを形成しない範囲内にとどめること、すなわち上記(2)式を満足する範囲内とする。また、加工性劣化の点ではTiNも多くなれば影響してくるので、Tiの含有量は(2)式の範囲内であっても、0.01%以下とするのが好ましい。なお、Nを固定する目的で含有させる場合は、少なくとも0.002%以上含有させることが望ましい。
【0031】
この鋼を溶製してスラブとし、それを熱間圧延する工程やその条件については通常どおりでよく、特には規制しない。しかし、熱間圧延の巻取り温度は、熱間圧延による板としてプレス成形に供する場合は、熱間圧延の巻取り温度を600℃以上、望ましくは650℃以上とする。600℃を下回る温度で巻取ると、熱延板として降伏点が高く伸びがよくないなどプレス加工性が劣るばかりでなく、成形後の焼入れによる硬化、ないしは焼入れ性が不十分になるからである。これは熱延鋼板中のBがBNとなって残存し、焼入れ性向上に有効に作用しなくなるためである。なおこの場合の巻取り温度は、高くても700℃程度までとすることが望ましく、これより高い温度で巻取ると、巻き取りコイルの変形による板の平坦度など形状の劣化や、スケールの増加による表面性状の劣化などの問題が生じてくる。
【0032】
また熱間圧延後、さらに冷間圧延し冷延鋼板としてプレス成形に供する場合、熱間圧延の巻き取り温度は、480℃以上、好ましくは600℃以上とする。これは、480℃未満での巻取りは、巻取り温度までの冷却により焼入れされることがあり冷間圧延が困難になるからである。冷延鋼板の場合、巻き取り温度が多少低くてBがBNとなっていても、焼鈍工程での再加熱により、NがAlNとなって固溶Bになるため、焼入れ性に対する巻取り温度の影響は小さい。
【0033】
冷間圧延および焼鈍は、通常の冷延鋼板の製造に準じておこなえばよく、冷間圧延の圧下率は50%以上とし、焼鈍は、再結晶温度以上Ac3点未満の温度範囲でおこない、従来の箱焼鈍法であっても連続焼鈍法によってもかまわない。
【0034】
【実施例】
実験用真空溶解炉を用い、表1に示す組成の鋼を溶製した。鋼組成としては、C:0.12%、Mn:1.5%、sol.Al:0.045%、N:0.003%、Ti:0.005%、B:0.0006%を目標基準組成とし、成分量の影響を見るため、Mn、Ti、B、AlおよびNのそれぞれについて、他の成分を一定として変化させた。これらの鋳塊を鍛造して20mm厚の熱間圧延用スラブとし、1200℃に加熱後、1150℃から900℃に至る温度範囲で熱間圧延をおこなって4mm厚に仕上げ、強制空冷または水スプレイによるホットストリップミルを想定した冷却条件にて500〜650℃まで冷却し、直ちに得られた鋼板をそれぞれこれらの温度に保定した炉に投入して、巻取り後のコイルを想定した条件にて冷却した。これら熱延鋼板の一部は、表面の脱スケール後冷間圧延をおこなって1.2mm厚に仕上げ、700℃にて20時間の箱焼鈍相当の焼鈍をおこなった。
【0035】
【表1】

Figure 0004214330
【0036】
得られた熱延板は、表面研削して冷延板と同じ1.2mm厚さにして、試験に供した。出力200kW、周波数150kHzの高周波焼入れ装置により、各鋼板から切り出した幅90mm、長さ240mmの試験片にて、加熱温度950℃、2秒保持後水冷の条件にて焼入れ処理をおこなった。引張り試験はJIS5号試験片とし、焼入れ後硬さは板厚中心部にて測定した。
【0037】
熱延鋼板による結果を表2に、冷延鋼板による結果を表3にそれぞれ示す。熱延鋼板と、冷延鋼板とでは、結果のレベルに差はあるが、鋼組成のおよぼす効果は相対的にほぼ同じであった。試番1〜4および25〜28の結果から、Mnは焼入れ前の素材の状態では含有量増加とともに伸びが低下し加工性が悪くなるが、焼入れ後の硬さや強度は上昇する。本発明範囲内とすれば、加工前の伸びは十分大きく、焼入れ後の強度も大きいことがわかる。Ti含有量の、熱処理前の鋼板の伸びにおよぼす影響については、試番5〜9および29〜33の結果からわかるように、Ti量が増すにつれて伸びが低下して加工性が悪くなっている。Mn量とN量ほぼ同一である他の基準組成の試片による結果もあわせて、横軸にTi(%)/N(%)をとり、熱処理前鋼板の伸びを整理してみると図1のようになる。Ti(%)/N(%)が3.4以上、すなわちTiがすべてTiNになってしまう量より過剰のTiが含有されると伸びが悪くなることがわかる。Bの影響は試番10〜12および34〜36にて見られるが、0.0003%を下回ると十分な強度が得られず、焼入れ性は不足となる。Al量とN量を変えた試番13〜20、および37〜44の結果と、Mn、Ti、Bなどの量がほぼ同一である試片による結果とを合わせ、Al(%)/N(%)に対する焼入れ後の引張強さを見ると図2のようになる。AlとNの原子量比は1.93であるが、この原子量比の5倍、すなわちAl(%)/N(%)にて9.6を下回る場合、引張強さが低く、焼入れ性不十分となっている。
【0038】
【表2】
Figure 0004214330
【0039】
【表3】
Figure 0004214330
【0040】
試番21〜24の熱延鋼板は、鋼の化学組成は本発明の範囲内であるが、他の鋼板の熱間圧延の巻取り温度650℃であるのに対し、550℃と低い。同じ組成の鋼同志を比較してみると、図3左側に示すように、この550℃で巻取った熱延鋼板は、650℃の巻取りに比較し、焼入れ後の強度が不十分である。しかし、冷間圧延後焼鈍する試番45〜48の冷延鋼板では、熱延の巻取り温度がやや低めであっても、焼入れ後の強度は十分大きいことがわかる。
【0041】
【発明の効果】
本発明によれば、プレス成形などの加工に適用できる十分な成形性を有し、かつ成形後の焼入れによって、容易に高強度化できる鋼板を得ることができる。この鋼板を例えば自動車の車体構造に活用することにより、車室構造をより強度が高く、しかも軽量にすることが可能となる。これは、自動車の衝突事故の際の搭乗者の安全性を高め、かつ自動車の軽量化による省エネルギーなど、社会的要求に合致するものである。
【図面の簡単な説明】
【図1】鋼のTi含有量とN含有量との比と、鋼板の伸びとの関係を示す図である。
【図2】Bを含む鋼のAlおよびN含有量と、高周波焼入れ後のその鋼板の引張強さとの関係を示す図である。
【図3】熱間圧延の巻取り温度と、得られた鋼板を高周波焼入れした場合の引張強さとの関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel sheet having formability and hardenability used for a material such as a vehicle body structural member of an automobile and a method for manufacturing the same.
[0002]
[Prior art]
The need for securing passenger safety has been increasing year by year, such as data on car body destruction in the event of a car crash, which controls the sales of cars, and legal regulations tend to be stricter. . The car body has a so-called crushable body structure that is partly deformed and absorbs shocks in the event of a collision, while the passenger compartment is designed to protect the passengers in the room with a high-strength structure. The That is, high strength is required depending on the part of the vehicle body. For this reason, a molded product with a large plate thickness is used for a necessary portion, a reinforcing material is attached, or a high strength steel plate is used.
[0003]
However, increasing the thickness leads to an increase in weight, which contradicts the demand for improved fuel consumption or energy saving. For reinforcement, parts for spot welding of rib material and shock absorption are incorporated, but this also increases the weight of the vehicle body. In reality, it is widely used to incorporate reinforcements made of steel pipes and hardened and hardened inside the doors of vehicles. In addition, high-strength steel sheets are difficult to press complexly due to poor press formability, and the residual stress due to processing increases as the strength increases, increasing the risk of delayed fracture. There is a limit to increasing the strength of steel sheets.
[0004]
For reinforcement of this body structure, the thickness of a steel sheet molded part applied to a specific part of the vehicle body that requires strength is not increased, or high strength steel sheet is not used, and the desired part is locally heated at high frequency. An invention of a method for improving the strength by quenching is disclosed in JP-A-61-163030. If the steel is hardened and strengthened after press forming, problems such as difficulty in forming a complicated shape and large residual stress after forming as in the case of forming a high-strength steel sheet can be eliminated. However, although the above-mentioned publication shows a method of induction hardening, there is no description about the type of steel sheet to be applied. Some steel sheets do not show an improvement in strength by quenching, and in particular, steel sheets with good press formability cannot be expected to be hardened.
[0005]
Japanese Patent Laid-Open No. 10-17933 discloses an invention of a method for realizing a hardness distribution corresponding to a strength distribution required for a press-formed part of a vehicle body by local induction hardening. As an application example thereof, a column called a center pillar, which is disposed between the front seat and the rear seat on the side of the vehicle body, is taken up. The load distribution expected at the time of a column collision is at the center of the length, and in order to cope with the collision load, the conventional method requires increasing the thickness of the entire column or welding with a reinforcing material over the center. It was. On the other hand, by strengthening the central portion of the length by induction hardening, the plate thickness is not increased to an unnecessary portion, a reinforcing material is not required, and the weight can be reduced. In this case, the material steel plate for column forming can be applied with a C content of 0.05 to 0.25%, and steel plates such as SAPH370 to SAPH440 or SPFC370 to SPFC440 of JIS standards are good. However, although the steel plate according to these standards guarantees the mechanical properties of the steel plate as a material, such as strength and elongation, the hardenability and strength after quenching are usually completely unknown.
[0006]
Although it is not a vehicle body structural member, a part obtained by processing a steel pipe that has been hardened and has a required strength is widely used as a reinforcing material incorporated in the interior of the door for protecting the interior of the vehicle interior against a side collision. In many cases, the end of an ERW steel pipe made of steel plate is processed into a state suitable for attachment to the inside of the door, and is induction-hardened. For example, in JP-A-4-52249, C: 0.10 to 0.20, Mn: 0.2 to 1.50%, Si: 0.05 to 0.50, Al: 0.01 to 0.10%, Ti: 0.01 to 0.10% and B: 0.0005 to 0.010% There has been proposed an invention for an automobile door reinforcing material having a tensile strength of 130 kgf / mm 2 or more obtained by induction-quenching an ERW steel pipe made of a steel plate contained therein. If steel plates like this are used for vehicle body structural members, it seems possible to improve the local strength by induction heating and quenching as described above, but even if simple bending work such as ERW steel pipes is possible Therefore, it is considered difficult to apply to complicated press forming such as a vehicle body structure.
[0007]
An object of the present invention has sufficient formability that can be applied to a component body structure, and to provide a steel plate and a manufacturing method capable of easily increasing the strength by quenching after molding.
[0008]
[Means for Solving the Problems]
The present inventors have, after molding, by performing quenching, without significantly changing the strength of the shape and application materials member, conducted a survey study of the steel plate that can enhance the structure of the automobile body It was. The steel plate used in quenching and tempering, is polished steel strip of JIS-G3311. In this case, even the steel with the lowest carbon content excluding alloy steel is C: 0.27 to 0.33%, Si: 0.15 to 0.35%, Mn: 0.60 to 0.90%, and the contents of all of C, Si and Mn are high, In this case, even if sufficient strength is obtained by quenching, the workability as an annealed material steel plate is poor, and the required press workability cannot be obtained.
[0009]
Here, the strength required for strengthening the vehicle body structure is about 80 to 180 kgf / mm 2 in consideration of the performance and economy as steel, and the carbon content is 0.05 to 0.20% if sufficient quenching is performed. realizable. By reducing the carbon content, it becomes easy to ensure the workability of the steel sheet, and when the carbon content is reduced to this level, it has a self-tempering effect and is expected to have sufficient toughness even when quenched. it can. Therefore, investigation was made on alloy components to realize sufficient quenching for this carbon content.
[0010]
In general, an alloying element that improves hardenability hardens steel and decreases workability as the amount added increases. However, since the steel plate used in materials such as body structure member of an automobile is subject, can also increase the cooling rate to the center of the steel, that amount can lower the content of the hardenability improving element It is. On the other hand, the steel plate for automobiles, because of corrosion, must have good chemical conversion treatability of the plating properties and paint undercoat, the use of hardenability improving elements such as Cr and Si inhibit these preferably Absent. Moreover, since cost is strictly required, expensive additive elements should be avoided.
[0011]
As a result of various studies from such a viewpoint, it was determined that it is best to effectively use Mn and B. Mn is inevitably added to suppress hot brittleness of the steel, but it has the effect of greatly improving the hardenability, and at a low cost, has little influence on the plating properties and chemical conversion properties. However, if added in a large amount, the workability is deteriorated and the corrosion resistance as steel tends to be deteriorated, so the addition amount is limited. In order to compensate for this, B was added together. Since the effect of B is exhibited by addition of a trace amount, the hardenability of the steel can be greatly improved without substantially affecting other general properties of the steel. However, in order to improve the hardenability by adding B, it is necessary to keep a small amount of B added in a solid solution state, and since it is easily oxidized, steel is sufficiently deoxidized, and N that is easy to bond with B is Must be fixed. For this reason, deoxidation is generally performed until acid-soluble Al (sol. Al) is detected in the steel, and Ti is added to fix the solid solution N as Ti nitride.
[0012]
At this Mn and B and the added steel and, when fabricated steel plate proceeded application study to actual parts, that there is a lack in workability as a material has a problem. As a result of further investigations to improve this workability, it was found that Ti added for nitrogen fixation had an adverse effect. That is, in order to sufficiently fix N, Ti more than that in which all N in the steel becomes TiN was contained, but this excessive Ti was precipitated as TiC in the steel, which significantly deteriorated the elongation. It was. Therefore, the addition of Ti for fixing N is the minimum necessary, and N that could not be fixed with Ti can be improved in workability and hardenability can be secured by fixing it as AlN by sufficiently containing Al. It was revealed.
[0013]
Further in the process of advancing the investigation, when thus limiting the Ti content, the coiling temperature of hot rolling of the steel plate manufacturing process, became also clear that a significant effect on hardenability. When quenching, sufficient quenching hardness is often not obtained, and as a result of investigating the cause, this phenomenon appears when the hot rolling coiling temperature is low. Therefore, the winding temperature may be sufficiently increased to improve the hardenability. However, the lower limit temperature, and when used as hot-rolled steel plate, unlike in the case of using as a cold rolled steel sheet, may lower in the cold-rolled steel sheet.
[0014]
The reason for this is considered that the amount of the solid solution B effective for improving the hardenability varies depending on the coiling temperature. When the temperature of N in steel decreases, if Al or B is present, stable precipitates such as AlN and BN are formed. However, when these two elements coexist, since B has a diffusion rate in steel much higher than that of Al, BN is first formed in the cooling process after rolling. However, since AlN is more stable, when sufficient Al is present, when the coiling temperature is high and it is cooled slowly, this BN decomposes and all N precipitates as AlN, so that solid solution B is formed. Remains. Therefore, if the coiling temperature is high, the cooling is slow, so that N in the steel is fixed as AlN. When the coiling temperature is lowered, the cooling is accelerated and N is cooled in the state of BN before sufficient AlN is formed. As a result, the solid solution B decreases.
[0015]
In a hot-rolled steel sheet, when the coiling temperature is lowered in this way, the hardenability tends to decrease. In cold-rolled steel sheets, even when the coiling temperature is low during hot rolling and N is BN, it is reheated in the annealing process after cold rolling, so if Al is sufficiently contained, the formation of AlN Advances and B enters a solid solution state. For this reason, sufficient hardenability can be ensured even if the coiling temperature is lower.
[0016]
Based on the above examination results, the limit of each condition was further clarified and the present invention was completed. The gist of the present invention is as follows.
[0017]
(1) When the composition of steel is mass %, C: 0.10 to 0.20%, Si: 0.1% or less, Mn: 0.8 to 2.0%, P: 0.02% or less, S: 0.02% or less, N: 0.005% or less, B: 0.0003-0.004%, sol.Al: 0.01-0.10%, and
sol.Al (%) ≧ 9.6 × N (%) (1)
Because
Ti is Ti (%) ≦ 3.4 × N (%) (2)
Contained in a range of, balance moldability and hardenability in good steel plate, characterized in that it consists of Fe and unavoidable impurities.
[0018]
(2) By mass%, C: 0.05 to 0.20 %, Si: 0.1 % or less, Mn: 0.8 to 2.0 %, P: 0.02 % or less, S: 0.02 % or less, N: 0.005 % or less, B: 0.0003 to 0.004% sol Al:. in from 0.01 to 0.10%, and
sol. Al ( % ) 9.6 × N ( % ) ... (1)
Because
Ti
Ti ( % ) 3.4 × N ( % ) (2)
Contained in a range of, balance hot rolled steel slab consisting of Fe and unavoidable impurities, the steel plate excellent in formability and hardenability, characterized in that the hot-rolled coil at coiling temperature 600 ° C. or higher Manufacturing method.
[0019]
(3) In mass%, C: 0.10 to 0.20 %, Si: 0.1 % or less, Mn: 0.8 to 2.0 %, P: 0.02 % or less, S: 0.02 % or less, N: 0.005 % or less, B: 0.0003 to 0.004% sol Al:. in from 0.01 to 0.10%, and
sol. Al ( % ) 9.6 × N ( % ) ... (1)
Because
Ti
Ti ( % ) 3.4 × N ( % ) (2)
Contained in a range of, balance hot rolling a steel slab consisting of Fe and unavoidable impurities, after the hot-rolled coil as coiling temperature 480 ° C. or higher, and cold rolling, characterized by annealing the molded method for producing a steel plate excellent in sex and hardenability.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the steel composition or production conditions are limited in the present invention will be described.
[0021]
The C content is 0.05 to 0.20%. C is an important element for determining the strength of steel after quenching. If the C content is less than 0.05%, the strength required for strengthening the vehicle body strength cannot be obtained even if sufficient quenching is performed. On the other hand, if the content exceeds 0.20%, the press formability becomes insufficient. Therefore, the content of C is set to 0.05 to 0.20%, but it is preferable to set the content of C to 0.10 to 0.15% in order to easily achieve both good workability and sufficient strength after quenching.
[0022]
Si is 0.1% or less. Si is generally used for deoxidation of steel and has the effect of increasing strength and improving hardenability. However, when B is added, deoxidation with Si is not sufficient, and since Al having a stronger deoxidation action is used, it is not particularly necessary. For steel plate used in the automobile body than, but plating or painting is carried out, since the presence of Si deteriorating the chemical conversion of the plating properties and painting underlying steel surface, its content is as small as possible is preferable. Therefore, the range that hardly affects is 0.1% or less, preferably 0.04% or less, and more preferably 0.01% or less.
[0023]
The Mn content is 0.8 to 2.0%. It is an important element for ensuring the hardenability of steel. If it is less than 0.8%, the hardenability is insufficient, and sufficient strength may not be obtained. On the other hand, if the content exceeds 2.0%, the workability of the steel such as a decrease in elongation is deteriorated. Moreover, the steel itself is easily rusted and the corrosion resistance is deteriorated. Preferred is 0.8 to 1.5%.
[0024]
P is one of the inevitable impurities of steel and deteriorates the toughness of the steel after quenching. Therefore, the smaller the content, the better. The range that does not have a significant adverse effect is limited to 0.02% or less, but preferably 0.005% or less.
[0025]
S is one of the inevitable impurities, and deteriorates the workability and toughness of steel, so the smaller the content, the better. As in the case of P, the range that does not exert a significant adverse effect is limited to 0.02% or less, but is preferably 0.005% or less.
[0026]
N is 0.005% or less. N combines with B and inhibits the effect of improving the hardenability of B. In order to suppress this adverse effect of N, it is made harmless by combining with Ti or Al. However, the resulting fine precipitates such as TiN and AlN deteriorate the workability of steel, so the content of N is small if it is small. The more preferable. The N content is limited to 0.005% or less as a range that does not show a noticeable influence.
[0027]
The B content is 0.0003 to 0.004%. B significantly improves the hardenability, and the effect is particularly great as the content of C is lower as in the present invention. The effect of improving hardenability is almost constant without depending on the content, but when it is less than 0.0003%, the effect is not sufficiently exhibited. Also, if the content increases, the steel becomes brittle, so at most 0.004%.
[0028]
The content of sol.Al (acid-soluble Al) is 0.01 to 0.10%. Al is added mainly for the purpose of deoxidizing molten steel during steelmaking. If the sol.Al remaining in the steel by the deoxidation treatment is less than 0.01%, the deoxidation is insufficient and there is a possibility that the solid solution B does not remain due to oxidation. In the case of the present invention, it is necessary to contain at least 0.01% of sol.Al in order to sufficiently fix N. However, even if it is contained in a large amount, the effect is saturated and only the cost is increased by meaningless addition, so the upper limit is made 0.10%.
[0029]
In order to suppress inhibition by N of the effect of adding B, Al is sufficiently contained. For this reason,
sol.Al (%) ≧ 9.6 × N (%) (1)
It is necessary to contain sol.Al that satisfies the above. This means that sol.Al is contained in an amount of 5 times or more with respect to the chemical equivalent of Al necessary to make all N in the steel AlN. Thus, by containing a sufficient amount of Al with respect to N, N can be completely rendered harmless.
[0030]
Ti does not have to be added,
Ti (%) ≤ 3.4 x N (%) (2)
Is within a range that satisfies the above. Ti is extremely effective for fixing N. In general, when B is added, it is added for the purpose of fixing N. In the case of the present invention, even if Ti is not added, N is fixed as long as the Al content satisfies the above formula (1) . However, addition of a small amount of Ti is preferable in order to reduce the influence of manufacturing conditions such as hot rolling, to securely fix N, and to fully exhibit the effect of B addition. However, if a small amount is added, the workability deteriorates, and it is considered that this workability deterioration is caused by the formation of TiC. Therefore, the addition of Ti is limited to the range in which TiC is not formed, that is, the above formula (2) is satisfied. Within range. Further, since TiN increases in terms of workability deterioration, the Ti content is preferably 0.01% or less, even within the range of the formula (2) . In addition, when it contains for the purpose of fixing N, it is desirable to make it contain at least 0.002% or more.
[0031]
This steel is melted to form a slab, and the process and conditions for hot rolling the steel may be as usual, and are not particularly restricted. However, the coiling temperature of hot rolling, when subjected to press molding as a steel plate by hot rolling, the coiling temperature of hot rolling 600 ° C. or higher, preferably to 650 ° C. or higher. In the wound at a temperature below 600 ° C., not only poor press workability such as poor high elongation yield point as hot-rolled steel plate, because curing by quenching after molding, or the hardenability becomes insufficient is there. This is because B in the hot-rolled steel sheet remains as BN and does not effectively work for improving the hardenability. Note that the winding temperature in this case is desirably at most about 700 ° C. If winding is performed at a temperature higher than this, the shape deteriorates due to deformation of the winding coil, and the scale increases. Problems such as deterioration of the surface properties due to the occurrence of.
[0032]
In addition, when hot-rolling and further cold-rolling to be used for press forming as a cold-rolled steel sheet, the hot rolling-up temperature is 480 ° C. or higher, preferably 600 ° C. or higher. This is because winding at less than 480 ° C. may be quenched by cooling to the winding temperature, making cold rolling difficult. In the case of a cold-rolled steel sheet, even if the coiling temperature is somewhat low and B is BN, N becomes AlN and becomes solid solution B by reheating in the annealing process. The impact is small.
[0033]
Cold rolling and annealing may be performed in accordance with the production of a normal cold rolled steel sheet, the rolling reduction of cold rolling is 50% or more, and annealing is performed in a temperature range from the recrystallization temperature to less than Ac 3 points. Even a conventional box annealing method may be performed by a continuous annealing method.
[0034]
【Example】
Steels having the compositions shown in Table 1 were melted using a laboratory vacuum melting furnace. As the steel composition, C: 0.12%, Mn: 1.5%, sol.Al:0.045%, N: 0.003%, Ti: 0.005%, B: 0.0006% are set as target reference compositions, and the effect of the amount of components is observed. For each of Mn, Ti, B, Al and N, the other components were changed to be constant. These ingots are forged into 20mm thick hot rolling slabs, heated to 1200 ° C, hot rolled in the temperature range from 1150 ° C to 900 ° C, finished to 4mm thickness, forced air cooling or water spray Cooled to 500-650 ° C under the cooling conditions assuming a hot strip mill by, and immediately put the obtained steel plate into a furnace maintained at these temperatures, and cooled under the conditions assuming the coil after winding did. Some of these hot-rolled steel sheets were cold-rolled after descaling the surface, finished to a thickness of 1.2 mm, and annealed at 700 ° C. for 20 hours of box annealing.
[0035]
[Table 1]
Figure 0004214330
[0036]
The obtained hot rolled sheet was subjected to surface grinding to the same 1.2 mm thickness as the cold rolled sheet and used for the test. A test piece having a width of 90 mm and a length of 240 mm cut out from each steel plate was subjected to a quenching treatment under a water cooling condition after holding at a heating temperature of 950 ° C. for 2 seconds by an induction hardening apparatus having an output of 200 kW and a frequency of 150 kHz. The tensile test was a JIS No. 5 test piece, and the hardness after quenching was measured at the center of the plate thickness.
[0037]
Table 2 shows the results of the hot-rolled steel sheet, and Table 3 shows the results of the cold-rolled steel sheet. Although there was a difference in the level of results between the hot-rolled steel sheet and the cold-rolled steel sheet, the effect exerted by the steel composition was relatively similar. From the results of trial Nos. 1 to 4 and 25 to 28, in the state of the material before quenching, the elongation decreases as the content increases and the workability deteriorates, but the hardness and strength after quenching increase. If it is within the range of the present invention, it can be seen that the elongation before processing is sufficiently large and the strength after quenching is also large. Regarding the effect of the Ti content on the elongation of the steel sheet before heat treatment, as can be seen from the results of trial numbers 5-9 and 29-33, the elongation decreases as the Ti content increases, and the workability deteriorates. . Combined with the results of other reference composition specimens with almost the same amount of Mn and N, the horizontal axis is Ti (%) / N (%), and the elongation of the steel sheet before heat treatment is organized. It becomes like 1. It can be seen that when Ti (%) / N (%) is 3.4 or more, that is, when excessive Ti is contained in an amount exceeding the amount that Ti becomes TiN, the elongation becomes worse. Although the influence of B is seen in the trial numbers 10-12 and 34-36, if it is less than 0.0003%, sufficient strength cannot be obtained, and the hardenability becomes insufficient. The results of trial numbers 13-20 and 37-44 with different amounts of Al and N were combined with the results of specimens with almost the same amount of Mn, Ti, B, etc., and Al (%) / N ( %), The tensile strength after quenching is as shown in FIG. The atomic weight ratio of Al and N is 1.93, but if this atomic weight ratio is 5 times, that is, less than 9.6 at Al (%) / N (%), the tensile strength is low and the hardenability is insufficient. .
[0038]
[Table 2]
Figure 0004214330
[0039]
[Table 3]
Figure 0004214330
[0040]
The hot rolled steel sheets of trial Nos. 21 to 24 have a chemical composition of steel within the scope of the present invention, but are as low as 550 ° C. compared to the coiling temperature of hot rolling of other steel sheets of 650 ° C. Comparing steels of the same composition, as shown on the left side of FIG. 3, the hot-rolled steel sheet wound at 550 ° C. has insufficient strength after quenching compared to 650 ° C. winding. . However, it can be seen that the cold-rolled steel sheets of Nos. 45 to 48, which are annealed after cold rolling, have sufficiently high strength after quenching even if the hot rolling coiling temperature is slightly lower.
[0041]
【The invention's effect】
According to the present invention, it is possible to obtain a steel sheet that has sufficient formability that can be applied to processing such as press forming and that can be easily increased in strength by quenching after forming. By utilizing this steel plate, for example, in a vehicle body structure, it is possible to make the passenger compartment structure stronger and lighter. This enhances the safety of passengers in the event of a car collision and meets social demands such as energy saving by reducing the weight of the car.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the ratio of Ti content and N content of steel and the elongation of a steel sheet.
FIG. 2 is a graph showing the relationship between the Al and N contents of steel containing B and the tensile strength of the steel sheet after induction hardening.
FIG. 3 is a diagram showing the relationship between the hot rolling coiling temperature and the tensile strength when the obtained steel sheet is induction hardened.

Claims (3)

鋼の組成が質量%にて、C:0.10〜0.20%、Si:0.1%以下、Mn:0.8〜2.0%、P:0.02%以下、S:0.02%以下、N:0.005%以下、B:0.0003〜0.004%、sol.Al:0.01〜0.10%で、かつ
sol.Al(%)≧9.6×N(%) ・・・・・・・・(1)
であって、
Tiを
Ti(%)≦3.4×N(%) ・・・・・・・・(2)
の範囲で含有し、残部はFeおよび不可避的不純物からなることを特徴とする成形性および焼入れ性にすぐれた板。
When the steel composition is mass %, C: 0.10 to 0.20%, Si: 0.1% or less, Mn: 0.8 to 2.0%, P: 0.02% or less, S: 0.02% or less, N: 0.005% or less, B: 0.0003 -0.004%, sol.Al:0.01-0.10%, and
sol.Al (%) ≧ 9.6 × N (%) (1)
Because
Ti is Ti (%) ≦ 3.4 × N (%) (2)
Contained in a range of, balance moldability and hardenability in good steel plate, characterized in that it consists of Fe and unavoidable impurities.
質量%にて、C: 0.05 0.20 %、Si: 0.1 %以下、Mn: 0.8 2.0 %、P: 0.02 %以下、S: 0.02 %以下、N: 0.005 %以下、B: 0.0003 0.004 %、 sol. Al: 0.01 0.10 %で、かつ
sol. Al ( ) 9.6 ×N ( ) ・・・・・・・・(1)
であって、
Tiを
Ti ( ) 3.4 ×N ( ) ・・・・・・・・(2)
の範囲で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、巻取り温度600℃以上で熱延コイルとすることを特徴とする成形性および焼入れ性にすぐれた鋼板の製造方法。
In mass%, C: 0.05 to 0.20 %, Si: 0.1 % or less, Mn: 0.8 to 2.0 %, P: 0.02 % or less, S: 0.02 % or less, N: 0.005 % or less, B: 0.0003 to 0.004 %, sol. Al: 0.01 to 0.10 %, and
sol. Al ( % ) 9.6 × N ( % ) ... (1)
Because
Ti
Ti ( % ) 3.4 × N ( % ) (2)
Contained in a range of, balance hot rolled steel slab consisting of Fe and unavoidable impurities, the steel plate excellent in formability and hardenability, characterized in that the hot-rolled coil at coiling temperature 600 ° C. or higher Manufacturing method.
質量%にて、C: 0.10 0.20 %、Si: 0.1 %以下、Mn: 0.8 2.0 %、P: 0.02 %以下、S: 0.02 %以下、N: 0.005 %以下、B: 0.0003 0.004 %、 sol. Al: 0.01 0.10 %で、かつ
sol. Al ( ) 9.6 ×N ( ) ・・・・・・・・(1)
であって、
Tiを
Ti ( ) 3.4 ×N ( ) ・・・・・・・・(2)
の範囲で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、巻取り温度480℃以上として熱延コイルとした後、冷間圧延し、焼鈍することを特徴とする成形性および焼入れ性にすぐれた鋼板の製造方法。
In mass%, C: 0.10 to 0.20 %, Si: 0.1 % or less, Mn: 0.8 to 2.0 %, P: 0.02 % or less, S: 0.02 % or less, N: 0.005 % or less, B: 0.0003 to 0.004 %, sol. Al: 0.01 to 0.10 %, and
sol. Al ( % ) 9.6 × N ( % ) ... (1)
Because
Ti
Ti ( % ) 3.4 × N ( % ) (2)
Contained in a range of, balance hot rolling a steel slab consisting of Fe and unavoidable impurities, after the hot-rolled coil as coiling temperature 480 ° C. or higher, and cold rolling, characterized by annealing the molded method for producing a steel plate excellent in sex and hardenability.
JP32718198A 1998-11-17 1998-11-17 Steel sheet excellent in formability and hardenability and manufacturing method thereof Expired - Fee Related JP4214330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32718198A JP4214330B2 (en) 1998-11-17 1998-11-17 Steel sheet excellent in formability and hardenability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32718198A JP4214330B2 (en) 1998-11-17 1998-11-17 Steel sheet excellent in formability and hardenability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000144319A JP2000144319A (en) 2000-05-26
JP4214330B2 true JP4214330B2 (en) 2009-01-28

Family

ID=18196224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32718198A Expired - Fee Related JP4214330B2 (en) 1998-11-17 1998-11-17 Steel sheet excellent in formability and hardenability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4214330B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215297B1 (en) 2000-12-15 2007-08-15 Kabushiki Kaisha Kobe Seiko Sho Steel sheet excellent in ductility and strength stability after heat treatment
CN1232672C (en) 2001-02-07 2005-12-21 杰富意钢铁株式会社 Sheet steel and method for producing thereof
JP3918589B2 (en) * 2002-03-08 2007-05-23 Jfeスチール株式会社 Steel plate for heat treatment and manufacturing method thereof
JP5040197B2 (en) * 2006-07-10 2012-10-03 Jfeスチール株式会社 Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5040475B2 (en) * 2007-06-29 2012-10-03 Jfeスチール株式会社 Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5056876B2 (en) 2010-03-19 2012-10-24 Jfeスチール株式会社 Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same

Also Published As

Publication number Publication date
JP2000144319A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
EP1870483B1 (en) Hot-rolled steel sheet, method for production thereof and workedd article formed therefrom
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
WO2001092593A1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
EP4206351A1 (en) 980 mpa-grade bainite high hole expansion steel and manufacturing method therefor
EP3901293B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP3407562B2 (en) Method for manufacturing high carbon thin steel sheet and method for manufacturing parts
KR20140047960A (en) Ultra high strength cold rolled steel sheet having excellent weldability and bendability and method for manufacturinf the same
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JPH0657375A (en) Ultrahigh tensile strength cold-rolled steel sheet and its production
JP2951480B2 (en) High-tensile cold-rolled steel sheet excellent in chemical conversion property and formability and method for producing the same
JP4214330B2 (en) Steel sheet excellent in formability and hardenability and manufacturing method thereof
US20040238083A1 (en) High strength cold rolled steel sheet with superior formability and weldability, and manufacturing method therefor
JP4492111B2 (en) Manufacturing method of super high strength steel plate with good shape
JP3772686B2 (en) High-tensile steel plate and manufacturing method thereof
KR100276308B1 (en) The manufacturing method ofsuper high strength cold rolling steel sheet with workability
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
JP2003268489A (en) Steel plate for heat treatment and its production method
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3596376B2 (en) Method for producing hot-rolled steel sheet excellent in formability and hardenability
JP3815205B2 (en) Method for producing thin steel sheet with excellent formability and hardenability
JP3836195B2 (en) Manufacturing method of hot rolled steel sheet for door impact beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees