JP4213912B2 - Automatic operation method and apparatus for reverse rolling mill and its front and rear transfer table - Google Patents
Automatic operation method and apparatus for reverse rolling mill and its front and rear transfer table Download PDFInfo
- Publication number
- JP4213912B2 JP4213912B2 JP2002171313A JP2002171313A JP4213912B2 JP 4213912 B2 JP4213912 B2 JP 4213912B2 JP 2002171313 A JP2002171313 A JP 2002171313A JP 2002171313 A JP2002171313 A JP 2002171313A JP 4213912 B2 JP4213912 B2 JP 4213912B2
- Authority
- JP
- Japan
- Prior art keywords
- speed
- rolling mill
- biting
- rolling
- deceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
- Control Of Metal Rolling (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、複数パスからなるリバース圧延を行う圧延機とその前後面搬送テーブルの自動運転方法及びその装置に関するものである。
【0002】
【従来の技術】
厚板用鋼板の熱間圧延など複数パスからなるリバース圧延を行う圧延機とその前後面搬送テーブルについて、自動にて運転する場合、従来は圧延機モーターと前後面搬送テーブルモーターを同期させ、圧延機入出側の鋼板速度と搬送テーブルの周速が常時等しくなるように、すなわち鋼板がテーブル上をすべらないように制御するのが一般的であった。
【0003】
この制御を実現するには、圧延機モーターと搬送テーブルモーターの加減速率を等しくすることが必要であるが、経済的な制約により、一般に、搬送テーブルモーターの応答性は圧延機モーター応答性よりも低く設定されている。すなわち、圧延機モーター1台に対して、前後面搬送テーブルのモーター数は数十台であり、それらが全て圧延機モーターと同等の応答性を備えるためには設備費が膨大にならざるを得ないためである。
【0004】
したがって、圧延機モーターの加減速率は、製造の能率を著しく阻害しない範囲で、応答性の劣る搬送テーブルの最大加減速率に適合させて決定するのが一般的な方法であった。
【0005】
【発明が解決しようとする課題】
複数パスからなるリバース圧延について、圧延各パスの作業フローと圧延時間の構成の概念図を図1に示す。ここで、パス間時間とは鋼板が圧延機を通過中で圧延負荷を受けている時間、パス間時間とは鋼板が圧延機から離れ圧延負荷を受けていない時間をいう。
【0006】
図1に示すように、従来法では、圧延機モーターの加減速率を応答性の劣る搬送テーブルの最大加減速率に適合させるため、パス間時間は搬送テーブルの最大加減速率によって決まり、テーブルの加減速待ちがあった。この方法では、圧延機の能力を最大限活用し、圧延工程の効率を最大化しているとはいえない。
【0007】
【課題を解決するための手段】
本発明者は、前後面搬送テーブルモーターの応答性が圧延機モーターの応答性よりも劣る場合に、圧延機の入出側鋼板速度と前後面搬送テーブル速度の差異に起因して不可避的に発生する鋼板のすべり量を種々の圧延条件、材料について測定し、すべり量は、鋼板のサイズと速度に加え、鋼板の温度により決定されることを見出し、すべり量を予測するととともに、要求される圧延の安定性を保ちつつ、圧延時間を最短とする圧延機及び前後面搬送テーブルの加減速率及びタイミングを算出する方法を考案し、本発明に至った。
【0008】
すなわち本発明は、
(1) リバース圧延を行う圧延機とその前後面搬送テーブルの運転において、圧延機の入側あるいは出側の鋼板速度と、当該鋼板速度と搬送テーブル速度との差異に起因する鋼板のすべり量が要求される圧延の安定性を保つように、少なくとも噛出空走距離、噛込加速長、及び噛出減速長について鋼板のサイズ、速度、鋼種、温度毎にそれぞれの最適値を実験的に求めておき、当該圧延対象の鋼板のサイズ、速度、鋼種、温度に応じて得られた前記噛出空走距離、噛込加速長、及び噛出減速長それぞれの最適値を用い、圧延機及び前後面搬送テーブルの加減速率及びタイミング、即ち、圧延機と前後面搬送テーブルの速度の時系列変化を一時的に決定し、前記圧延機の速度から算出される鋼板速度と前記前後面搬送テーブル速度との差異を時間について積分することにより求まる鋼板のすべり量が要求される圧延の安定性を保つ範囲としつつ、要求される圧延の安定性を保ちつつ、圧延時間を最短とする圧延機及び前後面搬送テーブルの最適な加減速率及びタイミングを算出することを特徴とする圧延機及び前後面搬送テーブルの自動運転方法。
但し、
噛出空走距離;鋼板がメタルオフしてから停止するまでの距離
噛込加速長;鋼板が停止状態から圧延機に噛込んだ時の速度に達するまでに必要と
する距離
噛出減速長;圧延後の鋼板の噛出速度から停止するまでに必要とする距離
(2)前記(1)記載の圧延機及び前後面搬送テーブルの自動運転方法を適用する圧延機及び前後面搬送テーブルモーターの自動運転装置であって、リバース圧延を行う圧延機と、その前後面搬送テーブルを有し、圧延された鋼板の速度を求めるための圧延機のロール周速度を検知する圧延機速度計と、前記前後面搬送テーブルのロール周速度を検知する搬送テーブル速度計と、前記圧延機の周速度と前記搬送テーブルの周速度とから鋼板のすべり量が要求される圧延の安定性を保つように、少なくとも噛出空走距離、噛込加速長、及び噛出減速長について鋼板のサイズ、速度、鋼種、温度毎に求めたそれぞれの最適値を用い、圧延機及び前後面搬送テーブルの加減速率及びタイミング、即ち、圧延機と前後面搬送テーブルの速度の時系列変化を一時的に決定し、前記圧延機の速度から算出される鋼板速度と前記前後面搬送テーブル速度との差異を時間について積分することにより求まる鋼板のすべり量が要求される圧延の安定性を保つ範囲としつつ、圧延時間を最短とする圧延機及び前後面搬送テーブルの加減速率及びタイミングを算出する演算装置を備えたことを特徴とする圧延機及び前後面搬送テーブルの自動運転装置である。
【0009】
本発明の自動運転装置の一実施例を図2に示す。更に、圧延機及び前後面搬送テーブルの加減速率及びタイミングの算出フローを図3に示す。
【0010】
図3に示す鋼板は、図の左から右へ圧延機により圧延され、圧延が終わると右側搬送テーブルに載り、その後搬送テーブルにより右から左へと搬送され、再度圧延される工程を繰り返す。圧延機及び搬送テーブルにはそれぞれPLGなどの速度計が設けられている。各速度計はそれぞれ演算装置に接続されており、演算装置では、鋼板速度と位置を求め、更に鋼板の速度と搬送テーブルとの速度差を求める。それにより鋼板のすべり量を算出し、その値から圧延機と搬送テーブルの加速減速率及びそのタイミングを求める。その結果を各圧延機モーター、あるいは搬送テーブルモーターに指示する。
この圧延機及び前後面搬送テーブルの加減速率及びタイミングの算出方法の詳細を以下に説明する。
【0011】
以下により入側での作業に応じた加速開始位置(噛込空走距離)を設定する。
(1) 初期パス 受入時作業別受入位置
コード 作業 距離
0 なし 5m
1 温度測定 10m
2 デスケール 5 m
(2) 2パス目以降、前パス狙い噛出量
予測誤差、手動介入による位置変更等を反映して決定。
【0012】
以下により出側での作業に応じた狙い噛出位置(噛出空走距離)を決定する。
(1) 出側作業有無・出側作業別狙い噛出空走距離
コード 作業 距離
0 なし フリー
1 温度測定 10m
2 デスケール 5m
3 γ線測定 12 m
(2) 出側作業なし(噛出空走距離フリー)
噛出空走距離に出側作業に応じた制約がない場合、下記構造のテーブルを参照し狙い噛出空走距離を決定する。圧延作業の安定性及び鋼板の表面性状の観点から、板厚及び鋼種(但し、温度の項も含む)により定まる鋼板と搬送テーブルロールのすべり可否、鋼板すべり時の鋼板とテーブルロールの動摩擦係数を考慮し、各層別毎の最適値を実験的に求めた。
テーブル構造:[板厚(15)×鋼種(15)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,<32,
<40,<60,<90,90 ≦
鋼種層別:(40K、50K 、その他) ×温度層別:(<700,<750,<800,<850,850≦)
【0013】
以下により、下記構造のテーブルを参照してミル速度(m/S)を決定する。
圧延作業の安定性及び鋼板の表面性状の観点から、板厚及び鋼種により定まる鋼板と搬送テーブルロールのすべり可否、鋼板すべり時の鋼板とテーブルロールの動摩擦係数を考慮し、各層別毎の最適値を実験的に求めた。
(1) 定常: ミル速度をテーブル参照により決定。
(2) 噛込: 噛込加速率をテーブル参照により決定。
噛込速度=定常速度×(1−噛込加速率/100)
(3) 噛出: 噛出減速率をテーブル参照により決定。
噛出速度=定常速度×(1−噛出減速率/100)
テーブル構造:[板厚(15)×鋼種(15)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90≦
鋼種層別:(40K、50K 、その他) ×温度層別:(<700,<750,<800,<850,850≦)
【0014】
以下により、材料噛込中の材料速度(m/S)を算出する。
ただし、hi:入側板厚、ho:出側板厚、fs:先進率
(1) 入側 1)定常 定常ミル速度×(1+fs)×ho/hi
2)噛込 噛込ミル速度×(1+fs)×ho/hi
3)噛出 噛出ミル速度×(1+fs)×ho/hi
(2) 出側 1)定常 定常ミル速度×(1+fs)
2)噛込 噛込ミル速度×(1+fs)
3)噛出 噛出ミル速度×(1+fs)
【0015】
以下により、材料噛込中のテーブル速度(m/S)補正量を決定する。圧延作業の安定性及び鋼板の慣性を考慮し、板厚及び板幅各層別毎の最適値を実験的に求めた。入側はテーブル速度≦鋼板速度、出側は鋼板のたくれが問題となる薄手材でテーブル速度≧鋼板速度、鋼板の剛性が高くたくれの問題がない厚手材でテーブル≦鋼板速度とした。
(1) 入側 入側速度補正(−ラグ速度)をテーブル参照により決定。
(2) 出側 出側速度補正(+リード速度[薄手]or−ラグ速度[厚手]をテーブル参照により決定。
テーブル構造:[板厚(15)×板幅 (5)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
板幅層別:<1600,<2400,<3200,<4000,4000≦
入側テーブル速度(定常/噛込/噛出)=入側材料速度×(1+テーブル 速度補正/100)
出側テーブル速度(定常/噛込/噛出)=出側材料速度×(1+テーブル 速度補正/100)
【0016】
以下により、テーブル最大加減速率(m/S2 )を算出する。圧延作業の安定性及び鋼板断面の慣性を考慮し、板厚及び板幅各層別毎の最適値を実験的に求めた。
(1) 加速 加速率をテーブル参照により決定。
(2) 減速 減速率をテーブル参照により決定。
テーブル構造:[板厚(15)×板幅 (5)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
板幅層別:<1600,<2400,<3200,<4000,4000≦
【0017】
以下により、上記にて算出したテーブル加速率のチェックと必要に応じた修正を行う。
(1) Min加速時間(S)・Min加速距離(m)
Min加速時間=テーブル噛込速度/テーブル最大加速率
Min加速距離=テーブル最大加速率×Min加速時間2 /2
=テーブル噛込速度2 /テーブル最大加速率/2
(2) 噛込空走距離<Min加速距離→噛込速度修正
修正テーブル噛込速度=(2×噛込空走距離×テーブル最大加速率)1/2
テーブル加速率=テーブル最大加速率
修正材料噛込速度=修正テーブル噛込速度
修正ミル噛込速度=修正材料噛込速度/(1+fs)×hi/ho
修正ミル噛込加速=ミル定常速度−修正ミル噛込速度
(3) 噛込空走距離≧Min加速距離→加速率決定
テーブル加速率=テーブル噛込速度2 /噛込空走距離/2
【0018】
以下により、テーブル加速開始点(S)(入出側テーブル加速開始時間間隔)を算出する。
テーブル加速開始点=(出側テーブル速度−入側テーブル速度)/テーブル加速率
【0019】
以下により、ミル加速率(m/S2 )を算出する。圧延作業の安定性及び鋼板断面の慣性を考慮し、板厚及び板幅各層別毎の最適値を実験的に求めた。
ミル加速率をテーブル参照に決定。
テーブル構造:[板厚(15)×板幅 (5)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
板幅層別:<1600,<2400,<3200,<4000,4000≦
【0020】
以下により、ミル加速開始点(S)(入側テーブル・ミル加速開始時間間隔)を算出する。
ミル加速開始点=入側テーブル噛込速度/テーブル加速率−ミル噛込速度/ミル加速率
【0021】
以下により、噛込加速長(m)及び加速率(m/S2 )を算出する。
(1) 加速長
噛込加速長をテーブル参照により決定。圧延作業の安定性及び鋼板の表面性状の観点から、板厚及び鋼種により定まる鋼板と搬送テーブルロールのすべり可否、鋼板すべり時の鋼板とテーブルロールの動摩擦係数を考慮し、各層別毎の最適値を実験的に求めた。
テーブル構造:[板厚(15)×鋼種(15)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
鋼種層別:(40K、50K 、その他)×温度層別:(<700,<750,<800,<850,850≦)
(2) 加速率
ミル噛込加速=ミル定常速度−ミル噛込速度
噛込加速率=ミル噛込加速 2/噛込加速長/2
(3) 加速率チェック
ミル加速率をテーブル参照により決定。圧延作業の安定性及び鋼板断面の慣性を考慮し、板厚及び板幅各層別毎の最適値を実験的に求めた。
テーブル構造:[板厚(15)×板幅 (5)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
板幅層別:<1600,<2400,<3200,<4000,4000≦
1)噛込加速率>ミル加速率→噛込加速長修正。
噛込加速長=ミル噛込加速 2/ミル加速率/2
2)噛込加速率≦ミル加速率→修正なし。
【0022】
以下により、噛出減速長(m)及び減速率(m/S2 )を算出する。
(1) 減速長
噛出減速長をテーブル参照により決定。圧延作業の安定性及び鋼板の表面性状の観点から、板厚及び鋼種により定まる鋼板と搬送テーブルロールのすべり可否、鋼板すべり時の鋼板とテーブルロールの動摩擦係数を考慮し、各層別毎の最適値を実験的に求めた。
テーブル構造:[板厚(15)×鋼種(15)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
鋼種層別:(40K、50K 、その他) ×温度層別:(<700,<750,<800,<850,850≦)
(2) 減速率
ミル噛出減速=ミル定常速度−ミル噛出速度
噛出減速率=ミル噛出減速 2/噛出減速長/2
(3) 減速率チェック
ミル減速率をテーブル参照により決定。圧延作業の安定性及び鋼板断面の慣性を考慮し、板厚及び板幅各層別毎の最適値を実験的に求めた。
テーブル構造:[板厚(15)×板幅 (5)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
板幅層別:<1600,<2400,<3200,<4000,4000≦
1)噛出減速率>ミル減速率→噛出減速長修正。
噛出減速長=ミル噛出減速2 /ミル減速率/2
2)噛出減速率≦ミル減速率→修正なし。
【0023】
以下により、次パスにおける制御量を算出する。
(1) 出側作業なし→次パスにおける下記1)〜6)を上記段落[0013]〜[0018]の方法にて算出。
1)次パスミル速度 (1)定常 上記段落[0013]−(1)
(2)噛込 上記段落[0013]−(2)
2)次パス予測先進率
3)次パス入側材料速度 (1)定常 上記段落[0014]−(1)−1)
(2)噛込 上記段落[0014]−(1)−2)
4)次パス入側テーブル速度 (1)入側 上記段落[0015]−(1)
(2)出側 上記段落[0015]−(2)
5)次パステーブル加速率 上記段落[0016]、同[0017]
6)次パステーブル加速開始点 上記段落[0018]
(2) 出側作業あり→次パスにおける下記1)〜6)を全て0に設定。
1)次パスミル速度 (1)定常 0
(2)噛込 0
2)次パス予測先進率 0
3)次パス入側材料速度 (1)定常 0
(2)噛込 0
4)次パス入側テーブル速度 0
5)次パステーブル加速率 (1)入側 0
(2)出側 0
6)次パステーブル加速開始点 0
【0024】
以下により、許容テーブル減速開始点(S)をテーブル参照により決定。圧延作業の安定性及び鋼板断面の慣性を考慮し、板厚及び板幅各層別毎の最適値を実験的に求めた。
テーブル構造:[板厚(15)×板幅 (5)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
板幅層別:<1600,<2400,<3200,<4000,4000≦
【0025】
以下により、Min減速時間(S)及びMin減速距離(m)を算出する。
Min減速時間=テーブル噛出速度/テーブル最大減速率
Min減速距離=テーブル最大減速率×Min減速時間 2/2
=テーブル噛出速度 2/テーブル最大減速率/2
【0026】
以下により、テーブル減速開始点及び減速率の修正を行う。
ケースI:狙い噛出空走距離=0→出側テーブルが鋼板速度と同期しない場合
(滑り減速)
(1) 予測材料減速率
予測材料減速率をテーブル参照により決定。圧延作業の安定性及び鋼板断面の慣性を考慮し、板厚及び板幅各層別毎の最適値を実験的に求めた。
テーブル構造:[板厚(15)×板幅 (5)]
板厚層別(各パス狙い厚):<6,<8,<10,<12,<14,<16,<18,<20,<24,<28,
<32,<40,<60,<90,90 ≦
板幅層別:<1600,<2400,<3200,<4000,4000≦
(2) 予測材料減速時間
予測減速時間=材料噛出速度/予測材料減速率
(3) 予測材料減速距離
予測減速距離=予測材料減速率×予測材料減速時間 2/2
=材料噛出速度 2/予測材料減速率/2
(4) テーブル減速率(m/S2 )
テーブル減速率=テーブル最大減速率
(5) 出側テーブル減速開始点(S)(出側テーブル減速開始〜メタルオフ時間間隔)
出側テーブル減速開始点=出側テーブル速度/テーブル最大減速率
(6) 入側テーブル減速開始点(S)(入側テーブル減速開始〜メタルオフ時間間隔)
入側テーブル減速開始点=入側テーブル速度/テーブル最大減速率−開始点
補正−(予測材料減速時間−次パステーブル加速開始点)
(7) 入出側テーブル減速開始点チェック・修正
入出側テーブル減速開始点を許容テーブル減速開始点にてクランプ。
入側テーブル減速開始点>許容テーブル減速開始点
→入側テーブル減速開始点=許容テーブル減速開始点
出側テーブル減速開始点>許容テーブル減速開始点
→出側テーブル減速開始点=許容テーブル減速開始点
【0027】
ケースII:狙い噛出空走距離≠0かつ狙い噛出空走距離<Min 減速距離の場合
(1) 狙いテーブル減速開始点(S)
狙いテーブル減速開始点=Min減速時間×(1−(狙い噛出空走距離/
Min減速距離) 1 / 2 )
(2) 出側テーブル減速開始点(S)
狙いテーブル減速開始点>許容テーブル減速開始点
→出側テーブル減速開始点=許容テーブル減速開始点
狙いテーブル減速開始点<許容テーブル減速開始点
→出側テーブ減速開始点=狙いテーブル減速開始点
(3) 入側テーブル減速開始点(S)
入側テーブル減速開始点=出側テーブル減速開始点
(4) 修正狙い噛出空走距離(m)
修正狙い噛出空走距離=テーブル最大加速率
×(Min減速時間−出側テーブル減速開始点) 2/2
(5) 各速度修正
修正テーブル噛出速度=(2×修正狙い噛出空走距離×テーブル最大減
速率) 1/2
テーブル減速率=テーブル最大減速率
修正材料噛出速度=修正テーブル噛出速度
修正ミル噛出速度=修正材料噛出速度/(1+fs)
修正ミル噛出減速=ミル定常速度−修正ミル噛出速度
【0028】
ケースIII:狙い噛出空走距離≠0かつ狙い噛出空走距離≧Min減速距離の場合
(1) 出側テーブル減速開始点(S)=0
(2) 入側テーブル減速開始点(S)=0
(3) テーブル減速率=テーブル噛出速度 2/噛出空走距離/2
【0029】
以下により、テーブルと圧延機の制御タイミングを算出する。
(1)ミル減速タイミング
Vmm [m/s]:ミル定常速度
Vmo [m/s]:ミル噛出速度
Vpm [m/s]:出側材料定常速度
Vpo [m/s]:出側材料噛出速度
αmo [ m/s2 ] :ミル噛出減速率
αpo [ m/s2 ] :出側材料噛出減速率
Lpom [m] :ミル噛出減速長
fs [-] :先進率
Δtm [sec]:ミル噛出減速時間
Vpm=(1+fs)Vmm
Vpo=(1+fs)Vmo
αpo=(1+fs)αmo
Δtm=(Vpm−Vpo)/αpo=(Vmm−Vmo)/αmo
Lpom =(Vpm +Vpo)Δtm/2
=(1+fs)(Vmm+Vmo )(Vmm−Vmo)/(2αmo)
=(1+fs)(Vmm2 −Vmo2 )/(2αmo)
ミル減速開始は、狙い(予測)圧延長(P/C設定)−出側圧延長実績(PLC計算)≦Lpom となったタイミングにて行う。従って、減速に要した距離Lpom は、図4に示した斜線部すなわち台形の面積に相当する。
ここで、出側圧延長実績L(図3参照)は下式にて計算される。
L=∫(1+fs)Vm dt −(ΔLf/100)
【0030】
(2)テーブル減速タイミング
Vmm [m/s]:ミル定常速度
Vmo [m/s]:ミル噛出速度
Vpm [m/s]:出側材料定常速度
Vpo [m/s]:出側材料噛出速度
αmo [ m/s2 ] :ミル噛出減速率
αpo [ m/s2 ] :出側材料噛出減速率
Lpot [m] :テーブル噛出減速長
fs [-] :先進率
Δtt [sec]:テーブル噛出減速時間
Δtm [sec]:ミル噛出減速時間
Vpm=(1+fs)Vmm
Vpo=(1+fs)Vmo
αpo=(1+fs)αmo
Δtm =(Vpm−Vpo)/αpo=(Vmm−Vmo)/αmo
Lpot =VpmΔtt−(Vpm −Vpo)Δtm /2
=(1+fs)VmmΔtt−(1+fs)(Vmm−Vmo)2 /(2αmo)
テーブル減速開始は、狙い(予測)圧延長(P/C設定)−出側圧延長実績(PLC計算)≦Lpot となったタイミングにて行う。搬送テーブル側の減速に要する距離Lpot は応答性が悪いので、図5に示すように、台形に更に長方形を付加した斜線部の面積に相当する。
【0031】
【実施例】
本発明に基づいて、複数パスからなるリバース圧延について、圧延機及び搬送テーブルの加減速率及び加減速開始のタイミングを決定した場合の、圧延各パスの作業フローと圧延時間の構成の概念図を図6に示す。材料のサイズ、鋼種に応じて最適な加減速率及び加減速タイミングを実現することにより、圧延作業の安定性を十分に保ちつつ、圧延作業の効率を最大限とすることが可能となった。
【0032】
圧延機出側にて圧延の安定性が特に厳格な材料について、材料のすべりを発生させない場合の圧延機、テーブル、鋼板の速度及び位置の制御実施例を図7〜9に示す。
【0033】
圧延機出側にて材料をすべらせ、テーブル加減速応答性ロスを低減し、パス間時間短縮を図った場合の圧延機、テーブル、鋼板の速度及び位置の制御実施例を図10〜12に示す。
【0034】
圧延機出側にて噛出後は材料のすべりを発生させない条件で、噛込中はテーブル速度<材料速度としてテーブル加減速ロスを低減し、パス間時間短縮を図った場合の圧延機、テーブル、鋼板の速度及び位置の制御実施例を図13〜15に示す。
【0035】
圧延機出側にて材料のすべり摩擦を最大限利用し、圧延機最近傍に鋼板を停止させてパス間時間を最短化する場合の圧延機、テーブル、鋼板の速度及び位置の制御実施例を図16〜18に示す。
【0036】
【発明の効果】
厚板用鋼板の熱間圧延など複数パスからなるリバース圧延を行う圧延機とその前後面搬送テーブルについて、自動にて運転する場合、従来は圧延機モーターと前後面搬送テーブルモーターを同期させ、圧延機入出側の鋼板速度と搬送テーブルの周速が常時等しくなるように、すなわち鋼板がテーブル上をすべらないように制御するのが一般的であった。
この制御を実現するには、圧延機モーターと搬送テーブルモーターの加減速率を等しくすることが必要であるが、経済的な制約により、一般に搬送テーブルモーターの応答性は圧延機モーター応答性よりも低く設定されている。すなわち、圧延機モーター1台に対して前後面搬送テーブルのモーター数は数十台であり、それらが全て圧延機モーターと同等の応答性を備えるためには設備費が膨大ならざるを得ないためである。したがって、圧延機モーターの加減速率は、製造の能率を著しく阻害しない範囲で、応答性の劣る搬送テーブルの仕様から定まる最大加減速率に適合させて決定するのが一般的な方法であった。
しかし、この方法では、圧延機の能力を最大限活用し、圧延工程の効率を最大化しているとはいえない。
【0037】
そこで本発明者は、前後面搬送テーブルモーターの応答性が圧延機モーターの応答性よりも劣る場合に、圧延機の入出側鋼板速度と前後面搬送テーブル速度の差異に起因して不可避的に発生する鋼板のすべり量を種々の圧延条件、材料について測定し、すべり量は、鋼板のサイズと速度に加え、鋼板の温度により決定されることを見出し、すべり量を予測するととともに、要求される圧延の安定性を保ちつつ、圧延時間を最短とする圧延機及び前後面搬送テーブルの加減速率及びタイミングを算出する方法を見出だした。
これにより、材料のサイズ、鋼種に応じて最適な加減速率及び加減速タイミングを実現し、圧延作業の安定性を十分に保ちつつ、圧延作業の効率を最大限とする自動圧延を可能とした。
【図面の簡単な説明】
【図1】リバース圧延における圧延各パスの作業フローと圧延時間の構成を示す概念図。
【図2】本発明の一実施例を示す概念図。
【図3】圧延機及び前後面搬送テーブルの加減速率及びタイミングの算出フローを示す図。
【図4】ミル減速タイミングにおいて減速に要する距離(Lpom )を示す図。
【図5】搬送テーブル減速タイミングにおいて減速に要する距離(Lpot )を示す図。
【図6】圧延機及び搬送テーブルの加減速率及び加減速開始のタイミングを決定した場合の、圧延各パスの作業フローと圧延時間の構成を示す概念図。
【図7】材料のすべりを発生させない場合の圧延機、テーブル、鋼板の速度及び位置を制御する実施例を示す図。
【図8】図7に示す制御方法の実施例における正転方向の詳細を示す図。
【図9】図7に示す制御方法の実施例における時間と鋼板位置の関係を示す図。
【図10】圧延機出側にて材料をすべらせ、テーブルの加減速応答性ロスを低減し、パス時間短縮を図った場合の圧延機、テーブル、鋼板の速度を制御する実施例を示す図。
【図11】図10に示す制御方法の実施例における正転方向の詳細を示す図。
【図12】 図10に示す制御方法の実施例における時間と鋼板位置の関係を示す図。
【図13】圧延機出側にて噛出後は材料のすべりを発生させない条件で、噛込中はテーブル速度<材料速度としてはむテーブルの加減速応答性ロスを低減し、パス時間短縮を図った場合の圧延機、テーブル、鋼板の速度を制御する実施例を示す図。
【図14】図13に示す制御方法の実施例における正転方向の詳細を示す図。
【図15】図13に示す制御方法の実施例における時間と鋼板位置の関係を示す図。
【図16】圧延機出側にて材料のすべり摩擦を最大限利用し、圧延機最近傍に鋼板を停止させてパス間時間を最短化する場合の、圧延機、テーブル、鋼板の速度及び位置を制御する実施例を示す図。
【図17】図16に示す制御方法の実施例における正転方向の詳細を示す図。
【図18】図16に示す制御方法の実施例における時間と鋼板位置の関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rolling mill that performs reverse rolling consisting of a plurality of passes, an automatic operation method of a front and rear conveyance table, and an apparatus thereof.
[0002]
[Prior art]
When a rolling mill that performs reverse rolling consisting of multiple passes, such as hot rolling of steel plates for thick plates, and its front and rear transfer table are operated automatically, conventionally, the rolling mill motor and the front and rear transfer table motor are synchronized to perform rolling. In general, control is performed so that the steel plate speed on the machine entry / exit side is always equal to the peripheral speed of the transfer table, that is, the steel plate does not slide on the table.
[0003]
In order to realize this control, it is necessary to make the acceleration / deceleration rates of the rolling mill motor and the conveyance table motor equal. However, due to economic restrictions, in general, the response of the conveyance table motor is higher than the response of the rolling mill motor. It is set low. That is, the number of motors of the front and rear transfer tables is several tens for one rolling mill motor, and in order for all of them to have the same responsiveness as the rolling mill motor, the equipment cost must be enormous. This is because there is not.
[0004]
Therefore, it has been a general method to determine the acceleration / deceleration rate of the rolling mill motor in accordance with the maximum acceleration / deceleration rate of the conveyance table having poor responsiveness within a range that does not significantly impair the production efficiency.
[0005]
[Problems to be solved by the invention]
FIG. 1 shows a conceptual diagram of the configuration of work flow and rolling time of each rolling pass for reverse rolling consisting of a plurality of passes. Here, the time between passes refers to the time during which the steel sheet passes through the rolling mill and is subjected to a rolling load, and the time between passes refers to the time during which the steel plate is separated from the rolling mill and is not subjected to a rolling load.
[0006]
As shown in FIG. 1, in the conventional method, in order to adapt the acceleration / deceleration rate of the rolling mill motor to the maximum acceleration / deceleration rate of the conveyance table with poor responsiveness, the time between passes is determined by the maximum acceleration / deceleration rate of the conveyance table. There was a wait. In this method, it cannot be said that the efficiency of the rolling process is maximized by making the best use of the capacity of the rolling mill.
[0007]
[Means for Solving the Problems]
The inventor inevitably occurs due to the difference between the steel plate speed of the rolling mill and the front and rear surface transfer table speed when the response of the front and rear surface transfer table motor is inferior to that of the rolling mill motor. The amount of slip of the steel sheet was measured for various rolling conditions and materials, and the amount of slip was found to be determined by the temperature of the steel sheet in addition to the size and speed of the steel sheet. A method of calculating the acceleration / deceleration rate and timing of the rolling mill and the front / rear conveyance table that minimizes the rolling time while maintaining stability was devised, and the present invention was achieved.
[0008]
That is, the present invention
(1) In the operation of a rolling mill that performs reverse rolling and its front and rear conveying tables, the steel sheet speed on the entry side or the exit side of the rolling mill, and the slip amount of the steel sheet due to the difference between the steel sheet speed and the conveying table speedIn order to maintain the required rolling stability, at least the biting idle running distance, biting acceleration length, and biting deceleration lengthSteel plate size, speed,Steel grade,temperatureEach optimum value is experimentally determined for each, and the biting idle running distance, biting acceleration length, and biting deceleration length obtained according to the size, speed, steel type, and temperature of the steel sheet to be rolled. Using the respective optimum values, the acceleration / deceleration rate and timing of the rolling mill and the front and rear surface transport table, that is, the time series change of the speed of the rolling mill and the front and rear surface transport table are temporarily determined and calculated from the speed of the rolling mill. While maintaining the required rolling stability while maintaining the required rolling stability, the amount of slip of the steel sheet obtained by integrating the difference between the steel plate speed and the front and rear surface conveying table speed over time,An automatic operation method for a rolling mill and a front / rear surface conveyance table, characterized by calculating an optimum acceleration / deceleration rate and timing of the rolling mill and the front / rear surface conveyance table that minimize the rolling time.
However,
Chewing idle distance: Distance from steel plate to metal stop until stopping
Biting acceleration length: Necessary to reach the speed at which the steel plate bites into the rolling mill from a stopped state
Distance
Biting deceleration length: Distance required to stop from the biting speed of the rolled steel sheet
(2) An automatic operation device for a rolling mill and a front / rear surface transport table motor to which the rolling mill and the front / rear surface transport table automatic operation method described in (1) are applied, and a rolling mill for performing reverse rolling, and front / rear surfaces thereof A rolling mill speedometer for detecting a roll peripheral speed of a rolling mill for obtaining a speed of a rolled steel sheet, a transport table speedometer for detecting a roll peripheral speed of the front and rear surface transport table, Slip amount of steel plate from the peripheral speed of the rolling mill and the peripheral speed of the transfer tableIn order to maintain the required rolling stability, use the optimum values determined for each steel size, speed, steel type, and temperature for at least the idle running distance, the biting acceleration length, and the biting deceleration length. , Accelerating / decelerating rate and timing of the rolling mill and the front / rear surface transport table, that is, temporally determining the time series change of the speed of the rolling mill and the front / rear surface transport table, and calculating the steel plate speed and the front / rear speed calculated from the speed of the rolling mill While maintaining the stability of rolling where the slip amount of the steel sheet obtained by integrating the difference with the surface transfer table speed over time is required,An automatic operation device for a rolling mill and a front / rear surface conveyance table, comprising an arithmetic device for calculating an acceleration / deceleration rate and timing of the rolling mill and the front / rear surface conveyance table that minimize the rolling time.
[0009]
One embodiment of the automatic driving apparatus of the present invention is shown in FIG. Furthermore, the calculation flow of the acceleration / deceleration rate and timing of the rolling mill and the front / rear surface conveyance table is shown in FIG.
[0010]
The steel plate shown in FIG. 3 is rolled by a rolling mill from the left to the right in the figure, and after rolling is finished, it is placed on the right conveyance table, and then conveyed from the right to the left by the conveyance table and rolled again. The rolling mill and the conveyance table are each provided with a speedometer such as PLG. Each speedometer is connected to a computing device, and the computing device obtains the steel plate speed and position, and further obtains the speed difference between the steel plate speed and the conveyance table. Thereby, the slip amount of the steel sheet is calculated, and the acceleration / deceleration rate and timing of the rolling mill and the conveyance table are obtained from the calculated value. The result is instructed to each rolling mill motor or conveyance table motor.
Details of the calculation method of the acceleration / deceleration rate and timing of the rolling mill and the front and rear surface transfer table will be described below.
[0011]
The acceleration start position (biting idle running distance) corresponding to the work on the entry side is set as follows.
(1) Initial pathAcceptance position by work at the time of acceptance
Code Work distance
0 None 5m
1 Temperature measurement 10m
2 Descale 5 m
(2) After the second pass, the target bite amount of the previous pass
Determined by reflecting prediction error, position change by manual intervention, etc.
[0012]
A target biting position (biting idle running distance) corresponding to the work on the exit side is determined as follows.
(1) With delivery workNo-exit-side work-specific biting distanceSeparation
Code Work distance
0 None Free
1 Temperature measurement 10m
2 Descale 5m
3 γ-ray measurement 12 m
(2) No exit work (biting free running distance)
When there is no restriction on the chewing idle running distance according to the delivery work, the target chewing idle running distance is determined with reference to the table having the following structure. From the viewpoint of the rolling operation stability and the surface properties of the steel sheet, the thickness and type of steel(However, temperature is included)The optimum value for each layer was experimentally determined in consideration of whether or not the steel plate and the conveying table roll were slid and the dynamic friction coefficient between the steel plate and the table roll when the steel plate was sliding.
Table structure: [Thickness (15) x Steel grade (15)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28, <32,
<40, <60, <90,90 ≦
By steel grade: (40K, 50K, etc.) ×By temperature layer:(<700, <750, <800, <850,850 ≦)
[0013]
The mill speed (m / S) is determined by referring to a table having the following structure.
Optimum value for each layer, considering the stability of rolling work and the surface properties of the steel sheet, considering whether or not the steel sheet and the conveying table roll slide depending on the plate thickness and steel type, and the dynamic friction coefficient of the steel sheet and table roll when the steel sheet slides Was experimentally determined.
(1) Steady: Determine the mill speed by referring to the table.
(2) Biting: Determine the biting acceleration rate by referring to the table.
Biting speed = steady speed × (1-biting acceleration rate / 100)
(Three) Biting: Determine the biting deceleration rate by referring to the table.
Biting speed = steady speed × (1−biting deceleration rate / 100)
Table structure: [Thickness (15) x Steel grade (15)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By steel grade: (40K, 50K, etc.) ×By temperature layer:(<700, <750, <800, <850,850 ≦)
[0014]
The material speed (m / S) during material biting is calculated as follows.
However, hi: incoming side plate thickness, ho: outgoing side plate thickness, fs: advanced rate
(1) Incoming 1) Steady Steady Mill Speed x (1 + fs) x ho / hi
2) Biting Biting mill speed x (1 + fs) x ho / hi
3) Chewing Chewing mill speed x (1 + fs) x ho / hi
(2) Delivery side 1) Steady steady mill speed x (1 + fs)
2) Biting Biting mill speed x (1 + fs)
3) Chewing Chewing mill speed x (1 + fs)
[0015]
The table speed (m / S) correction amount during material biting is determined as follows. Considering the stability of the rolling operation and the inertia of the steel plate, the optimum values for each layer thickness and width were experimentally determined. On the entry side, the table speed ≦ the steel plate speed, and on the exit side, the thin material in which the steel plate warping is a problem.
(1) Input side Input side speed correction (-lag speed) is determined by referring to the table.
(2) Delivery side Delivery side speed correction (+ lead speed [thin] or -lag speed [thick] is determined by referring to the table.
Table structure: [Thickness (15) xBoard width (Five)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By sheet width layer: <1600, <2400, <3200, <4000,4000 ≦
Input side table speed (steady state / engagement / extraction) = input side material speed × (1 + table speed correction / 100)
Outlet table speed (steady state / engagement / extraction) = outside material speed × (1 + table speed correction / 100)
[0016]
Table maximum acceleration / deceleration rate (m / S2) Is calculated. Considering the stability of the rolling operation and the inertia of the cross section of the steel sheet, the optimum values for each thickness and width of the sheet were experimentally determined.
(1) Acceleration The acceleration rate is determined by referring to the table.
(2) Deceleration Decide the deceleration rate by referring to the table.
Table structure: [Thickness (15) xBoard width (Five)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By sheet width layer: <1600, <2400, <3200, <4000,4000 ≦
[0017]
In the following, the table acceleration rate calculated above is checked and corrected if necessary.
(1) Min acceleration time (S) / Min acceleration distance (m)
Min acceleration time = table biting speed / table maximum acceleration rate
Min acceleration distance = table maximum acceleration rate x Min acceleration time2/ 2
= Table biting speed2/ Table maximum acceleration rate / 2
(2) Biting idle distance <Min acceleration distance → Biting speed correction
Correction table biting speed = (2 x biting idle running distance x table maximum acceleration rate)1/2
Table acceleration rate = Table maximum acceleration rate
Correction material biting speed = Correction table biting speed
Correction mill biting speed = correction material biting speed / (1 + fs) × hi / ho
Corrected mill bite acceleration = Mill steady state speed-Corrected mill bite speed
(Three) Biting idle running distance ≥ Min acceleration distance → Acceleration rate determination
Table acceleration rate = Table biting speed2/ Biting idle distance / 2
[0018]
The table acceleration start point (S) (input / output table acceleration start time interval) is calculated as follows.
Table acceleration start point = (Outgoing table speed-Incoming table speed) / Table acceleration rate
[0019]
The mill acceleration rate (m / S2) Is calculated. Considering the stability of the rolling operation and the inertia of the cross section of the steel sheet, the optimum values for each thickness and width of the sheet were experimentally determined.
The mill acceleration rate is determined based on the table.
Table structure: [Thickness (15) xBoard width (Five)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By sheet width layer: <1600, <2400, <3200, <4000,4000 ≦
[0020]
The mill acceleration start point (S) (entry table / mill acceleration start time interval) is calculated as follows.
Mill acceleration start point = entry table biting speed / table acceleration rate-mill biting speed / mill acceleration rate
[0021]
From the following, the biting acceleration length (m) and the acceleration rate (m / S2) Is calculated.
(1) Acceleration length
The biting acceleration length is determined by referring to the table. Optimum value for each layer, considering the stability of rolling work and the surface properties of the steel sheet, considering whether or not the steel sheet and the conveying table roll slide depending on the plate thickness and steel type, and the dynamic friction coefficient of the steel sheet and table roll when the steel sheet slides Was experimentally determined.
Table structure: [Thickness (15) x Steel grade (15)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By steel grade: (40K, 50K, other) ×By temperature layer:(<700, <750, <800, <850,850 ≦)
(2) Acceleration rate
Mill biting acceleration = Mill steady state speed-Mill biting speed
Biting acceleration rate = Mill biting acceleration2/ Biting acceleration length / 2
(Three) Acceleration rate check
Determine the mill acceleration rate by referring to the table. Considering the stability of the rolling operation and the inertia of the cross section of the steel sheet, the optimum values for each thickness and width of the sheet were experimentally determined.
Table structure: [Thickness (15) xBoard width (Five)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By sheet width layer: <1600, <2400, <3200, <4000,4000 ≦
1) Biting acceleration rate> Mill acceleration rate → Biting acceleration length correction.
Biting acceleration length = Mill biting acceleration2/ Mill acceleration rate / 2
2) Bite acceleration rate ≤ Mill acceleration rate → No correction.
[0022]
By the following, the biting deceleration length (m) and the deceleration rate (m / S2) Is calculated.
(1) Deceleration length
The biting deceleration length is determined by referring to the table. Optimum value for each layer, considering the stability of rolling work and the surface properties of the steel sheet, considering whether or not the steel sheet and the conveying table roll slide depending on the plate thickness and steel type, and the dynamic friction coefficient of the steel sheet and table roll when the steel sheet slides Was experimentally determined.
Table structure: [Thickness (15) x Steel grade (15)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By steel grade: (40K, 50K, etc.) ×By temperature layer:(<700, <750, <800, <850,850 ≦)
(2) Deceleration rate
Mill feeding deceleration = Mill steady speed-Mill feeding speed
Biting deceleration rate = Mill biting deceleration2/ Chewing deceleration length / 2
(Three) Deceleration rate check
Determine the mill deceleration rate by referring to the table. Considering the stability of the rolling operation and the inertia of the cross section of the steel sheet, the optimum values for each thickness and width of the sheet were experimentally determined.
Table structure: [Thickness (15) xBoard width (Five)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By sheet width layer: <1600, <2400, <3200, <4000,4000 ≦
1) Chewing deceleration rate> Mill deceleration rate → Chewing deceleration length correction.
Biting deceleration length = Mill biting deceleration2/ Mill deceleration rate / 2
2) Biting deceleration rate ≤ Mill deceleration rate → No correction.
[0023]
The control amount in the next pass is calculated as follows.
(1) No work on exit side → Calculate the following 1) to 6) in the next pass by the method of paragraphs [0013] to [0018] above.
1) Next pass mill speed (1) Stationary paragraph [0013]-(1)
(2) Biting Above paragraph [0013]-(2)
2) Advanced rate of next path prediction
3) Next pass entry side material speed (1) Stationary paragraph [0014]-(1-1)
(2) Biting Above paragraph [0014]-(1-2)
4) Next pass entry side table speed (1) Entry side above paragraph [0015]-(1)
(2) Outgoing paragraph [0015]-(2)
5) Next pass table acceleration rate Paragraphs [0016] and [0017] above
6) Next path table acceleration start point Paragraph [0018] above
(2) With delivery work → Set all of 1) to 6) below to 0 in the next pass.
1) Next pass mill speed (1)
(2)
2) Next path prediction
3) Next pass entry side material speed (1)
(2)
4) Next pass
5) Next pass table acceleration rate (1)
(2)
6) Next path table acceleration start
[0024]
The allowable table deceleration start point (S) is determined by referring to the table as follows. Considering the stability of the rolling operation and the inertia of the cross section of the steel sheet, the optimum values for each thickness and width of the sheet were experimentally determined.
Table structure: [Thickness (15) xBoard width (Five)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By sheet width layer: <1600, <2400, <3200, <4000,4000 ≦
[0025]
The Min deceleration time (S) and the Min deceleration distance (m) are calculated as follows.
Min deceleration time = table biting speed / table maximum deceleration rate
Min deceleration distance = Table maximum deceleration rate x Min deceleration time2/ 2
= Table biting speed2/ Table maximum deceleration rate / 2
[0026]
The table deceleration start point and the deceleration rate are corrected as follows.
Case I: Target chewing idle running distance = 0 → When the delivery side table does not synchronize with the steel plate speed
(Slip deceleration)
(1) Expected material deceleration rate
Predicted material deceleration rate is determined by referring to the table. Considering the stability of the rolling operation and the inertia of the cross section of the steel sheet, the optimum values for each thickness and width of the sheet were experimentally determined.
Table structure: [Thickness (15) xBoard width (Five)]
By thickness (thickness for each pass): <6, <8, <10, <12, <14, <16, <18, <20, <24, <28,
<32, <40, <60, <90,90 ≦
By sheet width layer: <1600, <2400, <3200, <4000,4000 ≦
(2) Expected material deceleration time
Predicted deceleration time = Material biting speed / Predicted material deceleration rate
(Three) Predicted material deceleration distance
Predicted deceleration distance = Predicted material deceleration rate x Predicted material deceleration time2/ 2
= Material biting speed2/ Predicted material deceleration rate / 2
(Four) Table deceleration rate (m / S2)
Table deceleration rate = Maximum table deceleration rate
(Five) Outside table deceleration start point (S) (Outside table deceleration start to metal-off time interval)
Outlet table deceleration start point = Outlet table speed / Table maximum deceleration rate
(6) Incoming table deceleration start point (S) (Incoming table deceleration start to metal off time interval)
Entry table deceleration start point = entry table speed / table maximum deceleration rate-start point
Correction-(Predicted material deceleration time-Next path table acceleration start point)
(7) Checking / correcting the deceleration table on the entry / exit side
Clamp the input / output table deceleration start point at the allowable table deceleration start point.
Input table deceleration start point> Allowable table deceleration start point
→ Input table deceleration start point = Allowable table deceleration start point
Outlet table deceleration start point> Allowable table deceleration start point
→ Delivery table deceleration start point = Allowable table deceleration start point
[0027]
Case II: Aiming idle running distance ≠ 0 and Aiming idle running distance <Min Deceleration distance
(1) Target table deceleration start point (S)
Target table deceleration start point = Min deceleration time × (1− (Target biting idle running distance /
Min deceleration distance)1 / 2)
(2) Delivery table deceleration start point (S)
Target table deceleration start point> Allowable table deceleration start point
→ Delivery table deceleration start point = Allowable table deceleration start point
Target table deceleration start point <Allowable table deceleration start point
→ Delivery side table deceleration start point = Target table deceleration start point
(Three) Incoming table deceleration start point (S)
Incoming table deceleration start point = Outgoing table deceleration start point
(Four) Correction aiming bite running distance (m)
Corrected biting idle running distance = table maximum acceleration rate
× (Min deceleration time-delivery table deceleration start point)2/ 2
(Five) Each speed correction
Correction table biting speed = (2 x correction aim biting distance x table maximum reduction
(Rate) 1/2
Table deceleration rate = Maximum table deceleration rate
Correction material biting speed = Correction table biting speed
Corrected mill biting speed = corrected material biting speed / (1 + fs)
Corrected mill bite deceleration = mill steady speed-corrected mill bite speed
[0028]
Case III: Target biting idle running distance ≠ 0 and target biting idle running distance ≥ Min deceleration distance
(1) Outward table deceleration start point (S) = 0
(2) Incoming table deceleration start point (S) = 0
(Three) Table deceleration rate = Table biting speed2/ Chewing idle distance / 2
[0029]
The control timing of the table and the rolling mill is calculated as follows.
(1) Mill deceleration timing
Vmm [m / s]: Mill steady state speed
Vmo [m / s]: Mill biting speed
Vpm [m / s]: Stationary material steady speed
Vpo [m / s]: Outgoing material biting speed
αmo [m / s2]: Mill biting deceleration rate
αpo [m / s2]: Outlet material biting deceleration rate
Lpom [m]: Mill biting deceleration length
fs [-]: Advanced rate
Δtm [sec]: Mill biting deceleration time
Vpm = (1 + fs) Vmm
Vpo = (1 + fs) Vmo
αpo = (1 + fs) αmo
Δtm = (Vpm−Vpo) / αpo = (Vmm−Vmo) / αmo
Lpom = (Vpm + Vpo) Δtm / 2
= (1 + fs) (Vmm + Vmo) (Vmm-Vmo) / (2αmo)
= (1 + fs) (Vmm2-Vmo2) / (2αmo)
The mill deceleration start is performed at the timing when the target (predicted) rolling length (P / C setting) −delivery side rolling length record (PLC calculation) ≦ Lpom. Therefore, the distance Lpom required for deceleration corresponds to the hatched area shown in FIG.
Here, the delivery side roll length record L (see FIG. 3) is calculated by the following equation.
L = ∫ (1 + fs) Vm dt − (ΔLf / 100)
[0030]
(2) Table deceleration timing
Vmm [m / s]: Mill steady state speed
Vmo [m / s]: Mill biting speed
Vpm [m / s]: Stationary material steady speed
Vpo [m / s]: Outgoing material biting speed
αmo [m / s2]: Mill biting deceleration rate
αpo [m / s2]: Outlet material biting deceleration rate
Lpot [m]: Table biting speed reduction
fs [-]: Advanced rate
Δtt [sec]: Table biting deceleration time
Δtm [sec]: Mill biting deceleration time
Vpm = (1 + fs) Vmm
Vpo = (1 + fs) Vmo
αpo = (1 + fs) αmo
Δtm = (Vpm−Vpo) / αpo = (Vmm−Vmo) / αmo
Lpot = VpmΔtt− (Vpm−Vpo) Δtm / 2
= (1 + fs) VmmΔtt- (1 + fs) (Vmm-Vmo)2/ (2αmo)
The table deceleration start is performed at the timing when the target (predicted) rolling length (P / C setting) −delivery side rolling length result (PLC calculation) ≦ Lpot. Since the distance Lpot required for deceleration on the transfer table side is poor in response, as shown in FIG. 5, it corresponds to the area of the hatched portion in which a rectangle is further added to the trapezoid.
[0031]
【Example】
FIG. 4 is a conceptual diagram of the configuration of the work flow and rolling time of each rolling pass when the acceleration / deceleration rate and acceleration / deceleration start timing of the rolling mill and the conveyance table are determined for reverse rolling consisting of a plurality of passes based on the present invention. It is shown in FIG. By realizing the optimum acceleration / deceleration rate and acceleration / deceleration timing according to the material size and steel type, it is possible to maximize the efficiency of the rolling operation while maintaining sufficient stability of the rolling operation.
[0032]
Examples of controlling the speed and position of a rolling mill, a table, and a steel plate in the case where no material slip is generated for a material with particularly strict rolling stability on the rolling mill exit side are shown in FIGS.
[0033]
Examples of controlling the speed and position of the rolling mill, table, and steel plate when sliding the material on the rolling mill exit side, reducing table acceleration / deceleration responsiveness loss, and reducing the time between passes are shown in FIGS. Show.
[0034]
Roller and table when reducing table acceleration / deceleration loss by reducing table acceleration / deceleration loss by setting table speed <material speed during biting under conditions that do not cause material slip after biting on the rolling mill exit side. Examples of controlling the speed and position of the steel sheet are shown in FIGS.
[0035]
Example of controlling the speed and position of a rolling mill, table, and steel sheet when the sliding friction of the material is utilized to the maximum on the delivery side of the rolling mill, and the time between passes is minimized by stopping the steel sheet near the rolling mill. Shown in FIGS.
[0036]
【The invention's effect】
When a rolling mill that performs reverse rolling consisting of multiple passes, such as hot rolling of steel plates for thick plates, and its front and rear transfer table are operated automatically, conventionally, the rolling mill motor and the front and rear transfer table motor are synchronized to perform rolling. In general, control is performed so that the steel plate speed on the machine entry / exit side is always equal to the peripheral speed of the transfer table, that is, the steel plate does not slide on the table.
To achieve this control, it is necessary to equalize the acceleration / deceleration rates of the rolling mill motor and the transfer table motor. However, due to economic constraints, the response of the transfer table motor is generally lower than the response of the rolling mill motor. Is set. In other words, the number of motors of the front and rear transfer tables is several tens for one rolling mill motor, and the equipment cost must be enormous for all of them to have the same responsiveness as the rolling mill motor. It is. Therefore, it has been a general method to determine the acceleration / deceleration rate of the rolling mill motor in accordance with the maximum acceleration / deceleration rate determined from the specifications of the conveyance table with poor responsiveness within a range that does not significantly impede the production efficiency.
However, this method does not maximize the efficiency of the rolling process by making the best use of the capacity of the rolling mill.
[0037]
Therefore, the present inventor inevitably occurs due to the difference between the steel plate speed on the entry / exit side of the rolling mill and the front / rear transport table speed when the response of the front / rear transport table motor is inferior to that of the rolling mill motor. The amount of slip of the steel sheet to be measured was measured for various rolling conditions and materials, and the amount of slip was found to be determined by the temperature of the steel sheet in addition to the size and speed of the steel sheet. The method of calculating the acceleration / deceleration rate and timing of the rolling mill and the front and rear conveyance tables that minimize the rolling time while maintaining the stability of the present invention has been found.
As a result, the optimum acceleration / deceleration rate and acceleration / deceleration timing are realized in accordance with the size of the material and the steel type, and automatic rolling that maximizes the efficiency of the rolling operation is possible while sufficiently maintaining the stability of the rolling operation.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a configuration of work flow and rolling time of each rolling pass in reverse rolling.
FIG. 2 is a conceptual diagram showing an embodiment of the present invention.
FIG. 3 is a diagram showing a calculation flow of acceleration / deceleration rates and timings of a rolling mill and front and rear surface transfer tables.
FIG. 4 is a diagram showing a distance (Lpom) required for deceleration at the mill deceleration timing.
FIG. 5 is a diagram showing a distance (Lpot) required for deceleration at a conveyance table deceleration timing.
FIG. 6 is a conceptual diagram showing the configuration of the work flow and rolling time for each rolling pass when the acceleration / deceleration rate and the acceleration / deceleration start timing of the rolling mill and the conveyance table are determined.
FIG. 7 is a diagram showing an embodiment for controlling the speed and position of a rolling mill, a table, and a steel plate when no material slip occurs.
FIG. 8 is a diagram showing details of the normal rotation direction in the embodiment of the control method shown in FIG. 7;
9 is a diagram showing a relationship between time and a steel plate position in the embodiment of the control method shown in FIG.
FIG. 10 is a diagram showing an embodiment for controlling the speed of a rolling mill, a table, and a steel plate when a material is slid on the exit side of the rolling mill to reduce the acceleration / deceleration response loss of the table and shorten the pass time. .
FIG. 11 is a diagram showing details of the normal rotation direction in the embodiment of the control method shown in FIG. 10;
12 is a control method shown in FIG.Examples ofThe figure which shows the relationship between the time in steel, and a steel plate position.
[Fig. 13] Reduces the acceleration / deceleration responsiveness loss of the table with the table speed <material speed during biting under the condition that the material does not slip after biting on the rolling mill exit side, and shortens the pass time. The figure which shows the Example which controls the speed | rate of a rolling mill, a table, and a steel plate in the case of.
FIG. 14 is a diagram showing details of the normal rotation direction in the embodiment of the control method shown in FIG. 13;
FIG. 15 is a diagram showing a relationship between time and a steel plate position in the embodiment of the control method shown in FIG. 13;
FIG. 16 shows the speed and position of the rolling mill, table, and steel plate when the sliding friction of the material is utilized to the maximum on the delivery side of the rolling mill and the time between passes is minimized by stopping the steel plate in the vicinity of the rolling mill. The figure which shows the Example which controls.
FIG. 17 is a diagram showing details of the normal rotation direction in the embodiment of the control method shown in FIG. 16;
18 is a diagram showing a relationship between time and a steel plate position in the embodiment of the control method shown in FIG.
Claims (2)
但し、
噛出空走距離;鋼板がメタルオフしてから停止するまでの距離
噛込加速長;鋼板が停止状態から圧延機に噛込んだ時の速度に達するまでに必要と
する距離
噛出減速長;圧延後の鋼板の噛出速度から停止するまでに必要とする距離 In the operation of a rolling mill that performs reverse rolling and its front and rear conveyance tables, the steel plate speed on the entry side or the exit side of the rolling mill and the slip amount of the steel sheet due to the difference between the steel plate speed and the conveyance table speed are required. In order to maintain rolling stability, the optimum values for each of the steel sheet size, speed, steel type, and temperature are experimentally determined at least for the idle running distance, the biting acceleration length, and the biting deceleration length , Using the optimum values of the biting idle running distance, biting acceleration length, and biting deceleration length obtained according to the size, speed, steel type, and temperature of the steel sheet to be rolled, the rolling mill and the front and rear surface transfer table Acceleration / deceleration rate and timing, i.e., the time series change of the speed of the rolling mill and the front and rear conveyance table is temporarily determined, and the difference between the steel plate speed calculated from the speed of the rolling mill and the front and rear conveyance table speed is determined. On time Characterized in that the slip of the steel sheet which is obtained by integrating the while the range to keep the rolling stability required to calculate the optimal acceleration and deceleration rate and timing of the rolling mill and the front and rear surfaces conveying table for the rolling time the shortest Te An automatic operation method of the rolling mill and the front and rear transfer table.
However,
Chewing idle distance: Distance from steel plate to metal stop until stopping
Biting acceleration length: Necessary to reach the speed at which the steel plate bites into the rolling mill from a stopped state
Distance
Biting deceleration length: Distance required to stop from the biting speed of the rolled steel sheet
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171313A JP4213912B2 (en) | 2002-06-12 | 2002-06-12 | Automatic operation method and apparatus for reverse rolling mill and its front and rear transfer table |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171313A JP4213912B2 (en) | 2002-06-12 | 2002-06-12 | Automatic operation method and apparatus for reverse rolling mill and its front and rear transfer table |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004017051A JP2004017051A (en) | 2004-01-22 |
JP4213912B2 true JP4213912B2 (en) | 2009-01-28 |
Family
ID=31171209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002171313A Expired - Fee Related JP4213912B2 (en) | 2002-06-12 | 2002-06-12 | Automatic operation method and apparatus for reverse rolling mill and its front and rear transfer table |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4213912B2 (en) |
-
2002
- 2002-06-12 JP JP2002171313A patent/JP4213912B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004017051A (en) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5801042B2 (en) | Hot rolling method | |
JP4213912B2 (en) | Automatic operation method and apparatus for reverse rolling mill and its front and rear transfer table | |
JP3308926B2 (en) | Rolling method | |
JP2014223972A (en) | Meandering suppression and control method | |
JP3927536B2 (en) | Transfer control method in continuous hot rolling line | |
JP6922936B2 (en) | Rolling machine bite stop detection device, detection method and rolling mill | |
JP2006051526A (en) | Method for controlling idle time between steel sheets in finishing mill | |
JPS58163524A (en) | Control device of steel plate winder | |
JP3690269B2 (en) | Steel rolling method | |
JPH09136107A (en) | Method for controlling velocity of carrying table roller in hot rolling mill | |
TWI844021B (en) | Electric motor speed control device | |
JP3330441B2 (en) | Steel sheet transfer control method | |
JP3452082B2 (en) | Method and apparatus for controlling rolling equipment | |
JP5724442B2 (en) | Automatic extraction method of heating furnace in hot rolling | |
JP2002331306A (en) | Apparatus for controlling conveyance and rotation of steel plate | |
JP2002126812A (en) | Rolling method and equipment | |
JP2012161832A (en) | Steel plate levelling speed control method on levelling machine and its equipment | |
JP2758807B2 (en) | Conveyance drive control method for band | |
JPH04351216A (en) | Method for controlling mill pacing in hot rolling line | |
JP3903376B2 (en) | Bridle roll control device | |
JP3073633B2 (en) | Automatic thickness control method for rolling mill | |
JPH11278643A (en) | Carrying object position tracking method and its device, moving speed detection method and its device, and position control method and its device | |
JP4241310B2 (en) | Rolling method | |
JPH06299231A (en) | Method for adjusting mill pacing in hot rolling | |
JP2000015317A (en) | Method for automatically charging saw-cut product into cooling bed and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070501 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070918 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081031 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4213912 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |