JP4213815B2 - Cold-rolled steel sheet for post-press nitriding with excellent strength and low-temperature brittleness after nitriding and method for producing the same - Google Patents
Cold-rolled steel sheet for post-press nitriding with excellent strength and low-temperature brittleness after nitriding and method for producing the same Download PDFInfo
- Publication number
- JP4213815B2 JP4213815B2 JP13051599A JP13051599A JP4213815B2 JP 4213815 B2 JP4213815 B2 JP 4213815B2 JP 13051599 A JP13051599 A JP 13051599A JP 13051599 A JP13051599 A JP 13051599A JP 4213815 B2 JP4213815 B2 JP 4213815B2
- Authority
- JP
- Japan
- Prior art keywords
- nitriding
- less
- strength
- steel sheet
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば自動車においてはメンバー、レインフォースメントなどの強度、衝撃吸収能が要求される部品、外板などの耐デント性が要求される部品、その他あらゆる高強度機械構造用部品に適用できるプレス成形体用鋼板に係り、この鋼板をプレス後窒化して用いることにより高強度でかつ低温靭性に優れたプレス成形体を寸法精度よくしかも低コストで製造が可能となる、プレス成形し更に窒化した後の強度と耐低温脆性に優れたプレス後窒化処理用冷延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
近年、自動車の燃費向上の要求から車体重量の軽量化が指向されている。また衝突安全性の観点からはボディの高強度、高剛性化さらに衝撃吸収能に対するニーズが高まっている。これらのニーズを満たすために、強度が必要とされるメンバーなどの構造用部材やレインフォースメントなどの補強部材は従来の軟質鋼板からTS(引張強さ)が340MPa以上の高張力鋼板への転換が図られている。
【0003】
しかしながら、高張力鋼板は軟質鋼板と比較すると伸び、r値で劣るため、当然のことながら成形性が低く、複雑形状のプレス成形が困難なのが現状である。さらにYP(降伏強さ)が高くなることに起因してスプリングバックが大きくなり、良好な寸法精度を得ることが困難である。
【0004】
ボディパネルについても耐デント性確保の観点から製品の降伏強度を上げたいが、素材の強度を上げるとプレス後の寸法精度が劣化すると共に、成形性が劣化するため、デザイン上の制約をもたらす。 この問題を解決するために、本発明者らは成分がある限られた範囲に制御された鋼板は、高プレス成形性とプレス成形後に行う窒化処理による強度上昇に優れ、しかも窒化処理後の靭性に優れることを見出した。
【0005】
しかしながら、このように製造される高強度プレス成形体はしばしば、低温環境下で衝撃的な変形を受けるが、先に開示した技術だけでは必ずしも窒化後に十分な低温靭性を有しない問題があった。また歪み速度が102 /secを超える場合も、低温の場合と等価に作用し変形時に材料が脆性的に破壊する問題があった。
【0006】
これまで窒化または軟窒化性に優れる窒化用鋼板としては特開昭54−21916号公報、特開昭55−76046号公報、特開平1−96330号公報、特開平8−35013号公報、特開平9−25517号公報などにいくつかの技術が開示されている。 また、特開平6−136438にはε−Cuの析出強化を窒化と併用して板内部も硬化する技術が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開昭54−21916号公報は耐磨耗性、耐疲労特性を意図したもので、本発明が目的とする機械構造用部品用途にはTi濃度が高すぎ、またCrを含有しているという理由で破壊強度、低温での靭性において劣る。さらに本先行文献には、Ti濃度が本発明の範囲において際だって窒化後の強度靭性が優れることは示されていない。
【0008】
特開昭55−76046号公報、特開平9−25517号公報はCr添加が必須であるが、Crは表面硬化層の硬さを高める効果があるが、低温のみならず常温でも脆化をもたらすので靭性の必要な機械構造用部品用窒化鋼板には添加してはならない。また添加元素が高価であるので工業的に好ましくない。
【0009】
特開平1−96330号公報は板製造段階で窒化するもので、本発明とは技術思想が異なる。また本先行文献には本発明請求項に示したごく限られたC,Tiの範囲において特に窒化後の強度と靭性が優れることは示されていない。特開平8−35013号公報開示の技術は本発明と比較すると窒化による強度上昇に寄与する固溶Ti量が十分でないため、窒化後の強度に優れない。
【0010】
さらに、特開平6−136438号公報に開示のCu添加鋼は熱延時にCuの共晶融解に起因する表面欠陥の発生が顕著で、良好な表面性状が要求される部品に対しては適用できない。このように従来技術では、一般構造用部品を窒化によって製作するのに最適な、窒化後の強度と靭性に優れた窒化処理用鋼板の製造は不可能であった。
【0011】
本発明の目的は、窒化後の強度と低温脆性に優れ、さらにプレス成形性、表面性状に優れたプレス後窒化処理用冷延鋼板およびその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
【0013】
(1)本発明の鋼板は、重量%で、C:0.010%以下と、Si:0.05%以下と、Mn:0.1〜1%と、P:0.1%以下と、S:0.02%以下と、Sol.Al:0.01〜0.10%と、Cu:0.1%以下と、N:0.003%以下と、Tiを下記(1)式で定義されるTi*:−0.01〜0.08%の範囲で含有し、残部がFeおよび不可避不純物からなり、かつフェライトの平均結晶粒径が15μm以下であることを特徴とする、プレス成形し更に窒化した後の強度と低温脆性に優れたプレス後窒化処理用冷延鋼板である。
【0014】
Ti*%=Ti%−48/14×N%−48/12×C%−48/32×S% …(1)
(2)本発明の鋼板は、鋼成分として、重量%で、さらにB:0.0002〜0.001%を含有することを特徴とする、上記(1)に記載のプレス成形し更に窒化した後の強度と低温脆性に優れたプレス後窒化処理用冷延鋼板である。
【0015】
(3)本発明の鋼板は、鋼成分として、重量%で、さらにNb:0.005〜0.10%を含有することを特徴とする、上記(1)または(2)に記載のプレス成形し更に窒化した後の強度と低温脆性に優れたプレス後窒化処理用冷延鋼板である。
【0016】
(4)本発明の製造方法は、上記(1)乃至(3)のいずれかに記載の組成を有する鋼を、熱間圧延し、冷間圧延を行った後、軟化率50%で定義される再結晶温度〜(再結晶温度+50℃)の範囲で再結晶焼鈍を行うことを特徴とする、プレス成形し更に窒化した後の強度と低温脆性に優れたプレス後窒化処理用冷延鋼板の製造方法である。
【0017】
【発明の実施の形態】
本発明者らは、上記の課題を解決すべく、窒化による強度上昇のメカニズムについて鋭意研究した結果、窒化により強度上昇に寄与するのは鋼板中で他の元素と化学的に結合していない、固溶Tiであり、これをある限られた範囲に制御することによって窒化後の強度と靭性に優れた窒化用鋼板が製造可能なことを見出した。
【0018】
固溶Ti濃度はTi全添加量から窒化物、炭化物、硫化物およびその複合体を除いた量で次式で定義される。
【0019】
Ti* %=Ti%−48/14×N%−48/12×C%−48/32×S%
また化学成分を本発明の請求項1に示すような成分範囲に限定することによりプレス成形性、表面性状などの本鋼板を工業的に適用するために必要な、諸特性を満足させた。
【0020】
さらに窒化後は高い強度を有しつつ低温、高速変形下での脆化を抑制するためには、フェライト組織(フェライト平均結晶粒径)を15μm以下にすることが極めて効果的であることを見出した。
【0021】
加えて窒化後の強度と耐低温脆性に優れた鋼板を得るためには、上記の条件を満たす成分範囲で、製造条件について冷間圧延後の再結晶焼鈍温度を軟化率50%で定義される再結晶温度以上、(再結晶温度+50℃)以下の範囲に限定することにより窒化後に強度と低温脆性に優れた鋼板が得られることを見出した。
【0022】
以上の知見に基づき、本発明者らは、C:0.010%以下の極低炭素鋼において、Ti全添加量から窒化物、炭化物、硫化物およびその複合体を除いた量で定義される固溶Ti濃度(Ti* )を特定し、鋼組織を細粒化するため冷間圧延後の再結晶焼鈍温度を一定範囲内に制御するようにして、窒化後に高い強度と低温脆性を有する窒化処理用鋼板およびその製造方法を見出し、本発明を完成させた。
【0023】
すなわち、本発明は鋼組成、組織、および製造条件を下記範囲に限定することにより、窒化後の強度と低温脆性に優れ、さらにプレス成形性、表面性状に優れた窒化処理用鋼板を提供することができる。
【0024】
以下に本発明の成分添加理由、成分限定理由、鋼組織の限定理由、および製造条件の限定理由について説明する。
(1)成分組成範囲および鋼組織
Ti* :−0.01〜0.08%,但し、Ti* %=Ti%−48/14×N%−48/12×C%−48/32×S%
Tiは本発明の最も重要な化学成分で、Tiの全添加量のうち窒化物、炭化物、硫化物およびその複合体を形成しているものを除いた固溶Tiの制御が窒化後の強度と靭性の両立に不可欠である。固溶Tiは式Ti* %=Ti%−48/14×N%−48/12×C%−48/32×S%で定義され、これを−0.01〜0.08%の範囲に制御することが必要である。本式は平衡論的に存在する固溶Ti濃度を与えるので、実質的にはTi*が負の領域においても−0.01%以上あれば、Tiが非平衡的に固溶して存在するため、窒化による強度上昇能に優れる。これが−0.01%未満では窒化により強度上昇が十分でなく、高い強度が得られない。一方0.08%を超えると窒化後に脆化し、低温靭性が著しく劣化する。
【0025】
C:0.010%以下
C濃度が0.010%を超えるとTi添加鋼ではCはTiCを形成し、強度が上昇し著しく成形性を低下する。従ってCは0.010%以下にしなければならない。
【0026】
Si:0.05%以下
Siは0.05%を超えると固溶強化のために強度が上昇し、成形性の低下を招く。従って、その含有量の上限は0.05%である。
【0027】
Mn:0.1〜1%
Mnは固溶SとともにMnSとして析出してSに起因する表面疵を抑制する。0.1%未満ではその効果が十分でなく、1%を超えると固溶強化により強度が上昇し成形性が低下する。従って、その含有量は0.1〜1%である。
【0028】
P:0.1%以下
PはMnやSiと同様に固溶強化元素であり、0.1%を超えると成形性が著しく劣化する。従って、その含有量は0.1%以下である。
S:0.02%以下
Sは前述したように表面疵の原因となるので0.02%以下に制御する必要がある。
【0029】
Sol.Al:0.01〜0.10%
Sol.Alは脱酸材として添加される。0.01%未満ではその効果が十分でない。また0.10%を超えて添加してもその効果は飽和し、不経済であるので0.10%以下である。
【0030】
N:0.003%以下
Nは固溶Nとして焼鈍時にr値向上に適当な集合組織の生成を妨げたり、歪み時効により成形時にストレッチャーストレインマークを発生させ、さらに窒化時に強化に寄与する固溶TiをTiNとして固定するため、窒化の効果を減じるため、出来るだけ低減することが望ましい。0.003%を超えるとその悪影響が顕著となるので0.003%以下にする必要がある。
【0031】
Cu:0.1%以下
Cuは熱間圧延時に共晶融解し、表面性状を著しく劣化させるので0.1%以下にしなければならない。
【0032】
本発明では、上記した元素の他に、必要に応じて、B、Nbを以下の範囲でさらに添加してもよい。
B:0.0002〜0.001%
Bは0.0002%以上添加することにより、成形加工時の2次加工脆性が抑制される。またBは粒界を強化することにより窒化後の材料の延性−脆性遷移温度を下げる効果がある。0.0002%未満ではその効果が十分でなく、0.001%を超えて含有すると板製造段階でBNを形成し成形性を劣化させるので、0.0002〜0.001%添加する必要がある。
【0033】
Nb:0.005〜0.10%
Nbは0.005〜0.10%添加することにより、素材のr値および伸びを向上させる効果がある。0.005%未満ではその効果がなく、0.10%を超えるとその効果が飽和し、コスト高となるので、特に高い素材成形性が必要な用途においては0.005〜0.10%添加する必要がある。
【0034】
フェライト平均結晶粒径:15μm以下
窒化後に低温または歪み速度102 /secを超える超高歪速度で変形した場合、強度が高くなればなるほど脆性的に破壊する傾向がある。延性−脆性遷移温度はシャルピー衝撃試験で評価されるが、この値が−50℃とすることが工業的に必要である。窒化後の強度を損なわずに、延性−脆性遷移温度を−50℃以下にするためには、フェライトの平均結晶粒径を15μm以下とすることが必要である。これは破壊形態が粒界または劈開であるので、粒界が亀裂伝播の抵抗となり、15μmを臨界点として脆化が抑制されると考えられる。
【0035】
上記の成分組成範囲及び組織に調整することにより、窒化後の強度と低温脆性に優れ、さらにプレス成形性、表面性状に優れた窒化処理用鋼板を得ることが可能となる。
【0036】
このような特性の鋼板は以下の製造方法により、製造することができる。
【0037】
(2)鋼板製造工程
(製造方法)
上記の成分組成範囲に調整した鋼を転炉で溶製し、鋼鋳塊とした後、常法にて熱間圧延し、冷間圧延を行い、次いで、軟化率50%で定義される再結晶温度〜(再結晶温度+50℃)の範囲で再結晶焼鈍を行う。
【0038】
a.焼鈍温度
低温靭性に優れた窒化処理用鋼板を得るためには、冷間圧延後の焼鈍温度の制御が必要である。焼鈍温度は軟化率が50%で定義される再結晶温度以上、(再結晶温度+50℃)以下でなければならない。焼鈍温度が再結晶温度未満では鋼板の成形性が不十分で成形加工用途には不適である。また焼鈍温度が(再結晶温度+50℃)超えでは結晶粒が粗大化し、脆化が促進される。なお、再結晶処理の方法は連続焼鈍、箱焼鈍のいずれを用いてもよい。
【0039】
上記成分および組織を有する鋼板を所定形状に成形後、窒化または軟窒化処理を行うことにより、強度、靭性に優れた構造部品が製造できる。ここでいう窒化、軟窒化処理はガス窒化でもプラズマ(イオン)窒化でも効果は同様である。窒化処理条件は表面硬化を目的とする従来の場合と同様で問題なく、窒化温度は500〜600℃、窒化時間は30分〜2時間程度が適当である。
【0040】
以下に本発明の実施例を挙げ、本発明の効果を立証する。
【0041】
【実施例】
表1に示すような種々の化学成分、組成を有する熱間圧延板を板厚1.2mmまで冷間圧延した(A〜C:本発明鋼、D:比較鋼)。これら冷間圧延板の再結晶温度を測定した結果、いずれも約670℃であった。連続焼鈍炉を用い、700℃で焼鈍を行った。窒化処理はガス軟窒化法を用い、NH3 、N2 、H2 、CO混合ガス中で570℃×1時間で行った。
【0042】
低温靭性の評価は、シャルピー衝撃試験(JISZ2242)により吸収エネルギーを測定し、吸収エネルギーが延性域と脆性域の中央値になる温度として定義される延性−脆性遷移温度を測定した。試験片(JISZ2202)は2枚の板を窒化後にスポット溶接で張り付け、機械加工により4号試験片のサブサイズとした。
【0043】
また、平均結晶粒径は、板幅方向に垂直な断面を研磨し、圧延方向、板厚方向に平行に一定長さ(I)当たりの結晶数(n)を測定し(100個程度)、平均粒径d=I/nとして測定し、さらに圧延方向の粒径と板厚方向の粒径を相乗平均して平均結晶粒径とした(JIS G0522(鋼のフェライト粒度試験方法)中の切断法の類似(JISでは粒度を測定する)の測定方法)。
【0044】
表2に窒化前後の引張特性および低温靭性の評価結果を示す。焼鈍後のフェライトの平均結晶粒径はいずれも15μm以下である。本発明鋼A〜Cは窒化後は500MPa以上の高い引張強度を示す。また延性−脆性遷移温度は−50℃以下で極めて良好である。これに対し、Ti* が本発明範囲外の比較鋼Dは窒化後の強度は高いが、延性−脆性遷移温度が高く、低温脆性において劣る。
【0045】
表3は供試鋼(本発明鋼)Bに対して、種々の温度で再結晶焼鈍を連続焼鈍炉で行い、フェライトの平均結晶粒径、窒化前後の強度と延性−脆性遷移温度を調査した結果を示す(No.2〜4:本発明例、No.1,5:比較例)。この鋼の再結晶温度(即ちロックウェル硬度で測定した軟化率50%で定義される再結晶温度)を測定すると670℃であった。
【0046】
図1にフェライトの平均結晶粒径と延性−脆性遷移温度の関係を示す。粒径が15μm以下では延性−脆性遷移温度は−50℃以下と良好であるが、15μmを超えると劣化することがわかる。
【0047】
表3に示すように、本発明の製造条件を満たす本発明例No.2〜4は窒化後の強度が高く、延性−脆性遷移温度が−50℃以下で低温靭性が極めて良好である。
【0048】
一方、焼鈍温度が再結晶温度未満の比較例No.1は素材の伸びが低く、成形性が優れない。比較例No.5は焼鈍温度が高いため、フェライトの平均結晶粒径15μm越えとなり、低温脆性が劣る。
【0049】
【表1】
【0050】
【表2】
【0051】
【表3】
【0052】
【発明の効果】
以上説明したように、本発明によれば、鋼組成、組織、及び製造条件を特定することにより、プレス成形し更に窒化した後に高い強度と低温靭性を有するプレス後窒化処理用冷延鋼板が製造できる。
【0053】
このような鋼板を成形後窒化して用いることにより、寸法精度、強度、耐久性に優れた高強度一般構造用部品を低コストで製造することが可能となり、産業上極めて有益である。
【図面の簡単な説明】
【図1】本発明の実施例に係る鋼板のフェライトの平均結晶粒径と延性−脆性遷移温度の関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention can be applied to, for example, parts such as members and reinforcement in automobiles, parts that require shock absorption capability, parts that require dent resistance such as outer plates, and other parts for high-strength mechanical structures. relates to a press molded body steel sheet, it is possible to manufacture with good dimensional accuracy yet low cost excellent press molded product high strength and low temperature toughness by the use of this steel plate is nitrided after pressing, further nitrided press molding The present invention relates to a cold-rolled steel sheet for post-press nitriding that has excellent strength and low-temperature brittleness and a method for producing the same.
[0002]
[Prior art]
In recent years, weight reduction of a vehicle body weight is aimed at from the request | requirement of the fuel consumption improvement of a motor vehicle. In addition, from the viewpoint of collision safety, there is an increasing need for high strength and high rigidity of the body and shock absorption capability. In order to satisfy these needs, structural members such as members that require strength and reinforcement members such as reinforcement are switched from conventional soft steel plates to high-tensile steel plates with a TS (tensile strength) of 340 MPa or more. Is planned.
[0003]
However, since a high-tensile steel plate is elongated in comparison with a soft steel plate and is inferior in r value, it is a matter of course that formability is low and it is difficult to press-form complicated shapes. Furthermore, the springback increases due to an increase in YP (yield strength), and it is difficult to obtain good dimensional accuracy.
[0004]
For body panels, it is desirable to increase the yield strength of products from the viewpoint of ensuring dent resistance. However, increasing the strength of the material degrades the dimensional accuracy after pressing and also degrades the formability, which causes design limitations. In order to solve this problem, the inventors of the present invention have a steel plate controlled to a limited range in which components are excellent in high press formability and strength increase by nitriding treatment after press forming, and toughness after nitriding treatment. It was found to be excellent.
[0005]
However, the high-strength press-molded body produced in this way often undergoes shock deformation in a low-temperature environment, but there is a problem that the technique disclosed above does not necessarily have sufficient low-temperature toughness after nitriding. In addition, when the strain rate exceeds 10 2 / sec, there is a problem that the material breaks brittlely at the time of deformation by acting equivalently to the case of low temperature.
[0006]
Conventional nitriding steel plates having excellent nitriding or soft nitriding properties are disclosed in JP 54-21916, JP 55-76046, JP 1-96330, JP 8-35013, JP Several techniques are disclosed in Japanese Patent Publication No. 9-25517. Japanese Patent Laid-Open No. 6-136438 discloses a technique for hardening the inside of a plate by using precipitation strengthening of ε-Cu together with nitriding.
[0007]
[Problems to be solved by the invention]
However, Japanese Patent Application Laid-Open No. 54-21916 is intended for wear resistance and fatigue resistance, and the Ti concentration is too high for the purpose of machine structural parts intended by the present invention. It is inferior in fracture strength and toughness at low temperature because it is. Furthermore, this prior document does not show that the Ti concentration is markedly excellent in strength and toughness after nitriding in the scope of the present invention.
[0008]
In JP-A-55-76046 and JP-A-9-25517, Cr addition is essential, but Cr has the effect of increasing the hardness of the surface hardened layer, but it causes embrittlement not only at a low temperature but also at a normal temperature. Therefore, it must not be added to nitrided steel sheets for machine structural parts that require toughness. Moreover, since an additive element is expensive, it is not industrially preferable.
[0009]
Japanese Laid-Open Patent Publication No. 1-96330 is nitrided in the plate manufacturing stage and has a technical idea different from that of the present invention. Further, this prior document does not show that the strength and toughness after nitriding are particularly excellent in the limited range of C and Ti shown in the claims of the present invention. The technique disclosed in Japanese Patent Laid-Open No. 8-35013 is not excellent in strength after nitriding because the solid solution Ti amount contributing to the strength increase by nitriding is not sufficient as compared with the present invention.
[0010]
Furthermore, the Cu-added steel disclosed in JP-A-6-136438 has a remarkable occurrence of surface defects due to eutectic melting of Cu during hot rolling, and cannot be applied to parts that require good surface properties. . As described above, in the prior art, it is impossible to produce a steel sheet for nitriding treatment excellent in strength and toughness after nitriding, which is optimal for producing general structural parts by nitriding.
[0011]
An object of the present invention is to provide a cold-rolled steel sheet for post-press nitriding that is excellent in strength and low-temperature brittleness after nitriding, and further excellent in press formability and surface properties, and a method for producing the same.
[0012]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention uses the following means.
[0013]
(1) The steel sheet of the present invention is, by weight, C: 0.010% or less, Si: 0.05% or less, Mn: 0.1 to 1%, P: 0.1% or less, S: 0.02% or less, Sol. Al: 0.01-0.10%, Cu: 0.1% or less, N: 0.003% or less, Ti is defined by the following formula (1) Ti * : −0.01 to 0 contained in the range of .08%, the balance being Fe and unavoidable impurities, and wherein the average crystal grain size of the ferrite is 15μm or less, excellent in strength and low temperature brittleness after further nitrided press forming This is a cold-rolled steel sheet for nitriding after pressing .
[0014]
Ti * % = Ti% −48 / 14 × N% −48 / 12 × C% −48 / 32 × S% (1)
(2) The steel sheet of the present invention is characterized by containing, as a steel component, by weight%, and further B: 0.0002 to 0.001%, and further press-molded and nitrided according to (1) above . It is a cold-rolled steel sheet for post-press nitriding that has excellent strength and low-temperature brittleness.
[0015]
(3) The steel sheet of the present invention contains, as a steel component, by weight% and further contains Nb: 0.005 to 0.10%, press forming as described in (1) or (2) above and the intensity and cold rolled steel sheet for excellent press after nitriding to the low-temperature brittleness after further nitride.
[0016]
(4) The production method of the present invention is defined by a softening rate of 50% after hot rolling and cold rolling a steel having the composition described in any one of (1) to (3) above. that and performing recrystallization annealing in the range of recrystallization temperature ~ (recrystallization temperature + 50 ° C.), press molding was further cold rolled steel sheet excellent press after nitriding to the strength and low-temperature brittleness after nitriding It is a manufacturing method.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, the present inventors diligently studied the mechanism of strength increase by nitriding. As a result, it is not chemically bonded to other elements in the steel sheet that contributes to the strength increase by nitriding. It was found that Ti is a solid solution Ti, and it is possible to produce a nitriding steel plate excellent in strength and toughness after nitriding by controlling this within a certain limited range.
[0018]
The solid solution Ti concentration is defined by the following formula, which is an amount obtained by excluding nitride, carbide, sulfide and complex thereof from the total addition amount of Ti.
[0019]
Ti * % = Ti% −48 / 14 × N% −48 / 12 × C% −48 / 32 × S%
Further, by limiting the chemical components to the component ranges as shown in claim 1 of the present invention, various properties necessary for industrial application of the steel sheet such as press formability and surface properties were satisfied.
[0020]
Furthermore, after nitriding, it has been found that it is extremely effective to reduce the ferrite structure (ferrite average crystal grain size) to 15 μm or less in order to suppress embrittlement under low temperature and high speed deformation while having high strength. It was.
[0021]
In addition, in order to obtain a steel sheet excellent in strength after nitriding and resistance to low temperature brittleness, the recrystallization annealing temperature after cold rolling is defined with a softening rate of 50% in the component range satisfying the above conditions. It has been found that a steel sheet excellent in strength and low-temperature brittleness can be obtained after nitriding by limiting the recrystallization temperature to the range of (recrystallization temperature + 50 ° C.) or less.
[0022]
Based on the above knowledge, the present inventors are defined by the amount of Ti, the amount of addition of nitride, carbide, sulfide and complex thereof in the ultra-low carbon steel of C: 0.010% or less. Nitriding with high strength and low temperature brittleness after nitriding by specifying the solid solution Ti concentration (Ti * ) and controlling the recrystallization annealing temperature after cold rolling within a certain range to refine the steel structure A steel sheet for treatment and a method for producing the same were found, and the present invention was completed.
[0023]
That is, the present invention provides a steel sheet for nitriding that is excellent in strength and low-temperature brittleness after nitriding, and further excellent in press formability and surface properties by limiting the steel composition, structure, and production conditions to the following ranges. Can do.
[0024]
The reasons for adding the components, the reasons for limiting the components, the reasons for limiting the steel structure, and the reasons for limiting the manufacturing conditions will be described below.
(1) Component composition range and steel structure Ti * : −0.01 to 0.08%, where Ti * % = Ti% −48 / 14 × N% −48 / 12 × C% −48 / 32 × S %
Ti is the most important chemical component of the present invention, and the control of the solid solution Ti excluding the nitrides, carbides, sulfides and their composites out of the total amount of Ti added is the strength after nitriding. Indispensable for balancing toughness. Solid solution Ti is defined by the formula Ti * % = Ti% −48 / 14 × N% −48 / 12 × C% −48 / 32 × S%, and this is in the range of −0.01 to 0.08%. It is necessary to control. Since this equation gives a solid solution Ti concentration that exists in equilibrium, Ti is present in a solid solution in a non-equilibrium state even if Ti * is −0.01% or more even in a negative region. Therefore, the strength increasing ability by nitriding is excellent. If it is less than -0.01%, the strength is not sufficiently increased by nitriding, and a high strength cannot be obtained. On the other hand, if it exceeds 0.08%, it becomes brittle after nitriding, and the low temperature toughness is remarkably deteriorated.
[0025]
C: 0.010% or less When the C concentration exceeds 0.010%, C forms TiC in the Ti-added steel, the strength increases, and the formability deteriorates remarkably. Therefore, C must be 0.010% or less.
[0026]
Si: 0.05% or less When Si exceeds 0.05%, the strength increases due to solid solution strengthening, and the moldability is reduced. Therefore, the upper limit of the content is 0.05%.
[0027]
Mn: 0.1 to 1%
Mn precipitates as MnS together with the solid solution S and suppresses surface defects caused by S. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 1%, the strength increases due to solid solution strengthening and the moldability decreases. Therefore, the content is 0.1 to 1%.
[0028]
P: 0.1% or less P is a solid solution strengthening element like Mn and Si, and if it exceeds 0.1%, the formability is remarkably deteriorated. Therefore, the content is 0.1% or less.
S: 0.02% or less Since S causes surface flaws as described above, it must be controlled to 0.02% or less.
[0029]
Sol. Al: 0.01-0.10%
Sol. Al is added as a deoxidizing material. If it is less than 0.01%, the effect is not sufficient. Even if added over 0.10%, the effect is saturated and uneconomical, so it is 0.10% or less.
[0030]
N: 0.003% or less N is a solid solution N that prevents the formation of a texture suitable for improving the r value during annealing, generates stretcher strain marks during molding due to strain aging, and further contributes to strengthening during nitriding. In order to fix the molten Ti as TiN, it is desirable to reduce it as much as possible in order to reduce the effect of nitriding. If it exceeds 0.003%, the adverse effect becomes remarkable, so it is necessary to make it 0.003% or less.
[0031]
Cu: 0.1% or less Since Cu eutectic melts during hot rolling and the surface properties are remarkably deteriorated, it must be made 0.1% or less.
[0032]
In the present invention, in addition to the above-described elements, B and Nb may be further added in the following ranges as necessary.
B: 0.0002 to 0.001%
By adding 0.0002% or more of B, secondary work embrittlement during molding is suppressed. B also has the effect of lowering the ductile-brittle transition temperature of the material after nitriding by strengthening the grain boundaries. If the content is less than 0.0002%, the effect is not sufficient. If the content exceeds 0.001%, BN is formed in the plate manufacturing stage and the formability is deteriorated. Therefore, it is necessary to add 0.0002 to 0.001%. .
[0033]
Nb: 0.005 to 0.10%
Addition of 0.005 to 0.10% of Nb has the effect of improving the r value and elongation of the material. If the content is less than 0.005%, the effect is not obtained. If the content exceeds 0.10%, the effect is saturated and the cost is increased. There is a need to.
[0034]
Ferrite average grain size: 15 μm or less After nitriding, when deformed at a low temperature or an ultra-high strain rate exceeding 10 2 / sec, the higher the strength, the more likely to be brittle. Although the ductile-brittle transition temperature is evaluated by a Charpy impact test, it is industrially necessary that this value be −50 ° C. In order to make the ductile-brittle transition temperature -50 ° C. or lower without impairing the strength after nitriding, the average crystal grain size of ferrite needs to be 15 μm or lower. This is because the fracture mode is a grain boundary or cleavage, and the grain boundary becomes a resistance to crack propagation, and it is considered that embrittlement is suppressed with 15 μm as a critical point.
[0035]
By adjusting to the above component composition range and structure, it is possible to obtain a steel sheet for nitriding that is excellent in strength after nitriding and low-temperature brittleness, and further excellent in press formability and surface properties.
[0036]
A steel plate having such characteristics can be manufactured by the following manufacturing method.
[0037]
(2) Steel plate manufacturing process (manufacturing method)
The steel adjusted to the above component composition range is melted in a converter and made into a steel ingot, then hot-rolled and cold-rolled by a conventional method, and then redefined as a softening rate of 50%. Recrystallization annealing is performed in the range of the crystal temperature to (recrystallization temperature + 50 ° C.).
[0038]
a. Control of the annealing temperature after cold rolling is necessary in order to obtain a nitriding steel sheet having excellent annealing temperature and low temperature toughness. The annealing temperature must be not less than the recrystallization temperature defined by a softening rate of 50% and not more than (recrystallization temperature + 50 ° C.). If the annealing temperature is less than the recrystallization temperature, the formability of the steel sheet is insufficient and is not suitable for forming processing applications. When the annealing temperature exceeds (recrystallization temperature + 50 ° C.), the crystal grains become coarse and embrittlement is promoted. In addition, as the method of recrystallization treatment, either continuous annealing or box annealing may be used.
[0039]
A structural part having excellent strength and toughness can be produced by forming a steel sheet having the above components and structure into a predetermined shape and then performing nitriding or soft nitriding treatment. The effects of nitriding and soft nitriding here are the same for both gas nitriding and plasma (ion) nitriding. The nitriding conditions are the same as in the conventional case for the purpose of surface hardening, and a nitriding temperature of 500 to 600 ° C. and a nitriding time of about 30 minutes to 2 hours are appropriate.
[0040]
Examples of the present invention will be given below to prove the effects of the present invention.
[0041]
【Example】
A hot-rolled sheet having various chemical components and compositions as shown in Table 1 was cold-rolled to a thickness of 1.2 mm (AC: steel of the present invention, D: comparative steel). As a result of measuring the recrystallization temperature of these cold-rolled sheets, all were about 670 ° C. Annealing was performed at 700 ° C. using a continuous annealing furnace. Nitriding was performed by using a gas soft nitriding method in a mixed gas of NH 3 , N 2 , H 2 and CO at 570 ° C. for 1 hour.
[0042]
The low temperature toughness was evaluated by measuring the absorbed energy by the Charpy impact test (JISZ2242) and measuring the ductile-brittle transition temperature defined as the temperature at which the absorbed energy becomes the median value between the ductile region and the brittle region. The test piece (JISZ2202) was made into a sub-size of No. 4 test piece by machining after two plates were attached by spot welding after nitriding.
[0043]
The average crystal grain size is determined by polishing a cross section perpendicular to the plate width direction, measuring the number of crystals per fixed length (I) (n) in parallel with the rolling direction and the plate thickness direction (about 100), The average grain size was measured as d = I / n , and the grain size in the rolling direction and the grain size in the plate thickness direction were geometrically averaged to obtain the average crystal grain size (JIS G0522 (steel ferrite grain size test method) cutting) Measurement method similar to the method (measuring particle size in JIS)).
[0044]
Table 2 shows the evaluation results of tensile properties and low temperature toughness before and after nitriding. The average crystal grain size of the ferrite after annealing is 15 μm or less. The inventive steels A to C exhibit a high tensile strength of 500 MPa or more after nitriding. The ductile-brittle transition temperature is very good at -50 ° C or lower. In contrast, Comparative Steel D with Ti * outside the scope of the present invention has high strength after nitriding, but has a high ductile-brittle transition temperature and is inferior in low-temperature brittleness.
[0045]
Table 3 shows that the test steel (invention steel) B was subjected to recrystallization annealing at various temperatures in a continuous annealing furnace, and the average crystal grain size of ferrite, the strength before and after nitriding, and the ductile-brittle transition temperature were investigated. A result is shown (No.2-4: example of this invention, No.1,5: comparative example). The recrystallization temperature of this steel (that is, the recrystallization temperature defined by 50% softening rate measured by Rockwell hardness) was 670 ° C.
[0046]
FIG. 1 shows the relationship between the average grain size of ferrite and the ductile-brittle transition temperature. It can be seen that when the particle size is 15 μm or less, the ductile-brittle transition temperature is as good as −50 ° C. or less, but when it exceeds 15 μm, it deteriorates.
[0047]
As shown in Table 3, Example No. of the present invention satisfying the production conditions of the present invention. Nos. 2 to 4 have high strength after nitriding, a ductile-brittle transition temperature of −50 ° C. or lower and extremely low temperature toughness.
[0048]
On the other hand, comparative example No. whose annealing temperature is less than recrystallization temperature. No. 1 has a low material elongation and is not excellent in moldability. Comparative Example No. Since No. 5 has a high annealing temperature, the average grain size of ferrite exceeds 15 μm, and the low-temperature brittleness is inferior.
[0049]
[Table 1]
[0050]
[Table 2]
[0051]
[Table 3]
[0052]
【The invention's effect】
As described above, according to the present invention, the steel composition, tissue, and by specifying the manufacturing conditions, cold-rolled steel sheet manufacturing press after nitriding with later high strength and low temperature toughness and further nitrided press forming it can.
[0053]
By using such a steel sheet after nitriding after forming, it becomes possible to manufacture a high-strength general structural component excellent in dimensional accuracy, strength, and durability at a low cost, which is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the average grain size of ferrite and the ductile-brittle transition temperature of a steel sheet according to an embodiment of the present invention.
Claims (4)
Ti*%=Ti%−48/14×N%−48/12×C%−48/32×S% …(1)% By weight, C: 0.010% or less, Si: 0.05% or less, Mn: 0.1-1%, P: 0.1% or less, S: 0.02% or less, Sol. Al: 0.01-0.10%, Cu: 0.1% or less, N: 0.003% or less, Ti is defined by the following formula (1) Ti * : -0.01 to 0 contained in the range of .08%, the balance being Fe and unavoidable impurities, and wherein the average crystal grain size of the ferrite is 15μm or less, excellent in strength and low temperature brittleness after further nitrided press forming Cold rolled steel sheet for nitriding after pressing .
Ti * % = Ti% −48 / 14 × N% −48 / 12 × C% −48 / 32 × S% (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13051599A JP4213815B2 (en) | 1998-05-12 | 1999-05-11 | Cold-rolled steel sheet for post-press nitriding with excellent strength and low-temperature brittleness after nitriding and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-128970 | 1998-05-12 | ||
JP12897098 | 1998-05-12 | ||
JP13051599A JP4213815B2 (en) | 1998-05-12 | 1999-05-11 | Cold-rolled steel sheet for post-press nitriding with excellent strength and low-temperature brittleness after nitriding and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000034541A JP2000034541A (en) | 2000-02-02 |
JP4213815B2 true JP4213815B2 (en) | 2009-01-21 |
Family
ID=26464525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13051599A Expired - Fee Related JP4213815B2 (en) | 1998-05-12 | 1999-05-11 | Cold-rolled steel sheet for post-press nitriding with excellent strength and low-temperature brittleness after nitriding and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4213815B2 (en) |
-
1999
- 1999-05-11 JP JP13051599A patent/JP4213815B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000034541A (en) | 2000-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5521818B2 (en) | Steel material and manufacturing method thereof | |
JP5846311B2 (en) | Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same | |
JP5228062B2 (en) | High strength thin steel sheet with excellent weldability and method for producing the same | |
EP3728679B1 (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof | |
JP5114860B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
WO2014147655A1 (en) | Ferritic stainless steel sheet | |
KR100259739B1 (en) | Ferrite type hot rolled stainless steel sheet having excellent resistance to surface roughening and to high temperature fatigue after working | |
JP2010229514A (en) | Cold rolled steel sheet and method for producing the same | |
JP3247908B2 (en) | High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same | |
JP2010126808A (en) | Cold rolled steel sheet and method for producing the same | |
JP3247907B2 (en) | High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same | |
JP3846156B2 (en) | Steel sheet for high-strength press-formed part of automobile and method for producing the same | |
JP4213815B2 (en) | Cold-rolled steel sheet for post-press nitriding with excellent strength and low-temperature brittleness after nitriding and method for producing the same | |
JPH0790482A (en) | Thin steel sheet excellent in impact resistance and its production | |
JP4348939B2 (en) | Manufacturing method of high-strength molded body with excellent moldability and crushing properties | |
JP3508668B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP3912928B2 (en) | Nitrided member excellent in spot weldability and manufacturing method thereof | |
KR102468035B1 (en) | High strength steel sheet having excellent thermal stability and high yield ratio and method for manufacturing thereof | |
JP3491548B2 (en) | Steel plate and high-strength press-formed body for machine structural parts | |
JPH09111396A (en) | High tensile strength hot rolled steel plate and high tensile strength cold rolled steel sheet for automobile use, excellent in impact resistance, and their production | |
JP3491547B2 (en) | Steel sheet for machine structural parts, high-strength press-formed body, and method of manufacturing the same | |
EP4423304A1 (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof | |
JP4385502B2 (en) | Martensitic stainless steel for welded pipes with excellent weldability and toughness | |
JP2000034540A (en) | Nitrided member excellent in strength and toughness at low temperature, and its production | |
JP4830318B2 (en) | Method for producing non-tempered high-tensile steel with excellent surface properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080930 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081031 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |